Mechanistic Insights on N-Heterocyclic Carbene-Catalyzed Annulations: The Role of Base-Assisted Proton Transfers
The density functional theory investigation on the mechanism of NHC-catalyzed cycloannulation reaction of the homoenolate derived from butenal with pentenone is studied. The M06-2X/6-31+G** and B3LYP/6-31+G** levels of theory, including the effect of continuum solvation in dichloromethane and tetrah...
Saved in:
Published in | Journal of organic chemistry Vol. 76; no. 14; pp. 5606 - 5613 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
15.07.2011
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-3263 1520-6904 1520-6904 |
DOI | 10.1021/jo200560t |
Cover
Loading…
Abstract | The density functional theory investigation on the mechanism of NHC-catalyzed cycloannulation reaction of the homoenolate derived from butenal with pentenone is studied. The M06-2X/6-31+G** and B3LYP/6-31+G** levels of theory, including the effect of continuum solvation in dichloromethane and tetrahydrofuran, are employed. Several mechanistic scenarios are examined for each elementary step by identifying the key intermediates and the corresponding transition states interconnecting them on the respective potential energy surfaces. Both assisted and unassisted pathways for important proton transfer steps are considered, respectively, with and without the explicit inclusion of base (DBU) in the corresponding transition states. The barrier for the crucial proton transfer steps involved in the formation of the Breslow intermediate as well as in the subsequent steps is found to be significantly lowered by explicit inclusion of DBU. The energetic comparison between two key pathways, depicted as path A and path B, respectively, leading to cyclopentene and cyclopentanone derivatives, is performed. The major mechanistic bifurcation has been identified as emanating from the site of enolization of the initial zwitterionic intermediate resulting from the addition of a homoenolate equivalent to enone. If the enolization occurs nearer to the NHC moiety, the reaction is likely to proceed through path A, leading to cyclopentene. The enolization away from NHC leads to cyclopentanone product through path B. The computed results are generally in good agreement with the reported experimental results. |
---|---|
AbstractList | The density functional theory investigation on the mechanism of NHC-catalyzed cycloannulation reaction of the homoenolate derived from butenal with pentenone is studied. The M06-2X/6-31+G** and B3LYP/6-31+G** levels of theory, including the effect of continuum solvation in dichloromethane and tetrahydrofuran, are employed. Several mechanistic scenarios are examined for each elementary step by identifying the key intermediates and the corresponding transition states interconnecting them on the respective potential energy surfaces. Both assisted and unassisted pathways for important proton transfer steps are considered, respectively, with and without the explicit inclusion of base (DBU) in the corresponding transition states. The barrier for the crucial proton transfer steps involved in the formation of the Breslow intermediate as well as in the subsequent steps is found to be significantly lowered by explicit inclusion of DBU. The energetic comparison between two key pathways, depicted as path A and path B, respectively, leading to cyclopentene and cyclopentanone derivatives, is performed. The major mechanistic bifurcation has been identified as emanating from the site of enolization of the initial zwitterionic intermediate resulting from the addition of a homoenolate equivalent to enone. If the enolization occurs nearer to the NHC moiety, the reaction is likely to proceed through path A, leading to cyclopentene. The enolization away from NHC leads to cyclopentanone product through path B. The computed results are generally in good agreement with the reported experimental results. The density functional theory investigation on the mechanism of NHC-catalyzed cycloannulation reaction of the homoenolate derived from butenal with pentenone is studied. The M06-2X/6-31+G** and B3LYP/6-31+G** levels of theory, including the effect of continuum solvation in dichloromethane and tetrahydrofuran, are employed. Several mechanistic scenarios are examined for each elementary step by identifying the key intermediates and the corresponding transition states interconnecting them on the respective potential energy surfaces. Both assisted and unassisted pathways for important proton transfer steps are considered, respectively, with and without the explicit inclusion of base (DBU) in the corresponding transition states. The barrier for the crucial proton transfer steps involved in the formation of the Breslow intermediate as well as in the subsequent steps is found to be significantly lowered by explicit inclusion of DBU. The energetic comparison between two key pathways, depicted as path A and path B, respectively, leading to cyclopentene and cyclopentanone derivatives, is performed. The major mechanistic bifurcation has been identified as emanating from the site of enolization of the initial zwitterionic intermediate resulting from the addition of a homoenolate equivalent to enone. If the enolization occurs nearer to the NHC moiety, the reaction is likely to proceed through path A, leading to cyclopentene. The enolization away from NHC leads to cyclopentanone product through path B. The computed results are generally in good agreement with the reported experimental results.The density functional theory investigation on the mechanism of NHC-catalyzed cycloannulation reaction of the homoenolate derived from butenal with pentenone is studied. The M06-2X/6-31+G** and B3LYP/6-31+G** levels of theory, including the effect of continuum solvation in dichloromethane and tetrahydrofuran, are employed. Several mechanistic scenarios are examined for each elementary step by identifying the key intermediates and the corresponding transition states interconnecting them on the respective potential energy surfaces. Both assisted and unassisted pathways for important proton transfer steps are considered, respectively, with and without the explicit inclusion of base (DBU) in the corresponding transition states. The barrier for the crucial proton transfer steps involved in the formation of the Breslow intermediate as well as in the subsequent steps is found to be significantly lowered by explicit inclusion of DBU. The energetic comparison between two key pathways, depicted as path A and path B, respectively, leading to cyclopentene and cyclopentanone derivatives, is performed. The major mechanistic bifurcation has been identified as emanating from the site of enolization of the initial zwitterionic intermediate resulting from the addition of a homoenolate equivalent to enone. If the enolization occurs nearer to the NHC moiety, the reaction is likely to proceed through path A, leading to cyclopentene. The enolization away from NHC leads to cyclopentanone product through path B. The computed results are generally in good agreement with the reported experimental results. |
Author | Patni, Priya A Sunoj, Raghavan B Verma, Pragya |
AuthorAffiliation | Indian Institute of Technology Bombay |
AuthorAffiliation_xml | – name: Indian Institute of Technology Bombay |
Author_xml | – sequence: 1 givenname: Pragya surname: Verma fullname: Verma, Pragya – sequence: 2 givenname: Priya A surname: Patni fullname: Patni, Priya A – sequence: 3 givenname: Raghavan B surname: Sunoj fullname: Sunoj, Raghavan B email: sunoj@chem.iitb.ac.in |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24317997$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21627313$$D View this record in MEDLINE/PubMed |
BookMark | eNptkcFu1DAQhi1URLeFAy-AckEVh9CxkzgJt2UFtFILCC3naOJMWFdZe_E4h-3T49ItSFV9sWR_82nmnxNx5LwjIV5LeC9ByfMbrwAqDfGZWMhKQa5bKI_EAkCpvFC6OBYnzDeQTlVVL8SxklrVhSwWYndNZoPOcrQmu3Rsf20iZ95lX_MLihS82Zspfa0w9OQoX2HEaX9LQ7Z0bp4wWu_4Q7beUPbDT5T5MfuITPmSOTkT9j34mHTrgI5HCvxSPB9xYnp1uE_Fz8-f1quL_Orbl8vV8irHUkLMy7pt-6avQWscRq0BhpqgVwWU0GKj66Epx4aqfuwL2bYgB9mOpI2pCHCQWJyKs3vvLvjfM3HstpYNTRM68jN3TV3Vsm3aOpFvDuTcb2nodsFuMey7h5AS8PYAIBucxjSKsfyfKwuZur0Tnd9zJnjmQGNnbPybUAxop05Cd7eu7t-6UsW7RxUP0qfYQxdoOD3PwaX4nuD-ANRZoJQ |
CODEN | JOCEAH |
CitedBy_id | crossref_primary_10_1016_j_tet_2017_09_007 crossref_primary_10_1021_om300201s crossref_primary_10_1002_ange_202117682 crossref_primary_10_1002_ejoc_201201270 crossref_primary_10_1002_asia_201300938 crossref_primary_10_1002_cctc_202001513 crossref_primary_10_1021_acscatal_2c05725 crossref_primary_10_1021_acs_joc_5b00523 crossref_primary_10_1021_ol5023239 crossref_primary_10_1039_D4CS01179A crossref_primary_10_1002_ange_201204524 crossref_primary_10_1002_asia_201801583 crossref_primary_10_1021_acscatal_5b01870 crossref_primary_10_1002_anie_201307292 crossref_primary_10_1002_chem_201703579 crossref_primary_10_1039_c1cs15139h crossref_primary_10_1021_acs_joc_1c01014 crossref_primary_10_1002_anie_201704210 crossref_primary_10_1021_acs_chemrev_9b00481 crossref_primary_10_1039_C4QO00036F crossref_primary_10_1039_D3CP06051A crossref_primary_10_1021_cs502006x crossref_primary_10_1039_C5RA24967H crossref_primary_10_1002_anie_201303524 crossref_primary_10_1039_D0CY01768J crossref_primary_10_1016_j_tetlet_2013_10_116 crossref_primary_10_1002_adsc_201200031 crossref_primary_10_1039_C4SC00317A crossref_primary_10_1021_ol4030748 crossref_primary_10_1021_ja302761d crossref_primary_10_1002_anie_201204524 crossref_primary_10_1002_qua_26039 crossref_primary_10_1039_C5CP05369B crossref_primary_10_1002_ange_201406865 crossref_primary_10_1039_C9QO00602H crossref_primary_10_1002_chem_201500661 crossref_primary_10_1021_ol402375d crossref_primary_10_1002_ange_201405381 crossref_primary_10_1002_ange_201704210 crossref_primary_10_1039_D1SC01910D crossref_primary_10_1002_cctc_201701119 crossref_primary_10_1016_j_tetlet_2013_01_100 crossref_primary_10_1002_ejoc_201700562 crossref_primary_10_1021_acs_joc_2c02462 crossref_primary_10_1039_c3ob27367a crossref_primary_10_1016_j_tet_2013_04_123 crossref_primary_10_1021_acscatal_6b03026 crossref_primary_10_1002_anie_201305957 crossref_primary_10_1002_jcc_24700 crossref_primary_10_1021_acs_chemrev_5b00060 crossref_primary_10_1021_om500799d crossref_primary_10_1039_c3ra41464g crossref_primary_10_1039_D2CP04507A crossref_primary_10_1002_qua_26249 crossref_primary_10_1021_ar400239v crossref_primary_10_1002_anie_201406865 crossref_primary_10_1021_ol5031684 crossref_primary_10_1039_c2sc22137c crossref_primary_10_1039_C5QO00121H crossref_primary_10_1021_jo202500k crossref_primary_10_1039_C6DT00686H crossref_primary_10_1002_chem_201600515 crossref_primary_10_1021_jo401477b crossref_primary_10_1002_anie_201405381 crossref_primary_10_1002_anie_202117682 crossref_primary_10_1002_jcc_23846 crossref_primary_10_1002_jcc_23923 crossref_primary_10_1002_ange_201305957 crossref_primary_10_1002_ange_201203382 crossref_primary_10_1002_ange_201307292 crossref_primary_10_1002_chir_22157 crossref_primary_10_1021_jacs_5b06390 crossref_primary_10_1021_acs_joc_0c00769 crossref_primary_10_1016_j_tet_2011_09_113 crossref_primary_10_1039_C6OB00791K crossref_primary_10_1002_asia_201601022 crossref_primary_10_1002_ange_201303524 crossref_primary_10_1002_ejoc_202000477 crossref_primary_10_1039_C9NJ00082H crossref_primary_10_1021_acscatal_5b01710 crossref_primary_10_1021_ol301036u crossref_primary_10_1039_C5QO00338E crossref_primary_10_1021_acs_joc_5b01222 crossref_primary_10_1002_anie_201203382 |
Cites_doi | 10.1039/b903816g 10.1021/ja9094044 10.1021/ol102685u 10.1002/anie.200907275 10.1021/jo900622x 10.1021/ja710521m 10.1007/s00214-007-0310-x 10.1021/ol901545m 10.1063/1.473558 10.1021/ja0778592 10.1063/1.456010 10.1021/ol200256a 10.1063/1.474659 10.1021/ol050568i 10.1002/anie.200301714 10.1021/ol702211d 10.1126/science.1131945 10.1039/B916343C 10.1002/anie.201006548 10.1021/ja044714b 10.1021/cr940472u 10.1002/anie.201001588 10.1073/pnas.1006509107 10.1021/jp971959k 10.1002/anie.200461572 10.1021/cr0684016 10.1021/ja01547a064 10.1016/S0166-1280(98)00553-3 10.1021/ja0709167 10.1021/ja0625677 10.1126/science.1076547 10.1021/ol0273856 10.1002/chem.200801822 10.1021/ja102130s 10.1021/j100377a021 10.1021/ol9019293 10.1021/jo101592b 10.1021/ja910666n 10.1021/ja902143w 10.1021/ol900571x 10.1103/PhysRevA.38.3098 10.1063/1.1677527 10.1021/ja906361g 10.1038/nature07367 10.1039/B715733A 10.1039/b719083m 10.1002/chem.200800877 10.1021/ar1000764 10.1002/hlca.19960790108 10.1021/jp110352e 10.1021/ja0705543 10.1021/jo071004q 10.1021/ja073987e 10.1021/ct100326h 10.1007/BF00533485 10.1016/j.tetlet.2010.01.103 10.1021/ol0630494 10.1103/PhysRevB.37.785 10.1039/c0ob00088d 10.1021/jp960976r |
ContentType | Journal Article |
Copyright | Copyright © 2011 American Chemical Society 2015 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2011 American Chemical Society – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/jo200560t |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-6904 |
EndPage | 5613 |
ExternalDocumentID | 21627313 24317997 10_1021_jo200560t a626827644 |
Genre | Journal Article |
GroupedDBID | - .K2 29L 4.4 53G 55A 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CJ0 CS3 D0L DU5 DZ EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 LG6 P2P PZZ ROL RXW TAE TAF TN5 UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ --- -DZ -~X AAHBH AAYOK AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA .GJ .HR 123 186 1WB 3EH 41~ 6TJ ABHMW ACBNA ACRPL ACTDY ADNMO ADXHL AETEA AEYZD AGQPQ AI. AIDAL ANPPW ANTXH D0S IQODW MVM NHB OHT RNS T9H UBC UMD UQL VH1 X7L XOL XXG YQJ YR5 YXA YXE YYP ZCG ZE2 ZGI CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-a410t-4799b8b7066adf6600d7e0b230409a867d84f8e5bfb319901d19fe6cc5e0ad1a3 |
IEDL.DBID | ACS |
ISSN | 0022-3263 1520-6904 |
IngestDate | Thu Jul 10 21:11:24 EDT 2025 Mon Jul 21 05:25:28 EDT 2025 Mon Jul 21 09:17:08 EDT 2025 Tue Jul 01 01:52:53 EDT 2025 Thu Apr 24 22:51:25 EDT 2025 Thu Aug 27 13:42:12 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | 1,8-Diazabicyclo[5.4.0]undec-7-ene Catalytic reaction Nitrogen heterocycle Furan derivatives Proton transfer Theoretical study Zwitterion Experimental study Oxygen heterocycle Tetrahydrofurane Energy barrier Annelation Solvation Enolization Thermodynamic parameter Transition state Reaction mechanism Dichloromethane Density functional method Potential energy surfaces Inclusion compound Enone |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a410t-4799b8b7066adf6600d7e0b230409a867d84f8e5bfb319901d19fe6cc5e0ad1a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 21627313 |
PQID | 875719897 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_875719897 pubmed_primary_21627313 pascalfrancis_primary_24317997 crossref_citationtrail_10_1021_jo200560t crossref_primary_10_1021_jo200560t acs_journals_10_1021_jo200560t |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-07-15 |
PublicationDateYYYYMMDD | 2011-07-15 |
PublicationDate_xml | – month: 07 year: 2011 text: 2011-07-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States |
PublicationTitle | Journal of organic chemistry |
PublicationTitleAlternate | J. Org. Chem |
PublicationYear | 2011 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | MacMillan D. W. C. (ref1/cit1b) 2008; 455 Berkessel A. (ref5/cit5a) 2010; 49 Roy D. (ref23/cit23d) 2008; 14 Movassaghi M. (ref2/cit2c) 2002; 298 Mennucci B. (ref31/cit31d) 1997; 101 Jousseaume T. (ref16/cit16a) 2011; 50 Shimakawa Y. (ref17/cit17b) 2010; 51 Bock D. A. (ref2/cit2a) 2010; 107 Mukherjee S. (ref2/cit2b) 2007; 107 Breslow R. (ref7/cit7) 1958; 80 Gonzalez C. (ref32/cit32b) 1989; 90 Becke A. D. (ref24/cit24a) 1988; 38 Nair V. (ref22/cit22b) 2006; 128 Phillips E. M. (ref15/cit15a) 2008; 130 Patil M. P. (ref23/cit23b) 2010; 75 List B. (ref1/cit1c) 2006; 313 Wadamoto M. (ref15/cit15b) 2007; 129 Cardinal-David B. (ref20/cit20a) 2010; 132 Sohn S. S. (ref6/cit6b) 2004; 126 Scott A. P. (ref29/cit29) 1996; 100 Kawanaka Y. (ref18/cit18) 2009; 131 Biju A. T. (ref10/cit10a) 2010; 132 Cancès M. T. (ref31/cit31b) 1997; 107 Patil M. P. (ref33/cit33a) 2008; 14 Nair V. (ref22/cit22a) 2008 Roy D. (ref23/cit23e) 2007; 9 Song J. J. (ref13/cit13a) 2007; 9 Sánchez-Larios E. (ref16/cit16b) 2010; 12 Nolan S. P. (ref4/cit4) 2011; 44 Nair V. (ref11/cit11b) 2003; 5 Frisch M. J. (ref25/cit25) 2004 Bourissou D. (ref8/cit8) 2000; 100 He M. (ref9/cit9) 2008; 130 Hirano K. (ref10/cit10b) 2009; 131 Maki B. E. (ref12/cit12) 2009; 11 Nair V. (ref3/cit3b) 2004; 43 Domingo L. R. (ref14/cit14) 2010; 8 He Y. (ref17/cit17a) 2011; 115 Teles J. H. (ref5/cit5b) 1996; 79 Burstein C. (ref6/cit6c) 2004; 43 Lee C. (ref24/cit24b) 1988; 37 Moore J. L. (ref38/cit38) 2011; 13 Frisch M. J. (ref27/cit27) 2009 Patil M. P. (ref33/cit33b) 2007; 72 Hehre W. J. (ref28/cit28b) 1972; 56 Chiang P.-C. (ref20/cit20c) 2007; 129 Tomasi J. (ref31/cit31a) 1999; 464 Song J. J. (ref13/cit13b) 2005; 7 Mennucci B. (ref31/cit31c) 1997; 106 Raveendran A. E. (ref11/cit11a) 2010; 8 Zhao Y. (ref26/cit26) 2008; 120 Ema T. (ref21/cit21) 2009; 11 Nair V. (ref3/cit3a) 2008; 37 Nair V. (ref6/cit6a) 2009; 11 Sharma A. K. (ref23/cit23a) 2010; 49 Chan A. (ref20/cit20b) 2007; 129 Roy D. (ref23/cit23c) 2009; 74 Bertelsen S. (ref1/cit1a) 2009; 38 Alecu I. M. (ref30/cit30) 2010; 6 Gonzalez C. (ref32/cit32a) 1990; 94 Chiang P.-C. (ref19/cit19) 2009; 131 Hariharan P. C. (ref28/cit28a) 1973; 28 |
References_xml | – volume: 38 start-page: 2178 year: 2009 ident: ref1/cit1a publication-title: Chem. Soc. Rev. doi: 10.1039/b903816g – volume: 131 start-page: 18028 year: 2009 ident: ref18/cit18 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9094044 – volume: 12 start-page: 5772 year: 2010 ident: ref16/cit16b publication-title: Org. Lett. doi: 10.1021/ol102685u – volume: 49 start-page: 7120 year: 2010 ident: ref5/cit5a publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200907275 – volume: 74 start-page: 6936 year: 2009 ident: ref23/cit23c publication-title: J. Org. Chem. doi: 10.1021/jo900622x – volume: 130 start-page: 2416 year: 2008 ident: ref15/cit15a publication-title: J. Am. Chem. Soc. doi: 10.1021/ja710521m – volume-title: Gaussian 03 year: 2004 ident: ref25/cit25 – volume: 120 start-page: 215 year: 2008 ident: ref26/cit26 publication-title: Theo. Chem. Acc. doi: 10.1007/s00214-007-0310-x – volume: 11 start-page: 3942 year: 2009 ident: ref12/cit12 publication-title: Org. Lett. doi: 10.1021/ol901545m – volume: 106 start-page: 5151 year: 1997 ident: ref31/cit31c publication-title: J. Chem. Phys. doi: 10.1063/1.473558 – volume: 130 start-page: 418 year: 2008 ident: ref9/cit9 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0778592 – volume: 90 start-page: 2154 year: 1989 ident: ref32/cit32b publication-title: J. Chem. Phys. doi: 10.1063/1.456010 – volume: 13 start-page: 1742 year: 2011 ident: ref38/cit38 publication-title: Org. Lett. doi: 10.1021/ol200256a – volume: 107 start-page: 3032 year: 1997 ident: ref31/cit31b publication-title: J. Chem. Phys. doi: 10.1063/1.474659 – volume: 7 start-page: 2193 year: 2005 ident: ref13/cit13b publication-title: Org. Lett. doi: 10.1021/ol050568i – volume: 43 start-page: 5130 year: 2004 ident: ref3/cit3b publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200301714 – volume: 9 start-page: 4873 year: 2007 ident: ref23/cit23e publication-title: Org. Lett. doi: 10.1021/ol702211d – volume: 313 start-page: 1584 year: 2006 ident: ref1/cit1c publication-title: Science doi: 10.1126/science.1131945 – volume: 8 start-page: 901 year: 2010 ident: ref11/cit11a publication-title: Org. Biomol. Chem. doi: 10.1039/B916343C – volume: 50 start-page: 1410 year: 2011 ident: ref16/cit16a publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201006548 – volume: 126 start-page: 14370 year: 2004 ident: ref6/cit6b publication-title: J. Am. Chem. Soc. doi: 10.1021/ja044714b – volume: 100 start-page: 39 year: 2000 ident: ref8/cit8 publication-title: Chem. Rev. doi: 10.1021/cr940472u – volume: 49 start-page: 6373 year: 2010 ident: ref23/cit23a publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201001588 – volume: 107 start-page: 20636 year: 2010 ident: ref2/cit2a publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1006509107 – volume: 101 start-page: 10506 year: 1997 ident: ref31/cit31d publication-title: J. Phys. Chem. B doi: 10.1021/jp971959k – volume: 43 start-page: 6205 year: 2004 ident: ref6/cit6c publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200461572 – volume: 107 start-page: 5471 year: 2007 ident: ref2/cit2b publication-title: Chem. Rev. doi: 10.1021/cr0684016 – volume: 80 start-page: 3719 year: 1958 ident: ref7/cit7 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01547a064 – volume: 464 start-page: 211 year: 1999 ident: ref31/cit31a publication-title: J. Mol. Struct. (THEOCHEM) doi: 10.1016/S0166-1280(98)00553-3 – volume: 129 start-page: 5334 year: 2007 ident: ref20/cit20b publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0709167 – volume: 128 start-page: 8736 year: 2006 ident: ref22/cit22b publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0625677 – volume: 298 start-page: 1904 year: 2002 ident: ref2/cit2c publication-title: Science doi: 10.1126/science.1076547 – volume: 5 start-page: 665 year: 2003 ident: ref11/cit11b publication-title: Org. Lett. doi: 10.1021/ol0273856 – volume: 14 start-page: 10530 year: 2008 ident: ref23/cit23d publication-title: Chem.—Eur. J. doi: 10.1002/chem.200801822 – volume: 132 start-page: 5970 year: 2010 ident: ref10/cit10a publication-title: J. Am. Chem. Soc. doi: 10.1021/ja102130s – volume: 94 start-page: 5523 year: 1990 ident: ref32/cit32a publication-title: J. Phys. Chem. doi: 10.1021/j100377a021 – volume: 11 start-page: 4866 year: 2009 ident: ref21/cit21 publication-title: Org. Lett. doi: 10.1021/ol9019293 – volume: 75 start-page: 7310 year: 2010 ident: ref23/cit23b publication-title: J. Org. Chem. doi: 10.1021/jo101592b – volume: 132 start-page: 5345 year: 2010 ident: ref20/cit20a publication-title: J. Am. Chem. Soc. doi: 10.1021/ja910666n – volume: 131 start-page: 8714 year: 2009 ident: ref19/cit19 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja902143w – volume: 11 start-page: 2507 year: 2009 ident: ref6/cit6a publication-title: Org. Lett. doi: 10.1021/ol900571x – volume: 38 start-page: 3098 year: 1988 ident: ref24/cit24a publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.38.3098 – volume: 56 start-page: 2257 year: 1972 ident: ref28/cit28b publication-title: J. Chem. Phys. doi: 10.1063/1.1677527 – volume: 131 start-page: 14190 year: 2009 ident: ref10/cit10b publication-title: J. Am. Chem. Soc. doi: 10.1021/ja906361g – volume: 455 start-page: 304 year: 2008 ident: ref1/cit1b publication-title: Nature doi: 10.1038/nature07367 – start-page: 747 year: 2008 ident: ref22/cit22a publication-title: Chem. Commun. doi: 10.1039/B715733A – volume: 37 start-page: 2691 year: 2008 ident: ref3/cit3a publication-title: Chem. Soc. Rev. doi: 10.1039/b719083m – volume: 14 start-page: 10472 year: 2008 ident: ref33/cit33a publication-title: Chem.—Eur. J. doi: 10.1002/chem.200800877 – volume: 44 start-page: 91 year: 2011 ident: ref4/cit4 publication-title: Acc. Chem. Res. doi: 10.1021/ar1000764 – volume: 79 start-page: 61 year: 1996 ident: ref5/cit5b publication-title: Helv. Chim. Acta doi: 10.1002/hlca.19960790108 – volume: 115 start-page: 1408 year: 2011 ident: ref17/cit17a publication-title: J. Phys. Chem. A doi: 10.1021/jp110352e – volume: 129 start-page: 3520 year: 2007 ident: ref20/cit20c publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0705543 – volume: 72 start-page: 8202 year: 2007 ident: ref33/cit33b publication-title: J. Org. Chem. doi: 10.1021/jo071004q – volume: 129 start-page: 10098 year: 2007 ident: ref15/cit15b publication-title: J. Am. Chem. Soc. doi: 10.1021/ja073987e – volume: 6 start-page: 2872 year: 2010 ident: ref30/cit30 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct100326h – volume: 28 start-page: 213 year: 1973 ident: ref28/cit28a publication-title: Theor. Chim. Acta doi: 10.1007/BF00533485 – volume: 51 start-page: 1786 year: 2010 ident: ref17/cit17b publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2010.01.103 – volume: 9 start-page: 1013 year: 2007 ident: ref13/cit13a publication-title: Org. Lett. doi: 10.1021/ol0630494 – volume: 37 start-page: 785 year: 1988 ident: ref24/cit24b publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.37.785 – volume-title: Gaussian 09 year: 2009 ident: ref27/cit27 – volume: 8 start-page: 4884 year: 2010 ident: ref14/cit14 publication-title: Org. Biomol. Chem. doi: 10.1039/c0ob00088d – volume: 100 start-page: 16502 year: 1996 ident: ref29/cit29 publication-title: J. Phys. Chem. doi: 10.1021/jp960976r |
SSID | ssj0000555 |
Score | 2.3251054 |
Snippet | The density functional theory investigation on the mechanism of NHC-catalyzed cycloannulation reaction of the homoenolate derived from butenal with pentenone... |
SourceID | proquest pubmed pascalfrancis crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5606 |
SubjectTerms | Alicyclic compounds Alicyclic compounds, terpenoids, prostaglandins, steroids Catalysis Chemistry Cyclization Cyclopentanes - chemical synthesis Cyclopentanes - chemistry Exact sciences and technology Heterocyclic compounds Heterocyclic Compounds - chemistry Heterocyclic compounds with o, s, se, te hetero atom and condensed derivatives Heterocyclic compounds with several n hetero atoms in the same ring, in separated rings or in fused rings Kinetics and mechanisms Methane - analogs & derivatives Methane - chemistry Molecular Conformation Organic chemistry Preparations and properties Protons Quantum Theory Reactivity and mechanisms Stereoisomerism |
Title | Mechanistic Insights on N-Heterocyclic Carbene-Catalyzed Annulations: The Role of Base-Assisted Proton Transfers |
URI | http://dx.doi.org/10.1021/jo200560t https://www.ncbi.nlm.nih.gov/pubmed/21627313 https://www.proquest.com/docview/875719897 |
Volume | 76 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhZ1Lb9QwEICt0h5Aqsq73QIrCzhwccnLj3CDtNWC1AoBlXqL_BgfYJWsNtlD--s7zmNLRUvPmRzsGXs-j8czhLxXiRWg8VgCQhuWecmZ0lnKXA7CSLBKuBDvODkVs7Ps2zk_3yDv7rjBT-KPv-sQ-BBR-4BsJQIXb-Cf4uf1dss5X5cET0Q6lg_6-9fgemxzw_VsL3SDs-D79hV382XnZ44fk8PxtU6fXvLnYNWaA3v5b_HG_w3hCdkZOJN-7g3jKdmA6hl5WIzt3Z6TxQmER79dnWb6tWrCIb2hdUVP2SykyNT2ws7xU6GXBvdDVoQ4z8UlOBpK8g8ZdJ8omhn9Uc-B1p5-QY_IUN_Bchz9vqyRK2nnDD1C5gtydnz0q5ixof0C01kctSHmlhtlJEKJdl4gGTkJkQlR5CjXSkinMq-AG29wHSNXuDj3IKzlEGkX6_Ql2azqCvYIjblMPSSpd6lEQkQGUhy50zsFYCRPJmSK-imH5dOU3c14gieTceIm5MOoutIOxctDD435baJv16KLvmLHbULTG_pfSyYBqPJcTggdDaJExYRbFF1BvWrK0AEgJJqhyG5vKNc_xwJpME737xvOK_Koj01LFvPXZLNdruANwk1rpp1xXwEnU_MW |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9QwFLagHIqE2JdhGSzEgYtLNi_hViKqKXRGCFqpt8jL8wFGyWiSObS_nucsMxQVwTnPkZfPfp-f7e8R8lYlVoDGbQkIbVjmJWdKZylzOQgjwSrhQrxjvhCzs-zzOT8fZHLCWxisRIN_arpD_J26QPz-Rx3iHyJqb5JbSEKSgObD4vtu1eWcb5XBE5GOKkK_Fw0eyDZXPNCdlW6wM3yfxeLvNLNzN0f3-rxFXUW7WyY_DzatObCXf2g4_l9L7pO7A-ukhz1MHpAbUD0k-8WY7O0RWc0hPAHuVJvpcdWELXtD64ou2CxcmKnthV3ip0KvDa6OrAhRn4tLcDQI9A_36T5QBB39Vi-B1p5-RP_IcPQDjhz9uq6RZdLONXqknI_J2dGn02LGhmQMTGdx1IYIXG6UkUhRtPMCeZKTEJkQU45yrYR0KvMKuPEGZzWyDBfnHoS1HCLtYp0-IXtVXcEzQmMuUw9J6l0qkS8iI1IcWah3CsBInkzIFPutHCZTU3bn5AnuU8aOm5B34wiWdpAyDxk1lteZvtmarnr9juuMpldgsLVMAr3KczkhdMRFiQMTzlR0BfWmKUM-gHDtDE2e9njZFY4FcsM4ff6v5rwm-7PT-Ul5crz48oLc7qPWksX8Jdlr1xt4hbSnNdMO778AzSb7dw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwELagSICEuI_lWCzEAy9uc_kIbyWw2gJdKqBS3yKfD7BKVpvsQ_vrmcmxpagInjOOfHz2fJ4ZzxDyWiVWeA3XEi-0YVmQnCmdpczlXhjprRIO7R2HCzE_zj6e8JPhoohvYaATDfyp6Zz4uKtXLgwZBuK9HzXaQETUXiXX0F2HiN4vvp2fvJzzbXbwRKRjJqHfm6IWss0FLXRrpRuYkNBXsvg71exUzuwO-bLtbBdp8nN305pde_ZHHsf_H81dcntgn3S_h8s9csVX98mNYiz69oCsDj0-Be6yN9ODqsGre0Prii7YHANnantql_Cp0GsDpyQr0PpzeuYdxUT9Q1zdWwrgo1_rpad1oO9ATzJAAeLJ0aN1DWyTdioyAPV8SI5nH74XczYUZWA6i6MWLXG5UUYCVdEuCOBLTvrIoG05yrUS0qksKM9NMLC7gW24OA9eWMt9pF2s00dkp6or_4TQmMs0-CQNLpXAG4EZKQ5sNDjlvZE8mZApzF05bKqm7PzlCdxXxombkDfjKpZ2SGmOlTWWl4m-2oqu-jwelwlNL0BhK5kgzcpzOSF0xEYJC4O-FV35etOUWBcAw89A5HGPmfPGsQCOGKdP_zWcl-T60ftZ-flg8ekZudkbryWL-XOy0643_gWwn9ZMO8j_AgYC_fo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanistic+insights+on+N-heterocyclic+carbene-catalyzed+annulations%3A+the+role+of+base-assisted+proton+transfers&rft.jtitle=Journal+of+organic+chemistry&rft.au=Verma%2C+Pragya&rft.au=Patni%2C+Priya+A&rft.au=Sunoj%2C+Raghavan+B&rft.date=2011-07-15&rft.eissn=1520-6904&rft.volume=76&rft.issue=14&rft.spage=5606&rft_id=info:doi/10.1021%2Fjo200560t&rft_id=info%3Apmid%2F21627313&rft.externalDocID=21627313 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3263&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3263&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3263&client=summon |