Facile Subsequently Light-Induced Route to Highly Efficient and Stable Sunlight-Driven Ag−AgBr Plasmonic Photocatalyst

In this paper, we successfully fabricate a stable and highly efficient direct sunlight plasmonic photocatalyst Ag−AgBr through a facile hydrothermal and subsequently sunlight-induced route. The diffuse reflectance spectra of Ag−AgBr indicate strong absorption in both UV and visible light region. The...

Full description

Saved in:
Bibliographic Details
Published inLangmuir Vol. 26; no. 24; pp. 18723 - 18727
Main Authors Kuai, Long, Geng, Baoyou, Chen, Xiaoting, Zhao, Yanyan, Luo, Yinchan
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 21.12.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we successfully fabricate a stable and highly efficient direct sunlight plasmonic photocatalyst Ag−AgBr through a facile hydrothermal and subsequently sunlight-induced route. The diffuse reflectance spectra of Ag−AgBr indicate strong absorption in both UV and visible light region. The obtained photocatalyst shows excellent sunlight-driven photocatalytic performance. It can decompose organic dye within several minutes under direct sunlight irradiation and maintain a high level even though used five times. In addition, both the scanning electron microscopy images and X-ray photoelectron spectroscopy dates reveal the as-prepared photocatalyst to be very stable. Moreover, the mechanism suggests that the high photocatalytic activity and excellent stability result from the super sensitivity of AgBr to light, the surface plasmon resonance of Ag nanoparticles in the region of visible light, and the complexation between Ag+ and nitrogen atom. Thus, the facile preparation and super performance of Ag−AgBr will make it available to utilize sunlight efficiently to remove organic pollutants, destroy bacteria, and so forth.
AbstractList In this paper, we successfully fabricate a stable and highly efficient direct sunlight plasmonic photocatalyst Ag−AgBr through a facile hydrothermal and subsequently sunlight-induced route. The diffuse reflectance spectra of Ag−AgBr indicate strong absorption in both UV and visible light region. The obtained photocatalyst shows excellent sunlight-driven photocatalytic performance. It can decompose organic dye within several minutes under direct sunlight irradiation and maintain a high level even though used five times. In addition, both the scanning electron microscopy images and X-ray photoelectron spectroscopy dates reveal the as-prepared photocatalyst to be very stable. Moreover, the mechanism suggests that the high photocatalytic activity and excellent stability result from the super sensitivity of AgBr to light, the surface plasmon resonance of Ag nanoparticles in the region of visible light, and the complexation between Ag+ and nitrogen atom. Thus, the facile preparation and super performance of Ag−AgBr will make it available to utilize sunlight efficiently to remove organic pollutants, destroy bacteria, and so forth.
In this paper, we successfully fabricate a stable and highly efficient direct sunlight plasmonic photocatalyst Ag-AgBr through a facile hydrothermal and subsequently sunlight-induced route. The diffuse reflectance spectra of Ag-AgBr indicate strong absorption in both UV and visible light region. The obtained photocatalyst shows excellent sunlight-driven photocatalytic performance. It can decompose organic dye within several minutes under direct sunlight irradiation and maintain a high level even though used five times. In addition, both the scanning electron microscopy images and X-ray photoelectron spectroscopy dates reveal the as-prepared photocatalyst to be very stable. Moreover, the mechanism suggests that the high photocatalytic activity and excellent stability result from the super sensitivity of AgBr to light, the surface plasmon resonance of Ag nanoparticles in the region of visible light, and the complexation between Ag(+) and nitrogen atom. Thus, the facile preparation and super performance of Ag-AgBr will make it available to utilize sunlight efficiently to remove organic pollutants, destroy bacteria, and so forth.In this paper, we successfully fabricate a stable and highly efficient direct sunlight plasmonic photocatalyst Ag-AgBr through a facile hydrothermal and subsequently sunlight-induced route. The diffuse reflectance spectra of Ag-AgBr indicate strong absorption in both UV and visible light region. The obtained photocatalyst shows excellent sunlight-driven photocatalytic performance. It can decompose organic dye within several minutes under direct sunlight irradiation and maintain a high level even though used five times. In addition, both the scanning electron microscopy images and X-ray photoelectron spectroscopy dates reveal the as-prepared photocatalyst to be very stable. Moreover, the mechanism suggests that the high photocatalytic activity and excellent stability result from the super sensitivity of AgBr to light, the surface plasmon resonance of Ag nanoparticles in the region of visible light, and the complexation between Ag(+) and nitrogen atom. Thus, the facile preparation and super performance of Ag-AgBr will make it available to utilize sunlight efficiently to remove organic pollutants, destroy bacteria, and so forth.
In this paper, we successfully fabricate a stable and highly efficient direct sunlight plasmonic photocatalyst Ag-AgBr through a facile hydrothermal and subsequently sunlight-induced route. The diffuse reflectance spectra of Ag-AgBr indicate strong absorption in both UV and visible light region. The obtained photocatalyst shows excellent sunlight-driven photocatalytic performance. It can decompose organic dye within several minutes under direct sunlight irradiation and maintain a high level even though used five times. In addition, both the scanning electron microscopy images and X-ray photoelectron spectroscopy dates reveal the as-prepared photocatalyst to be very stable. Moreover, the mechanism suggests that the high photocatalytic activity and excellent stability result from the super sensitivity of AgBr to light, the surface plasmon resonance of Ag nanoparticles in the region of visible light, and the complexation between Ag(+) and nitrogen atom. Thus, the facile preparation and super performance of Ag-AgBr will make it available to utilize sunlight efficiently to remove organic pollutants, destroy bacteria, and so forth.
Author Zhao, Yanyan
Luo, Yinchan
Chen, Xiaoting
Kuai, Long
Geng, Baoyou
Author_xml – sequence: 1
  givenname: Long
  surname: Kuai
  fullname: Kuai, Long
– sequence: 2
  givenname: Baoyou
  surname: Geng
  fullname: Geng, Baoyou
  email: bygeng@mail.ahnu.edu.cn
– sequence: 3
  givenname: Xiaoting
  surname: Chen
  fullname: Chen, Xiaoting
– sequence: 4
  givenname: Yanyan
  surname: Zhao
  fullname: Zhao, Yanyan
– sequence: 5
  givenname: Yinchan
  surname: Luo
  fullname: Luo, Yinchan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23687359$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21114257$$D View this record in MEDLINE/PubMed
BookMark eNpt0c1uVCEUB3Biauy0uvAFDBtjXFwLXLj3znL6ZZtM0sbqmpzLx5SGgQpc03kD1z6iTyK2U02arkjg9z_hnLOHdkIMBqG3lHyihNEDD5RwwtjqBZpRwUgjBtbvoBnpedv0vGt30V7ON4SQecvnr9Auo5RyJvoZujsF5bzBV9OYzffJhOI3eOlW16U5D3pSRuMvcSoGl4jP6nV9PbHWKVclhqDxVYHxPh_8feo4uR8m4MXq989fi9Vhwpce8joGp_DldSxRQQG_yeU1emnBZ_Nme-6jb6cnX4_OmuXF5_OjxbIBTklpGGtNr4RmVHeaakGIAGpELxS1euy1oNqOIwGhWAfE2I5zMiqhlB1AgdDtPvrwUPc2xdpfLnLtsjLeQzBxynJglA9dR3iV77ZyGtdGy9vk1pA28nFYFbzfAsgKvE0QlMv_XdsNfSvm1R08OJVizslYqVyB4mIoCZyXlMi_a5P_1lYTH58kHos-Z7e_AJXlTZxSqON7xv0BOc-lOw
CODEN LANGD5
CitedBy_id crossref_primary_10_1021_jp400842r
crossref_primary_10_3184_146867817X14821527549176
crossref_primary_10_1021_la502378z
crossref_primary_10_1016_j_apsusc_2017_05_118
crossref_primary_10_1016_j_ceramint_2019_06_004
crossref_primary_10_1039_c2dt30864a
crossref_primary_10_1016_j_poly_2018_06_012
crossref_primary_10_1016_j_apsusc_2018_07_121
crossref_primary_10_1039_D4CC05001K
crossref_primary_10_1016_j_jhazmat_2015_12_052
crossref_primary_10_1039_c3ta12893h
crossref_primary_10_1016_j_jcis_2018_03_011
crossref_primary_10_1016_j_apt_2014_02_001
crossref_primary_10_1021_acsami_8b03319
crossref_primary_10_1016_j_jallcom_2013_08_028
crossref_primary_10_1002_ppsc_201200033
crossref_primary_10_1016_j_jpcs_2019_109118
crossref_primary_10_1016_j_ceramint_2020_11_163
crossref_primary_10_3724_SP_J_1088_2012_20320
crossref_primary_10_1016_j_mssp_2014_01_033
crossref_primary_10_1016_j_colsurfa_2013_06_005
crossref_primary_10_1016_j_jhazmat_2014_09_031
crossref_primary_10_1063_1_4935950
crossref_primary_10_1007_s10854_016_4650_y
crossref_primary_10_1039_c3cp44104k
crossref_primary_10_1016_j_apcatb_2011_12_038
crossref_primary_10_1016_j_jhazmat_2012_03_068
crossref_primary_10_1016_j_apcata_2013_12_036
crossref_primary_10_1016_j_cej_2016_09_125
crossref_primary_10_1080_17458080_2016_1255790
crossref_primary_10_1016_j_poly_2019_02_050
crossref_primary_10_1039_C5TA07719B
crossref_primary_10_1186_s11671_015_0952_x
crossref_primary_10_1016_j_apcatb_2014_11_044
crossref_primary_10_1002_cctc_202100135
crossref_primary_10_3762_bjnano_8_277
crossref_primary_10_1039_c3ta01042b
crossref_primary_10_1039_C4CE00916A
crossref_primary_10_1007_s10853_015_9245_0
crossref_primary_10_1016_j_apcatb_2014_06_016
crossref_primary_10_1016_j_materresbull_2014_11_040
crossref_primary_10_1016_j_catcom_2011_11_001
crossref_primary_10_1016_j_apcata_2013_01_035
crossref_primary_10_1016_j_apcata_2013_01_034
crossref_primary_10_1016_j_apsusc_2017_06_069
crossref_primary_10_5012_bkcs_2014_35_2_441
crossref_primary_10_1016_j_jhazmat_2014_07_079
crossref_primary_10_1016_j_solidstatesciences_2017_09_001
crossref_primary_10_1039_c2nr31030a
crossref_primary_10_1039_C5RA27882A
crossref_primary_10_1002_chem_201203398
crossref_primary_10_1016_j_apcatb_2015_04_027
crossref_primary_10_1039_C5RA03784K
crossref_primary_10_1039_C6RA16442K
crossref_primary_10_1016_j_catcom_2014_10_012
crossref_primary_10_1021_la204452p
crossref_primary_10_1021_sc500646a
crossref_primary_10_1007_s10854_021_06323_5
crossref_primary_10_1016_j_apcatb_2013_07_042
crossref_primary_10_1016_j_jallcom_2016_09_162
crossref_primary_10_1039_C5CP05336F
crossref_primary_10_1016_j_jhazmat_2012_04_009
crossref_primary_10_1039_C8DT01070F
crossref_primary_10_1088_2053_1591_ab1db3
crossref_primary_10_1039_C6RA08682A
crossref_primary_10_1021_acssuschemeng_1c00886
crossref_primary_10_1016_j_colcom_2022_100635
crossref_primary_10_1002_aoc_6229
crossref_primary_10_1016_j_apsusc_2014_10_101
crossref_primary_10_1134_S1063783412060029
crossref_primary_10_1007_s10904_018_0851_6
crossref_primary_10_1016_j_apt_2018_07_016
crossref_primary_10_1016_j_solmat_2016_07_001
crossref_primary_10_1016_j_jphotochem_2020_112559
crossref_primary_10_1021_am503345p
crossref_primary_10_1063_1_4903912
crossref_primary_10_1007_s10854_017_7081_5
crossref_primary_10_1016_j_addma_2023_103866
crossref_primary_10_1002_slct_202400577
crossref_primary_10_1016_j_apcatb_2014_09_046
crossref_primary_10_1016_j_jhazmat_2020_122128
crossref_primary_10_1016_j_materresbull_2014_12_040
crossref_primary_10_1016_j_apsusc_2015_10_058
crossref_primary_10_1007_s10562_019_02870_z
crossref_primary_10_1039_C4TA02369B
crossref_primary_10_1016_j_apcatb_2011_06_002
crossref_primary_10_1016_j_psep_2020_08_020
crossref_primary_10_1016_j_seppur_2016_10_005
crossref_primary_10_1016_j_cej_2023_143025
crossref_primary_10_1080_14328917_2016_1211479
crossref_primary_10_1016_j_apcatb_2017_01_082
crossref_primary_10_1016_j_cej_2013_03_091
crossref_primary_10_1007_s13204_016_0525_z
crossref_primary_10_1016_j_jcis_2012_02_070
crossref_primary_10_1016_j_apcata_2015_02_004
crossref_primary_10_1016_j_jallcom_2021_163370
crossref_primary_10_1016_j_watres_2016_04_055
crossref_primary_10_1016_j_mssp_2015_05_015
crossref_primary_10_1016_j_materresbull_2016_11_042
crossref_primary_10_1021_acssuschemeng_9b02575
crossref_primary_10_1016_j_jcis_2015_12_034
crossref_primary_10_1039_c2cy20074k
crossref_primary_10_1007_s10562_019_02827_2
crossref_primary_10_1002_asia_201501012
crossref_primary_10_1007_s11356_024_31921_1
crossref_primary_10_1016_j_apcatb_2018_01_037
crossref_primary_10_1039_C5CY00767D
crossref_primary_10_1021_la200078j
crossref_primary_10_1016_j_apcatb_2012_05_043
crossref_primary_10_1016_j_apcatb_2014_08_037
crossref_primary_10_1080_01932691_2018_1554488
crossref_primary_10_1080_10667857_2016_1162951
crossref_primary_10_1016_j_jssc_2013_07_019
crossref_primary_10_1039_c3dt50736j
crossref_primary_10_3762_bjnano_4_87
crossref_primary_10_1002_aoc_4757
crossref_primary_10_1039_D0NJ03907A
crossref_primary_10_1016_j_jhazmat_2012_03_002
crossref_primary_10_1016_j_matlet_2017_08_017
crossref_primary_10_1002_chem_201103787
crossref_primary_10_1016_j_watres_2014_05_044
crossref_primary_10_1016_j_molstruc_2014_10_050
crossref_primary_10_1016_j_jtice_2023_104722
crossref_primary_10_1016_j_jssc_2013_07_028
crossref_primary_10_1016_j_apsusc_2020_146742
crossref_primary_10_1016_j_jcis_2016_06_068
crossref_primary_10_1016_j_apcatb_2017_07_081
crossref_primary_10_1039_C4RA04228J
crossref_primary_10_1016_j_jece_2017_07_009
crossref_primary_10_1016_j_jallcom_2011_02_121
crossref_primary_10_1016_j_bioelechem_2021_107928
crossref_primary_10_1039_c2jm35503e
crossref_primary_10_1016_j_jphotochemrev_2014_10_003
crossref_primary_10_1007_s10854_017_8174_x
crossref_primary_10_1016_j_apsusc_2015_07_139
crossref_primary_10_1016_j_matlet_2017_08_117
crossref_primary_10_1016_j_jcis_2016_11_087
crossref_primary_10_1016_j_apsusc_2022_154122
crossref_primary_10_1016_j_jece_2022_108582
crossref_primary_10_1002_cnma_202000438
crossref_primary_10_1002_clen_201900064
crossref_primary_10_1088_2043_6262_6_4_045003
crossref_primary_10_1016_j_molcata_2015_01_017
crossref_primary_10_1016_j_apcatb_2015_05_002
crossref_primary_10_1021_acssuschemeng_6b00743
crossref_primary_10_1039_c1nr10247h
crossref_primary_10_1186_1556_276X_8_442
crossref_primary_10_1016_j_jssc_2021_122703
crossref_primary_10_1039_D0RA09144H
crossref_primary_10_1016_j_ceramint_2013_09_080
crossref_primary_10_1016_j_molcata_2011_05_012
crossref_primary_10_1016_j_apsusc_2018_01_248
crossref_primary_10_1016_j_molcata_2014_03_014
crossref_primary_10_1016_S1872_2067_11_60422_1
crossref_primary_10_1080_10667857_2016_1182343
crossref_primary_10_1039_c3ta01450a
crossref_primary_10_1016_j_jhazmat_2015_05_022
crossref_primary_10_1021_am5051422
crossref_primary_10_1016_j_materresbull_2016_12_016
crossref_primary_10_5004_dwt_2017_0259
crossref_primary_10_1002_jctb_3841
crossref_primary_10_1007_s11244_013_0020_7
crossref_primary_10_1134_S1061933X16040190
crossref_primary_10_1039_C4CY00777H
crossref_primary_10_1002_slct_202000502
crossref_primary_10_1039_C3NR06302J
crossref_primary_10_1007_s10854_013_1702_4
crossref_primary_10_1039_C4RA08044K
crossref_primary_10_1016_j_matlet_2012_07_074
crossref_primary_10_1039_C6DT03723B
crossref_primary_10_1016_j_catcom_2013_09_017
crossref_primary_10_1039_C3RA45381B
crossref_primary_10_1007_s42114_017_0005_2
crossref_primary_10_1039_C1NJ20850K
crossref_primary_10_1016_j_apsusc_2015_01_021
crossref_primary_10_1021_acs_jpcc_6b09245
crossref_primary_10_1016_j_apsusc_2018_09_163
crossref_primary_10_1016_j_catcom_2013_02_019
crossref_primary_10_1007_s11164_015_1960_2
crossref_primary_10_1016_j_apcatb_2012_12_038
crossref_primary_10_1016_j_cej_2014_05_040
crossref_primary_10_1021_acs_nanolett_7b05090
crossref_primary_10_1007_s10563_012_9145_0
crossref_primary_10_1049_mnl_2014_0099
crossref_primary_10_1049_mnl_2017_0152
crossref_primary_10_1021_acsanm_0c00703
crossref_primary_10_1002_chem_201102606
crossref_primary_10_1021_la300615b
crossref_primary_10_1016_j_apsusc_2016_10_189
crossref_primary_10_1016_j_apsusc_2013_06_121
crossref_primary_10_1016_j_micromeso_2014_04_004
crossref_primary_10_1007_s10854_016_5087_z
crossref_primary_10_1039_c3nr00191a
crossref_primary_10_1021_am4034735
crossref_primary_10_1039_C5CY00705D
crossref_primary_10_1039_C5RA16814G
crossref_primary_10_1016_j_jmrt_2022_11_011
crossref_primary_10_1016_j_apsusc_2014_09_060
crossref_primary_10_1007_s00339_015_9421_8
crossref_primary_10_1039_C6CP03110B
crossref_primary_10_1039_C4CE02268H
crossref_primary_10_1016_j_materresbull_2013_05_120
crossref_primary_10_1002_adsc_201600138
crossref_primary_10_1007_s00339_014_8425_0
crossref_primary_10_1016_j_apcatb_2017_01_029
crossref_primary_10_1016_j_watres_2012_11_057
crossref_primary_10_1002_jccs_201500183
crossref_primary_10_1080_10934529_2013_797309
crossref_primary_10_1016_j_jes_2016_04_032
crossref_primary_10_1039_c2cp40823f
crossref_primary_10_1016_j_jcis_2023_03_064
crossref_primary_10_1016_j_materresbull_2014_10_018
crossref_primary_10_4028_www_scientific_net_MSF_996_76
crossref_primary_10_1016_j_optmat_2021_111947
crossref_primary_10_1016_j_apsusc_2014_10_161
crossref_primary_10_1016_j_molcata_2014_07_027
crossref_primary_10_1021_acssuschemeng_5b01473
crossref_primary_10_1016_j_apsusc_2013_11_126
crossref_primary_10_1590_1516_1439_346614
crossref_primary_10_1002_mame_201800006
crossref_primary_10_1016_j_materresbull_2018_02_047
crossref_primary_10_1021_acsanm_7b00242
crossref_primary_10_1002_aoc_4349
crossref_primary_10_1515_epoly_2015_0194
crossref_primary_10_1016_j_jcis_2014_02_037
crossref_primary_10_1039_c3dt32813a
crossref_primary_10_1016_j_jcis_2017_08_095
crossref_primary_10_1016_j_jphotochem_2021_113427
crossref_primary_10_1039_C4RA10843D
crossref_primary_10_1007_s40097_018_0278_1
crossref_primary_10_1021_am5002019
crossref_primary_10_1016_j_apsusc_2022_154429
crossref_primary_10_3139_146_111944
crossref_primary_10_1016_j_apt_2018_04_019
crossref_primary_10_1016_j_jece_2018_02_034
crossref_primary_10_1016_j_matlet_2014_01_027
crossref_primary_10_1016_j_molliq_2019_112032
crossref_primary_10_1142_S108842461650084X
crossref_primary_10_1016_j_molcata_2014_07_031
crossref_primary_10_1039_D4NR02637C
crossref_primary_10_1246_cl_141209
crossref_primary_10_1016_j_jwpe_2019_100985
crossref_primary_10_1039_C5TC01306B
crossref_primary_10_1016_j_jphotochem_2017_12_021
crossref_primary_10_1039_c2dt12089e
crossref_primary_10_1142_S1793292018500017
crossref_primary_10_1142_S1793604712500476
crossref_primary_10_1111_jace_16254
crossref_primary_10_1039_c2jm31736b
crossref_primary_10_1016_j_jcis_2016_11_029
ContentType Journal Article
Copyright Copyright © 2010 American Chemical Society
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2010 American Chemical Society
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/la104022g
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5827
EndPage 18727
ExternalDocumentID 21114257
23687359
10_1021_la104022g
c295169139
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
4.4
53G
55A
5GY
5VS
7~N
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
RNS
ROL
TN5
UI2
UPT
VF5
VG9
W1F
X
---
-~X
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
YQT
~02
.HR
186
1WB
6TJ
ABHMW
ACRPL
ADNMO
AEYZD
AFFNX
AGQPQ
ANPPW
ANTXH
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a410t-223e7c5d21d6d1d5005a1e575c1fdb7d51dfbb0a5c26a0ef6440bc5ccf8aca5d3
IEDL.DBID ACS
ISSN 0743-7463
1520-5827
IngestDate Thu Jul 10 17:35:46 EDT 2025
Thu Jan 02 22:40:42 EST 2025
Mon Jul 21 09:13:21 EDT 2025
Tue Jul 01 03:43:25 EDT 2025
Thu Apr 24 23:07:28 EDT 2025
Thu Aug 27 13:41:56 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords Complexation
Scanning electron microscopy
Stability
Organic dye
Nanoparticle
Photocatalysis
Transition element compounds
X ray
Nitrogen
Surface plasmon
Mechanism
Pollutant
Preparation
Photoelectron spectrometry
Resonance
Hydrothermal condition
Reflectance
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a410t-223e7c5d21d6d1d5005a1e575c1fdb7d51dfbb0a5c26a0ef6440bc5ccf8aca5d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21114257
PQID 821486604
PQPubID 23479
PageCount 5
ParticipantIDs proquest_miscellaneous_821486604
pubmed_primary_21114257
pascalfrancis_primary_23687359
crossref_citationtrail_10_1021_la104022g
crossref_primary_10_1021_la104022g
acs_journals_10_1021_la104022g
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-12-21
PublicationDateYYYYMMDD 2010-12-21
PublicationDate_xml – month: 12
  year: 2010
  text: 2010-12-21
  day: 21
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Langmuir
PublicationTitleAlternate Langmuir
PublicationYear 2010
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
SSID ssj0009349
Score 2.4824226
Snippet In this paper, we successfully fabricate a stable and highly efficient direct sunlight plasmonic photocatalyst Ag−AgBr through a facile hydrothermal and...
In this paper, we successfully fabricate a stable and highly efficient direct sunlight plasmonic photocatalyst Ag-AgBr through a facile hydrothermal and...
SourceID proquest
pubmed
pascalfrancis
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 18723
SubjectTerms Bromides - chemistry
Catalysis
Chemistry
Colloidal state and disperse state
Colloids: Surfactants and Self-Assembly, Dispersions, Emulsions, Foams
Electron Transport
Exact sciences and technology
General and physical chemistry
Metal Nanoparticles - chemistry
Photochemical Processes
Photochemistry
Physical and chemical studies. Granulometry. Electrokinetic phenomena
Physical chemistry of induced reactions (with radiations, particles and ultrasonics)
Silver - chemistry
Silver Compounds - chemistry
Sunlight
Surface Properties
Title Facile Subsequently Light-Induced Route to Highly Efficient and Stable Sunlight-Driven Ag−AgBr Plasmonic Photocatalyst
URI http://dx.doi.org/10.1021/la104022g
https://www.ncbi.nlm.nih.gov/pubmed/21114257
https://www.proquest.com/docview/821486604
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6V9gASouVRWEpXFnDgkhLbsZMel21XFQJUCSr1FvmVReqSVJusRPkFnPsT-0sYO8m2VR-cM3OwZzzzTTz-BuC9kFwJTG0RtwmPEokFikptEonU99RI61qe7a_f5MFR8vlYHK_Auztu8Bn9OFNYMWCmmT6ANSaz1FdYo_H3S2Zd3mJcz7WZJpL39EFXVX3qMfW11PP4VNW4C0U7vuJufBnyzGQd9vrXOm17ycnOotE75s9N8sb7lrABTzqcSUatYzyFFVc-g4fjfrzbc_g9UQYjAvGRI7RTN7Mz8iXQivhxHsZZ4ruFHGkq4ptB8Ot-oJtASaJKSxCm6qBfzoLW3twHTjKaXvw9H00_zckhAvNfnnmXHP6smir8KDqrmxdwNNn_MT6IujEMkUpo3EQIIFxqhGXUSkutwHOrqEOYZ2hhdWoFtYXWsRKGSRW7AhFWrI0wpsiUUcLyTVgtq9K9AkKtTgTfxZoHq0rEasqmmeWWCYNIs9DZAIZop7w7RnUebsgZzZcbOIAPvQlz05GY-1kas9tE3y5FT1vmjtuEhtf8YCnJOLoaF7sDIL1j5Gggf5uiSlct6jxjWElKGScDeNk6zKUy9S-URfr6f8vZgkesa49h9A2sNvOF20aQ0-hhcPJ_BG71vw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VcigS4v9n-VksBBKXlNiOne2Bw7Ltaku3VSVaqbfg2M4isSTVJitYnoAzR16Ft-FJGDvJLkVFnCpxztiyPWPPN_H4G4BnQnIl0LUF3EQ8iCQGKCo2USBil1Mjja15tvcP5Og4enMiTtbge_sWBgdRYk-lv8RfsQvQl1OFgQM6nEmTQLlnF58wPCtf7W6jLp8zNtw5GoyCpoJAoCIaVgH6PhtrYRg10lAj0OQUtYhQNM1MGhtBTZamoRKaSRXaDMFBmGqhddZTWgnDsd9LcBlBD3OBXX_wdkXoy2to7Sg-40jylrXo96E6j6fLMx7v6qkqcfGzumrG32Gtd2_D6_BjuTA-q-XD5rxKN_WXPzgj_8-VuwHXGlRN-vU2uAlrNr8FG4O2mN1t-DxUGs8_4s5JnzxeTRdk7ElUXPESbQ1xuVGWVAVxqS_4dceTa6AkUbkhCMpT3z6f-lbbM-cmSH_y8-u3_uT1jBxiGPLR8QyTw_dFVfjfYouyugPHFzLxu7CeF7m9D4SaNBJ8CyM8jKERmSoT9ww3TGjE1Vna60AX9ZU0h0aZ-HwARpOlwjrworWcRDeU7a5yyPQ80adL0dOap-Q8oe4Z81tKMi57MRdbHSCtPSaoIHd3pHJbzMukxzBuljKMOnCvttNVY-reY4v4wb-m8wQ2Rkf742S8e7D3EK6wJjGI0UewXs3m9jHCuyrt-n1G4N1Fm-cvsmFbbQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VIkElxP_P8rNYCCQuKbEdO-mBw7LbVUtLtRJU6i04trOVWJLVJitYnoAzD8Cr8C48CWMnu6WoiFMlzhlbtmfs-SYefwPwVEiuBLq2gJuIB5HEAEXFJgpE7HJqpLENz_abA7lzGL0-Ekdr8H35FgYHUWFPlb_Ed7t6avKWYYC-mCgMHtDpjNskyj27-IQhWvVyd4D6fMbYcPtdfydoqwgEKqJhHaD_s7EWhlEjDTUCzU5RiyhF09xksRHU5FkWKqGZVKHNESCEmRZa54nSShiO_V6Ai-560AV3vf7bE1Jf3sBrR_MZR5IvmYt-H6rzero65fWuTFWFCsibyhl_h7bexQ2vwY_V4vjMlg-b8zrb1F_-4I38f1fvOlxt0TXpNdvhBqzZ4iZc7i-L2t2Cz0Ol8Rwk7rz0SeT1ZEH2PZmKK2KirSEuR8qSuiQuBQa_bnuSDZQkqjAEwXnm2xcT32owc-6C9MY_v37rjV_NyAjDkY-Ob5iMjsu69L_HFlV9Gw7PZeJ3YL0oC3sPCDVZJPgWRnoYSyNCVSZODDdMaMTXeZZ0oIs6S9vDo0p9XgCj6UphHXi-tJ5Ut9TtroLI5CzRJyvRacNXcpZQ95QJriQZl0nMxVYHyNImU1SQu0NShS3nVZowjJ-lDKMO3G1s9aQxde-yRXz_X9N5DJdGg2G6v3uw9wA2WJsfxOhDWK9nc_sIUV6ddf1WI_D-vK3zFxK2XfA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facile+subsequently+light-induced+route+to+highly+efficient+and+stable+sunlight-driven+Ag-AgBr+plasmonic+photocatalyst&rft.jtitle=Langmuir&rft.au=Kuai%2C+Long&rft.au=Geng%2C+Baoyou&rft.au=Chen%2C+Xiaoting&rft.au=Zhao%2C+Yanyan&rft.date=2010-12-21&rft.eissn=1520-5827&rft.volume=26&rft.issue=24&rft.spage=18723&rft_id=info:doi/10.1021%2Fla104022g&rft_id=info%3Apmid%2F21114257&rft.externalDocID=21114257
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon