Improvements in spectral wave modeling in tidal inlet seas

The performance of the spectral wind wave model SWAN in tidal inlet seas was assessed on the basis of extensive wave measurements conducted in the Amelander Zeegat tidal inlet and the Dutch Eastern Wadden Sea, as well as relevant data from other inlets, lakes, estuaries and beaches. We found that th...

Full description

Saved in:
Bibliographic Details
Published inJournal of Geophysical Research: Oceans Vol. 117; no. C11
Main Authors van der Westhuysen, A. J., van Dongeren, A. R., Groeneweg, J., van Vledder, G. Ph, Peters, H., Gautier, C., van Nieuwkoop, J. C. C.
Format Journal Article
LanguageEnglish
Published Blackwell Publishing Ltd 01.11.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The performance of the spectral wind wave model SWAN in tidal inlet seas was assessed on the basis of extensive wave measurements conducted in the Amelander Zeegat tidal inlet and the Dutch Eastern Wadden Sea, as well as relevant data from other inlets, lakes, estuaries and beaches. We found that the 2006 default SWAN model (version 40.51), the starting point of the investigation, performed reasonably well for measured storm conditions, but three aspects required further attention. First, over the near‐horizontal tidal flats, the computed ratio of integral wave height over water depth showed an apparent upper limit using the default depth‐limited wave breaking formulation and breaker parameter, resulting in an underprediction of wave heights. This problem has been largely solved using a new breaker formulation. The second aspect concerns wave‐current interaction, specifically the wave age effect on waves generated in ambient current, and a proposed enhanced dissipation in negative current gradients. Third, the variance density of lower‐frequency wind waves from the North Sea penetrating through the inlets into the Wadden Sea was underpredicted. This was improved by reducing the bottom friction dissipation relative to that of the default model. After a combined calibration, these improvements have resulted in a relative bias reduction in Hm0 from −3% to −1%, in Tm−1,0 from −7% to −3%, and in Tm01 from −6% to −2%, and consistent reductions in scatter, compared to the 2006 default model. Key Points An extensive data set for wave model evaluation was collected in the Wadden Sea The wave model SWAN generally performs well in tidal inlet seas, with exceptions Depth‐induced breaking, wave‐current interaction and propagation were improved
AbstractList The performance of the spectral wind wave model SWAN in tidal inlet seas was assessed on the basis of extensive wave measurements conducted in the Amelander Zeegat tidal inlet and the Dutch Eastern Wadden Sea, as well as relevant data from other inlets, lakes, estuaries and beaches. We found that the 2006 default SWAN model (version 40.51), the starting point of the investigation, performed reasonably well for measured storm conditions, but three aspects required further attention. First, over the near‐horizontal tidal flats, the computed ratio of integral wave height over water depth showed an apparent upper limit using the default depth‐limited wave breaking formulation and breaker parameter, resulting in an underprediction of wave heights. This problem has been largely solved using a new breaker formulation. The second aspect concerns wave‐current interaction, specifically the wave age effect on waves generated in ambient current, and a proposed enhanced dissipation in negative current gradients. Third, the variance density of lower‐frequency wind waves from the North Sea penetrating through the inlets into the Wadden Sea was underpredicted. This was improved by reducing the bottom friction dissipation relative to that of the default model. After a combined calibration, these improvements have resulted in a relative bias reduction in Hm0 from −3% to −1%, in Tm−1,0 from −7% to −3%, and in Tm01 from −6% to −2%, and consistent reductions in scatter, compared to the 2006 default model. Key Points An extensive data set for wave model evaluation was collected in the Wadden Sea The wave model SWAN generally performs well in tidal inlet seas, with exceptions Depth‐induced breaking, wave‐current interaction and propagation were improved
The performance of the spectral wind wave model SWAN in tidal inlet seas was assessed on the basis of extensive wave measurements conducted in the Amelander Zeegat tidal inlet and the Dutch Eastern Wadden Sea, as well as relevant data from other inlets, lakes, estuaries and beaches. We found that the 2006 default SWAN model (version 40.51), the starting point of the investigation, performed reasonably well for measured storm conditions, but three aspects required further attention. First, over the near‐horizontal tidal flats, the computed ratio of integral wave height over water depth showed an apparent upper limit using the default depth‐limited wave breaking formulation and breaker parameter, resulting in an underprediction of wave heights. This problem has been largely solved using a new breaker formulation. The second aspect concerns wave‐current interaction, specifically the wave age effect on waves generated in ambient current, and a proposed enhanced dissipation in negative current gradients. Third, the variance density of lower‐frequency wind waves from the North Sea penetrating through the inlets into the Wadden Sea was underpredicted. This was improved by reducing the bottom friction dissipation relative to that of the default model. After a combined calibration, these improvements have resulted in a relative bias reduction in H m0 from −3% to −1%, in T m−1,0 from −7% to −3%, and in T m01 from −6% to −2%, and consistent reductions in scatter, compared to the 2006 default model. Key Points An extensive data set for wave model evaluation was collected in the Wadden Sea The wave model SWAN generally performs well in tidal inlet seas, with exceptions Depth‐induced breaking, wave‐current interaction and propagation were improved
The performance of the spectral wind wave model SWAN in tidal inlet seas was assessed on the basis of extensive wave measurements conducted in the Amelander Zeegat tidal inlet and the Dutch Eastern Wadden Sea, as well as relevant data from other inlets, lakes, estuaries and beaches. We found that the 2006 default SWAN model (version 40.51), the starting point of the investigation, performed reasonably well for measured storm conditions, but three aspects required further attention. First, over the near-horizontal tidal flats, the computed ratio of integral wave height over water depth showed an apparent upper limit using the default depth-limited wave breaking formulation and breaker parameter, resulting in an underprediction of wave heights. This problem has been largely solved using a new breaker formulation. The second aspect concerns wave-current interaction, specifically the wave age effect on waves generated in ambient current, and a proposed enhanced dissipation in negative current gradients. Third, the variance density of lower-frequency wind waves from the North Sea penetrating through the inlets into the Wadden Sea was underpredicted. This was improved by reducing the bottom friction dissipation relative to that of the default model. After a combined calibration, these improvements have resulted in a relative bias reduction in H sub(m0) from -3% to -1%, in T sub(m-1,0) from -7% to -3%, and in T sub(m01) from -6% to -2%, and consistent reductions in scatter, compared to the 2006 default model. Key Points * An extensive data set for wave model evaluation was collected in the Wadden Sea * The wave model SWAN generally performs well in tidal inlet seas, with exceptions * Depth-induced breaking, wave-current interaction and propagation were improved
Author Peters, H.
van Vledder, G. Ph
van Nieuwkoop, J. C. C.
Groeneweg, J.
van Dongeren, A. R.
van der Westhuysen, A. J.
Gautier, C.
Author_xml – sequence: 1
  givenname: A. J.
  surname: van der Westhuysen
  fullname: van der Westhuysen, A. J.
  email: andre.vanderwesthuysen@noaa.gov, andre.vanderwesthuysen@noaa.gov
  organization: Deltares, Delft, Netherlands
– sequence: 2
  givenname: A. R.
  surname: van Dongeren
  fullname: van Dongeren, A. R.
  organization: Deltares, Delft, Netherlands
– sequence: 3
  givenname: J.
  surname: Groeneweg
  fullname: Groeneweg, J.
  organization: Deltares, Delft, Netherlands
– sequence: 4
  givenname: G. Ph
  surname: van Vledder
  fullname: van Vledder, G. Ph
  organization: Alkyon, ARCADIS Nederland BV, Emmeloord, Netherlands
– sequence: 5
  givenname: H.
  surname: Peters
  fullname: Peters, H.
  organization: Rijkswaterstaat Data-ICT-Dienst, Delft, Netherlands
– sequence: 6
  givenname: C.
  surname: Gautier
  fullname: Gautier, C.
  organization: Deltares, Delft, Netherlands
– sequence: 7
  givenname: J. C. C.
  surname: van Nieuwkoop
  fullname: van Nieuwkoop, J. C. C.
  organization: Deltares, Delft, Netherlands
BookMark eNp9kE1Lw0AQhhdRsNbe_AE5ejC6M7vZZL1JtR-hKIjS47JNJhLNR82mrf33pkTEk3MZmHneeYf3jB1XdUWMXQC_Bo76BjlAPOY8jER4xAYIgfIROR6zAQcZ-RwxPGUj5955VzJQksOA3c7LdVNvqaSqdV5eeW5NSdvYwtvZLXllnVKRV2-HTZun3TivCmo9R9ads5PMFo5GP33IXicPL-OZv3iazsd3C99KAO5HsnNCnSCJJFJCqSRcJVbLKNVJAJBiijILAbWOZBBkmSBUUZZFKFCtUHAxZJf93e7Rzw251pS5S6gobEX1xhnQoLUSoA7oVY8mTe1cQ5lZN3lpm70Bbg4pmb8pdbjo8V1e0P5f1sTT5zGgDA4mfq_KXUtfvyrbfBgVijAwy8epiZf3is_iiUHxDQn5dqs
CitedBy_id crossref_primary_10_3390_jmse8100773
crossref_primary_10_5194_os_14_1449_2018
crossref_primary_10_9753_icce_v33_waves_9
crossref_primary_10_1007_s10236_016_0998_z
crossref_primary_10_1007_s10236_014_0807_5
crossref_primary_10_1016_j_coastaleng_2015_08_002
crossref_primary_10_1016_j_margeo_2022_106910
crossref_primary_10_1002_2016JC012367
crossref_primary_10_1007_s10236_014_0711_z
crossref_primary_10_1061__ASCE_WW_1943_5460_0000300
crossref_primary_10_1029_2012JC007932
crossref_primary_10_5194_os_15_1469_2019
crossref_primary_10_1029_2012JC008105
crossref_primary_10_1016_j_ocemod_2024_102328
crossref_primary_10_1016_j_ocemod_2018_08_002
crossref_primary_10_9753_icce_v33_waves_42
crossref_primary_10_1007_s10236_022_01520_0
crossref_primary_10_1002_2015JC011340
Cites_doi 10.1029/2006JC003924
10.1016/j.coastaleng.2009.01.012
10.1175/1520-0485(1994)024<0917:IFHMOT>2.0.CO;2
10.1175/1520-0485(2000)030<2723:SEBOBW>2.0.CO;2
10.1029/97JC01581
10.1016/S0378-3839(96)00006-3
10.1016/j.coastaleng.2012.03.002
10.1016/j.cageo.2009.07.009
10.1017/S0022112062000373
10.1175/1520-0485(1994)024<0994:WWAMBB>2.0.CO;2
10.1016/j.coastaleng.2006.08.006
10.1029/JC088iC10p05925
10.1029/JZ069i024p05181
10.1175/1520-0485(1985)015<1378:CAPOTN>2.0.CO;2
10.1016/0378-3839(94)90014-0
10.1175/1520-0485(2003)033<1274:POASDS>2.0.CO;2
10.1016/j.coastaleng.2010.11.006
10.1016/S0378-3839(03)00023-1
10.1016/j.coastaleng.2004.12.006
10.1175/1520-0485(1983)013<1653:OTBBGA>2.0.CO;2
10.1029/1998JC900123
10.1080/00401706.1978.10489610
10.1016/0029-8018(93)90002-Y
10.1016/j.coastaleng.2007.10.002
10.1029/2005JC003398
10.1175/1520-0485(1984)014<1271:OTEOAF>2.0.CO;2
10.1029/98JC02622
10.1029/JC090iC05p09159
10.1016/j.coastaleng.2012.05.001
10.1016/0378-3839(95)00007-X
10.1016/0378-3839(89)90031-8
10.1029/2009JC005433
ContentType Journal Article
Copyright 2012. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2012. American Geophysical Union. All Rights Reserved.
DBID BSCLL
AAYXX
CITATION
7TN
F1W
H96
L.G
DOI 10.1029/2011JC007837
DatabaseName Istex
CrossRef
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Oceanography
Geology
Astronomy & Astrophysics
Physics
EISSN 2156-2202
2169-9291
EndPage n/a
ExternalDocumentID 10_1029_2011JC007837
JGRC12450
ark_67375_WNG_JWD60HJF_2
Genre article
GroupedDBID 12K
1OC
24P
7XC
88I
8FE
8FH
8G5
8R4
8R5
AANLZ
AAXRX
ABUWG
ACAHQ
ACCZN
ACXBN
AEIGN
AEUYR
AFFPM
AHBTC
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ATCPS
BBNVY
BENPR
BHPHI
BKSAR
BPHCQ
BRXPI
BSCLL
DCZOG
DRFUL
DRSTM
DU5
DWQXO
GNUQQ
GUQSH
HCIFZ
LATKE
LITHE
LOXES
LUTES
LYRES
M2O
M2P
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
P-X
Q2X
RNS
WHG
WXSBR
XSW
~OA
~~A
AITYG
WIN
AAYXX
CITATION
05W
0R~
33P
3V.
50Y
52M
702
7TN
8-1
8CJ
AAESR
AASGY
AAZKR
ABPVW
ACGOD
ACPOU
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
AFKRA
AFRAH
AIURR
ASPBG
AVWKF
AZFZN
AZQEC
AZVAB
BFHJK
BMXJE
CCPQU
D1J
D1K
DPXWK
EBS
F1W
FEDTE
H96
HGLYW
HVGLF
HZ~
K6-
L.G
LEEKS
LK5
M7R
MY~
O9-
P2W
PATMY
PCBAR
PQQKQ
PROAC
PYCSY
R.K
SUPJJ
WBKPD
ID FETCH-LOGICAL-a4110-8464029c2e3c86366c7bca948d9c511d2d24f712998455ff3e268ff82326b2303
ISSN 0148-0227
2169-9275
IngestDate Fri Jun 28 06:02:50 EDT 2024
Fri Aug 23 04:10:48 EDT 2024
Sat Aug 24 01:03:30 EDT 2024
Wed Jan 17 05:09:36 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a4110-8464029c2e3c86366c7bca948d9c511d2d24f712998455ff3e268ff82326b2303
Notes ArticleID:2011JC007837
istex:419F61553B5977877EB01DA0D89436B7D3768A86
Tab-delimited Table 1.Tab-delimited Table 2.Tab-delimited Table 3.Tab-delimited Table 4.Tab-delimited Table 5.Tab-delimited Table 6.Tab-delimited Table 7.Tab-delimited Table 8.
ark:/67375/WNG-JWD60HJF-2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2011JC007837
PQID 1919963160
PQPubID 23462
PageCount 23
ParticipantIDs proquest_miscellaneous_1919963160
crossref_primary_10_1029_2011JC007837
wiley_primary_10_1029_2011JC007837_JGRC12450
istex_primary_ark_67375_WNG_JWD60HJF_2
PublicationCentury 2000
PublicationDate November 2012
PublicationDateYYYYMMDD 2012-11-01
PublicationDate_xml – month: 11
  year: 2012
  text: November 2012
PublicationDecade 2010
PublicationTitle Journal of Geophysical Research: Oceans
PublicationTitleAlternate J. Geophys. Res
PublicationYear 2012
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Bouws, E., and G. J. Komen (1983), On the balance between growth and dissipation in an extreme, depth-limited wind-sea in the southern North Sea, J. Phys. Oceanogr., 13(9), 1653-1658.
Mei, C. C. (1983), The Applied Dynamics of Ocean Surface Waves, 740 pp., John Wiley, New York.
Herbers, T. H. C., S. Elgar, and R. T. Guza (1994), Infragravity-frequency (0.005-0.05 Hz) motions on the shelf: I. Forced waves, J. Phys. Oceanogr., 24, 917-927.
Ris, R. C., L. H. Holthuijsen, and N. Booij (1999), A third-generation wave model for coastal regions: 2. Verification, J. Geophys. Res., 104(C4), 7667-7681.
Young, I. R., and A. V. Babanin (2006), The form of the asymptotic depth-limited wind wave frequency spectrum, J. Geophys. Res., 111, C06031, doi:10.1029/2005JC003398.
Ruessink, B. G., D. J. R. Walstra, and H. N. Southgate (2003), Calibration and verification of a parametric wave model on barred beaches, Coastal Eng., 48, 139-149.
Hasselmann, K. (1962), On the non-linear energy transfer in a gravity-wave spectrum: I. General theory, J. Fluid Mech., 12, 481-500.
Booij, N., R. C. Ris, and L. H. Holthuijsen (1999), A third generation wave model for coastal regions: 1. Model description and validation, J. Geophys. Res., 104(C4), 7649-7666.
Komen, G. J., S. Hasselmann, and K. Hasselmann (1984), On the existence of a fully developed wind-sea spectrum, J. Phys. Oceanogr., 14, 1271-1285.
Ralston, M. L., and R. I. Jennrich (1978), DUD, a derivative-free algorithm for nonlinear least squares, Technometrics, 20, 7-14.
Bottema, M., and G. P. vanVledder (2009), A ten-year data set for fetch- and depth-limited wave growth, Coastal Eng., 56, 703-725.
Apotsos, A., B. Raubenheimer, S. Elgar, and R. T. Guza (2008), Testing and calibrating parametric wave transformation models on natural beaches, Coastal Eng., 55, 224-235.
Nelson, R. C. (1994), Depth limited design wave heights in very flat regions, Coastal Eng., 23, 43-59.
Young, I. R., and L. A. Verhagen (1996), The growth of fetch-limited waves in water of finite depth. Part 1. Total energy and peak frequency, Coastal Eng., 29, 47-78.
Hasselmann, S., K. Hasselmann, J. A. Allender, and T. P. Barnett (1985), Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part 2: Parameterization of the nonlinear transfer for application in wave models, J. Phys. Oceanogr., 15, 1378-1391.
Thornton, E. B., and R. T. Guza (1983), Transformation of wave height distribution, J. Geophys. Res., 88, 5925-5938.
Smith, G., A. V. Babanin, P. Riedel, I. R. Young, S. Oliver, and G. Hubbert (2011), Introduction of a new friction routine in the SWAN model that evaluates roughness due to bedform and sediment size changes, Coastal Eng., 58(4), 317-326.
Weerts, A. H., G. Y. El Serafy, S. Hummel, J. Dhondia, and H. Gerritsen (2010), Application of generic data assimilation tools (DATools) for flood forecasting purposes, Comput. GeoSci., 36, 453-463.
Holthuijsen, L. H., N. Booij, and T. H. C. Herbers (1989), A prediction model for stationary, short-crested waves in shallow water with ambient currents, Coastal Eng., 13, 23-54.
van derWesthuysen, A. J. (2010), Modelling of depth-induced wave breaking under finite-depth wave growth conditions, J. Geophys. Res., 115, C01008, doi:10.1029/2009JC005433.
Haus, B. K. (2007), Surface current effects on the fetch-limited growth of wave energy, J. Geophys. Res., 112, C03003, doi:10.1029/2006JC003924.
Zijlema, M., and A. J. van derWesthuysen (2005), On convergence behaviour and numerical accuracy in stationary SWAN simulations of nearshore wind wave spectra, Coastal Eng., 52, 237-256.
Zijlema, M., G. P. vanVledder, and L. H. Holthuijsen (2012), Bottom friction and wind drag for wave models, Coastal Eng., 65, 19-26.
van derWesthuysen, A. J. (2012), Spectral modeling of wave dissipation on negative current gradients, Coastal Eng., 68, 17-30.
Herbers, T. H. C., and M. C. Burton (1997), Nonlinear shoaling of directionally spread waves on a beach, J. Geophys. Res., 102, 21,101-21,114.
Herbers, T. H. C., N. R. Russnogle, and S. Elgar (2000), Spectral energy balance of breaking waves within the surf zone, J. Phys. Oceanogr., 30, 2723-2737.
Doering, J. C., and A. J. Bowen (1995), Parametrization of orbital velocity asymmetries of shoaling and breaking waves using bispectral analysis, Coastal Eng., 26(1-2), 15-33.
Hasselmann, K., et al. (1973), Measurement of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP), Dtsch. Hydrogr. Z., A, 8(12), suppl., 95 pp.
Madsen, P. A., and O. R. Sørensen (1993), Bound waves and triad interactions in shallow water, J. Ocean Eng., 20(4), 359-388.
Alves, J. H. G. M., and M. L. Banner (2003), Performance of a saturation-based dissipation-rate source term in modelling the fetch-limited evolution of wind waves, J. Phys. Oceanogr., 33, 1274-1298.
Battjes, J. A., and M. J. F. Stive (1985), Calibration and verification of a dissipation model for random breaking waves, J. Geophys. Res., 90(C5), 9159-9167.
Tolman, H. L. (1994), Wind waves and movable-bed bottom friction, J. Phys. Oceanogr., 24(5), 994-1009.
Pierson, W. J., and L. Moskowitz (1964), A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii, J. Geophys. Res., 69(24), 5181-5190.
van derWesthuysen, A. J., M. Zijlema, and J. A. Battjes (2007), Nonlinear saturation based whitecapping dissipation in SWAN for deep and shallow water, Coastal Eng., 54, 151-170.
2010; 36
2011
1993; 20
1994; 23
2009
1997
2008
1996
2007
1994; 24
2006
1962; 12
1964; 69
2008; 55
1992
2011; 58
2002
2007; 54
1999; 104
1983; 13
2006; 111
2003; 33
1978
2009; 56
1997; 102
2007; 112
1996; 29
2001
1984; 14
1995; 26
1978; 20
2010; 115
2000; 30
1987
2005; 52
2003; 48
1985; 90
1983
2012; 68
1989; 13
1973; 8
1985; 15
2012; 65
1983; 88
Kaiser R. (e_1_2_11_26_1) 2001
Herman A. (e_1_2_11_24_1) 2006
e_1_2_11_32_1
e_1_2_11_30_1
e_1_2_11_36_1
Battjes J. A. (e_1_2_11_6_1) 1978
e_1_2_11_53_1
e_1_2_11_11_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_2_1
Mei C. C. (e_1_2_11_29_1) 1983
e_1_2_11_20_1
e_1_2_11_45_1
De Waal J. P. (e_1_2_11_13_1) 2001
e_1_2_11_47_1
e_1_2_11_41_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_17_1
e_1_2_11_15_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_50_1
Zijderveld A. (e_1_2_11_51_1) 2008
e_1_2_11_10_1
e_1_2_11_31_1
Hasselmann K. (e_1_2_11_18_1) 1973; 8
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_12_1
e_1_2_11_33_1
e_1_2_11_54_1
e_1_2_11_7_1
e_1_2_11_28_1
e_1_2_11_3_1
e_1_2_11_49_1
Zijlema M. (e_1_2_11_52_1) 2009
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_46_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_39_1
Battjes J. A. (e_1_2_11_5_1) 1992
Ris R. C. (e_1_2_11_34_1) 1996
References_xml – year: 2011
– volume: 24
  start-page: 917
  year: 1994
  end-page: 927
  article-title: Infragravity‐frequency (0.005–0.05 Hz) motions on the shelf: I. Forced waves
  publication-title: J. Phys. Oceanogr.
– volume: 54
  start-page: 151
  year: 2007
  end-page: 170
  article-title: Nonlinear saturation based whitecapping dissipation in SWAN for deep and shallow water
  publication-title: Coastal Eng.
– year: 2009
– start-page: 404
  year: 2008
  end-page: 410
– volume: 68
  start-page: 17
  year: 2012
  end-page: 30
  article-title: Spectral modeling of wave dissipation on negative current gradients
  publication-title: Coastal Eng.
– volume: 26
  start-page: 15
  issue: 1–2
  year: 1995
  end-page: 33
  article-title: Parametrization of orbital velocity asymmetries of shoaling and breaking waves using bispectral analysis
  publication-title: Coastal Eng.
– volume: 112
  year: 2007
  article-title: Surface current effects on the fetch‐limited growth of wave energy
  publication-title: J. Geophys. Res.
– start-page: 628
  year: 2006
  end-page: 639
– start-page: 560
  year: 2001
  end-page: 569
– volume: 90
  start-page: 9159
  issue: C5
  year: 1985
  end-page: 9167
  article-title: Calibration and verification of a dissipation model for random breaking waves
  publication-title: J. Geophys. Res.
– volume: 48
  start-page: 139
  year: 2003
  end-page: 149
  article-title: Calibration and verification of a parametric wave model on barred beaches
  publication-title: Coastal Eng.
– start-page: 42
  year: 1992
  end-page: 50
– start-page: 569
  year: 1978
  end-page: 588
– volume: 20
  start-page: 7
  year: 1978
  end-page: 14
  article-title: DUD, a derivative‐free algorithm for nonlinear least squares
  publication-title: Technometrics
– volume: 88
  start-page: 5925
  year: 1983
  end-page: 5938
  article-title: Transformation of wave height distribution
  publication-title: J. Geophys. Res.
– volume: 13
  start-page: 1653
  issue: 9
  year: 1983
  end-page: 1658
  article-title: On the balance between growth and dissipation in an extreme, depth‐limited wind‐sea in the southern North Sea
  publication-title: J. Phys. Oceanogr.
– year: 1997
– volume: 30
  start-page: 2723
  year: 2000
  end-page: 2737
  article-title: Spectral energy balance of breaking waves within the surf zone
  publication-title: J. Phys. Oceanogr.
– volume: 102
  start-page: 21,101
  year: 1997
  end-page: 21,114
  article-title: Nonlinear shoaling of directionally spread waves on a beach
  publication-title: J. Geophys. Res.
– volume: 36
  start-page: 453
  year: 2010
  end-page: 463
  article-title: Application of generic data assimilation tools (DATools) for flood forecasting purposes
  publication-title: Comput. GeoSci.
– volume: 52
  start-page: 237
  year: 2005
  end-page: 256
  article-title: On convergence behaviour and numerical accuracy in stationary SWAN simulations of nearshore wind wave spectra
  publication-title: Coastal Eng.
– volume: 69
  start-page: 5181
  issue: 24
  year: 1964
  end-page: 5190
  article-title: A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii
  publication-title: J. Geophys. Res.
– volume: 115
  year: 2010
  article-title: Modelling of depth‐induced wave breaking under finite‐depth wave growth conditions
  publication-title: J. Geophys. Res.
– volume: 58
  start-page: 317
  issue: 4
  year: 2011
  end-page: 326
  article-title: Introduction of a new friction routine in the SWAN model that evaluates roughness due to bedform and sediment size changes
  publication-title: Coastal Eng.
– year: 1983
– volume: 24
  start-page: 994
  issue: 5
  year: 1994
  end-page: 1009
  article-title: Wind waves and movable‐bed bottom friction
  publication-title: J. Phys. Oceanogr.
– start-page: 1247
  year: 1996
  end-page: 1254
– year: 2007
– year: 1987
– year: 1996
– start-page: 944
  year: 2001
  end-page: 952
– volume: 111
  year: 2006
  article-title: The form of the asymptotic depth‐limited wind wave frequency spectrum
  publication-title: J. Geophys. Res.
– volume: 13
  start-page: 23
  year: 1989
  end-page: 54
  article-title: A prediction model for stationary, short‐crested waves in shallow water with ambient currents
  publication-title: Coastal Eng.
– volume: 23
  start-page: 43
  year: 1994
  end-page: 59
  article-title: Depth limited design wave heights in very flat regions
  publication-title: Coastal Eng.
– volume: 65
  start-page: 19
  year: 2012
  end-page: 26
  article-title: Bottom friction and wind drag for wave models
  publication-title: Coastal Eng.
– volume: 104
  start-page: 7649
  issue: C4
  year: 1999
  end-page: 7666
  article-title: A third generation wave model for coastal regions: 1. Model description and validation
  publication-title: J. Geophys. Res.
– volume: 104
  start-page: 7667
  issue: C4
  year: 1999
  end-page: 7681
  article-title: A third‐generation wave model for coastal regions: 2. Verification
  publication-title: J. Geophys. Res.
– year: 2002
– volume: 8
  issue: 12
  year: 1973
  article-title: Measurement of wind‐wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP)
  publication-title: Dtsch. Hydrogr. Z., A
– volume: 15
  start-page: 1378
  year: 1985
  end-page: 1391
  article-title: Computations and parameterizations of the nonlinear energy transfer in a gravity‐wave spectrum. Part 2: Parameterization of the nonlinear transfer for application in wave models
  publication-title: J. Phys. Oceanogr.
– volume: 55
  start-page: 224
  year: 2008
  end-page: 235
  article-title: Testing and calibrating parametric wave transformation models on natural beaches
  publication-title: Coastal Eng.
– volume: 14
  start-page: 1271
  year: 1984
  end-page: 1285
  article-title: On the existence of a fully developed wind‐sea spectrum
  publication-title: J. Phys. Oceanogr.
– volume: 12
  start-page: 481
  year: 1962
  end-page: 500
  article-title: On the non‐linear energy transfer in a gravity‐wave spectrum: I. General theory
  publication-title: J. Fluid Mech.
– volume: 56
  start-page: 703
  year: 2009
  end-page: 725
  article-title: A ten‐year data set for fetch‐ and depth‐limited wave growth
  publication-title: Coastal Eng.
– volume: 20
  start-page: 359
  issue: 4
  year: 1993
  end-page: 388
  article-title: Bound waves and triad interactions in shallow water
  publication-title: J. Ocean Eng.
– volume: 29
  start-page: 47
  year: 1996
  end-page: 78
  article-title: The growth of fetch‐limited waves in water of finite depth. Part 1. Total energy and peak frequency
  publication-title: Coastal Eng.
– volume: 33
  start-page: 1274
  year: 2003
  end-page: 1298
  article-title: Performance of a saturation‐based dissipation‐rate source term in modelling the fetch‐limited evolution of wind waves
  publication-title: J. Phys. Oceanogr.
– start-page: 1
  year: 2009
  end-page: 12
– ident: e_1_2_11_41_1
– ident: e_1_2_11_16_1
– ident: e_1_2_11_20_1
  doi: 10.1029/2006JC003924
– start-page: 569
  volume-title: Proceedings of the 16th International Conference on Coastal Engineering, Hamburg, Germany, 1978
  year: 1978
  ident: e_1_2_11_6_1
  contributor:
    fullname: Battjes J. A.
– start-page: 1
  volume-title: Proceedings of Coastal Dynamics 2009
  year: 2009
  ident: e_1_2_11_52_1
  contributor:
    fullname: Zijlema M.
– ident: e_1_2_11_11_1
  doi: 10.1016/j.coastaleng.2009.01.012
– ident: e_1_2_11_21_1
  doi: 10.1175/1520-0485(1994)024<0917:IFHMOT>2.0.CO;2
– ident: e_1_2_11_23_1
  doi: 10.1175/1520-0485(2000)030<2723:SEBOBW>2.0.CO;2
– ident: e_1_2_11_38_1
– ident: e_1_2_11_22_1
  doi: 10.1029/97JC01581
– ident: e_1_2_11_50_1
  doi: 10.1016/S0378-3839(96)00006-3
– ident: e_1_2_11_54_1
  doi: 10.1016/j.coastaleng.2012.03.002
– ident: e_1_2_11_9_1
– start-page: 1247
  volume-title: Proceedings of the 25th International Conference on Coastal Engineering, Orlando, USA, 1996
  year: 1996
  ident: e_1_2_11_34_1
  contributor:
    fullname: Ris R. C.
– ident: e_1_2_11_47_1
  doi: 10.1016/j.cageo.2009.07.009
– ident: e_1_2_11_17_1
  doi: 10.1017/S0022112062000373
– ident: e_1_2_11_40_1
  doi: 10.1175/1520-0485(1994)024<0994:WWAMBB>2.0.CO;2
– ident: e_1_2_11_46_1
  doi: 10.1016/j.coastaleng.2006.08.006
– ident: e_1_2_11_39_1
  doi: 10.1029/JC088iC10p05925
– ident: e_1_2_11_33_1
– ident: e_1_2_11_31_1
  doi: 10.1029/JZ069i024p05181
– ident: e_1_2_11_14_1
– ident: e_1_2_11_19_1
  doi: 10.1175/1520-0485(1985)015<1378:CAPOTN>2.0.CO;2
– volume: 8
  issue: 12
  year: 1973
  ident: e_1_2_11_18_1
  article-title: Measurement of wind‐wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP)
  publication-title: Dtsch. Hydrogr. Z., A
  contributor:
    fullname: Hasselmann K.
– ident: e_1_2_11_30_1
  doi: 10.1016/0378-3839(94)90014-0
– volume-title: The Applied Dynamics of Ocean Surface Waves
  year: 1983
  ident: e_1_2_11_29_1
  contributor:
    fullname: Mei C. C.
– start-page: 560
  volume-title: Ocean Wave Measurement and Analysis
  year: 2001
  ident: e_1_2_11_13_1
  contributor:
    fullname: De Waal J. P.
– ident: e_1_2_11_2_1
  doi: 10.1175/1520-0485(2003)033<1274:POASDS>2.0.CO;2
– ident: e_1_2_11_37_1
  doi: 10.1016/j.coastaleng.2010.11.006
– ident: e_1_2_11_36_1
  doi: 10.1016/S0378-3839(03)00023-1
– ident: e_1_2_11_53_1
  doi: 10.1016/j.coastaleng.2004.12.006
– ident: e_1_2_11_12_1
  doi: 10.1175/1520-0485(1983)013<1653:OTBBGA>2.0.CO;2
– ident: e_1_2_11_35_1
  doi: 10.1029/1998JC900123
– ident: e_1_2_11_32_1
  doi: 10.1080/00401706.1978.10489610
– ident: e_1_2_11_8_1
– ident: e_1_2_11_43_1
– ident: e_1_2_11_28_1
  doi: 10.1016/0029-8018(93)90002-Y
– start-page: 42
  volume-title: Proceedings of the 23rd International Conference on Coastal Engineering, Venice, Italy, 1992
  year: 1992
  ident: e_1_2_11_5_1
  contributor:
    fullname: Battjes J. A.
– ident: e_1_2_11_48_1
– start-page: 944
  volume-title: Ocean Wave Measurement and Analysis
  year: 2001
  ident: e_1_2_11_26_1
  contributor:
    fullname: Kaiser R.
– ident: e_1_2_11_42_1
– start-page: 404
  volume-title: Proceedings of the 31st International Conference on Coastal Engineering, Hamburg, Germany, 2008
  year: 2008
  ident: e_1_2_11_51_1
  contributor:
    fullname: Zijderveld A.
– ident: e_1_2_11_3_1
  doi: 10.1016/j.coastaleng.2007.10.002
– ident: e_1_2_11_49_1
  doi: 10.1029/2005JC003398
– ident: e_1_2_11_4_1
– ident: e_1_2_11_27_1
  doi: 10.1175/1520-0485(1984)014<1271:OTEOAF>2.0.CO;2
– ident: e_1_2_11_10_1
  doi: 10.1029/98JC02622
– ident: e_1_2_11_7_1
  doi: 10.1029/JC090iC05p09159
– start-page: 628
  volume-title: Proceedings of the 30th International Conference on Coastal Engineering, San Diego, USA, 2006
  year: 2006
  ident: e_1_2_11_24_1
  contributor:
    fullname: Herman A.
– ident: e_1_2_11_45_1
  doi: 10.1016/j.coastaleng.2012.05.001
– ident: e_1_2_11_15_1
  doi: 10.1016/0378-3839(95)00007-X
– ident: e_1_2_11_25_1
  doi: 10.1016/0378-3839(89)90031-8
– ident: e_1_2_11_44_1
  doi: 10.1029/2009JC005433
SSID ssj0000456401
ssj0014561
ssj0030581
ssj0030583
ssj0043761
ssj0030582
ssj0030585
ssj0030584
ssj0030586
ssj0000818449
Score 2.277774
Snippet The performance of the spectral wind wave model SWAN in tidal inlet seas was assessed on the basis of extensive wave measurements conducted in the Amelander...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Publisher
SubjectTerms Marine
spectral wave modeling
tidal inlets
wave breaking
wave propagation
wave-current interaction
Title Improvements in spectral wave modeling in tidal inlet seas
URI https://api.istex.fr/ark:/67375/WNG-JWD60HJF-2/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2011JC007837
https://search.proquest.com/docview/1919963160
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1rb9Mw0KpWISEkBAO08lKQYF9KSmM7TsK3ErZUkShVtbF9i_JwtIqRTH0wyq_n_IibCpgYXyKf7SRK7uG7890Zodek9ElegqVaBKln04IxO_NxYDtuKjZt0iEvZLTFhI1PaXzunnc631tRS-tVNsh__jGv5H-wCn2AV5ElewvMmodCB7QBv3AFDMP1n3CsPAJcZanNq75MmxQZ99fiTCF5yI1OWVnNC1ldA7DUF27Bv-ikEa-vGsQ1MXnCZ_A552lltG9xGs3FeqN9N6NBPx4YfbgWXkIzMDMD0aIGqXrNVfyv6f5yyVUJk7AfDfrTi7YTwsE6G2_XLymqEaplRfaBMsFsjIe7wlZlamqqCrWgVSuvWZd-E-tDLKqiCl0lDoVSQ7zt8tVs2Zt57k0z5codR7MQ9Brh6uliL3DdPdT9cDSZzox3TlbZ2QYLOVSm_yoAJKS_A-A2QNoAbQNuG2ANQEHCq0Mz9R_U2RnwKe_an7GjN3WFCPixYxS1TSupG508QPc1AVkjRaEPUYdX--hgtBTbLPW3jXVoybYireU-uqNOQN1AK-K61fsE5lu9kBDcEF7OwZbSY_ck_eni6nDTVD3oEXrf5gBrXlkNB1iCA6yGA8SI5ABLcoAlOOAxOj0-OgnHtj4NxE4p6Kg2KMoUfkqOOcl9RhjLvSxPA-oXQQ5WQ4ELTEsP1NfAp65bloRj5pelDyYDy8DQJk_QXlVX_ABZrlNCJwlymCQytVPieWlRepRmLACVvofeNP86uVJFXxIZrIGDpI2THjqUiDCT0sVXESjpucnZJEris49sOI6PE9xDrxpMJSC-xZ5cWvF6vUycQKQBEIcNe-itROGNb0wM6T693fRn6O6Wb5-jvdVizV-AOr3KXmra_wWuh7Ay
link.rule.ids 315,786,790,27955,27956,33778
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improvements+in+spectral+wave+modeling+in+tidal+inlet+seas&rft.jtitle=Journal+of+Geophysical+Research%3A+Oceans&rft.au=Westhuysen%2C+A.+J.&rft.au=Dongeren%2C+A.+R.&rft.au=Groeneweg%2C+J.&rft.au=Vledder%2C+G.+Ph&rft.date=2012-11-01&rft.issn=0148-0227&rft.eissn=2156-2202&rft.volume=117&rft.issue=C11&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2011JC007837&rft.externalDBID=10.1029%252F2011JC007837&rft.externalDocID=JGRC12450
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon