Phase Separation of Lipid Microdomains Controlled by Polymerized Lipid Bilayer Matrices

We developed a micropatterned model biological membrane on a solid substrate that can induce phase separation of lipid microdomains in a designed geometry. Micropatterned lipid bilayers were generated by the photolithographic polymerization of a diacetylene phospholipid, 1,2-bis(10,12-tricosadiynoyl...

Full description

Saved in:
Bibliographic Details
Published inLangmuir Vol. 26; no. 6; pp. 4126 - 4129
Main Authors Okazaki, Takashi, Tatsu, Yoshiro, Morigaki, Kenichi
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 16.03.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We developed a micropatterned model biological membrane on a solid substrate that can induce phase separation of lipid microdomains in a designed geometry. Micropatterned lipid bilayers were generated by the photolithographic polymerization of a diacetylene phospholipid, 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DiynePC). By changing the UV dose for the photopolymerization, we could modulate the coverage of the surface by the polymeric bilayer domains. After removing nonpolymerized DiynePC, natural phoshoplipid membranes were incorporated into the micropatterned polymeric bilayer matrix by a self-assembly process (vesicle fusion). As we incorporated a ternary lipid mixture of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), sphingomyelin (SM), and cholesterol (Chol) (1:1:1), liquid ordered domains (Lo: rich in SM and Chol) were accumulated in the polymer free regions, whereas liquid disordered domains (Ld: rich in DOPC) preferentially participated into the partially polymeric bilayer regions. It was postulated that Ld domains preferentially came in contact with the polymeric bilayer boundaries because of their lower elastic moduli and a smaller thickness mismatch at the boundary. The effect of polymeric bilayer matrix to hinder the size growth of Lo domains should also be playing an important role. The controlled phase separation should open new possibilities to locally concentrate membrane proteins and other nanometer-sized materials on the substrate by associating them with the lipid microdomains.
AbstractList We developed a micropatterned model biological membrane on a solid substrate that can induce phase separation of lipid microdomains in a designed geometry. Micropatterned lipid bilayers were generated by the photolithographic polymerization of a diacetylene phospholipid, 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DiynePC). By changing the UV dose for the photopolymerization, we could modulate the coverage of the surface by the polymeric bilayer domains. After removing nonpolymerized DiynePC, natural phoshoplipid membranes were incorporated into the micropatterned polymeric bilayer matrix by a self-assembly process (vesicle fusion). As we incorporated a ternary lipid mixture of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), sphingomyelin (SM), and cholesterol (Chol) (1:1:1), liquid ordered domains (Lo: rich in SM and Chol) were accumulated in the polymer free regions, whereas liquid disordered domains (Ld: rich in DOPC) preferentially participated into the partially polymeric bilayer regions. It was postulated that Ld domains preferentially came in contact with the polymeric bilayer boundaries because of their lower elastic moduli and a smaller thickness mismatch at the boundary. The effect of polymeric bilayer matrix to hinder the size growth of Lo domains should also be playing an important role. The controlled phase separation should open new possibilities to locally concentrate membrane proteins and other nanometer-sized materials on the substrate by associating them with the lipid microdomains.
We developed a micropatterned model biological membrane on a solid substrate that can induce phase separation of lipid microdomains in a designed geometry. Micropatterned lipid bilayers were generated by the photolithographic polymerization of a diacetylene phospholipid, 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DiynePC). By changing the UV dose for the photopolymerization, we could modulate the coverage of the surface by the polymeric bilayer domains. After removing nonpolymerized DiynePC, natural phospholipid membranes were incorporated into the micropatterned polymeric bilayer matrix by a self-assembly process (vesicle fusion). As we incorporated a ternary lipid mixture of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), sphingomyelin (SM), and cholesterol (Chol) (1:1:1), liquid ordered domains (Lo: rich in SM and Chol) were accumulated in the polymer free regions, whereas liquid disordered domains (Ld: rich in DOPC) preferentially participated into the partially polymeric bilayer regions. It was postulated that Ld domains preferentially came in contact with the polymeric bilayer boundaries because of their lower elastic moduli and a smaller thickness mismatch at the boundary. The effect of polymeric bilayer matrix to hinder the size growth of Lo domains should also be playing an important role. The controlled phase separation should open new possibilities to locally concentrate membrane proteins and other nanometer-sized materials on the substrate by associating them with the lipid microdomains.
Author Tatsu, Yoshiro
Morigaki, Kenichi
Okazaki, Takashi
Author_xml – sequence: 1
  givenname: Takashi
  surname: Okazaki
  fullname: Okazaki, Takashi
– sequence: 2
  givenname: Yoshiro
  surname: Tatsu
  fullname: Tatsu, Yoshiro
– sequence: 3
  givenname: Kenichi
  surname: Morigaki
  fullname: Morigaki, Kenichi
  email: morigaki@port.kobe-u.ac.jp
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22540828$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20020734$$D View this record in MEDLINE/PubMed
BookMark eNpt0E1L5EAQBuBGXHRGPfgHJBcRD9mt_pokRx38WBhZQcVjqHRXsKWTHrszh9lfv5EZncueioKHt6h3yvb70BNjpxx-chD8l8cKpCgrsccmXAvIdSmKfTaBQsm8UDN5yKYpvQNAJVV1wA4FgIBCqgl7fXzDRNkTLTHi4EKfhTZbuKWz2YMzMdjQoetTNg_9EIP3ZLNmnT0Gv-4our_jusHXzuOaYvaAQ3SG0jH70aJPdLKdR-zl9uZ5fp8v_tz9nl8tclQchlw3oiQ7U0JwmmnVWl1Y07TGohgfU7IURNKYVqNpbAm6UoK3BA3HqtCEhTxiF5vcZQwfK0pD3blkyHvsKaxSXUjJ-QxKNcrLjRy_SilSWy-j6zCuaw71Z431d42jPdumrpqO7Lf86m0E51uAyaBvI_bGpZ0TWkEpyp1Dk-r3sIr9WMZ_Dv4DVhiHkQ
CODEN LANGD5
CitedBy_id crossref_primary_10_1016_j_bpj_2015_10_015
crossref_primary_10_1039_C4RA09981H
crossref_primary_10_1039_c3cp44517h
crossref_primary_10_1007_s13206_019_4110_x
crossref_primary_10_1021_la200027e
crossref_primary_10_1039_D0CP00335B
crossref_primary_10_1039_C9SM01658A
crossref_primary_10_3390_ma5122658
crossref_primary_10_1016_j_bbamem_2018_03_010
crossref_primary_10_1021_acsami_6b04609
crossref_primary_10_1007_s10439_011_0479_y
crossref_primary_10_1039_C6RA10294H
crossref_primary_10_1038_srep26823
crossref_primary_10_1016_j_bios_2019_111568
crossref_primary_10_1380_jsssj_37_230
crossref_primary_10_2142_biophys_59_188
crossref_primary_10_1021_la3011663
crossref_primary_10_1016_j_ab_2015_04_014
crossref_primary_10_1063_1_4895570
crossref_primary_10_1016_j_saa_2019_04_030
crossref_primary_10_1021_ja310186g
crossref_primary_10_1021_la201474h
crossref_primary_10_1021_acs_nanolett_3c02742
crossref_primary_10_3390_polym6051544
crossref_primary_10_1021_ja2007615
crossref_primary_10_1038_s42003_019_0459_6
crossref_primary_10_1021_acs_langmuir_9b02685
Cites_doi 10.1529/biophysj.103.036681
10.1038/nature02013
10.1038/nrm1102
10.1038/42408
10.1021/la0157420
10.1103/PhysRevLett.100.088101
10.1529/biophysj.105.068502
10.1529/biophysj.106.081000
10.1016/S0006-3495(01)76114-0
10.1529/biophysj.106.091082
10.1021/la049340e
10.1016/S0006-3495(04)74166-1
10.1529/biophysj.104.048223
10.1021/la052687c
10.1021/la802670t
10.1103/PhysRevE.75.011919
10.1074/jbc.M706162200
10.1002/1521-3773(20010105)40:1<172::AID-ANIE172>3.0.CO;2-G
10.1103/PhysRevLett.64.2094
10.1529/biophysj.105.080507
10.1038/nmat1618
ContentType Journal Article
Copyright Copyright © 2009 American Chemical Society
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2009 American Chemical Society
– notice: 2015 INIST-CNRS
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1021/la9032892
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5827
EndPage 4129
ExternalDocumentID 10_1021_la9032892
20020734
22540828
c301342531
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
4.4
53G
55A
5GY
5VS
7~N
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
RNS
ROL
TN5
UI2
UPT
VF5
VG9
W1F
X
---
-~X
.HR
186
1WB
6TJ
ABFRP
ABHMW
ABQRX
ADHLV
AFFNX
AGXLV
AHGAQ
ANTXH
GGK
IQODW
YQT
~02
AAHBH
ABJNI
CGR
CUPRZ
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-a410t-5b28ed64221e654fd57dcbfcda20214382ee3ccf5acbd8059421fe0b1a975ea73
IEDL.DBID ACS
ISSN 0743-7463
IngestDate Fri Aug 16 14:15:23 EDT 2024
Fri Dec 06 03:53:41 EST 2024
Sat Sep 28 07:46:29 EDT 2024
Sun Oct 22 16:07:30 EDT 2023
Thu Aug 27 13:41:58 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Vesicle
Self assembly
Growth
Ternary mixture
Phospholipid
Polymerization
Lipids
Polymer
Bilayer
Cholesterol
Protein
Solid
Design
Thickness
Geometry
Substrate
Liquid
Phase separation
Membrane
Models
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a410t-5b28ed64221e654fd57dcbfcda20214382ee3ccf5acbd8059421fe0b1a975ea73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 20020734
PQID 733116084
PQPubID 23479
PageCount 4
ParticipantIDs proquest_miscellaneous_733116084
crossref_primary_10_1021_la9032892
pubmed_primary_20020734
pascalfrancis_primary_22540828
acs_journals_10_1021_la9032892
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2010-03-16
PublicationDateYYYYMMDD 2010-03-16
PublicationDate_xml – month: 03
  year: 2010
  text: 2010-03-16
  day: 16
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Langmuir
PublicationTitleAlternate Langmuir
PublicationYear 2010
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Simons K. (ref1/cit1) 1997; 387
Leonenko Z. V. (ref14/cit14) 2004; 86
Okazaki T. (ref13/cit13) 2009; 25
Frolov V. A. J. (ref21/cit21) 2006; 91
Baumgart T. (ref3/cit3) 2003; 425
Dietrich C. (ref4/cit4) 2001; 80
Semrau S. (ref19/cit19) 2008; 100
Garg S. (ref5/cit5) 2007; 92
Hu Y. (ref20/cit20) 2006; 91
Okazaki T. (ref11/cit11) 2006; 91
Kuzmin P. I. (ref17/cit17) 2005; 88
Morigaki K. (ref8/cit8) 2001; 40
Kaizuka Y. (ref22/cit22) 2004; 86
García-Sáez A. J. (ref6/cit6) 2007; 282
Edidin M. (ref2/cit2) 2003; 4
Evans E. (ref18/cit18) 1990; 64
Yoon T.-Y. (ref7/cit7) 2006; 5
Morigaki K. (ref12/cit12) 2004; 20
Akimov S. A. (ref16/cit16) 2007; 75
Morigaki K. (ref9/cit9) 2002; 18
Richter R. P. (ref10/cit10) 2006; 22
References_xml – volume: 86
  start-page: 3783
  year: 2004
  ident: ref14/cit14
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.103.036681
  contributor:
    fullname: Leonenko Z. V.
– volume: 425
  start-page: 821
  year: 2003
  ident: ref3/cit3
  publication-title: Nature
  doi: 10.1038/nature02013
  contributor:
    fullname: Baumgart T.
– volume: 4
  start-page: 414
  year: 2003
  ident: ref2/cit2
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm1102
  contributor:
    fullname: Edidin M.
– volume: 387
  start-page: 569
  year: 1997
  ident: ref1/cit1
  publication-title: Nature
  doi: 10.1038/42408
  contributor:
    fullname: Simons K.
– volume: 18
  start-page: 4082
  year: 2002
  ident: ref9/cit9
  publication-title: Langmuir
  doi: 10.1021/la0157420
  contributor:
    fullname: Morigaki K.
– volume: 100
  start-page: 088101
  year: 2008
  ident: ref19/cit19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.088101
  contributor:
    fullname: Semrau S.
– volume: 91
  start-page: 189
  year: 2006
  ident: ref21/cit21
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.105.068502
  contributor:
    fullname: Frolov V. A. J.
– volume: 91
  start-page: 444
  year: 2006
  ident: ref20/cit20
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.106.081000
  contributor:
    fullname: Hu Y.
– volume: 80
  start-page: 1417
  year: 2001
  ident: ref4/cit4
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(01)76114-0
  contributor:
    fullname: Dietrich C.
– volume: 92
  start-page: 1263
  year: 2007
  ident: ref5/cit5
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.106.091082
  contributor:
    fullname: Garg S.
– volume: 20
  start-page: 7729
  year: 2004
  ident: ref12/cit12
  publication-title: Langmuir
  doi: 10.1021/la049340e
  contributor:
    fullname: Morigaki K.
– volume: 86
  start-page: 905
  year: 2004
  ident: ref22/cit22
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(04)74166-1
  contributor:
    fullname: Kaizuka Y.
– volume: 88
  start-page: 1120
  year: 2005
  ident: ref17/cit17
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.104.048223
  contributor:
    fullname: Kuzmin P. I.
– volume: 22
  start-page: 3497
  year: 2006
  ident: ref10/cit10
  publication-title: Langmuir
  doi: 10.1021/la052687c
  contributor:
    fullname: Richter R. P.
– volume: 25
  start-page: 345
  year: 2009
  ident: ref13/cit13
  publication-title: Langmuir
  doi: 10.1021/la802670t
  contributor:
    fullname: Okazaki T.
– volume: 75
  start-page: 011919
  year: 2007
  ident: ref16/cit16
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.75.011919
  contributor:
    fullname: Akimov S. A.
– volume: 282
  start-page: 33537
  year: 2007
  ident: ref6/cit6
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M706162200
  contributor:
    fullname: García-Sáez A. J.
– volume: 40
  start-page: 172
  year: 2001
  ident: ref8/cit8
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/1521-3773(20010105)40:1<172::AID-ANIE172>3.0.CO;2-G
  contributor:
    fullname: Morigaki K.
– volume: 64
  start-page: 2094
  year: 1990
  ident: ref18/cit18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.64.2094
  contributor:
    fullname: Evans E.
– volume: 91
  start-page: 1757
  year: 2006
  ident: ref11/cit11
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.105.080507
  contributor:
    fullname: Okazaki T.
– volume: 5
  start-page: 281
  year: 2006
  ident: ref7/cit7
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1618
  contributor:
    fullname: Yoon T.-Y.
SSID ssj0009349
Score 2.1691327
Snippet We developed a micropatterned model biological membrane on a solid substrate that can induce phase separation of lipid microdomains in a designed geometry....
SourceID proquest
crossref
pubmed
pascalfrancis
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 4126
SubjectTerms Biological Interfaces: Biocolloids, Biomolecular and Biomimetic Materials
Chemistry
Colloidal state and disperse state
Exact sciences and technology
General and physical chemistry
Lipid Bilayers
Membranes
Microscopy, Fluorescence
Phospholipids - chemistry
Polymers - chemistry
Surface physical chemistry
Title Phase Separation of Lipid Microdomains Controlled by Polymerized Lipid Bilayer Matrices
URI http://dx.doi.org/10.1021/la9032892
https://www.ncbi.nlm.nih.gov/pubmed/20020734
https://search.proquest.com/docview/733116084
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT8MwDLamcQAJ8X6MxxQB18LSNk17hAGakIaQBoJb5SapmBgtotuB_XqSZt1AMDhWcqrWduPPtfMZ4EQYDMID5fhC6gQljKiDiIGDPNLBOkwZU-Z_R_c26Dz4N0_sqQbHcyr4Lj0bYGQ43yK9zy64XN_X4J92b8as61mMa7g2uR94FX3Q16Um9IjiW-hZfsNCayG14yvm48syzlyvwmV1Wse2l7ycjobJqRj_JG_86xXWYGWCM8m5dYx1qKlsAxbb1Xi3TXi8e9YBjPSUJf_OM5KnxEyylqRrmvRk_or9rCBt28s-UJIkH-QuH3yYGs9YX1rhi_4ANWwn3ZLrXxVb8HB9dd_uOJMpCw76tDV0WOKGSuo0xKUqYH4qGZciSYVE1_CpeaGrlCdEylAkMjT0Li5NVSuhGHGmkHvbUM_yTO0CYZIGQkuZllZf6lwliUIuOGqzM6kQG9DUZognX0kRlwVwl8ZT_TTgqLJQ_GbZNn4Tan6z3VRSb01mfHbYAFIZM9ZKNRUQzFQ-KmIzoJIGrdBvwI418mxx6bSev_ffM-7Dku0g8BwaHEB9-D5ShxqYDJNm6ZifUrTa_g
link.rule.ids 314,780,784,2765,27076,27924,27925,56738,56788
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZT8MwDI4QPICEuI9xjAjxWljapscjTKBxDCEBgrfKTVIxMVpEtwf267GbHYBA8FjJqVzbjZ3a_T7GDhTVIGFgHF9pPKBEsXAAIHAgjDFZR5mUhr53tK-D1r1_8SgfhzA59C8MKlHincqqiT9BFxBHXYgJ-i3G7XZGElUllUHN2wnArmdLXYLcDP3AG6EIfV5KGUiVXzLQ_CuUaIzMslj8XmZW6eZs0fIWVYpWUybPh_1eeqgG3zAc__ckS2xhWHXyYxsmy2zK5Ctstjkie1tlDzdPmM74rbFQ4EXOi4wTr7XmbRrZ08ULdPKSN-1ke9donr7zm6L7Th2fAV5a4ZNOF7CI5-0K-d-Ua-z-7PSu2XKGnAsO-KLRc2TqRkbjocQVJpB-pmWoVZopDS6hq3mRa4ynVCZBpToisBdXZKaRCohDaSD01tl0XuRmk3GpRaBQigZcfY0nlzSOQhUCBoHUBqDG6mieZPjOlEnVDndFMrZPje2PHJW8WuyNn4TqX1w4lsSNisi0oxrjI58maFTqh0Buin6ZEF2lCBqRX2Mb1teTxVUIe_7WXzrusdnWXfsquTq_vtxmc3a2wHNEsMOme299s4slSy-tV7H6AXYG42s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9tADLcQSGwS2heDlbHuNO010Ety-XiEQsU-yioxBG-Rc3cRiC6plvYB_nrsXFrGBILHSE50sX1nO3Z-P4CvmnOQOLJeqA0VKEkqPUSMPIxTCtZJoZTl7x3D4-joNPx-rs7bQpH_haFF1PSkumni866emKJFGJC7Y0wZ_i2lI3dF0SnLI1x7_ZM7kN3ApbsMuxmHUTBHEvr3Vo5Cur4XhdYmWJNCCsdk8Xiq2YScwWv4tVhsM2lytTOb5jv65j8cx-e_zRt41WafYs-5y1tYsuU7eNGfk76tw9nogsKaOLEOErwqRVUI5rc2Ysije6b6g5dlLfpuwn1sjcivxagaX3Pn54YunfD-5RgpmRfDhgHA1u_hdHD4u3_ktdwLHoayN_VU7ifWUHHiSxupsDAqNjovtEGfUdaCxLc20LpQqHOTMOiLLwvbyyWmsbIYBxuwXFal_QBCGRlpkuJB19BQBZOnSaxjJGdQxiJ2oEsqytq9U2dNW9yX2UI_HfgyN1Y2cRgcDwl175lxIUkHFpNqJx0Qc7tmpFTui2Bpq1mdMW2ljHpJ2IFNZ--7mxtXDsKtp9b4GVZHB4Ps57fjHx_hpRsxCDwZbcPy9O_MfqLMZZp3G3e9BfuU5e4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase+Separation+of+Lipid+Microdomains+Controlled+by+Polymerized+Lipid+Bilayer+Matrices&rft.jtitle=Langmuir&rft.au=Okazaki%2C+Takashi&rft.au=Tatsu%2C+Yoshiro&rft.au=Morigaki%2C+Kenichi&rft.date=2010-03-16&rft.pub=American+Chemical+Society&rft.issn=0743-7463&rft.eissn=1520-5827&rft.volume=26&rft.issue=6&rft.spage=4126&rft.epage=4129&rft_id=info:doi/10.1021%2Fla9032892&rft.externalDocID=c301342531
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon