Phase Separation of Lipid Microdomains Controlled by Polymerized Lipid Bilayer Matrices
We developed a micropatterned model biological membrane on a solid substrate that can induce phase separation of lipid microdomains in a designed geometry. Micropatterned lipid bilayers were generated by the photolithographic polymerization of a diacetylene phospholipid, 1,2-bis(10,12-tricosadiynoyl...
Saved in:
Published in | Langmuir Vol. 26; no. 6; pp. 4126 - 4129 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
16.03.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We developed a micropatterned model biological membrane on a solid substrate that can induce phase separation of lipid microdomains in a designed geometry. Micropatterned lipid bilayers were generated by the photolithographic polymerization of a diacetylene phospholipid, 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DiynePC). By changing the UV dose for the photopolymerization, we could modulate the coverage of the surface by the polymeric bilayer domains. After removing nonpolymerized DiynePC, natural phoshoplipid membranes were incorporated into the micropatterned polymeric bilayer matrix by a self-assembly process (vesicle fusion). As we incorporated a ternary lipid mixture of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), sphingomyelin (SM), and cholesterol (Chol) (1:1:1), liquid ordered domains (Lo: rich in SM and Chol) were accumulated in the polymer free regions, whereas liquid disordered domains (Ld: rich in DOPC) preferentially participated into the partially polymeric bilayer regions. It was postulated that Ld domains preferentially came in contact with the polymeric bilayer boundaries because of their lower elastic moduli and a smaller thickness mismatch at the boundary. The effect of polymeric bilayer matrix to hinder the size growth of Lo domains should also be playing an important role. The controlled phase separation should open new possibilities to locally concentrate membrane proteins and other nanometer-sized materials on the substrate by associating them with the lipid microdomains. |
---|---|
AbstractList | We developed a micropatterned model biological membrane on a solid substrate that can induce phase separation of lipid microdomains in a designed geometry. Micropatterned lipid bilayers were generated by the photolithographic polymerization of a diacetylene phospholipid, 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DiynePC). By changing the UV dose for the photopolymerization, we could modulate the coverage of the surface by the polymeric bilayer domains. After removing nonpolymerized DiynePC, natural phoshoplipid membranes were incorporated into the micropatterned polymeric bilayer matrix by a self-assembly process (vesicle fusion). As we incorporated a ternary lipid mixture of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), sphingomyelin (SM), and cholesterol (Chol) (1:1:1), liquid ordered domains (Lo: rich in SM and Chol) were accumulated in the polymer free regions, whereas liquid disordered domains (Ld: rich in DOPC) preferentially participated into the partially polymeric bilayer regions. It was postulated that Ld domains preferentially came in contact with the polymeric bilayer boundaries because of their lower elastic moduli and a smaller thickness mismatch at the boundary. The effect of polymeric bilayer matrix to hinder the size growth of Lo domains should also be playing an important role. The controlled phase separation should open new possibilities to locally concentrate membrane proteins and other nanometer-sized materials on the substrate by associating them with the lipid microdomains. We developed a micropatterned model biological membrane on a solid substrate that can induce phase separation of lipid microdomains in a designed geometry. Micropatterned lipid bilayers were generated by the photolithographic polymerization of a diacetylene phospholipid, 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DiynePC). By changing the UV dose for the photopolymerization, we could modulate the coverage of the surface by the polymeric bilayer domains. After removing nonpolymerized DiynePC, natural phospholipid membranes were incorporated into the micropatterned polymeric bilayer matrix by a self-assembly process (vesicle fusion). As we incorporated a ternary lipid mixture of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), sphingomyelin (SM), and cholesterol (Chol) (1:1:1), liquid ordered domains (Lo: rich in SM and Chol) were accumulated in the polymer free regions, whereas liquid disordered domains (Ld: rich in DOPC) preferentially participated into the partially polymeric bilayer regions. It was postulated that Ld domains preferentially came in contact with the polymeric bilayer boundaries because of their lower elastic moduli and a smaller thickness mismatch at the boundary. The effect of polymeric bilayer matrix to hinder the size growth of Lo domains should also be playing an important role. The controlled phase separation should open new possibilities to locally concentrate membrane proteins and other nanometer-sized materials on the substrate by associating them with the lipid microdomains. |
Author | Tatsu, Yoshiro Morigaki, Kenichi Okazaki, Takashi |
Author_xml | – sequence: 1 givenname: Takashi surname: Okazaki fullname: Okazaki, Takashi – sequence: 2 givenname: Yoshiro surname: Tatsu fullname: Tatsu, Yoshiro – sequence: 3 givenname: Kenichi surname: Morigaki fullname: Morigaki, Kenichi email: morigaki@port.kobe-u.ac.jp |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22540828$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/20020734$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0E1L5EAQBuBGXHRGPfgHJBcRD9mt_pokRx38WBhZQcVjqHRXsKWTHrszh9lfv5EZncueioKHt6h3yvb70BNjpxx-chD8l8cKpCgrsccmXAvIdSmKfTaBQsm8UDN5yKYpvQNAJVV1wA4FgIBCqgl7fXzDRNkTLTHi4EKfhTZbuKWz2YMzMdjQoetTNg_9EIP3ZLNmnT0Gv-4our_jusHXzuOaYvaAQ3SG0jH70aJPdLKdR-zl9uZ5fp8v_tz9nl8tclQchlw3oiQ7U0JwmmnVWl1Y07TGohgfU7IURNKYVqNpbAm6UoK3BA3HqtCEhTxiF5vcZQwfK0pD3blkyHvsKaxSXUjJ-QxKNcrLjRy_SilSWy-j6zCuaw71Z431d42jPdumrpqO7Lf86m0E51uAyaBvI_bGpZ0TWkEpyp1Dk-r3sIr9WMZ_Dv4DVhiHkQ |
CODEN | LANGD5 |
CitedBy_id | crossref_primary_10_1016_j_bpj_2015_10_015 crossref_primary_10_1039_C4RA09981H crossref_primary_10_1039_c3cp44517h crossref_primary_10_1007_s13206_019_4110_x crossref_primary_10_1021_la200027e crossref_primary_10_1039_D0CP00335B crossref_primary_10_1039_C9SM01658A crossref_primary_10_3390_ma5122658 crossref_primary_10_1016_j_bbamem_2018_03_010 crossref_primary_10_1021_acsami_6b04609 crossref_primary_10_1007_s10439_011_0479_y crossref_primary_10_1039_C6RA10294H crossref_primary_10_1038_srep26823 crossref_primary_10_1016_j_bios_2019_111568 crossref_primary_10_1380_jsssj_37_230 crossref_primary_10_2142_biophys_59_188 crossref_primary_10_1021_la3011663 crossref_primary_10_1016_j_ab_2015_04_014 crossref_primary_10_1063_1_4895570 crossref_primary_10_1016_j_saa_2019_04_030 crossref_primary_10_1021_ja310186g crossref_primary_10_1021_la201474h crossref_primary_10_1021_acs_nanolett_3c02742 crossref_primary_10_3390_polym6051544 crossref_primary_10_1021_ja2007615 crossref_primary_10_1038_s42003_019_0459_6 crossref_primary_10_1021_acs_langmuir_9b02685 |
Cites_doi | 10.1529/biophysj.103.036681 10.1038/nature02013 10.1038/nrm1102 10.1038/42408 10.1021/la0157420 10.1103/PhysRevLett.100.088101 10.1529/biophysj.105.068502 10.1529/biophysj.106.081000 10.1016/S0006-3495(01)76114-0 10.1529/biophysj.106.091082 10.1021/la049340e 10.1016/S0006-3495(04)74166-1 10.1529/biophysj.104.048223 10.1021/la052687c 10.1021/la802670t 10.1103/PhysRevE.75.011919 10.1074/jbc.M706162200 10.1002/1521-3773(20010105)40:1<172::AID-ANIE172>3.0.CO;2-G 10.1103/PhysRevLett.64.2094 10.1529/biophysj.105.080507 10.1038/nmat1618 |
ContentType | Journal Article |
Copyright | Copyright © 2009 American Chemical Society 2015 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2009 American Chemical Society – notice: 2015 INIST-CNRS |
DBID | IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1021/la9032892 |
DatabaseName | Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5827 |
EndPage | 4129 |
ExternalDocumentID | 10_1021_la9032892 20020734 22540828 c301342531 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 4.4 53G 55A 5GY 5VS 7~N AABXI ABFLS ABMVS ABPTK ABUCX ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 LG6 RNS ROL TN5 UI2 UPT VF5 VG9 W1F X --- -~X .HR 186 1WB 6TJ ABFRP ABHMW ABQRX ADHLV AFFNX AGXLV AHGAQ ANTXH GGK IQODW YQT ~02 AAHBH ABJNI CGR CUPRZ CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-a410t-5b28ed64221e654fd57dcbfcda20214382ee3ccf5acbd8059421fe0b1a975ea73 |
IEDL.DBID | ACS |
ISSN | 0743-7463 |
IngestDate | Fri Aug 16 14:15:23 EDT 2024 Fri Dec 06 03:53:41 EST 2024 Sat Sep 28 07:46:29 EDT 2024 Sun Oct 22 16:07:30 EDT 2023 Thu Aug 27 13:41:58 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Vesicle Self assembly Growth Ternary mixture Phospholipid Polymerization Lipids Polymer Bilayer Cholesterol Protein Solid Design Thickness Geometry Substrate Liquid Phase separation Membrane Models |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a410t-5b28ed64221e654fd57dcbfcda20214382ee3ccf5acbd8059421fe0b1a975ea73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 20020734 |
PQID | 733116084 |
PQPubID | 23479 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_733116084 crossref_primary_10_1021_la9032892 pubmed_primary_20020734 pascalfrancis_primary_22540828 acs_journals_10_1021_la9032892 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2010-03-16 |
PublicationDateYYYYMMDD | 2010-03-16 |
PublicationDate_xml | – month: 03 year: 2010 text: 2010-03-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States |
PublicationTitle | Langmuir |
PublicationTitleAlternate | Langmuir |
PublicationYear | 2010 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Simons K. (ref1/cit1) 1997; 387 Leonenko Z. V. (ref14/cit14) 2004; 86 Okazaki T. (ref13/cit13) 2009; 25 Frolov V. A. J. (ref21/cit21) 2006; 91 Baumgart T. (ref3/cit3) 2003; 425 Dietrich C. (ref4/cit4) 2001; 80 Semrau S. (ref19/cit19) 2008; 100 Garg S. (ref5/cit5) 2007; 92 Hu Y. (ref20/cit20) 2006; 91 Okazaki T. (ref11/cit11) 2006; 91 Kuzmin P. I. (ref17/cit17) 2005; 88 Morigaki K. (ref8/cit8) 2001; 40 Kaizuka Y. (ref22/cit22) 2004; 86 García-Sáez A. J. (ref6/cit6) 2007; 282 Edidin M. (ref2/cit2) 2003; 4 Evans E. (ref18/cit18) 1990; 64 Yoon T.-Y. (ref7/cit7) 2006; 5 Morigaki K. (ref12/cit12) 2004; 20 Akimov S. A. (ref16/cit16) 2007; 75 Morigaki K. (ref9/cit9) 2002; 18 Richter R. P. (ref10/cit10) 2006; 22 |
References_xml | – volume: 86 start-page: 3783 year: 2004 ident: ref14/cit14 publication-title: Biophys. J. doi: 10.1529/biophysj.103.036681 contributor: fullname: Leonenko Z. V. – volume: 425 start-page: 821 year: 2003 ident: ref3/cit3 publication-title: Nature doi: 10.1038/nature02013 contributor: fullname: Baumgart T. – volume: 4 start-page: 414 year: 2003 ident: ref2/cit2 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm1102 contributor: fullname: Edidin M. – volume: 387 start-page: 569 year: 1997 ident: ref1/cit1 publication-title: Nature doi: 10.1038/42408 contributor: fullname: Simons K. – volume: 18 start-page: 4082 year: 2002 ident: ref9/cit9 publication-title: Langmuir doi: 10.1021/la0157420 contributor: fullname: Morigaki K. – volume: 100 start-page: 088101 year: 2008 ident: ref19/cit19 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.088101 contributor: fullname: Semrau S. – volume: 91 start-page: 189 year: 2006 ident: ref21/cit21 publication-title: Biophys. J. doi: 10.1529/biophysj.105.068502 contributor: fullname: Frolov V. A. J. – volume: 91 start-page: 444 year: 2006 ident: ref20/cit20 publication-title: Biophys. J. doi: 10.1529/biophysj.106.081000 contributor: fullname: Hu Y. – volume: 80 start-page: 1417 year: 2001 ident: ref4/cit4 publication-title: Biophys. J. doi: 10.1016/S0006-3495(01)76114-0 contributor: fullname: Dietrich C. – volume: 92 start-page: 1263 year: 2007 ident: ref5/cit5 publication-title: Biophys. J. doi: 10.1529/biophysj.106.091082 contributor: fullname: Garg S. – volume: 20 start-page: 7729 year: 2004 ident: ref12/cit12 publication-title: Langmuir doi: 10.1021/la049340e contributor: fullname: Morigaki K. – volume: 86 start-page: 905 year: 2004 ident: ref22/cit22 publication-title: Biophys. J. doi: 10.1016/S0006-3495(04)74166-1 contributor: fullname: Kaizuka Y. – volume: 88 start-page: 1120 year: 2005 ident: ref17/cit17 publication-title: Biophys. J. doi: 10.1529/biophysj.104.048223 contributor: fullname: Kuzmin P. I. – volume: 22 start-page: 3497 year: 2006 ident: ref10/cit10 publication-title: Langmuir doi: 10.1021/la052687c contributor: fullname: Richter R. P. – volume: 25 start-page: 345 year: 2009 ident: ref13/cit13 publication-title: Langmuir doi: 10.1021/la802670t contributor: fullname: Okazaki T. – volume: 75 start-page: 011919 year: 2007 ident: ref16/cit16 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.75.011919 contributor: fullname: Akimov S. A. – volume: 282 start-page: 33537 year: 2007 ident: ref6/cit6 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M706162200 contributor: fullname: García-Sáez A. J. – volume: 40 start-page: 172 year: 2001 ident: ref8/cit8 publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/1521-3773(20010105)40:1<172::AID-ANIE172>3.0.CO;2-G contributor: fullname: Morigaki K. – volume: 64 start-page: 2094 year: 1990 ident: ref18/cit18 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.64.2094 contributor: fullname: Evans E. – volume: 91 start-page: 1757 year: 2006 ident: ref11/cit11 publication-title: Biophys. J. doi: 10.1529/biophysj.105.080507 contributor: fullname: Okazaki T. – volume: 5 start-page: 281 year: 2006 ident: ref7/cit7 publication-title: Nat. Mater. doi: 10.1038/nmat1618 contributor: fullname: Yoon T.-Y. |
SSID | ssj0009349 |
Score | 2.1691327 |
Snippet | We developed a micropatterned model biological membrane on a solid substrate that can induce phase separation of lipid microdomains in a designed geometry.... |
SourceID | proquest crossref pubmed pascalfrancis acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 4126 |
SubjectTerms | Biological Interfaces: Biocolloids, Biomolecular and Biomimetic Materials Chemistry Colloidal state and disperse state Exact sciences and technology General and physical chemistry Lipid Bilayers Membranes Microscopy, Fluorescence Phospholipids - chemistry Polymers - chemistry Surface physical chemistry |
Title | Phase Separation of Lipid Microdomains Controlled by Polymerized Lipid Bilayer Matrices |
URI | http://dx.doi.org/10.1021/la9032892 https://www.ncbi.nlm.nih.gov/pubmed/20020734 https://search.proquest.com/docview/733116084 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT8MwDLamcQAJ8X6MxxQB18LSNk17hAGakIaQBoJb5SapmBgtotuB_XqSZt1AMDhWcqrWduPPtfMZ4EQYDMID5fhC6gQljKiDiIGDPNLBOkwZU-Z_R_c26Dz4N0_sqQbHcyr4Lj0bYGQ43yK9zy64XN_X4J92b8as61mMa7g2uR94FX3Q16Um9IjiW-hZfsNCayG14yvm48syzlyvwmV1Wse2l7ycjobJqRj_JG_86xXWYGWCM8m5dYx1qKlsAxbb1Xi3TXi8e9YBjPSUJf_OM5KnxEyylqRrmvRk_or9rCBt28s-UJIkH-QuH3yYGs9YX1rhi_4ANWwn3ZLrXxVb8HB9dd_uOJMpCw76tDV0WOKGSuo0xKUqYH4qGZciSYVE1_CpeaGrlCdEylAkMjT0Li5NVSuhGHGmkHvbUM_yTO0CYZIGQkuZllZf6lwliUIuOGqzM6kQG9DUZognX0kRlwVwl8ZT_TTgqLJQ_GbZNn4Tan6z3VRSb01mfHbYAFIZM9ZKNRUQzFQ-KmIzoJIGrdBvwI418mxx6bSev_ffM-7Dku0g8BwaHEB9-D5ShxqYDJNm6ZifUrTa_g |
link.rule.ids | 314,780,784,2765,27076,27924,27925,56738,56788 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZT8MwDI4QPICEuI9xjAjxWljapscjTKBxDCEBgrfKTVIxMVpEtwf267GbHYBA8FjJqVzbjZ3a_T7GDhTVIGFgHF9pPKBEsXAAIHAgjDFZR5mUhr53tK-D1r1_8SgfhzA59C8MKlHincqqiT9BFxBHXYgJ-i3G7XZGElUllUHN2wnArmdLXYLcDP3AG6EIfV5KGUiVXzLQ_CuUaIzMslj8XmZW6eZs0fIWVYpWUybPh_1eeqgG3zAc__ckS2xhWHXyYxsmy2zK5Ctstjkie1tlDzdPmM74rbFQ4EXOi4wTr7XmbRrZ08ULdPKSN-1ke9donr7zm6L7Th2fAV5a4ZNOF7CI5-0K-d-Ua-z-7PSu2XKGnAsO-KLRc2TqRkbjocQVJpB-pmWoVZopDS6hq3mRa4ynVCZBpToisBdXZKaRCohDaSD01tl0XuRmk3GpRaBQigZcfY0nlzSOQhUCBoHUBqDG6mieZPjOlEnVDndFMrZPje2PHJW8WuyNn4TqX1w4lsSNisi0oxrjI58maFTqh0Buin6ZEF2lCBqRX2Mb1teTxVUIe_7WXzrusdnWXfsquTq_vtxmc3a2wHNEsMOme299s4slSy-tV7H6AXYG42s |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9tADLcQSGwS2heDlbHuNO010Ety-XiEQsU-yioxBG-Rc3cRiC6plvYB_nrsXFrGBILHSE50sX1nO3Z-P4CvmnOQOLJeqA0VKEkqPUSMPIxTCtZJoZTl7x3D4-joNPx-rs7bQpH_haFF1PSkumni866emKJFGJC7Y0wZ_i2lI3dF0SnLI1x7_ZM7kN3ApbsMuxmHUTBHEvr3Vo5Cur4XhdYmWJNCCsdk8Xiq2YScwWv4tVhsM2lytTOb5jv65j8cx-e_zRt41WafYs-5y1tYsuU7eNGfk76tw9nogsKaOLEOErwqRVUI5rc2Ysije6b6g5dlLfpuwn1sjcivxagaX3Pn54YunfD-5RgpmRfDhgHA1u_hdHD4u3_ktdwLHoayN_VU7ifWUHHiSxupsDAqNjovtEGfUdaCxLc20LpQqHOTMOiLLwvbyyWmsbIYBxuwXFal_QBCGRlpkuJB19BQBZOnSaxjJGdQxiJ2oEsqytq9U2dNW9yX2UI_HfgyN1Y2cRgcDwl175lxIUkHFpNqJx0Qc7tmpFTui2Bpq1mdMW2ljHpJ2IFNZ--7mxtXDsKtp9b4GVZHB4Ps57fjHx_hpRsxCDwZbcPy9O_MfqLMZZp3G3e9BfuU5e4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase+Separation+of+Lipid+Microdomains+Controlled+by+Polymerized+Lipid+Bilayer+Matrices&rft.jtitle=Langmuir&rft.au=Okazaki%2C+Takashi&rft.au=Tatsu%2C+Yoshiro&rft.au=Morigaki%2C+Kenichi&rft.date=2010-03-16&rft.pub=American+Chemical+Society&rft.issn=0743-7463&rft.eissn=1520-5827&rft.volume=26&rft.issue=6&rft.spage=4126&rft.epage=4129&rft_id=info:doi/10.1021%2Fla9032892&rft.externalDocID=c301342531 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon |