Conversion of Polyethylene Waste into Gaseous Hydrocarbons via Integrated Tandem Chemical–Photo/Electrocatalytic Processes

The chemical inertness of polyethylene makes chemical recycling challenging and motivates the development of new catalytic innovations to mitigate polymer waste. Current chemical recycling methods yield a complex mixture of liquid products, which is challenging to utilize in subsequent processes. He...

Full description

Saved in:
Bibliographic Details
Published inACS catalysis Vol. 11; no. 15; pp. 9159 - 9167
Main Authors Pichler, Christian M, Bhattacharjee, Subhajit, Rahaman, Motiar, Uekert, Taylor, Reisner, Erwin
Format Journal Article
LanguageEnglish
Published American Chemical Society 06.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The chemical inertness of polyethylene makes chemical recycling challenging and motivates the development of new catalytic innovations to mitigate polymer waste. Current chemical recycling methods yield a complex mixture of liquid products, which is challenging to utilize in subsequent processes. Here, we present an oxidative depolymerization step utilizing diluted nitric acid to convert polyethylene into organic acids (40% organic acid yield), which can be coupled to a photo- or electrocatalytic decarboxylation reaction to produce hydrocarbons (individual hydrocarbon yields of 3 and 20%, respectively) with H2 and CO2 as gaseous byproducts. The integrated tandem process allows for the direct conversion of polyethylene into gaseous hydrocarbon products with an overall hydrocarbon yield of 1.0% for the oxidative/photocatalytic route and 7.6% for the oxidative/electrolytic route. The product selectivity is tunable with photocatalysis using TiO2 or carbon nitride, yielding alkanes (ethane and propane), whereas electrocatalysis on carbon electrodes produces alkenes (ethylene and propylene). This two-step recycling process of plastics can use sunlight or renewable electricity to convert polyethylene into valuable, easily separable, gaseous platform chemicals.
AbstractList The chemical inertness of polyethylene makes chemical recycling challenging and motivates the development of new catalytic innovations to mitigate polymer waste. Current chemical recycling methods yield a complex mixture of liquid products, which is challenging to utilize in subsequent processes. Here, we present an oxidative depolymerization step utilizing diluted nitric acid to convert polyethylene into organic acids (40% organic acid yield), which can be coupled to a photo- or electrocatalytic decarboxylation reaction to produce hydrocarbons (individual hydrocarbon yields of 3 and 20%, respectively) with H 2 and CO 2 as gaseous byproducts. The integrated tandem process allows for the direct conversion of polyethylene into gaseous hydrocarbon products with an overall hydrocarbon yield of 1.0% for the oxidative/photocatalytic route and 7.6% for the oxidative/electrolytic route. The product selectivity is tunable with photocatalysis using TiO 2 or carbon nitride, yielding alkanes (ethane and propane), whereas electrocatalysis on carbon electrodes produces alkenes (ethylene and propylene). This two-step recycling process of plastics can use sunlight or renewable electricity to convert polyethylene into valuable, easily separable, gaseous platform chemicals.
The chemical inertness of polyethylene makes chemical recycling challenging and motivates the development of new catalytic innovations to mitigate polymer waste. Current chemical recycling methods yield a complex mixture of liquid products, which is challenging to utilize in subsequent processes. Here, we present an oxidative depolymerization step utilizing diluted nitric acid to convert polyethylene into organic acids (40% organic acid yield), which can be coupled to a photo- or electrocatalytic decarboxylation reaction to produce hydrocarbons (individual hydrocarbon yields of 3 and 20%, respectively) with H2 and CO2 as gaseous byproducts. The integrated tandem process allows for the direct conversion of polyethylene into gaseous hydrocarbon products with an overall hydrocarbon yield of 1.0% for the oxidative/photocatalytic route and 7.6% for the oxidative/electrolytic route. The product selectivity is tunable with photocatalysis using TiO2 or carbon nitride, yielding alkanes (ethane and propane), whereas electrocatalysis on carbon electrodes produces alkenes (ethylene and propylene). This two-step recycling process of plastics can use sunlight or renewable electricity to convert polyethylene into valuable, easily separable, gaseous platform chemicals.
Author Uekert, Taylor
Pichler, Christian M
Rahaman, Motiar
Reisner, Erwin
Bhattacharjee, Subhajit
AuthorAffiliation Yusuf Hamied Department of Chemistry
AuthorAffiliation_xml – name: Yusuf Hamied Department of Chemistry
Author_xml – sequence: 1
  givenname: Christian M
  surname: Pichler
  fullname: Pichler, Christian M
– sequence: 2
  givenname: Subhajit
  surname: Bhattacharjee
  fullname: Bhattacharjee, Subhajit
– sequence: 3
  givenname: Motiar
  orcidid: 0000-0002-8422-0566
  surname: Rahaman
  fullname: Rahaman, Motiar
– sequence: 4
  givenname: Taylor
  surname: Uekert
  fullname: Uekert, Taylor
– sequence: 5
  givenname: Erwin
  orcidid: 0000-0002-7781-1616
  surname: Reisner
  fullname: Reisner, Erwin
  email: reisner@ch.cam.ac.uk
BookMark eNp1UT1rHDEQFcEm_uxTqkyRs1fSanevCYTDsQ2GXGHjUoy0sz4ZreRIuoMFF_kP-Yf5JdZxl5AUmUYzzHtvxHsn5MAHj4R8YNUFqzi7BJMMZHAXzJRRiHfkmDMpZ7IW8uCv_oicp_Rclapl07XVe3IkatE1vGXH5HUR_AZjssHTMNBlcBPm1eTQI32ElJFanwO9hoRhnejN1MdgIOrgE91YoLc-41OEjD29B9_jSBcrHK0B9-vHz-Uq5HB55dDkLav8dcrW0GUZMCVMZ-RwAJfwfP-ekoevV_eLm9ndt-vbxZe7GdSsyrNm6DUAAy3mgM0AtebQaGhb6AfRDgJE00kUgxn6TqPm0rC2boVoteTzvqrFKfm8031Z6xF7gz5HcOol2hHipAJY9e_G25V6ChvVCSkaPi8CH_cCMXxfY8pqtMmgc-C3tiguG1Z3vJhaoNUOamJIKeLw5wyr1DY39Ts3tc-tUD7tKGWjnsM6-mLG_-FvM7CiSA
CitedBy_id crossref_primary_10_1021_acscatal_2c01286
crossref_primary_10_1002_cctc_202300648
crossref_primary_10_1088_1361_6528_ac4e42
crossref_primary_10_1021_acscatal_2c02775
crossref_primary_10_1021_acscatal_4c02314
crossref_primary_10_1016_j_xcrp_2023_101341
crossref_primary_10_3390_polym14224788
crossref_primary_10_1002_aenm_202200435
crossref_primary_10_1080_01614940_2023_2250652
crossref_primary_10_1002_elt2_34
crossref_primary_10_1039_D3GC03337F
crossref_primary_10_2139_ssrn_3978706
crossref_primary_10_1002_cssc_202300106
crossref_primary_10_1016_j_fmre_2023_11_015
crossref_primary_10_1002_adma_202404618
crossref_primary_10_1039_D4GC01556H
crossref_primary_10_1002_solr_202300411
crossref_primary_10_1002_smsc_202300096
crossref_primary_10_1016_j_apcatb_2023_123355
crossref_primary_10_1007_s12598_024_02714_9
crossref_primary_10_1016_j_jaap_2023_106256
crossref_primary_10_1038_s41929_023_00992_7
crossref_primary_10_1016_j_cej_2024_148827
crossref_primary_10_1021_acscatal_2c02689
crossref_primary_10_1016_j_ccr_2023_215276
crossref_primary_10_1021_acs_iecr_3c02403
crossref_primary_10_1016_j_checat_2022_02_003
crossref_primary_10_1016_j_jechem_2024_05_003
crossref_primary_10_1093_nsr_nwac011
crossref_primary_10_1126_sciadv_adk2407
crossref_primary_10_1002_cite_202100178
crossref_primary_10_1002_cssc_202301352
crossref_primary_10_1039_D4CS00407H
crossref_primary_10_1002_cctc_202300310
crossref_primary_10_1002_smm2_1202
crossref_primary_10_1016_j_ces_2023_118729
crossref_primary_10_1021_acscatal_2c03605
crossref_primary_10_1021_jacs_3c05486
crossref_primary_10_1038_s41565_023_01473_5
crossref_primary_10_1039_D3EY00147D
crossref_primary_10_1021_acs_accounts_2c00477
crossref_primary_10_1038_s41570_023_00567_x
crossref_primary_10_1039_D3SC05555H
crossref_primary_10_1002_eom2_12259
crossref_primary_10_1002_cplu_202300701
crossref_primary_10_1002_cssc_202301617
crossref_primary_10_1021_acssuschemeng_2c07462
crossref_primary_10_1039_D3CC05930H
crossref_primary_10_1016_j_apcatb_2022_121198
crossref_primary_10_1039_D4SC01754D
crossref_primary_10_1002_anie_202401746
crossref_primary_10_1016_j_trac_2024_117631
crossref_primary_10_1016_j_jhazmat_2021_127460
crossref_primary_10_1016_j_mtsust_2023_100630
crossref_primary_10_1126_science_adg6093
crossref_primary_10_1002_ange_202401746
crossref_primary_10_3390_catal13020420
crossref_primary_10_1016_j_cej_2024_151696
crossref_primary_10_1016_j_ccr_2022_214422
crossref_primary_10_1007_s12209_024_00383_4
crossref_primary_10_1016_j_chempr_2022_08_004
crossref_primary_10_1021_acscatal_4c00290
crossref_primary_10_1021_acssuschemeng_3c03162
crossref_primary_10_1021_acs_langmuir_3c03866
crossref_primary_10_1016_j_jclepro_2024_142281
crossref_primary_10_1016_j_checat_2022_11_007
crossref_primary_10_1039_D3NR00260H
crossref_primary_10_1016_j_scitotenv_2024_171106
crossref_primary_10_1002_adma_202305285
crossref_primary_10_1021_acssuschemeng_2c01959
Cites_doi 10.1016/j.jaap.2019.104768
10.1007/s10163-018-0748-z
10.1021/acsenergylett.0c02692
10.1002/chem.201303236
10.1039/d0cc01686a
10.1021/jacs.9b06872
10.1021/cs4003436
10.1039/c8gc03745k
10.1038/s41929-020-00521-w
10.1039/c6cy00139d
10.1016/j.apcatb.2011.03.030
10.1016/j.egypro.2014.01.212
10.1016/j.chempr.2016.11.003
10.1002/cssc.202002580
10.1002/(SICI)1521-3773(19981217)37:23<3306::AID-ANIE3306>3.0.CO;2-B
10.1021/acs.iecr.7b04091
10.1038/ncomms12165
10.1038/s41929-020-00519-4
10.1021/cr5001892
10.1038/s41557-019-0249-2
10.1016/S0920-5861(03)00124-X
10.1016/j.apcata.2011.03.009
10.1021/jacs.8b07853
10.1002/celc.202001256
10.1016/j.fuel.2016.01.047
10.1038/s41929-020-00518-5
10.1021/acs.iecr.7b00354
10.1016/j.rser.2017.01.142
10.1016/j.rser.2017.09.032
10.1021/acs.chemrev.9b00226
10.1016/j.psep.2016.06.022
10.1039/c9dt02938a
10.1016/j.jclepro.2016.10.040
10.1016/j.jcat.2004.01.030
10.1021/acssuschemeng.9b02092
10.1038/s41929-020-0423-3
10.1002/anie.201801397
10.1002/anie.201915651
10.1039/c6gc00332j
10.1002/advs.201902020
10.1021/ja00465a065
10.1126/sciadv.1700782
10.1002/anie.201915766
10.1016/S0920-5861(02)00221-3
10.1126/science.aas9100
ContentType Journal Article
Copyright 2021 The Authors. Published by American Chemical Society
2021 The Authors. Published by American Chemical Society 2021 The Authors
Copyright_xml – notice: 2021 The Authors. Published by American Chemical Society
– notice: 2021 The Authors. Published by American Chemical Society 2021 The Authors
DBID AAYXX
CITATION
7X8
5PM
DOI 10.1021/acscatal.1c02133
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2155-5435
EndPage 9167
ExternalDocumentID 10_1021_acscatal_1c02133
c305104917
GrantInformation_xml – fundername: ;
  grantid: NA
– fundername: ;
  grantid: EP/S022953
– fundername: ;
  grantid: J-4381
– fundername: ;
  grantid: EP/S025308/1
– fundername: ;
  grantid: GAN 839763
– fundername: ;
  grantid: EP/L015978/1
GroupedDBID .K2
55A
7~N
AABXI
ABFRP
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
GGK
GNL
IH9
JG
JG~
K2
RNS
ROL
UI2
VF5
VG9
W1F
AAHBH
AAYXX
ABJNI
ABQRX
ACGFO
ADHLV
BAANH
CITATION
CUPRZ
7X8
5PM
ID FETCH-LOGICAL-a410t-6fdbaa1ab39ae6fa4b2a6ba77adf37f3a3685e3fcfd8beb25c1747337b529d043
IEDL.DBID ACS
ISSN 2155-5435
IngestDate Tue Sep 17 21:09:35 EDT 2024
Fri Aug 16 05:45:50 EDT 2024
Fri Aug 23 01:36:37 EDT 2024
Sun Aug 08 03:43:30 EDT 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords oxidative depolymerization
decarboxylation
photocatalysis
electrocatalysis
polyethylene
Language English
License Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a410t-6fdbaa1ab39ae6fa4b2a6ba77adf37f3a3685e3fcfd8beb25c1747337b529d043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7781-1616
0000-0002-8422-0566
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8353629
PMID 34386271
PQID 2561482386
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8353629
proquest_miscellaneous_2561482386
crossref_primary_10_1021_acscatal_1c02133
acs_journals_10_1021_acscatal_1c02133
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
GGK
W1F
ABFRP
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2021-08-06
PublicationDateYYYYMMDD 2021-08-06
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-06
  day: 06
PublicationDecade 2020
PublicationTitle ACS catalysis
PublicationTitleAlternate ACS Catal
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref46/cit46
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref41/cit41
  doi: 10.1016/j.jaap.2019.104768
– ident: ref1/cit1
  doi: 10.1007/s10163-018-0748-z
– ident: ref32/cit32
  doi: 10.1021/acsenergylett.0c02692
– ident: ref28/cit28
  doi: 10.1002/chem.201303236
– ident: ref20/cit20
  doi: 10.1039/d0cc01686a
– ident: ref24/cit24
  doi: 10.1021/jacs.9b06872
– ident: ref42/cit42
  doi: 10.1021/cs4003436
– ident: ref34/cit34
  doi: 10.1039/c8gc03745k
– ident: ref16/cit16
  doi: 10.1038/s41929-020-00521-w
– ident: ref27/cit27
  doi: 10.1039/c6cy00139d
– ident: ref35/cit35
  doi: 10.1016/j.apcatb.2011.03.030
– ident: ref37/cit37
  doi: 10.1016/j.egypro.2014.01.212
– ident: ref3/cit3
  doi: 10.1016/j.chempr.2016.11.003
– ident: ref31/cit31
  doi: 10.1002/cssc.202002580
– ident: ref12/cit12
  doi: 10.1002/(SICI)1521-3773(19981217)37:23<3306::AID-ANIE3306>3.0.CO;2-B
– ident: ref10/cit10
  doi: 10.1021/acs.iecr.7b04091
– ident: ref23/cit23
  doi: 10.1038/ncomms12165
– ident: ref7/cit7
  doi: 10.1038/s41929-020-00519-4
– ident: ref21/cit21
  doi: 10.1021/cr5001892
– ident: ref17/cit17
  doi: 10.1038/s41557-019-0249-2
– ident: ref11/cit11
  doi: 10.1016/S0920-5861(03)00124-X
– ident: ref38/cit38
  doi: 10.1016/j.apcata.2011.03.009
– ident: ref46/cit46
  doi: 10.1021/jacs.8b07853
– ident: ref33/cit33
  doi: 10.1002/celc.202001256
– ident: ref39/cit39
  doi: 10.1016/j.fuel.2016.01.047
– ident: ref8/cit8
  doi: 10.1038/s41929-020-00518-5
– ident: ref40/cit40
  doi: 10.1021/acs.iecr.7b00354
– ident: ref6/cit6
  doi: 10.1016/j.rser.2017.01.142
– ident: ref5/cit5
  doi: 10.1016/j.rser.2017.09.032
– ident: ref22/cit22
  doi: 10.1021/acs.chemrev.9b00226
– ident: ref36/cit36
  doi: 10.1016/j.psep.2016.06.022
– ident: ref45/cit45
  doi: 10.1039/c9dt02938a
– ident: ref19/cit19
  doi: 10.1016/j.jclepro.2016.10.040
– ident: ref30/cit30
  doi: 10.1016/j.jcat.2004.01.030
– ident: ref9/cit9
  doi: 10.1021/acssuschemeng.9b02092
– ident: ref26/cit26
  doi: 10.1038/s41929-020-0423-3
– ident: ref43/cit43
  doi: 10.1002/anie.201801397
– ident: ref4/cit4
  doi: 10.1002/anie.201915651
– ident: ref18/cit18
  doi: 10.1039/c6gc00332j
– ident: ref14/cit14
  doi: 10.1002/advs.201902020
– ident: ref25/cit25
  doi: 10.1021/ja00465a065
– ident: ref2/cit2
  doi: 10.1126/sciadv.1700782
– ident: ref15/cit15
– ident: ref13/cit13
  doi: 10.1002/anie.201915766
– ident: ref29/cit29
  doi: 10.1016/S0920-5861(02)00221-3
– ident: ref44/cit44
  doi: 10.1126/science.aas9100
SSID ssj0000456870
Score 2.6092615
Snippet The chemical inertness of polyethylene makes chemical recycling challenging and motivates the development of new catalytic innovations to mitigate polymer...
The chemical inertness of polyethylene makes chemical recycling challenging and motivates the development of new catalytic innovations to mitigate polymer...
SourceID pubmedcentral
proquest
crossref
acs
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 9159
Title Conversion of Polyethylene Waste into Gaseous Hydrocarbons via Integrated Tandem Chemical–Photo/Electrocatalytic Processes
URI http://dx.doi.org/10.1021/acscatal.1c02133
https://search.proquest.com/docview/2561482386
https://pubmed.ncbi.nlm.nih.gov/PMC8353629
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NAEF1BOJRLgRZEClSL1B44OIl312v7GEUtAYkqUhM1N2vWu1YiwK5ip1KqHvof-g_5Jcz6I2kAoRwtW9Z6dqz35mPfEHICkotYCukg-zaOCGTgKMQFx9eSG18qDAHs2eFvF3I4EV-n3nQjk_NnBZ-5XYjzMpPRcWO85PwpecYQFm2g1R9crvMplpoE5Ww4BDHP8ZAG1FXJf73EYlGcb2PRhmBut0c-wpvzF9XgoryUKbRtJt87y0J14tu_RRx3-JSXZL-mnbRf-ckr8sSkB2Rv0Ex7OyR3A9t-XubOaJbQUfZjZXAPEZMMvQJ0BTpPi4x-RtDLljkdrjQiHywUOi29mQP90shOaDq2eemftJEi-HX_MJplRdY9qybulGtb4TpofUjB5K_J5PxsPBg69WQGB4TbKxyZaAXgguIhGJmAUAykAt8HnXA_4WBl7Q1P4kQHCmN3L8bAx-fcVx4LdU_wN6SVZql5S2gYaC0TwQzXEskFgx5nxuqQCdnTELI2OUWzRfWflUdl0Zy5UWPLqLZlm3xq9jK6roQ6_vPsx2azIzSzLZFAaq0XsUoYlQeyTfwtL1i_1Opxb99J57NSlxvJLNKB8GjHFb8jz5ltkLH9J_I9aRWLpfmADKdQx6Vr_wazn_wu
link.rule.ids 230,315,786,790,891,2782,27107,27955,27956,57091,57141
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcigX3ojlaSQ4cMh2Yzt2ckSrli20VQVb0Vs0jh11BU2qJou0iAP_gX_IL2HsTbYsQgiOeciajCf6PnvG3wA8RyVkoaSKiH27SKYqjQzhQqStEk4rQ0sAf3b44FBNjuWbk-RkA-L-LAwZ0dBITUjiX6oLxNt0L2xoDOOCLoW4AlcTTWDn2dD4_WpbxTOUNLSIIyxLooTYQJec_NMgHpKKZh2SLnnmepXkL7CzewPerQwO1SYfh_PWDIsvv2k5_tcX3YTrHQllr5ZRcws2XHUbtsZ977c78HXsi9HDThqrS3ZUf1o4mlFCKMc-IAUGm1VtzV4TBNbzhk0WlnAQLwyFMPs8Q7bXi1BYNvW71GesFyb48e370Wnd1ts7y_47wbYF2cG6IwuuuQvHuzvT8STq-jREKONRG6nSGsQYjcjQqRKl4agMao22FLoU6EXunSiL0qaGVvJJQcsgLYQ2Cc_sSIp7sFnVlbsPLEutVaXkTlhFVIPjSHDnVcmkGlnM-ABekNvy7j9r8pBC53He-zLvfDmAl_2U5udL2Y6_vPusn_Oc3OwTJlh57-V8KZMqUjUAvRYMq0G9Ovf6k2p2GlS6idoSOcge_KPFT2FrMj3Yz_f3Dt8-hGvcl874yhT1CDbbi7l7TNynNU9CtP8E8BkEqA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6NIQ1eGAwQhQFGggce0jW2YyePU1np-DFVYoO9RXZsaxWQTEuKVMQD_wP_4f6Snd2kUDSh8dg0si7ns77PvvN3AM-VYLwQXETIvm3EU5FGGnEhkkYwK4XGLYC_O_z-QIyP-Jvj5HgNku4uDBpR40h1SOL7VX1qXKswEO_g83Co0Y8L_MnYNbieyJj79bg7_LA8WvEsJQ1t4hDPkihBRtAmKC8bxMNSUa_C0m-uuVop-Qf0jDbh49LoUHHyuT9rdL_4_pee439_1W241ZJRsruInjuwZsstuDHsesDdhR9DX5QeTtRI5cik-jK3OLOIVJZ8UhggZFo2FXmNUFjNajKeG8RDdaYxlMm3qSL7nRiFIYf-tPor6QQKzn_-mpxUTbWzt-jDE2ybox2kvbpg63twNNo7HI6jtl9DpHg8aCLhjFYqVpplygqnuKZKaCWlMo5Jx5QXu7fMFc6kGnf0SYHbIcmY1AnNzICz-7BeVqV9ACRLjRGOU8uMQMpB1YBR69XJuBgYldEevEC35e16q_OQSqdx3vkyb33Zg5fdtOanC_mOf7z7rJv3HN3sEyeq9N7L6UIulaWiB3IlIJaDepXu1X_K6UlQ60aKiyQhe3hFi5_CxuTVKH-3f_D2EdykvoLGF6iIbVhvzmb2MVKgRj8JAX8BC7UHIg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conversion+of+Polyethylene+Waste+into+Gaseous+Hydrocarbons+via+Integrated+Tandem+Chemical%E2%80%93Photo%2FElectrocatalytic+Processes&rft.jtitle=ACS+catalysis&rft.au=Pichler%2C+Christian+M.&rft.au=Bhattacharjee%2C+Subhajit&rft.au=Rahaman%2C+Motiar&rft.au=Uekert%2C+Taylor&rft.date=2021-08-06&rft.issn=2155-5435&rft.eissn=2155-5435&rft.volume=11&rft.issue=15&rft.spage=9159&rft.epage=9167&rft_id=info:doi/10.1021%2Facscatal.1c02133&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acscatal_1c02133
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2155-5435&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2155-5435&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2155-5435&client=summon