Enhanced Thermoelectric Metrics in Ultra-long Electrodeposited PEDOT Nanowires
The Seebeck coefficient, S, and the electrical conductivity, σ, of electrodeposited poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires and thin films are reported. PEDOT nanowires were prepared by electropolymerizing 3,4-ethylenedioxythiophene (EDOT) in aqueous LiClO4 within a template prepared usin...
Saved in:
Published in | Nano letters Vol. 11; no. 1; pp. 125 - 131 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
12.01.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Seebeck coefficient, S, and the electrical conductivity, σ, of electrodeposited poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires and thin films are reported. PEDOT nanowires were prepared by electropolymerizing 3,4-ethylenedioxythiophene (EDOT) in aqueous LiClO4 within a template prepared using the lithographically patterned nanowire electrodeposition (LPNE) process. These nanowires were 40−90 nm in thickness, 150−580 nm in width, and 200 μm in length. σ and S were measured from 190 K to 310 K by fabricating heaters and thermocouples on top of arrays of 750 PEDOT nanowires. Such PEDOT nanowire arrays consistently produced S values that were higher than those for PEDOT films: up to −122 μV/K (310 K) for nanowires and up to −57 μV/K (310 K) for films. The sample-to-sample variation in S for 14 samples of PEDOT nanowires and films, across a wide range of critical dimensions, is fully explained by variations in the carrier concentrations in accordance with the Mott equation. In spite of their higher |S| values, PEDOT nanowires also had higher σ than films, on average, because electron mobilities were greater in nanowires by a factor of 3. |
---|---|
AbstractList | The Seebeck coefficient, S, and the electrical conductivity, σ, of electrodeposited poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires and thin films are reported. PEDOT nanowires were prepared by electropolymerizing 3,4-ethylenedioxythiophene (EDOT) in aqueous LiClO(4) within a template prepared using the lithographically patterned nanowire electrodeposition (LPNE) process. These nanowires were 40-90 nm in thickness, 150-580 nm in width, and 200 μm in length. σ and S were measured from 190 K to 310 K by fabricating heaters and thermocouples on top of arrays of 750 PEDOT nanowires. Such PEDOT nanowire arrays consistently produced S values that were higher than those for PEDOT films: up to -122 μV/K (310 K) for nanowires and up to -57 μV/K (310 K) for films. The sample-to-sample variation in S for 14 samples of PEDOT nanowires and films, across a wide range of critical dimensions, is fully explained by variations in the carrier concentrations in accordance with the Mott equation. In spite of their higher |S| values, PEDOT nanowires also had higher σ than films, on average, because electron mobilities were greater in nanowires by a factor of 3.The Seebeck coefficient, S, and the electrical conductivity, σ, of electrodeposited poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires and thin films are reported. PEDOT nanowires were prepared by electropolymerizing 3,4-ethylenedioxythiophene (EDOT) in aqueous LiClO(4) within a template prepared using the lithographically patterned nanowire electrodeposition (LPNE) process. These nanowires were 40-90 nm in thickness, 150-580 nm in width, and 200 μm in length. σ and S were measured from 190 K to 310 K by fabricating heaters and thermocouples on top of arrays of 750 PEDOT nanowires. Such PEDOT nanowire arrays consistently produced S values that were higher than those for PEDOT films: up to -122 μV/K (310 K) for nanowires and up to -57 μV/K (310 K) for films. The sample-to-sample variation in S for 14 samples of PEDOT nanowires and films, across a wide range of critical dimensions, is fully explained by variations in the carrier concentrations in accordance with the Mott equation. In spite of their higher |S| values, PEDOT nanowires also had higher σ than films, on average, because electron mobilities were greater in nanowires by a factor of 3. The Seebeck coefficient, S, and the electrical conductivity, σ, of electrodeposited poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires and thin films are reported. PEDOT nanowires were prepared by electropolymerizing 3,4-ethylenedioxythiophene (EDOT) in aqueous LiClO4 within a template prepared using the lithographically patterned nanowire electrodeposition (LPNE) process. These nanowires were 40−90 nm in thickness, 150−580 nm in width, and 200 μm in length. σ and S were measured from 190 K to 310 K by fabricating heaters and thermocouples on top of arrays of 750 PEDOT nanowires. Such PEDOT nanowire arrays consistently produced S values that were higher than those for PEDOT films: up to −122 μV/K (310 K) for nanowires and up to −57 μV/K (310 K) for films. The sample-to-sample variation in S for 14 samples of PEDOT nanowires and films, across a wide range of critical dimensions, is fully explained by variations in the carrier concentrations in accordance with the Mott equation. In spite of their higher |S| values, PEDOT nanowires also had higher σ than films, on average, because electron mobilities were greater in nanowires by a factor of 3. The Seebeck coefficient, S, and the electrical conductivity, σ, of electrodeposited poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires and thin films are reported. PEDOT nanowires were prepared by electropolymerizing 3,4-ethylenedioxythiophene (EDOT) in aqueous LiClO(4) within a template prepared using the lithographically patterned nanowire electrodeposition (LPNE) process. These nanowires were 40-90 nm in thickness, 150-580 nm in width, and 200 μm in length. σ and S were measured from 190 K to 310 K by fabricating heaters and thermocouples on top of arrays of 750 PEDOT nanowires. Such PEDOT nanowire arrays consistently produced S values that were higher than those for PEDOT films: up to -122 μV/K (310 K) for nanowires and up to -57 μV/K (310 K) for films. The sample-to-sample variation in S for 14 samples of PEDOT nanowires and films, across a wide range of critical dimensions, is fully explained by variations in the carrier concentrations in accordance with the Mott equation. In spite of their higher |S| values, PEDOT nanowires also had higher σ than films, on average, because electron mobilities were greater in nanowires by a factor of 3. |
Author | McIntire, Theresa M Kung, Sheng-Chin Yang, Yongan Taggart, David K Penner, Reginald M |
Author_xml | – sequence: 1 givenname: David K surname: Taggart fullname: Taggart, David K – sequence: 2 givenname: Yongan surname: Yang fullname: Yang, Yongan – sequence: 3 givenname: Sheng-Chin surname: Kung fullname: Kung, Sheng-Chin – sequence: 4 givenname: Theresa M surname: McIntire fullname: McIntire, Theresa M – sequence: 5 givenname: Reginald M surname: Penner fullname: Penner, Reginald M email: rmpenner@uci.edu. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23757369$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21133353$$D View this record in MEDLINE/PubMed |
BookMark | eNptkU9P3DAQxS0EKrD0wBeocqkqDoFxxomTY0WXgsS_w3K2HHtSjLz21s4K9ds3dBcqIU4z0vze0-i9Q7YbYiDGjjmccqj4WfAcEADtDjvgNULZdF21-7a3Yp8d5vwEAB3W8IntV5wjYo0H7HYeHnUwZIvFI6VlJE9mTM4UN_QycuFC8eDHpEsfw69i_u8cLa1iduOkup__uFsUtzrEZ5coH7G9QftMn7dzxh4u5ovzy_L67ufV-ffrUgsOY4mCZGWMBBwstVKKHm0voLMSqLUgBbVNjbrBXgsjYKBOVxYaELwdur61OGPfNr6rFH-vKY9q6bIh73WguM6qxU5ykLKeyC9bct0vyapVckud_qjXCCbg6xbQ2Wg_pCkOl_9zKGuJTTdxZxvOpJhzokEZN-rRxTCl47zioF7KUG9lTIqTd4pX04_Y7RfaZPUU1ylM8X3A_QVJKJPy |
CitedBy_id | crossref_primary_10_1002_adfm_201401282 crossref_primary_10_1351_PAC_CON_12_08_17 crossref_primary_10_1016_j_synthmet_2011_09_044 crossref_primary_10_1039_C8TC06616G crossref_primary_10_1016_j_matlet_2018_07_042 crossref_primary_10_35848_1347_4065_ab8e06 crossref_primary_10_1002_admi_201701168 crossref_primary_10_1002_smll_201303642 crossref_primary_10_1016_j_physleta_2011_05_063 crossref_primary_10_1039_D0TC02655G crossref_primary_10_1016_j_orgel_2016_01_007 crossref_primary_10_1007_s10853_017_0806_2 crossref_primary_10_1021_acsanm_8b01836 crossref_primary_10_1039_C5TA07381B crossref_primary_10_1021_acs_macromol_0c00873 crossref_primary_10_1021_acsaem_9b02024 crossref_primary_10_1021_acsnano_4c10801 crossref_primary_10_1002_aelm_201800769 crossref_primary_10_1021_la302473j crossref_primary_10_1039_C6RA04455G crossref_primary_10_3390_nano12244430 crossref_primary_10_3390_nano13132011 crossref_primary_10_1039_D0TC05757F crossref_primary_10_1016_j_synthmet_2020_116293 crossref_primary_10_1039_C8NR00134K crossref_primary_10_2139_ssrn_4092454 crossref_primary_10_1016_j_trac_2019_05_031 crossref_primary_10_1021_am5002772 crossref_primary_10_1016_j_electacta_2012_07_113 crossref_primary_10_1016_j_mtcomm_2022_103856 crossref_primary_10_1039_D0EE03520C crossref_primary_10_1016_j_physe_2019_03_021 crossref_primary_10_1039_C5NR09043A crossref_primary_10_1016_j_synthmet_2021_116742 crossref_primary_10_1039_c3ee23729j crossref_primary_10_1177_0040517514545259 crossref_primary_10_1002_adma_201804930 crossref_primary_10_1007_s10854_015_2721_0 crossref_primary_10_3390_catal9050407 crossref_primary_10_1039_C4TB00598H crossref_primary_10_1016_j_jcis_2024_03_136 crossref_primary_10_1002_adma_201203915 crossref_primary_10_1002_admi_202001340 crossref_primary_10_1021_acs_jpcc_5b10744 crossref_primary_10_1039_c3tb20513d crossref_primary_10_1021_acsami_9b04767 crossref_primary_10_1039_c3ee24193a crossref_primary_10_1016_j_mset_2019_09_006 crossref_primary_10_1021_nl300427w crossref_primary_10_7567_JJAP_51_06FA01 crossref_primary_10_1002_adfm_201801246 crossref_primary_10_1039_c2jm30179b crossref_primary_10_1002_ijch_201400037 crossref_primary_10_1021_acsami_9b00298 crossref_primary_10_1039_C9TA11717B crossref_primary_10_1039_C4EE03297G crossref_primary_10_1002_aenm_201200514 crossref_primary_10_1016_j_synthmet_2012_12_011 crossref_primary_10_1039_C4TA06422D crossref_primary_10_1007_s11664_012_1942_8 crossref_primary_10_1016_j_progpolymsci_2011_11_003 crossref_primary_10_1016_j_jpowsour_2013_03_043 crossref_primary_10_1002_asia_201600293 crossref_primary_10_1016_j_tsf_2012_10_067 crossref_primary_10_3390_app9071511 crossref_primary_10_1016_j_synthmet_2016_04_031 crossref_primary_10_1007_s00339_012_7498_x crossref_primary_10_1016_j_compscitech_2017_03_040 crossref_primary_10_1039_C3TC31674B crossref_primary_10_1007_s11661_014_2343_9 crossref_primary_10_1039_c3ta01594g crossref_primary_10_1007_s11664_012_1931_y crossref_primary_10_1016_j_mee_2015_03_030 crossref_primary_10_1016_j_porgcoat_2020_105919 crossref_primary_10_3390_polym13020312 crossref_primary_10_1021_acsami_0c12076 crossref_primary_10_1021_acs_accounts_0c00474 crossref_primary_10_1016_j_bios_2013_01_001 crossref_primary_10_1016_j_cclet_2024_109804 crossref_primary_10_1016_j_synthmet_2016_07_007 crossref_primary_10_1039_C4TA00700J crossref_primary_10_1063_1_4864749 crossref_primary_10_1016_j_energy_2018_12_124 crossref_primary_10_1016_j_tsf_2014_07_011 crossref_primary_10_1016_j_orgel_2016_09_008 crossref_primary_10_1002_adfm_202300903 crossref_primary_10_1007_s12200_017_0712_x crossref_primary_10_1016_j_carbon_2022_06_007 crossref_primary_10_1142_S1793292015500113 crossref_primary_10_1007_s10854_019_01751_w crossref_primary_10_1021_acs_analchem_5b03255 crossref_primary_10_1039_c3ee41360h crossref_primary_10_1016_j_matlet_2013_11_117 crossref_primary_10_1016_j_synthmet_2013_09_013 crossref_primary_10_1143_JJAP_51_06FA01 crossref_primary_10_1039_D2TA05134F crossref_primary_10_1016_j_compscitech_2016_01_014 crossref_primary_10_1016_j_matlet_2016_12_135 crossref_primary_10_1016_j_synthmet_2017_02_007 crossref_primary_10_1021_ac203143y crossref_primary_10_1002_adma_201301834 crossref_primary_10_1007_s10853_021_06512_x crossref_primary_10_1021_acs_analchem_4c02918 crossref_primary_10_1002_asia_201600906 crossref_primary_10_1016_j_compositesb_2017_10_037 crossref_primary_10_1002_adma_201602251 crossref_primary_10_1016_j_joule_2018_10_012 crossref_primary_10_1039_c2cp42710a crossref_primary_10_1039_c3nr02421k crossref_primary_10_1016_j_synthmet_2012_04_005 crossref_primary_10_1021_am404183v crossref_primary_10_1039_D2NR02432B crossref_primary_10_3390_app9071422 crossref_primary_10_3390_ma10040418 crossref_primary_10_1039_c2ee23006b crossref_primary_10_1088_1361_6528_aa75ae crossref_primary_10_1021_jacs_5b06584 crossref_primary_10_1038_srep18805 crossref_primary_10_1039_C9TC02461A crossref_primary_10_1039_D0TC02152K crossref_primary_10_1016_j_cej_2022_136818 crossref_primary_10_1016_j_progpolymsci_2014_10_001 crossref_primary_10_1002_adma_201305371 crossref_primary_10_1039_C6TC05488A crossref_primary_10_1098_rsta_2013_0008 crossref_primary_10_1002_pat_5193 crossref_primary_10_1063_5_0151143 crossref_primary_10_1038_nmat3032 crossref_primary_10_1016_j_carbon_2016_05_063 crossref_primary_10_1016_j_synthmet_2012_09_011 crossref_primary_10_1039_D3TA08071D crossref_primary_10_1016_j_pmatsci_2021_100840 crossref_primary_10_1021_acsaem_1c00422 crossref_primary_10_1088_0256_307X_28_3_037201 crossref_primary_10_1039_c2ee22124a |
Cites_doi | 10.1016/j.synthmet.2005.07.213 10.1016/S0032-3861(99)00670-9 10.1088/0957-4484/18/42/424021 10.1021/ja068924v 10.1143/JJAP.48.071501 10.1103/PhysRev.133.A1143 10.1021/jp9111712 10.1021/nl0808233 10.1246/cl.2000.392 10.1016/0379-6779(91)91801-G 10.1021/nl049826f 10.1080/15583720802231726 10.1088/0256-307X/25/10/036 10.1021/jp046834b 10.1016/j.mseb.2007.02.003 10.1002/adma.200803292 10.1016/S0379-6779(01)00576-8 10.1016/j.polymer.2006.01.032 10.1021/nn9013577 10.1016/0379-6779(94)90213-5 10.1166/jnn.2007.623 10.1002/pat.1379 10.1063/1.1515901 10.1103/PhysRevB.54.16654 10.1038/nmat1759 10.1016/j.synthmet.2007.08.022 10.1021/ja7112382 10.1016/j.polymer.2005.11.083 10.1063/1.2711527 10.1039/b815603d 10.1103/PhysRevB.72.125202 10.1021/ma047396+ 10.1016/j.synthmet.2005.07.221 10.1016/S0013-4686(98)00405-8 10.1016/j.synthmet.2007.12.018 10.1016/j.aca.2009.03.006 10.1063/1.117273 10.1016/0038-1098(90)90093-Q 10.1007/s11664-009-0821-4 10.1016/j.snb.2007.01.042 10.1021/ma9027678 10.1016/S0379-6779(03)00419-3 10.1016/0379-6779(88)90339-6 10.1023/A:1020612123826 10.1021/ma902467k 10.1088/1674-1056/18/6/066 10.1063/1.367119 10.1016/0038-1098(95)00653-2 10.1016/S0379-6779(98)01133-3 10.1021/nn800394k |
ContentType | Journal Article |
Copyright | Copyright © 2010 American Chemical Society 2015 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2010 American Chemical Society – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW NPM 7X8 |
DOI | 10.1021/nl103003d |
DatabaseName | CrossRef Pascal-Francis PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1530-6992 |
EndPage | 131 |
ExternalDocumentID | 21133353 23757369 10_1021_nl103003d b611510749 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 123 4.4 55A 5VS 7~N AABXI ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 LG6 PK8 RNS ROL TN5 UI2 VF5 VG9 W1F X --- -~X 6P2 AAHBH AAYOK AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK 53G AFFNX IQODW NPM 7X8 |
ID | FETCH-LOGICAL-a410t-34e72cc703fde8774b3db409d70e8d074e8653a63ba4c40fe9a2d060418f9b8d3 |
IEDL.DBID | ACS |
ISSN | 1530-6984 1530-6992 |
IngestDate | Fri Jul 11 10:19:13 EDT 2025 Mon Jul 21 06:02:50 EDT 2025 Mon Jul 21 09:17:08 EDT 2025 Tue Jul 01 00:42:39 EDT 2025 Thu Apr 24 23:09:19 EDT 2025 Thu Aug 27 13:42:43 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Seebeck coefficient electropolymerization nanopatterning lithography conductive polymer Electrical conductivity Thermocouples Template reaction Seebeck effect Thin films Thermoelectric materials Thiophene derivative polymer Electron mobility Electrodeposition Thiophene polymer Nanowires Electrodeposited coatings Arrays Carrier density Nanostructured materials Nanomaterial synthesis |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a410t-34e72cc703fde8774b3db409d70e8d074e8653a63ba4c40fe9a2d060418f9b8d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 21133353 |
PQID | 839710775 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_839710775 pubmed_primary_21133353 pascalfrancis_primary_23757369 crossref_citationtrail_10_1021_nl103003d crossref_primary_10_1021_nl103003d acs_journals_10_1021_nl103003d |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-01-12 |
PublicationDateYYYYMMDD | 2011-01-12 |
PublicationDate_xml | – month: 01 year: 2011 text: 2011-01-12 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States |
PublicationTitle | Nano letters |
PublicationTitleAlternate | Nano Lett |
PublicationYear | 2011 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Kim D. (ref18/cit18) 2010; 4 Hamedi M. (ref35/cit35) 2008; 8 Mateeva N. (ref9/cit9) 1998; 83 Long Y. Z. (ref27/cit27) 2009; 20 Cutler C. (ref45/cit45) 2005; 38 Duvail J. L. (ref20/cit20) 2007; 90 Subramaniam C. (ref11/cit11) 1996; 97 Xiang C. (ref39/cit39) 2009 Duluard S. (ref42/cit42) 2010; 114 Choi W. (ref53/cit53) 1996; 69 Chronakis I. (ref32/cit32) 2006; 47 Park Y. (ref8/cit8) 1991; 45 Wang Y. (ref37/cit37) 2007; 18 Orgzall I. (ref30/cit30) 1996; 54 Lu H.-H. (ref38/cit38) 2009; 640 Nogami Y. (ref7/cit7) 1990; 76 Long Y.-Z. (ref28/cit28) 2009; 18 Pavia D. L. (ref48/cit48) 2001 Liu R. (ref21/cit21) 2008; 130 Pukacki W. (ref6/cit6) 1994; 62 Sun J. (ref14/cit14) 2010; 43 Kaul P. B. (ref5/cit5) 2007; 101 Jiang F. X. (ref16/cit16) 2008; 25 Yang Y. (ref26/cit26) 2007; 139 Duvail J. (ref29/cit29) 2004; 108 Pacios R. (ref44/cit44) 2007; 7 Choi J. (ref52/cit52) 2004; 141 Kim J. (ref15/cit15) 2002; 126 Kvarnstrom C. (ref49/cit49) 1999; 44 Kvarnstrom C. (ref50/cit50) 1999; 101 Seo K. (ref51/cit51) 2000; 41 Maddison D. (ref10/cit10) 1988; 26 Chen Y. (ref34/cit34) 2009; 21 Chang K.-C. (ref17/cit17) 2009; 38 Hiraishi K. (ref12/cit12) 2009; 48 Wakim S. (ref13/cit13) 2008; 48 Park D. H. (ref22/cit22) 2008; 158 Samitsu S. (ref36/cit36) 2005; 152 Menke E. J. (ref41/cit41) 2006; 5 de Albuquerque J. (ref4/cit4) 2003; 74 Pai C. (ref47/cit47) 2006; 47 Gao X. (ref19/cit19) 2005; 72 Rowe D. M. (ref1/cit1) 1995 Xiao R. (ref24/cit24) 2007; 129 Xiang C. (ref40/cit40) 2008; 2 Yan H. (ref2/cit2) 2000 Laforgue A. (ref33/cit33) 2010; 43 Dan Y. (ref23/cit23) 2007; 125 Cutler M. (ref46/cit46) 1964; 133 Liu H. (ref31/cit31) 2004; 4 Yan H. (ref3/cit3) 2002; 69 Lock J. P. (ref43/cit43) 2007; 157 Joo J. (ref25/cit25) 2005; 153 Nano Lett. 2011 May 11;11(5):2192-3 |
References_xml | – volume: 152 start-page: 497 year: 2005 ident: ref36/cit36 publication-title: Synth. Met. doi: 10.1016/j.synthmet.2005.07.213 – volume: 41 start-page: 4491 year: 2000 ident: ref51/cit51 publication-title: Polymer doi: 10.1016/S0032-3861(99)00670-9 – volume: 18 start-page: 424021 year: 2007 ident: ref37/cit37 publication-title: Nanotechnology doi: 10.1088/0957-4484/18/42/424021 – volume: 129 start-page: 4483 year: 2007 ident: ref24/cit24 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja068924v – volume: 48 start-page: 071501 year: 2009 ident: ref12/cit12 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.48.071501 – volume: 133 start-page: A1143 year: 1964 ident: ref46/cit46 publication-title: Phys. Rev. doi: 10.1103/PhysRev.133.A1143 – volume: 114 start-page: 7445 year: 2010 ident: ref42/cit42 publication-title: J. Phys. Chem. B doi: 10.1021/jp9111712 – volume: 8 start-page: 1736 year: 2008 ident: ref35/cit35 publication-title: Nano Lett. doi: 10.1021/nl0808233 – start-page: 392 year: 2000 ident: ref2/cit2 publication-title: Chem. Lett. doi: 10.1246/cl.2000.392 – volume: 45 start-page: 173 year: 1991 ident: ref8/cit8 publication-title: Synth. Met. doi: 10.1016/0379-6779(91)91801-G – volume: 4 start-page: 671 year: 2004 ident: ref31/cit31 publication-title: Nano Lett. doi: 10.1021/nl049826f – volume: 48 start-page: 432 year: 2008 ident: ref13/cit13 publication-title: Polym. Rev. doi: 10.1080/15583720802231726 – volume: 25 start-page: 2202 year: 2008 ident: ref16/cit16 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/25/10/036 – volume: 108 start-page: 18552 year: 2004 ident: ref29/cit29 publication-title: J. Phys. Chem. B doi: 10.1021/jp046834b – volume: 139 start-page: 251 year: 2007 ident: ref26/cit26 publication-title: Mater. Sci. Eng. B: Solid State Mater. Adv. Technol. doi: 10.1016/j.mseb.2007.02.003 – volume: 21 start-page: 2040 year: 2009 ident: ref34/cit34 publication-title: Adv. Mater. doi: 10.1002/adma.200803292 – volume: 126 start-page: 311 year: 2002 ident: ref15/cit15 publication-title: Synth. Met. doi: 10.1016/S0379-6779(01)00576-8 – volume: 47 start-page: 1597 year: 2006 ident: ref32/cit32 publication-title: Polymer doi: 10.1016/j.polymer.2006.01.032 – volume: 4 start-page: 513 year: 2010 ident: ref18/cit18 publication-title: ACS Nano doi: 10.1021/nn9013577 – volume: 62 start-page: 253 year: 1994 ident: ref6/cit6 publication-title: Synth. Met. doi: 10.1016/0379-6779(94)90213-5 – volume: 7 start-page: 2938 year: 2007 ident: ref44/cit44 publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2007.623 – volume: 20 start-page: 541 year: 2009 ident: ref27/cit27 publication-title: Polym. Adv. Technol. doi: 10.1002/pat.1379 – volume: 74 start-page: 306 year: 2003 ident: ref4/cit4 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1515901 – volume: 54 start-page: 16654 year: 1996 ident: ref30/cit30 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.16654 – volume: 5 start-page: 914 year: 2006 ident: ref41/cit41 publication-title: Nat. Mater. doi: 10.1038/nmat1759 – volume: 157 start-page: 894 year: 2007 ident: ref43/cit43 publication-title: Synth. Met. doi: 10.1016/j.synthmet.2007.08.022 – volume: 130 start-page: 2942 year: 2008 ident: ref21/cit21 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja7112382 – volume: 47 start-page: 699 year: 2006 ident: ref47/cit47 publication-title: Polymer doi: 10.1016/j.polymer.2005.11.083 – volume-title: CRC Handbook of Thermoelectrics year: 1995 ident: ref1/cit1 – volume: 90 start-page: 102114 year: 2007 ident: ref20/cit20 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2711527 – start-page: 859 year: 2009 ident: ref39/cit39 publication-title: Chem. Commun. doi: 10.1039/b815603d – volume: 72 start-page: 125202 year: 2005 ident: ref19/cit19 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.72.125202 – volume: 38 start-page: 3068 year: 2005 ident: ref45/cit45 publication-title: Macromolecules doi: 10.1021/ma047396+ – volume: 153 start-page: 313 year: 2005 ident: ref25/cit25 publication-title: Synth. Met. doi: 10.1016/j.synthmet.2005.07.221 – volume: 44 start-page: 2739 year: 1999 ident: ref49/cit49 publication-title: Electrochim. Acta doi: 10.1016/S0013-4686(98)00405-8 – volume: 158 start-page: 90 year: 2008 ident: ref22/cit22 publication-title: Synth. Met. doi: 10.1016/j.synthmet.2007.12.018 – volume: 640 start-page: 68 year: 2009 ident: ref38/cit38 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2009.03.006 – volume: 69 start-page: 3402 year: 1996 ident: ref53/cit53 publication-title: Appl. Phys. Lett. doi: 10.1063/1.117273 – volume: 76 start-page: 583 year: 1990 ident: ref7/cit7 publication-title: Solid State Commun. doi: 10.1016/0038-1098(90)90093-Q – volume: 38 start-page: 1182 year: 2009 ident: ref17/cit17 publication-title: J. Electron. Mater. doi: 10.1007/s11664-009-0821-4 – volume: 125 start-page: 55 year: 2007 ident: ref23/cit23 publication-title: Sens. Actuators, B: Chem. doi: 10.1016/j.snb.2007.01.042 – volume: 43 start-page: 4194 year: 2010 ident: ref33/cit33 publication-title: Macromolecules doi: 10.1021/ma9027678 – volume-title: Introduction to Spectroscopy: A Guide for Students of Organic Chemistry year: 2001 ident: ref48/cit48 – volume: 141 start-page: 293 year: 2004 ident: ref52/cit52 publication-title: Synth. Met. doi: 10.1016/S0379-6779(03)00419-3 – volume: 26 start-page: 99 year: 1988 ident: ref10/cit10 publication-title: Synth. Met. doi: 10.1016/0379-6779(88)90339-6 – volume: 69 start-page: 881 year: 2002 ident: ref3/cit3 publication-title: J. Therm. Anal. Calorim. doi: 10.1023/A:1020612123826 – volume: 43 start-page: 2897 year: 2010 ident: ref14/cit14 publication-title: Macromolecules doi: 10.1021/ma902467k – volume: 18 start-page: 2514 year: 2009 ident: ref28/cit28 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/18/6/066 – volume: 83 start-page: 3111 year: 1998 ident: ref9/cit9 publication-title: J. Appl. Phys. doi: 10.1063/1.367119 – volume: 101 start-page: 083507-1 year: 2007 ident: ref5/cit5 publication-title: J. Appl. Phys. – volume: 97 start-page: 235 year: 1996 ident: ref11/cit11 publication-title: Solid State Commun. doi: 10.1016/0038-1098(95)00653-2 – volume: 101 start-page: 66 year: 1999 ident: ref50/cit50 publication-title: Synth. Met. doi: 10.1016/S0379-6779(98)01133-3 – volume: 2 start-page: 1939 year: 2008 ident: ref40/cit40 publication-title: ACS Nano doi: 10.1021/nn800394k – reference: - Nano Lett. 2011 May 11;11(5):2192-3 |
SSID | ssj0009350 |
Score | 2.406919 |
Snippet | The Seebeck coefficient, S, and the electrical conductivity, σ, of electrodeposited poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires and thin films are... |
SourceID | proquest pubmed pascalfrancis crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 125 |
SubjectTerms | Chemical synthesis methods Condensed matter: electronic structure, electrical, magnetic, and optical properties Cross-disciplinary physics: materials science; rheology Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Electronic transport in multilayers, nanoscale materials and structures Exact sciences and technology Materials science Methods of nanofabrication Nanocrystalline materials Nanoscale materials and structures: fabrication and characterization Physics Quantum wires |
Title | Enhanced Thermoelectric Metrics in Ultra-long Electrodeposited PEDOT Nanowires |
URI | http://dx.doi.org/10.1021/nl103003d https://www.ncbi.nlm.nih.gov/pubmed/21133353 https://www.proquest.com/docview/839710775 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwEB1BuYAQ-1KWygIOXAJJbGc5VqUIIbFIUIlb5NgOVISkatILX8846QJiO2d88CyemYz9HsCJrfADWtYyWHsWczU1Q0JtYa7iMqBSS988Tr659a567PqJP83B8S8TfNc5z1LDhGVTNQ8Lrhf4psNqdx5myLq0omHFyMU-KAzYBD7o81KTemTxJfUsD0SBWkhq-orf68sqz1yuwsXktU59veT1bFTGZ_L9O3jjX1tYg5VxnUnatWOsw5zONmDpE_rgJtx2s5dq_k_QV4Zvec2I05fkxrBsyYL0M9JLy6Gw0jx7Jt2aMEfp6p4XrrrvXtw9Ejyec4N3XGxB77L72LmyxvQKlmCOXVqUad-VEkM-URr1ymKqYmz3lG_rQGFpoQOPU-HRWDDJ7ESHwlUGa8cJkjAOFN2GRpZneheIxEqAxzHXGNEspFQ4tvI9wZnmQaKF3YQW6j8ah0cRVZNv14mmimnC6cQ0kRyDkxuOjPQn0aOp6KBG5PhJqPXFvlNJl_rolV7YBDIxeIQBZaYkItP5qIiwYsSqy_d5E3ZqR5gtdrCjp5zu_bedfVis_z07luMeQKMcjvQhFi9l3Kqc9wOsqeZ3 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH4CdhgIMdgYFEaxJg67pCSxnR9HBEXlR7tJtBK3yLEdhigJatLL_vo9O2kLExOc8xw5fu_5fY7t7wM4chU-QM86hmvPYb6mZpNQO1iruIyo1DI0l5P7g6A3Ype3_LahyTF3YbATJb6ptJv4C3YB7zgfG0Esl6pl-IAgxDcLrZPTmwXBLrVqrJjAuByKIzZjEXre1FQgWb6oQOtPosTByGoVi__DTFtuzj_VukW2o_aUyUNnWqUd-ecfDsf3fckmbDSok5zUYbIFSzr_DGvPuAi_wKCb_7anAQhGzuSxqPVx7iXpG80tWZL7nIzG1UQ44yK_I91aPkdpe-oLW_3qnv0cEpysC8N-XG7D6Lw7PO05jdiCI5jnVg5lOvSlxAkgUzpCUJhSleLiT4WujhQCDR0FnIqApoJJ5mY6Fr4yzDtelMVppOhXWMmLXO8CkYgLeJpyjfnNYkqF56owEJxpHmVauC1o47gkTbKUid0H971kPjAt-DHzUCIbqnKjmDF-zfT73PSp5ud4zaj9ws1zS5-GGKNB3AIy83uC6WX2TESui2mZIH5EDBaGvAU7dTwsGnu4vqec7r31OYfwsTfsXyfXF4OrfVit_0p7jud_g5VqMtUHCGuqtG3j-S8Da-7Y |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB6xIKFFCFiWR3l0LbSHvaQksZ3HsSqteBakpRK3yLEdQJSkatILv55xkpaHQHDOOHI8M55vMvY3AH9thQ9Qs5bh2rOYq6kpEmoLYxWXAZVa-uZy8kXfOx6w0xt-UyeK5i4MTiLHN-VlEd949UglNcOAc5gOTVMsm6ofsGDKdSbZanf-v5Ds0rIjKzoxpkRhwKZMQq-Hmigk8zdRaHkkclyQpOpk8TnULENObxUuZ5MtT5o8tCZF3JJP73gcv_81a7BSo0_SrszlF8zpdB2WXnES_oZ-N70rTwUQtKDxY1b1ybmX5ML03pI5uU_JYFiMhTXM0lvSrdroKF2e_sJRV92jy2uCm3ZmWJDzDRj0utedY6tuumAJ5tiFRZn2XSlxI0iUDhAcxlTFmAQq39aBQsChA49T4dFYMMnsRIfCVYaBxwmSMA4U3YT5NEv1NhCJ-IDHMdfo5yykVDi28j3BmeZBooXdgCauTVQ7TR6V9XDXiWYL04B_Uy1FsqYsN50zhh-JHsxERxVPx0dCzTeqnkm61Edb9cIGkKnuI3QzUzsRqc4meYQ4ErGY7_MGbFU28TLYwTyfcrrz1ef8gcWro150ftI_24Wf1c9px3LcPZgvxhO9j-imiJulST8D56PxWw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+thermoelectric+metrics+in+ultra-long+electrodeposited+PEDOT+nanowires&rft.jtitle=Nano+letters&rft.au=Taggart%2C+David+K&rft.au=Yang%2C+Yongan&rft.au=Kung%2C+Sheng-Chin&rft.au=McIntire%2C+Theresa+M&rft.date=2011-01-12&rft.issn=1530-6992&rft.eissn=1530-6992&rft.volume=11&rft.issue=1&rft.spage=125&rft_id=info:doi/10.1021%2Fnl103003d&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |