Enhanced Thermoelectric Metrics in Ultra-long Electrodeposited PEDOT Nanowires

The Seebeck coefficient, S, and the electrical conductivity, σ, of electrodeposited poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires and thin films are reported. PEDOT nanowires were prepared by electropolymerizing 3,4-ethylenedioxythiophene (EDOT) in aqueous LiClO4 within a template prepared usin...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 11; no. 1; pp. 125 - 131
Main Authors Taggart, David K, Yang, Yongan, Kung, Sheng-Chin, McIntire, Theresa M, Penner, Reginald M
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 12.01.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Seebeck coefficient, S, and the electrical conductivity, σ, of electrodeposited poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires and thin films are reported. PEDOT nanowires were prepared by electropolymerizing 3,4-ethylenedioxythiophene (EDOT) in aqueous LiClO4 within a template prepared using the lithographically patterned nanowire electrodeposition (LPNE) process. These nanowires were 40−90 nm in thickness, 150−580 nm in width, and 200 μm in length. σ and S were measured from 190 K to 310 K by fabricating heaters and thermocouples on top of arrays of 750 PEDOT nanowires. Such PEDOT nanowire arrays consistently produced S values that were higher than those for PEDOT films: up to −122 μV/K (310 K) for nanowires and up to −57 μV/K (310 K) for films. The sample-to-sample variation in S for 14 samples of PEDOT nanowires and films, across a wide range of critical dimensions, is fully explained by variations in the carrier concentrations in accordance with the Mott equation. In spite of their higher |S| values, PEDOT nanowires also had higher σ than films, on average, because electron mobilities were greater in nanowires by a factor of 3.
AbstractList The Seebeck coefficient, S, and the electrical conductivity, σ, of electrodeposited poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires and thin films are reported. PEDOT nanowires were prepared by electropolymerizing 3,4-ethylenedioxythiophene (EDOT) in aqueous LiClO(4) within a template prepared using the lithographically patterned nanowire electrodeposition (LPNE) process. These nanowires were 40-90 nm in thickness, 150-580 nm in width, and 200 μm in length. σ and S were measured from 190 K to 310 K by fabricating heaters and thermocouples on top of arrays of 750 PEDOT nanowires. Such PEDOT nanowire arrays consistently produced S values that were higher than those for PEDOT films: up to -122 μV/K (310 K) for nanowires and up to -57 μV/K (310 K) for films. The sample-to-sample variation in S for 14 samples of PEDOT nanowires and films, across a wide range of critical dimensions, is fully explained by variations in the carrier concentrations in accordance with the Mott equation. In spite of their higher |S| values, PEDOT nanowires also had higher σ than films, on average, because electron mobilities were greater in nanowires by a factor of 3.The Seebeck coefficient, S, and the electrical conductivity, σ, of electrodeposited poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires and thin films are reported. PEDOT nanowires were prepared by electropolymerizing 3,4-ethylenedioxythiophene (EDOT) in aqueous LiClO(4) within a template prepared using the lithographically patterned nanowire electrodeposition (LPNE) process. These nanowires were 40-90 nm in thickness, 150-580 nm in width, and 200 μm in length. σ and S were measured from 190 K to 310 K by fabricating heaters and thermocouples on top of arrays of 750 PEDOT nanowires. Such PEDOT nanowire arrays consistently produced S values that were higher than those for PEDOT films: up to -122 μV/K (310 K) for nanowires and up to -57 μV/K (310 K) for films. The sample-to-sample variation in S for 14 samples of PEDOT nanowires and films, across a wide range of critical dimensions, is fully explained by variations in the carrier concentrations in accordance with the Mott equation. In spite of their higher |S| values, PEDOT nanowires also had higher σ than films, on average, because electron mobilities were greater in nanowires by a factor of 3.
The Seebeck coefficient, S, and the electrical conductivity, σ, of electrodeposited poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires and thin films are reported. PEDOT nanowires were prepared by electropolymerizing 3,4-ethylenedioxythiophene (EDOT) in aqueous LiClO4 within a template prepared using the lithographically patterned nanowire electrodeposition (LPNE) process. These nanowires were 40−90 nm in thickness, 150−580 nm in width, and 200 μm in length. σ and S were measured from 190 K to 310 K by fabricating heaters and thermocouples on top of arrays of 750 PEDOT nanowires. Such PEDOT nanowire arrays consistently produced S values that were higher than those for PEDOT films: up to −122 μV/K (310 K) for nanowires and up to −57 μV/K (310 K) for films. The sample-to-sample variation in S for 14 samples of PEDOT nanowires and films, across a wide range of critical dimensions, is fully explained by variations in the carrier concentrations in accordance with the Mott equation. In spite of their higher |S| values, PEDOT nanowires also had higher σ than films, on average, because electron mobilities were greater in nanowires by a factor of 3.
The Seebeck coefficient, S, and the electrical conductivity, σ, of electrodeposited poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires and thin films are reported. PEDOT nanowires were prepared by electropolymerizing 3,4-ethylenedioxythiophene (EDOT) in aqueous LiClO(4) within a template prepared using the lithographically patterned nanowire electrodeposition (LPNE) process. These nanowires were 40-90 nm in thickness, 150-580 nm in width, and 200 μm in length. σ and S were measured from 190 K to 310 K by fabricating heaters and thermocouples on top of arrays of 750 PEDOT nanowires. Such PEDOT nanowire arrays consistently produced S values that were higher than those for PEDOT films: up to -122 μV/K (310 K) for nanowires and up to -57 μV/K (310 K) for films. The sample-to-sample variation in S for 14 samples of PEDOT nanowires and films, across a wide range of critical dimensions, is fully explained by variations in the carrier concentrations in accordance with the Mott equation. In spite of their higher |S| values, PEDOT nanowires also had higher σ than films, on average, because electron mobilities were greater in nanowires by a factor of 3.
Author McIntire, Theresa M
Kung, Sheng-Chin
Yang, Yongan
Taggart, David K
Penner, Reginald M
Author_xml – sequence: 1
  givenname: David K
  surname: Taggart
  fullname: Taggart, David K
– sequence: 2
  givenname: Yongan
  surname: Yang
  fullname: Yang, Yongan
– sequence: 3
  givenname: Sheng-Chin
  surname: Kung
  fullname: Kung, Sheng-Chin
– sequence: 4
  givenname: Theresa M
  surname: McIntire
  fullname: McIntire, Theresa M
– sequence: 5
  givenname: Reginald M
  surname: Penner
  fullname: Penner, Reginald M
  email: rmpenner@uci.edu.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23757369$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21133353$$D View this record in MEDLINE/PubMed
BookMark eNptkU9P3DAQxS0EKrD0wBeocqkqDoFxxomTY0WXgsS_w3K2HHtSjLz21s4K9ds3dBcqIU4z0vze0-i9Q7YbYiDGjjmccqj4WfAcEADtDjvgNULZdF21-7a3Yp8d5vwEAB3W8IntV5wjYo0H7HYeHnUwZIvFI6VlJE9mTM4UN_QycuFC8eDHpEsfw69i_u8cLa1iduOkup__uFsUtzrEZ5coH7G9QftMn7dzxh4u5ovzy_L67ufV-ffrUgsOY4mCZGWMBBwstVKKHm0voLMSqLUgBbVNjbrBXgsjYKBOVxYaELwdur61OGPfNr6rFH-vKY9q6bIh73WguM6qxU5ykLKeyC9bct0vyapVckud_qjXCCbg6xbQ2Wg_pCkOl_9zKGuJTTdxZxvOpJhzokEZN-rRxTCl47zioF7KUG9lTIqTd4pX04_Y7RfaZPUU1ylM8X3A_QVJKJPy
CitedBy_id crossref_primary_10_1002_adfm_201401282
crossref_primary_10_1351_PAC_CON_12_08_17
crossref_primary_10_1016_j_synthmet_2011_09_044
crossref_primary_10_1039_C8TC06616G
crossref_primary_10_1016_j_matlet_2018_07_042
crossref_primary_10_35848_1347_4065_ab8e06
crossref_primary_10_1002_admi_201701168
crossref_primary_10_1002_smll_201303642
crossref_primary_10_1016_j_physleta_2011_05_063
crossref_primary_10_1039_D0TC02655G
crossref_primary_10_1016_j_orgel_2016_01_007
crossref_primary_10_1007_s10853_017_0806_2
crossref_primary_10_1021_acsanm_8b01836
crossref_primary_10_1039_C5TA07381B
crossref_primary_10_1021_acs_macromol_0c00873
crossref_primary_10_1021_acsaem_9b02024
crossref_primary_10_1021_acsnano_4c10801
crossref_primary_10_1002_aelm_201800769
crossref_primary_10_1021_la302473j
crossref_primary_10_1039_C6RA04455G
crossref_primary_10_3390_nano12244430
crossref_primary_10_3390_nano13132011
crossref_primary_10_1039_D0TC05757F
crossref_primary_10_1016_j_synthmet_2020_116293
crossref_primary_10_1039_C8NR00134K
crossref_primary_10_2139_ssrn_4092454
crossref_primary_10_1016_j_trac_2019_05_031
crossref_primary_10_1021_am5002772
crossref_primary_10_1016_j_electacta_2012_07_113
crossref_primary_10_1016_j_mtcomm_2022_103856
crossref_primary_10_1039_D0EE03520C
crossref_primary_10_1016_j_physe_2019_03_021
crossref_primary_10_1039_C5NR09043A
crossref_primary_10_1016_j_synthmet_2021_116742
crossref_primary_10_1039_c3ee23729j
crossref_primary_10_1177_0040517514545259
crossref_primary_10_1002_adma_201804930
crossref_primary_10_1007_s10854_015_2721_0
crossref_primary_10_3390_catal9050407
crossref_primary_10_1039_C4TB00598H
crossref_primary_10_1016_j_jcis_2024_03_136
crossref_primary_10_1002_adma_201203915
crossref_primary_10_1002_admi_202001340
crossref_primary_10_1021_acs_jpcc_5b10744
crossref_primary_10_1039_c3tb20513d
crossref_primary_10_1021_acsami_9b04767
crossref_primary_10_1039_c3ee24193a
crossref_primary_10_1016_j_mset_2019_09_006
crossref_primary_10_1021_nl300427w
crossref_primary_10_7567_JJAP_51_06FA01
crossref_primary_10_1002_adfm_201801246
crossref_primary_10_1039_c2jm30179b
crossref_primary_10_1002_ijch_201400037
crossref_primary_10_1021_acsami_9b00298
crossref_primary_10_1039_C9TA11717B
crossref_primary_10_1039_C4EE03297G
crossref_primary_10_1002_aenm_201200514
crossref_primary_10_1016_j_synthmet_2012_12_011
crossref_primary_10_1039_C4TA06422D
crossref_primary_10_1007_s11664_012_1942_8
crossref_primary_10_1016_j_progpolymsci_2011_11_003
crossref_primary_10_1016_j_jpowsour_2013_03_043
crossref_primary_10_1002_asia_201600293
crossref_primary_10_1016_j_tsf_2012_10_067
crossref_primary_10_3390_app9071511
crossref_primary_10_1016_j_synthmet_2016_04_031
crossref_primary_10_1007_s00339_012_7498_x
crossref_primary_10_1016_j_compscitech_2017_03_040
crossref_primary_10_1039_C3TC31674B
crossref_primary_10_1007_s11661_014_2343_9
crossref_primary_10_1039_c3ta01594g
crossref_primary_10_1007_s11664_012_1931_y
crossref_primary_10_1016_j_mee_2015_03_030
crossref_primary_10_1016_j_porgcoat_2020_105919
crossref_primary_10_3390_polym13020312
crossref_primary_10_1021_acsami_0c12076
crossref_primary_10_1021_acs_accounts_0c00474
crossref_primary_10_1016_j_bios_2013_01_001
crossref_primary_10_1016_j_cclet_2024_109804
crossref_primary_10_1016_j_synthmet_2016_07_007
crossref_primary_10_1039_C4TA00700J
crossref_primary_10_1063_1_4864749
crossref_primary_10_1016_j_energy_2018_12_124
crossref_primary_10_1016_j_tsf_2014_07_011
crossref_primary_10_1016_j_orgel_2016_09_008
crossref_primary_10_1002_adfm_202300903
crossref_primary_10_1007_s12200_017_0712_x
crossref_primary_10_1016_j_carbon_2022_06_007
crossref_primary_10_1142_S1793292015500113
crossref_primary_10_1007_s10854_019_01751_w
crossref_primary_10_1021_acs_analchem_5b03255
crossref_primary_10_1039_c3ee41360h
crossref_primary_10_1016_j_matlet_2013_11_117
crossref_primary_10_1016_j_synthmet_2013_09_013
crossref_primary_10_1143_JJAP_51_06FA01
crossref_primary_10_1039_D2TA05134F
crossref_primary_10_1016_j_compscitech_2016_01_014
crossref_primary_10_1016_j_matlet_2016_12_135
crossref_primary_10_1016_j_synthmet_2017_02_007
crossref_primary_10_1021_ac203143y
crossref_primary_10_1002_adma_201301834
crossref_primary_10_1007_s10853_021_06512_x
crossref_primary_10_1021_acs_analchem_4c02918
crossref_primary_10_1002_asia_201600906
crossref_primary_10_1016_j_compositesb_2017_10_037
crossref_primary_10_1002_adma_201602251
crossref_primary_10_1016_j_joule_2018_10_012
crossref_primary_10_1039_c2cp42710a
crossref_primary_10_1039_c3nr02421k
crossref_primary_10_1016_j_synthmet_2012_04_005
crossref_primary_10_1021_am404183v
crossref_primary_10_1039_D2NR02432B
crossref_primary_10_3390_app9071422
crossref_primary_10_3390_ma10040418
crossref_primary_10_1039_c2ee23006b
crossref_primary_10_1088_1361_6528_aa75ae
crossref_primary_10_1021_jacs_5b06584
crossref_primary_10_1038_srep18805
crossref_primary_10_1039_C9TC02461A
crossref_primary_10_1039_D0TC02152K
crossref_primary_10_1016_j_cej_2022_136818
crossref_primary_10_1016_j_progpolymsci_2014_10_001
crossref_primary_10_1002_adma_201305371
crossref_primary_10_1039_C6TC05488A
crossref_primary_10_1098_rsta_2013_0008
crossref_primary_10_1002_pat_5193
crossref_primary_10_1063_5_0151143
crossref_primary_10_1038_nmat3032
crossref_primary_10_1016_j_carbon_2016_05_063
crossref_primary_10_1016_j_synthmet_2012_09_011
crossref_primary_10_1039_D3TA08071D
crossref_primary_10_1016_j_pmatsci_2021_100840
crossref_primary_10_1021_acsaem_1c00422
crossref_primary_10_1088_0256_307X_28_3_037201
crossref_primary_10_1039_c2ee22124a
Cites_doi 10.1016/j.synthmet.2005.07.213
10.1016/S0032-3861(99)00670-9
10.1088/0957-4484/18/42/424021
10.1021/ja068924v
10.1143/JJAP.48.071501
10.1103/PhysRev.133.A1143
10.1021/jp9111712
10.1021/nl0808233
10.1246/cl.2000.392
10.1016/0379-6779(91)91801-G
10.1021/nl049826f
10.1080/15583720802231726
10.1088/0256-307X/25/10/036
10.1021/jp046834b
10.1016/j.mseb.2007.02.003
10.1002/adma.200803292
10.1016/S0379-6779(01)00576-8
10.1016/j.polymer.2006.01.032
10.1021/nn9013577
10.1016/0379-6779(94)90213-5
10.1166/jnn.2007.623
10.1002/pat.1379
10.1063/1.1515901
10.1103/PhysRevB.54.16654
10.1038/nmat1759
10.1016/j.synthmet.2007.08.022
10.1021/ja7112382
10.1016/j.polymer.2005.11.083
10.1063/1.2711527
10.1039/b815603d
10.1103/PhysRevB.72.125202
10.1021/ma047396+
10.1016/j.synthmet.2005.07.221
10.1016/S0013-4686(98)00405-8
10.1016/j.synthmet.2007.12.018
10.1016/j.aca.2009.03.006
10.1063/1.117273
10.1016/0038-1098(90)90093-Q
10.1007/s11664-009-0821-4
10.1016/j.snb.2007.01.042
10.1021/ma9027678
10.1016/S0379-6779(03)00419-3
10.1016/0379-6779(88)90339-6
10.1023/A:1020612123826
10.1021/ma902467k
10.1088/1674-1056/18/6/066
10.1063/1.367119
10.1016/0038-1098(95)00653-2
10.1016/S0379-6779(98)01133-3
10.1021/nn800394k
ContentType Journal Article
Copyright Copyright © 2010 American Chemical Society
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2010 American Chemical Society
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
NPM
7X8
DOI 10.1021/nl103003d
DatabaseName CrossRef
Pascal-Francis
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1530-6992
EndPage 131
ExternalDocumentID 21133353
23757369
10_1021_nl103003d
b611510749
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
123
4.4
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
6P2
AAHBH
AAYOK
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
53G
AFFNX
IQODW
NPM
7X8
ID FETCH-LOGICAL-a410t-34e72cc703fde8774b3db409d70e8d074e8653a63ba4c40fe9a2d060418f9b8d3
IEDL.DBID ACS
ISSN 1530-6984
1530-6992
IngestDate Fri Jul 11 10:19:13 EDT 2025
Mon Jul 21 06:02:50 EDT 2025
Mon Jul 21 09:17:08 EDT 2025
Tue Jul 01 00:42:39 EDT 2025
Thu Apr 24 23:09:19 EDT 2025
Thu Aug 27 13:42:43 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Seebeck coefficient
electropolymerization
nanopatterning
lithography
conductive polymer
Electrical conductivity
Thermocouples
Template reaction
Seebeck effect
Thin films
Thermoelectric materials
Thiophene derivative polymer
Electron mobility
Electrodeposition
Thiophene polymer
Nanowires
Electrodeposited coatings
Arrays
Carrier density
Nanostructured materials
Nanomaterial synthesis
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a410t-34e72cc703fde8774b3db409d70e8d074e8653a63ba4c40fe9a2d060418f9b8d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21133353
PQID 839710775
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_839710775
pubmed_primary_21133353
pascalfrancis_primary_23757369
crossref_citationtrail_10_1021_nl103003d
crossref_primary_10_1021_nl103003d
acs_journals_10_1021_nl103003d
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-01-12
PublicationDateYYYYMMDD 2011-01-12
PublicationDate_xml – month: 01
  year: 2011
  text: 2011-01-12
  day: 12
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2011
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Kim D. (ref18/cit18) 2010; 4
Hamedi M. (ref35/cit35) 2008; 8
Mateeva N. (ref9/cit9) 1998; 83
Long Y. Z. (ref27/cit27) 2009; 20
Cutler C. (ref45/cit45) 2005; 38
Duvail J. L. (ref20/cit20) 2007; 90
Subramaniam C. (ref11/cit11) 1996; 97
Xiang C. (ref39/cit39) 2009
Duluard S. (ref42/cit42) 2010; 114
Choi W. (ref53/cit53) 1996; 69
Chronakis I. (ref32/cit32) 2006; 47
Park Y. (ref8/cit8) 1991; 45
Wang Y. (ref37/cit37) 2007; 18
Orgzall I. (ref30/cit30) 1996; 54
Lu H.-H. (ref38/cit38) 2009; 640
Nogami Y. (ref7/cit7) 1990; 76
Long Y.-Z. (ref28/cit28) 2009; 18
Pavia D. L. (ref48/cit48) 2001
Liu R. (ref21/cit21) 2008; 130
Pukacki W. (ref6/cit6) 1994; 62
Sun J. (ref14/cit14) 2010; 43
Kaul P. B. (ref5/cit5) 2007; 101
Jiang F. X. (ref16/cit16) 2008; 25
Yang Y. (ref26/cit26) 2007; 139
Duvail J. (ref29/cit29) 2004; 108
Pacios R. (ref44/cit44) 2007; 7
Choi J. (ref52/cit52) 2004; 141
Kim J. (ref15/cit15) 2002; 126
Kvarnstrom C. (ref49/cit49) 1999; 44
Kvarnstrom C. (ref50/cit50) 1999; 101
Seo K. (ref51/cit51) 2000; 41
Maddison D. (ref10/cit10) 1988; 26
Chen Y. (ref34/cit34) 2009; 21
Chang K.-C. (ref17/cit17) 2009; 38
Hiraishi K. (ref12/cit12) 2009; 48
Wakim S. (ref13/cit13) 2008; 48
Park D. H. (ref22/cit22) 2008; 158
Samitsu S. (ref36/cit36) 2005; 152
Menke E. J. (ref41/cit41) 2006; 5
de Albuquerque J. (ref4/cit4) 2003; 74
Pai C. (ref47/cit47) 2006; 47
Gao X. (ref19/cit19) 2005; 72
Rowe D. M. (ref1/cit1) 1995
Xiao R. (ref24/cit24) 2007; 129
Xiang C. (ref40/cit40) 2008; 2
Yan H. (ref2/cit2) 2000
Laforgue A. (ref33/cit33) 2010; 43
Dan Y. (ref23/cit23) 2007; 125
Cutler M. (ref46/cit46) 1964; 133
Liu H. (ref31/cit31) 2004; 4
Yan H. (ref3/cit3) 2002; 69
Lock J. P. (ref43/cit43) 2007; 157
Joo J. (ref25/cit25) 2005; 153
Nano Lett. 2011 May 11;11(5):2192-3
References_xml – volume: 152
  start-page: 497
  year: 2005
  ident: ref36/cit36
  publication-title: Synth. Met.
  doi: 10.1016/j.synthmet.2005.07.213
– volume: 41
  start-page: 4491
  year: 2000
  ident: ref51/cit51
  publication-title: Polymer
  doi: 10.1016/S0032-3861(99)00670-9
– volume: 18
  start-page: 424021
  year: 2007
  ident: ref37/cit37
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/18/42/424021
– volume: 129
  start-page: 4483
  year: 2007
  ident: ref24/cit24
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja068924v
– volume: 48
  start-page: 071501
  year: 2009
  ident: ref12/cit12
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.48.071501
– volume: 133
  start-page: A1143
  year: 1964
  ident: ref46/cit46
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.133.A1143
– volume: 114
  start-page: 7445
  year: 2010
  ident: ref42/cit42
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp9111712
– volume: 8
  start-page: 1736
  year: 2008
  ident: ref35/cit35
  publication-title: Nano Lett.
  doi: 10.1021/nl0808233
– start-page: 392
  year: 2000
  ident: ref2/cit2
  publication-title: Chem. Lett.
  doi: 10.1246/cl.2000.392
– volume: 45
  start-page: 173
  year: 1991
  ident: ref8/cit8
  publication-title: Synth. Met.
  doi: 10.1016/0379-6779(91)91801-G
– volume: 4
  start-page: 671
  year: 2004
  ident: ref31/cit31
  publication-title: Nano Lett.
  doi: 10.1021/nl049826f
– volume: 48
  start-page: 432
  year: 2008
  ident: ref13/cit13
  publication-title: Polym. Rev.
  doi: 10.1080/15583720802231726
– volume: 25
  start-page: 2202
  year: 2008
  ident: ref16/cit16
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/25/10/036
– volume: 108
  start-page: 18552
  year: 2004
  ident: ref29/cit29
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp046834b
– volume: 139
  start-page: 251
  year: 2007
  ident: ref26/cit26
  publication-title: Mater. Sci. Eng. B: Solid State Mater. Adv. Technol.
  doi: 10.1016/j.mseb.2007.02.003
– volume: 21
  start-page: 2040
  year: 2009
  ident: ref34/cit34
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200803292
– volume: 126
  start-page: 311
  year: 2002
  ident: ref15/cit15
  publication-title: Synth. Met.
  doi: 10.1016/S0379-6779(01)00576-8
– volume: 47
  start-page: 1597
  year: 2006
  ident: ref32/cit32
  publication-title: Polymer
  doi: 10.1016/j.polymer.2006.01.032
– volume: 4
  start-page: 513
  year: 2010
  ident: ref18/cit18
  publication-title: ACS Nano
  doi: 10.1021/nn9013577
– volume: 62
  start-page: 253
  year: 1994
  ident: ref6/cit6
  publication-title: Synth. Met.
  doi: 10.1016/0379-6779(94)90213-5
– volume: 7
  start-page: 2938
  year: 2007
  ident: ref44/cit44
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2007.623
– volume: 20
  start-page: 541
  year: 2009
  ident: ref27/cit27
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.1379
– volume: 74
  start-page: 306
  year: 2003
  ident: ref4/cit4
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1515901
– volume: 54
  start-page: 16654
  year: 1996
  ident: ref30/cit30
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.16654
– volume: 5
  start-page: 914
  year: 2006
  ident: ref41/cit41
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1759
– volume: 157
  start-page: 894
  year: 2007
  ident: ref43/cit43
  publication-title: Synth. Met.
  doi: 10.1016/j.synthmet.2007.08.022
– volume: 130
  start-page: 2942
  year: 2008
  ident: ref21/cit21
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja7112382
– volume: 47
  start-page: 699
  year: 2006
  ident: ref47/cit47
  publication-title: Polymer
  doi: 10.1016/j.polymer.2005.11.083
– volume-title: CRC Handbook of Thermoelectrics
  year: 1995
  ident: ref1/cit1
– volume: 90
  start-page: 102114
  year: 2007
  ident: ref20/cit20
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2711527
– start-page: 859
  year: 2009
  ident: ref39/cit39
  publication-title: Chem. Commun.
  doi: 10.1039/b815603d
– volume: 72
  start-page: 125202
  year: 2005
  ident: ref19/cit19
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.72.125202
– volume: 38
  start-page: 3068
  year: 2005
  ident: ref45/cit45
  publication-title: Macromolecules
  doi: 10.1021/ma047396+
– volume: 153
  start-page: 313
  year: 2005
  ident: ref25/cit25
  publication-title: Synth. Met.
  doi: 10.1016/j.synthmet.2005.07.221
– volume: 44
  start-page: 2739
  year: 1999
  ident: ref49/cit49
  publication-title: Electrochim. Acta
  doi: 10.1016/S0013-4686(98)00405-8
– volume: 158
  start-page: 90
  year: 2008
  ident: ref22/cit22
  publication-title: Synth. Met.
  doi: 10.1016/j.synthmet.2007.12.018
– volume: 640
  start-page: 68
  year: 2009
  ident: ref38/cit38
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2009.03.006
– volume: 69
  start-page: 3402
  year: 1996
  ident: ref53/cit53
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.117273
– volume: 76
  start-page: 583
  year: 1990
  ident: ref7/cit7
  publication-title: Solid State Commun.
  doi: 10.1016/0038-1098(90)90093-Q
– volume: 38
  start-page: 1182
  year: 2009
  ident: ref17/cit17
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-009-0821-4
– volume: 125
  start-page: 55
  year: 2007
  ident: ref23/cit23
  publication-title: Sens. Actuators, B: Chem.
  doi: 10.1016/j.snb.2007.01.042
– volume: 43
  start-page: 4194
  year: 2010
  ident: ref33/cit33
  publication-title: Macromolecules
  doi: 10.1021/ma9027678
– volume-title: Introduction to Spectroscopy: A Guide for Students of Organic Chemistry
  year: 2001
  ident: ref48/cit48
– volume: 141
  start-page: 293
  year: 2004
  ident: ref52/cit52
  publication-title: Synth. Met.
  doi: 10.1016/S0379-6779(03)00419-3
– volume: 26
  start-page: 99
  year: 1988
  ident: ref10/cit10
  publication-title: Synth. Met.
  doi: 10.1016/0379-6779(88)90339-6
– volume: 69
  start-page: 881
  year: 2002
  ident: ref3/cit3
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1023/A:1020612123826
– volume: 43
  start-page: 2897
  year: 2010
  ident: ref14/cit14
  publication-title: Macromolecules
  doi: 10.1021/ma902467k
– volume: 18
  start-page: 2514
  year: 2009
  ident: ref28/cit28
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/18/6/066
– volume: 83
  start-page: 3111
  year: 1998
  ident: ref9/cit9
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.367119
– volume: 101
  start-page: 083507-1
  year: 2007
  ident: ref5/cit5
  publication-title: J. Appl. Phys.
– volume: 97
  start-page: 235
  year: 1996
  ident: ref11/cit11
  publication-title: Solid State Commun.
  doi: 10.1016/0038-1098(95)00653-2
– volume: 101
  start-page: 66
  year: 1999
  ident: ref50/cit50
  publication-title: Synth. Met.
  doi: 10.1016/S0379-6779(98)01133-3
– volume: 2
  start-page: 1939
  year: 2008
  ident: ref40/cit40
  publication-title: ACS Nano
  doi: 10.1021/nn800394k
– reference: - Nano Lett. 2011 May 11;11(5):2192-3
SSID ssj0009350
Score 2.406919
Snippet The Seebeck coefficient, S, and the electrical conductivity, σ, of electrodeposited poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires and thin films are...
SourceID proquest
pubmed
pascalfrancis
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 125
SubjectTerms Chemical synthesis methods
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Cross-disciplinary physics: materials science; rheology
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Electronic transport in multilayers, nanoscale materials and structures
Exact sciences and technology
Materials science
Methods of nanofabrication
Nanocrystalline materials
Nanoscale materials and structures: fabrication and characterization
Physics
Quantum wires
Title Enhanced Thermoelectric Metrics in Ultra-long Electrodeposited PEDOT Nanowires
URI http://dx.doi.org/10.1021/nl103003d
https://www.ncbi.nlm.nih.gov/pubmed/21133353
https://www.proquest.com/docview/839710775
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwEB1BuYAQ-1KWygIOXAJJbGc5VqUIIbFIUIlb5NgOVISkatILX8846QJiO2d88CyemYz9HsCJrfADWtYyWHsWczU1Q0JtYa7iMqBSS988Tr659a567PqJP83B8S8TfNc5z1LDhGVTNQ8Lrhf4psNqdx5myLq0omHFyMU-KAzYBD7o81KTemTxJfUsD0SBWkhq-orf68sqz1yuwsXktU59veT1bFTGZ_L9O3jjX1tYg5VxnUnatWOsw5zONmDpE_rgJtx2s5dq_k_QV4Zvec2I05fkxrBsyYL0M9JLy6Gw0jx7Jt2aMEfp6p4XrrrvXtw9Ejyec4N3XGxB77L72LmyxvQKlmCOXVqUad-VEkM-URr1ymKqYmz3lG_rQGFpoQOPU-HRWDDJ7ESHwlUGa8cJkjAOFN2GRpZneheIxEqAxzHXGNEspFQ4tvI9wZnmQaKF3YQW6j8ah0cRVZNv14mmimnC6cQ0kRyDkxuOjPQn0aOp6KBG5PhJqPXFvlNJl_rolV7YBDIxeIQBZaYkItP5qIiwYsSqy_d5E3ZqR5gtdrCjp5zu_bedfVis_z07luMeQKMcjvQhFi9l3Kqc9wOsqeZ3
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH4CdhgIMdgYFEaxJg67pCSxnR9HBEXlR7tJtBK3yLEdhigJatLL_vo9O2kLExOc8xw5fu_5fY7t7wM4chU-QM86hmvPYb6mZpNQO1iruIyo1DI0l5P7g6A3Ype3_LahyTF3YbATJb6ptJv4C3YB7zgfG0Esl6pl-IAgxDcLrZPTmwXBLrVqrJjAuByKIzZjEXre1FQgWb6oQOtPosTByGoVi__DTFtuzj_VukW2o_aUyUNnWqUd-ecfDsf3fckmbDSok5zUYbIFSzr_DGvPuAi_wKCb_7anAQhGzuSxqPVx7iXpG80tWZL7nIzG1UQ44yK_I91aPkdpe-oLW_3qnv0cEpysC8N-XG7D6Lw7PO05jdiCI5jnVg5lOvSlxAkgUzpCUJhSleLiT4WujhQCDR0FnIqApoJJ5mY6Fr4yzDtelMVppOhXWMmLXO8CkYgLeJpyjfnNYkqF56owEJxpHmVauC1o47gkTbKUid0H971kPjAt-DHzUCIbqnKjmDF-zfT73PSp5ud4zaj9ws1zS5-GGKNB3AIy83uC6WX2TESui2mZIH5EDBaGvAU7dTwsGnu4vqec7r31OYfwsTfsXyfXF4OrfVit_0p7jud_g5VqMtUHCGuqtG3j-S8Da-7Y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB6xIKFFCFiWR3l0LbSHvaQksZ3HsSqteBakpRK3yLEdQJSkatILv55xkpaHQHDOOHI8M55vMvY3AH9thQ9Qs5bh2rOYq6kpEmoLYxWXAZVa-uZy8kXfOx6w0xt-UyeK5i4MTiLHN-VlEd949UglNcOAc5gOTVMsm6ofsGDKdSbZanf-v5Ds0rIjKzoxpkRhwKZMQq-Hmigk8zdRaHkkclyQpOpk8TnULENObxUuZ5MtT5o8tCZF3JJP73gcv_81a7BSo0_SrszlF8zpdB2WXnES_oZ-N70rTwUQtKDxY1b1ybmX5ML03pI5uU_JYFiMhTXM0lvSrdroKF2e_sJRV92jy2uCm3ZmWJDzDRj0utedY6tuumAJ5tiFRZn2XSlxI0iUDhAcxlTFmAQq39aBQsChA49T4dFYMMnsRIfCVYaBxwmSMA4U3YT5NEv1NhCJ-IDHMdfo5yykVDi28j3BmeZBooXdgCauTVQ7TR6V9XDXiWYL04B_Uy1FsqYsN50zhh-JHsxERxVPx0dCzTeqnkm61Edb9cIGkKnuI3QzUzsRqc4meYQ4ErGY7_MGbFU28TLYwTyfcrrz1ef8gcWro150ftI_24Wf1c9px3LcPZgvxhO9j-imiJulST8D56PxWw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+thermoelectric+metrics+in+ultra-long+electrodeposited+PEDOT+nanowires&rft.jtitle=Nano+letters&rft.au=Taggart%2C+David+K&rft.au=Yang%2C+Yongan&rft.au=Kung%2C+Sheng-Chin&rft.au=McIntire%2C+Theresa+M&rft.date=2011-01-12&rft.issn=1530-6992&rft.eissn=1530-6992&rft.volume=11&rft.issue=1&rft.spage=125&rft_id=info:doi/10.1021%2Fnl103003d&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon