Facile Subsequently Light-Induced Route to Highly Efficient and Stable Sunlight-Driven Ag−AgBr Plasmonic Photocatalyst
In this paper, we successfully fabricate a stable and highly efficient direct sunlight plasmonic photocatalyst Ag−AgBr through a facile hydrothermal and subsequently sunlight-induced route. The diffuse reflectance spectra of Ag−AgBr indicate strong absorption in both UV and visible light region. The...
Saved in:
Published in | Langmuir Vol. 26; no. 24; pp. 18723 - 18727 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
21.12.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we successfully fabricate a stable and highly efficient direct sunlight plasmonic photocatalyst Ag−AgBr through a facile hydrothermal and subsequently sunlight-induced route. The diffuse reflectance spectra of Ag−AgBr indicate strong absorption in both UV and visible light region. The obtained photocatalyst shows excellent sunlight-driven photocatalytic performance. It can decompose organic dye within several minutes under direct sunlight irradiation and maintain a high level even though used five times. In addition, both the scanning electron microscopy images and X-ray photoelectron spectroscopy dates reveal the as-prepared photocatalyst to be very stable. Moreover, the mechanism suggests that the high photocatalytic activity and excellent stability result from the super sensitivity of AgBr to light, the surface plasmon resonance of Ag nanoparticles in the region of visible light, and the complexation between Ag+ and nitrogen atom. Thus, the facile preparation and super performance of Ag−AgBr will make it available to utilize sunlight efficiently to remove organic pollutants, destroy bacteria, and so forth. |
---|---|
AbstractList | In this paper, we successfully fabricate a stable and highly efficient direct sunlight plasmonic photocatalyst Ag−AgBr through a facile hydrothermal and subsequently sunlight-induced route. The diffuse reflectance spectra of Ag−AgBr indicate strong absorption in both UV and visible light region. The obtained photocatalyst shows excellent sunlight-driven photocatalytic performance. It can decompose organic dye within several minutes under direct sunlight irradiation and maintain a high level even though used five times. In addition, both the scanning electron microscopy images and X-ray photoelectron spectroscopy dates reveal the as-prepared photocatalyst to be very stable. Moreover, the mechanism suggests that the high photocatalytic activity and excellent stability result from the super sensitivity of AgBr to light, the surface plasmon resonance of Ag nanoparticles in the region of visible light, and the complexation between Ag+ and nitrogen atom. Thus, the facile preparation and super performance of Ag−AgBr will make it available to utilize sunlight efficiently to remove organic pollutants, destroy bacteria, and so forth. In this paper, we successfully fabricate a stable and highly efficient direct sunlight plasmonic photocatalyst Ag-AgBr through a facile hydrothermal and subsequently sunlight-induced route. The diffuse reflectance spectra of Ag-AgBr indicate strong absorption in both UV and visible light region. The obtained photocatalyst shows excellent sunlight-driven photocatalytic performance. It can decompose organic dye within several minutes under direct sunlight irradiation and maintain a high level even though used five times. In addition, both the scanning electron microscopy images and X-ray photoelectron spectroscopy dates reveal the as-prepared photocatalyst to be very stable. Moreover, the mechanism suggests that the high photocatalytic activity and excellent stability result from the super sensitivity of AgBr to light, the surface plasmon resonance of Ag nanoparticles in the region of visible light, and the complexation between Ag(+) and nitrogen atom. Thus, the facile preparation and super performance of Ag-AgBr will make it available to utilize sunlight efficiently to remove organic pollutants, destroy bacteria, and so forth.In this paper, we successfully fabricate a stable and highly efficient direct sunlight plasmonic photocatalyst Ag-AgBr through a facile hydrothermal and subsequently sunlight-induced route. The diffuse reflectance spectra of Ag-AgBr indicate strong absorption in both UV and visible light region. The obtained photocatalyst shows excellent sunlight-driven photocatalytic performance. It can decompose organic dye within several minutes under direct sunlight irradiation and maintain a high level even though used five times. In addition, both the scanning electron microscopy images and X-ray photoelectron spectroscopy dates reveal the as-prepared photocatalyst to be very stable. Moreover, the mechanism suggests that the high photocatalytic activity and excellent stability result from the super sensitivity of AgBr to light, the surface plasmon resonance of Ag nanoparticles in the region of visible light, and the complexation between Ag(+) and nitrogen atom. Thus, the facile preparation and super performance of Ag-AgBr will make it available to utilize sunlight efficiently to remove organic pollutants, destroy bacteria, and so forth. In this paper, we successfully fabricate a stable and highly efficient direct sunlight plasmonic photocatalyst Ag-AgBr through a facile hydrothermal and subsequently sunlight-induced route. The diffuse reflectance spectra of Ag-AgBr indicate strong absorption in both UV and visible light region. The obtained photocatalyst shows excellent sunlight-driven photocatalytic performance. It can decompose organic dye within several minutes under direct sunlight irradiation and maintain a high level even though used five times. In addition, both the scanning electron microscopy images and X-ray photoelectron spectroscopy dates reveal the as-prepared photocatalyst to be very stable. Moreover, the mechanism suggests that the high photocatalytic activity and excellent stability result from the super sensitivity of AgBr to light, the surface plasmon resonance of Ag nanoparticles in the region of visible light, and the complexation between Ag(+) and nitrogen atom. Thus, the facile preparation and super performance of Ag-AgBr will make it available to utilize sunlight efficiently to remove organic pollutants, destroy bacteria, and so forth. |
Author | Zhao, Yanyan Luo, Yinchan Chen, Xiaoting Kuai, Long Geng, Baoyou |
Author_xml | – sequence: 1 givenname: Long surname: Kuai fullname: Kuai, Long – sequence: 2 givenname: Baoyou surname: Geng fullname: Geng, Baoyou email: bygeng@mail.ahnu.edu.cn – sequence: 3 givenname: Xiaoting surname: Chen fullname: Chen, Xiaoting – sequence: 4 givenname: Yanyan surname: Zhao fullname: Zhao, Yanyan – sequence: 5 givenname: Yinchan surname: Luo fullname: Luo, Yinchan |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23687359$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21114257$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0c1uVCEUB3Biauy0uvAFDBtjXFwLXLj3znL6ZZtM0sbqmpzLx5SGgQpc03kD1z6iTyK2U02arkjg9z_hnLOHdkIMBqG3lHyihNEDD5RwwtjqBZpRwUgjBtbvoBnpedv0vGt30V7ON4SQecvnr9Auo5RyJvoZujsF5bzBV9OYzffJhOI3eOlW16U5D3pSRuMvcSoGl4jP6nV9PbHWKVclhqDxVYHxPh_8feo4uR8m4MXq989fi9Vhwpce8joGp_DldSxRQQG_yeU1emnBZ_Nme-6jb6cnX4_OmuXF5_OjxbIBTklpGGtNr4RmVHeaakGIAGpELxS1euy1oNqOIwGhWAfE2I5zMiqhlB1AgdDtPvrwUPc2xdpfLnLtsjLeQzBxynJglA9dR3iV77ZyGtdGy9vk1pA28nFYFbzfAsgKvE0QlMv_XdsNfSvm1R08OJVizslYqVyB4mIoCZyXlMi_a5P_1lYTH58kHos-Z7e_AJXlTZxSqON7xv0BOc-lOw |
CODEN | LANGD5 |
CitedBy_id | crossref_primary_10_1021_jp400842r crossref_primary_10_3184_146867817X14821527549176 crossref_primary_10_1021_la502378z crossref_primary_10_1016_j_apsusc_2017_05_118 crossref_primary_10_1016_j_ceramint_2019_06_004 crossref_primary_10_1039_c2dt30864a crossref_primary_10_1016_j_poly_2018_06_012 crossref_primary_10_1016_j_apsusc_2018_07_121 crossref_primary_10_1039_D4CC05001K crossref_primary_10_1016_j_jhazmat_2015_12_052 crossref_primary_10_1039_c3ta12893h crossref_primary_10_1016_j_jcis_2018_03_011 crossref_primary_10_1016_j_apt_2014_02_001 crossref_primary_10_1021_acsami_8b03319 crossref_primary_10_1016_j_jallcom_2013_08_028 crossref_primary_10_1002_ppsc_201200033 crossref_primary_10_1016_j_jpcs_2019_109118 crossref_primary_10_1016_j_ceramint_2020_11_163 crossref_primary_10_3724_SP_J_1088_2012_20320 crossref_primary_10_1016_j_mssp_2014_01_033 crossref_primary_10_1016_j_colsurfa_2013_06_005 crossref_primary_10_1016_j_jhazmat_2014_09_031 crossref_primary_10_1063_1_4935950 crossref_primary_10_1007_s10854_016_4650_y crossref_primary_10_1039_c3cp44104k crossref_primary_10_1016_j_apcatb_2011_12_038 crossref_primary_10_1016_j_jhazmat_2012_03_068 crossref_primary_10_1016_j_apcata_2013_12_036 crossref_primary_10_1016_j_cej_2016_09_125 crossref_primary_10_1080_17458080_2016_1255790 crossref_primary_10_1016_j_poly_2019_02_050 crossref_primary_10_1039_C5TA07719B crossref_primary_10_1186_s11671_015_0952_x crossref_primary_10_1016_j_apcatb_2014_11_044 crossref_primary_10_1002_cctc_202100135 crossref_primary_10_3762_bjnano_8_277 crossref_primary_10_1039_c3ta01042b crossref_primary_10_1039_C4CE00916A crossref_primary_10_1007_s10853_015_9245_0 crossref_primary_10_1016_j_apcatb_2014_06_016 crossref_primary_10_1016_j_materresbull_2014_11_040 crossref_primary_10_1016_j_catcom_2011_11_001 crossref_primary_10_1016_j_apcata_2013_01_035 crossref_primary_10_1016_j_apcata_2013_01_034 crossref_primary_10_1016_j_apsusc_2017_06_069 crossref_primary_10_5012_bkcs_2014_35_2_441 crossref_primary_10_1016_j_jhazmat_2014_07_079 crossref_primary_10_1016_j_solidstatesciences_2017_09_001 crossref_primary_10_1039_c2nr31030a crossref_primary_10_1039_C5RA27882A crossref_primary_10_1002_chem_201203398 crossref_primary_10_1016_j_apcatb_2015_04_027 crossref_primary_10_1039_C5RA03784K crossref_primary_10_1039_C6RA16442K crossref_primary_10_1016_j_catcom_2014_10_012 crossref_primary_10_1021_la204452p crossref_primary_10_1021_sc500646a crossref_primary_10_1007_s10854_021_06323_5 crossref_primary_10_1016_j_apcatb_2013_07_042 crossref_primary_10_1016_j_jallcom_2016_09_162 crossref_primary_10_1039_C5CP05336F crossref_primary_10_1016_j_jhazmat_2012_04_009 crossref_primary_10_1039_C8DT01070F crossref_primary_10_1088_2053_1591_ab1db3 crossref_primary_10_1039_C6RA08682A crossref_primary_10_1021_acssuschemeng_1c00886 crossref_primary_10_1016_j_colcom_2022_100635 crossref_primary_10_1002_aoc_6229 crossref_primary_10_1016_j_apsusc_2014_10_101 crossref_primary_10_1134_S1063783412060029 crossref_primary_10_1007_s10904_018_0851_6 crossref_primary_10_1016_j_apt_2018_07_016 crossref_primary_10_1016_j_solmat_2016_07_001 crossref_primary_10_1016_j_jphotochem_2020_112559 crossref_primary_10_1021_am503345p crossref_primary_10_1063_1_4903912 crossref_primary_10_1007_s10854_017_7081_5 crossref_primary_10_1016_j_addma_2023_103866 crossref_primary_10_1002_slct_202400577 crossref_primary_10_1016_j_apcatb_2014_09_046 crossref_primary_10_1016_j_jhazmat_2020_122128 crossref_primary_10_1016_j_materresbull_2014_12_040 crossref_primary_10_1016_j_apsusc_2015_10_058 crossref_primary_10_1007_s10562_019_02870_z crossref_primary_10_1039_C4TA02369B crossref_primary_10_1016_j_apcatb_2011_06_002 crossref_primary_10_1016_j_psep_2020_08_020 crossref_primary_10_1016_j_seppur_2016_10_005 crossref_primary_10_1016_j_cej_2023_143025 crossref_primary_10_1080_14328917_2016_1211479 crossref_primary_10_1016_j_apcatb_2017_01_082 crossref_primary_10_1016_j_cej_2013_03_091 crossref_primary_10_1007_s13204_016_0525_z crossref_primary_10_1016_j_jcis_2012_02_070 crossref_primary_10_1016_j_apcata_2015_02_004 crossref_primary_10_1016_j_jallcom_2021_163370 crossref_primary_10_1016_j_watres_2016_04_055 crossref_primary_10_1016_j_mssp_2015_05_015 crossref_primary_10_1016_j_materresbull_2016_11_042 crossref_primary_10_1021_acssuschemeng_9b02575 crossref_primary_10_1016_j_jcis_2015_12_034 crossref_primary_10_1039_c2cy20074k crossref_primary_10_1007_s10562_019_02827_2 crossref_primary_10_1002_asia_201501012 crossref_primary_10_1007_s11356_024_31921_1 crossref_primary_10_1016_j_apcatb_2018_01_037 crossref_primary_10_1039_C5CY00767D crossref_primary_10_1021_la200078j crossref_primary_10_1016_j_apcatb_2012_05_043 crossref_primary_10_1016_j_apcatb_2014_08_037 crossref_primary_10_1080_01932691_2018_1554488 crossref_primary_10_1080_10667857_2016_1162951 crossref_primary_10_1016_j_jssc_2013_07_019 crossref_primary_10_1039_c3dt50736j crossref_primary_10_3762_bjnano_4_87 crossref_primary_10_1002_aoc_4757 crossref_primary_10_1039_D0NJ03907A crossref_primary_10_1016_j_jhazmat_2012_03_002 crossref_primary_10_1016_j_matlet_2017_08_017 crossref_primary_10_1002_chem_201103787 crossref_primary_10_1016_j_watres_2014_05_044 crossref_primary_10_1016_j_molstruc_2014_10_050 crossref_primary_10_1016_j_jtice_2023_104722 crossref_primary_10_1016_j_jssc_2013_07_028 crossref_primary_10_1016_j_apsusc_2020_146742 crossref_primary_10_1016_j_jcis_2016_06_068 crossref_primary_10_1016_j_apcatb_2017_07_081 crossref_primary_10_1039_C4RA04228J crossref_primary_10_1016_j_jece_2017_07_009 crossref_primary_10_1016_j_jallcom_2011_02_121 crossref_primary_10_1016_j_bioelechem_2021_107928 crossref_primary_10_1039_c2jm35503e crossref_primary_10_1016_j_jphotochemrev_2014_10_003 crossref_primary_10_1007_s10854_017_8174_x crossref_primary_10_1016_j_apsusc_2015_07_139 crossref_primary_10_1016_j_matlet_2017_08_117 crossref_primary_10_1016_j_jcis_2016_11_087 crossref_primary_10_1016_j_apsusc_2022_154122 crossref_primary_10_1016_j_jece_2022_108582 crossref_primary_10_1002_cnma_202000438 crossref_primary_10_1002_clen_201900064 crossref_primary_10_1088_2043_6262_6_4_045003 crossref_primary_10_1016_j_molcata_2015_01_017 crossref_primary_10_1016_j_apcatb_2015_05_002 crossref_primary_10_1021_acssuschemeng_6b00743 crossref_primary_10_1039_c1nr10247h crossref_primary_10_1186_1556_276X_8_442 crossref_primary_10_1016_j_jssc_2021_122703 crossref_primary_10_1039_D0RA09144H crossref_primary_10_1016_j_ceramint_2013_09_080 crossref_primary_10_1016_j_molcata_2011_05_012 crossref_primary_10_1016_j_apsusc_2018_01_248 crossref_primary_10_1016_j_molcata_2014_03_014 crossref_primary_10_1016_S1872_2067_11_60422_1 crossref_primary_10_1080_10667857_2016_1182343 crossref_primary_10_1039_c3ta01450a crossref_primary_10_1016_j_jhazmat_2015_05_022 crossref_primary_10_1021_am5051422 crossref_primary_10_1016_j_materresbull_2016_12_016 crossref_primary_10_5004_dwt_2017_0259 crossref_primary_10_1002_jctb_3841 crossref_primary_10_1007_s11244_013_0020_7 crossref_primary_10_1134_S1061933X16040190 crossref_primary_10_1039_C4CY00777H crossref_primary_10_1002_slct_202000502 crossref_primary_10_1039_C3NR06302J crossref_primary_10_1007_s10854_013_1702_4 crossref_primary_10_1039_C4RA08044K crossref_primary_10_1016_j_matlet_2012_07_074 crossref_primary_10_1039_C6DT03723B crossref_primary_10_1016_j_catcom_2013_09_017 crossref_primary_10_1039_C3RA45381B crossref_primary_10_1007_s42114_017_0005_2 crossref_primary_10_1039_C1NJ20850K crossref_primary_10_1016_j_apsusc_2015_01_021 crossref_primary_10_1021_acs_jpcc_6b09245 crossref_primary_10_1016_j_apsusc_2018_09_163 crossref_primary_10_1016_j_catcom_2013_02_019 crossref_primary_10_1007_s11164_015_1960_2 crossref_primary_10_1016_j_apcatb_2012_12_038 crossref_primary_10_1016_j_cej_2014_05_040 crossref_primary_10_1021_acs_nanolett_7b05090 crossref_primary_10_1007_s10563_012_9145_0 crossref_primary_10_1049_mnl_2014_0099 crossref_primary_10_1049_mnl_2017_0152 crossref_primary_10_1021_acsanm_0c00703 crossref_primary_10_1002_chem_201102606 crossref_primary_10_1021_la300615b crossref_primary_10_1016_j_apsusc_2016_10_189 crossref_primary_10_1016_j_apsusc_2013_06_121 crossref_primary_10_1016_j_micromeso_2014_04_004 crossref_primary_10_1007_s10854_016_5087_z crossref_primary_10_1039_c3nr00191a crossref_primary_10_1021_am4034735 crossref_primary_10_1039_C5CY00705D crossref_primary_10_1039_C5RA16814G crossref_primary_10_1016_j_jmrt_2022_11_011 crossref_primary_10_1016_j_apsusc_2014_09_060 crossref_primary_10_1007_s00339_015_9421_8 crossref_primary_10_1039_C6CP03110B crossref_primary_10_1039_C4CE02268H crossref_primary_10_1016_j_materresbull_2013_05_120 crossref_primary_10_1002_adsc_201600138 crossref_primary_10_1007_s00339_014_8425_0 crossref_primary_10_1016_j_apcatb_2017_01_029 crossref_primary_10_1016_j_watres_2012_11_057 crossref_primary_10_1002_jccs_201500183 crossref_primary_10_1080_10934529_2013_797309 crossref_primary_10_1016_j_jes_2016_04_032 crossref_primary_10_1039_c2cp40823f crossref_primary_10_1016_j_jcis_2023_03_064 crossref_primary_10_1016_j_materresbull_2014_10_018 crossref_primary_10_4028_www_scientific_net_MSF_996_76 crossref_primary_10_1016_j_optmat_2021_111947 crossref_primary_10_1016_j_apsusc_2014_10_161 crossref_primary_10_1016_j_molcata_2014_07_027 crossref_primary_10_1021_acssuschemeng_5b01473 crossref_primary_10_1016_j_apsusc_2013_11_126 crossref_primary_10_1590_1516_1439_346614 crossref_primary_10_1002_mame_201800006 crossref_primary_10_1016_j_materresbull_2018_02_047 crossref_primary_10_1021_acsanm_7b00242 crossref_primary_10_1002_aoc_4349 crossref_primary_10_1515_epoly_2015_0194 crossref_primary_10_1016_j_jcis_2014_02_037 crossref_primary_10_1039_c3dt32813a crossref_primary_10_1016_j_jcis_2017_08_095 crossref_primary_10_1016_j_jphotochem_2021_113427 crossref_primary_10_1039_C4RA10843D crossref_primary_10_1007_s40097_018_0278_1 crossref_primary_10_1021_am5002019 crossref_primary_10_1016_j_apsusc_2022_154429 crossref_primary_10_3139_146_111944 crossref_primary_10_1016_j_apt_2018_04_019 crossref_primary_10_1016_j_jece_2018_02_034 crossref_primary_10_1016_j_matlet_2014_01_027 crossref_primary_10_1016_j_molliq_2019_112032 crossref_primary_10_1142_S108842461650084X crossref_primary_10_1016_j_molcata_2014_07_031 crossref_primary_10_1039_D4NR02637C crossref_primary_10_1246_cl_141209 crossref_primary_10_1016_j_jwpe_2019_100985 crossref_primary_10_1039_C5TC01306B crossref_primary_10_1016_j_jphotochem_2017_12_021 crossref_primary_10_1039_c2dt12089e crossref_primary_10_1142_S1793292018500017 crossref_primary_10_1142_S1793604712500476 crossref_primary_10_1111_jace_16254 crossref_primary_10_1039_c2jm31736b crossref_primary_10_1016_j_jcis_2016_11_029 |
ContentType | Journal Article |
Copyright | Copyright © 2010 American Chemical Society 2015 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2010 American Chemical Society – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/la104022g |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5827 |
EndPage | 18727 |
ExternalDocumentID | 21114257 23687359 10_1021_la104022g c295169139 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 4.4 53G 55A 5GY 5VS 7~N AABXI ABFLS ABMVS ABPTK ABUCX ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 LG6 RNS ROL TN5 UI2 UPT VF5 VG9 W1F X --- -~X AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AGXLV AHGAQ CITATION CUPRZ GGK YQT ~02 .HR 186 1WB 6TJ ABHMW ACRPL ADNMO AEYZD AFFNX AGQPQ ANPPW ANTXH IQODW CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-a410t-223e7c5d21d6d1d5005a1e575c1fdb7d51dfbb0a5c26a0ef6440bc5ccf8aca5d3 |
IEDL.DBID | ACS |
ISSN | 0743-7463 1520-5827 |
IngestDate | Thu Jul 10 17:35:46 EDT 2025 Thu Jan 02 22:40:42 EST 2025 Mon Jul 21 09:13:21 EDT 2025 Tue Jul 01 03:43:25 EDT 2025 Thu Apr 24 23:07:28 EDT 2025 Thu Aug 27 13:41:56 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | Complexation Scanning electron microscopy Stability Organic dye Nanoparticle Photocatalysis Transition element compounds X ray Nitrogen Surface plasmon Mechanism Pollutant Preparation Photoelectron spectrometry Resonance Hydrothermal condition Reflectance |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a410t-223e7c5d21d6d1d5005a1e575c1fdb7d51dfbb0a5c26a0ef6440bc5ccf8aca5d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 21114257 |
PQID | 821486604 |
PQPubID | 23479 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_821486604 pubmed_primary_21114257 pascalfrancis_primary_23687359 crossref_citationtrail_10_1021_la104022g crossref_primary_10_1021_la104022g acs_journals_10_1021_la104022g |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-12-21 |
PublicationDateYYYYMMDD | 2010-12-21 |
PublicationDate_xml | – month: 12 year: 2010 text: 2010-12-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States |
PublicationTitle | Langmuir |
PublicationTitleAlternate | Langmuir |
PublicationYear | 2010 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
SSID | ssj0009349 |
Score | 2.4824226 |
Snippet | In this paper, we successfully fabricate a stable and highly efficient direct sunlight plasmonic photocatalyst Ag−AgBr through a facile hydrothermal and... In this paper, we successfully fabricate a stable and highly efficient direct sunlight plasmonic photocatalyst Ag-AgBr through a facile hydrothermal and... |
SourceID | proquest pubmed pascalfrancis crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 18723 |
SubjectTerms | Bromides - chemistry Catalysis Chemistry Colloidal state and disperse state Colloids: Surfactants and Self-Assembly, Dispersions, Emulsions, Foams Electron Transport Exact sciences and technology General and physical chemistry Metal Nanoparticles - chemistry Photochemical Processes Photochemistry Physical and chemical studies. Granulometry. Electrokinetic phenomena Physical chemistry of induced reactions (with radiations, particles and ultrasonics) Silver - chemistry Silver Compounds - chemistry Sunlight Surface Properties |
Title | Facile Subsequently Light-Induced Route to Highly Efficient and Stable Sunlight-Driven Ag−AgBr Plasmonic Photocatalyst |
URI | http://dx.doi.org/10.1021/la104022g https://www.ncbi.nlm.nih.gov/pubmed/21114257 https://www.proquest.com/docview/821486604 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6V9gASouVRWEpXFnDgkhLbsZMel21XFQJUCSr1FvmVReqSVJusRPkFnPsT-0sYO8m2VR-cM3OwZzzzTTz-BuC9kFwJTG0RtwmPEokFikptEonU99RI61qe7a_f5MFR8vlYHK_Auztu8Bn9OFNYMWCmmT6ANSaz1FdYo_H3S2Zd3mJcz7WZJpL39EFXVX3qMfW11PP4VNW4C0U7vuJufBnyzGQd9vrXOm17ycnOotE75s9N8sb7lrABTzqcSUatYzyFFVc-g4fjfrzbc_g9UQYjAvGRI7RTN7Mz8iXQivhxHsZZ4ruFHGkq4ptB8Ot-oJtASaJKSxCm6qBfzoLW3twHTjKaXvw9H00_zckhAvNfnnmXHP6smir8KDqrmxdwNNn_MT6IujEMkUpo3EQIIFxqhGXUSkutwHOrqEOYZ2hhdWoFtYXWsRKGSRW7AhFWrI0wpsiUUcLyTVgtq9K9AkKtTgTfxZoHq0rEasqmmeWWCYNIs9DZAIZop7w7RnUebsgZzZcbOIAPvQlz05GY-1kas9tE3y5FT1vmjtuEhtf8YCnJOLoaF7sDIL1j5Gggf5uiSlct6jxjWElKGScDeNk6zKUy9S-URfr6f8vZgkesa49h9A2sNvOF20aQ0-hhcPJ_BG71vw |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VcigS4v9n-VksBBKXlNiOne2Bw7Ltaku3VSVaqbfg2M4isSTVJitYnoAzR16Ft-FJGDvJLkVFnCpxztiyPWPPN_H4G4BnQnIl0LUF3EQ8iCQGKCo2USBil1Mjja15tvcP5Og4enMiTtbge_sWBgdRYk-lv8RfsQvQl1OFgQM6nEmTQLlnF58wPCtf7W6jLp8zNtw5GoyCpoJAoCIaVgH6PhtrYRg10lAj0OQUtYhQNM1MGhtBTZamoRKaSRXaDMFBmGqhddZTWgnDsd9LcBlBD3OBXX_wdkXoy2to7Sg-40jylrXo96E6j6fLMx7v6qkqcfGzumrG32Gtd2_D6_BjuTA-q-XD5rxKN_WXPzgj_8-VuwHXGlRN-vU2uAlrNr8FG4O2mN1t-DxUGs8_4s5JnzxeTRdk7ElUXPESbQ1xuVGWVAVxqS_4dceTa6AkUbkhCMpT3z6f-lbbM-cmSH_y8-u3_uT1jBxiGPLR8QyTw_dFVfjfYouyugPHFzLxu7CeF7m9D4SaNBJ8CyM8jKERmSoT9ww3TGjE1Vna60AX9ZU0h0aZ-HwARpOlwjrworWcRDeU7a5yyPQ80adL0dOap-Q8oe4Z81tKMi57MRdbHSCtPSaoIHd3pHJbzMukxzBuljKMOnCvttNVY-reY4v4wb-m8wQ2Rkf742S8e7D3EK6wJjGI0UewXs3m9jHCuyrt-n1G4N1Fm-cvsmFbbQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VIkElxP_P8rNYCCQuKbEdO-mBw7LbVUtLtRJU6i04trOVWJLVJitYnoAzD8Cr8C48CWMnu6WoiFMlzhlbtmfs-SYefwPwVEiuBLq2gJuIB5HEAEXFJgpE7HJqpLENz_abA7lzGL0-Ekdr8H35FgYHUWFPlb_Ed7t6avKWYYC-mCgMHtDpjNskyj27-IQhWvVyd4D6fMbYcPtdfydoqwgEKqJhHaD_s7EWhlEjDTUCzU5RiyhF09xksRHU5FkWKqGZVKHNESCEmRZa54nSShiO_V6Ai-560AV3vf7bE1Jf3sBrR_MZR5IvmYt-H6rzero65fWuTFWFCsibyhl_h7bexQ2vwY_V4vjMlg-b8zrb1F_-4I38f1fvOlxt0TXpNdvhBqzZ4iZc7i-L2t2Cz0Ol8Rwk7rz0SeT1ZEH2PZmKK2KirSEuR8qSuiQuBQa_bnuSDZQkqjAEwXnm2xcT32owc-6C9MY_v37rjV_NyAjDkY-Ob5iMjsu69L_HFlV9Gw7PZeJ3YL0oC3sPCDVZJPgWRnoYSyNCVSZODDdMaMTXeZZ0oIs6S9vDo0p9XgCj6UphHXi-tJ5Ut9TtroLI5CzRJyvRacNXcpZQ95QJriQZl0nMxVYHyNImU1SQu0NShS3nVZowjJ-lDKMO3G1s9aQxde-yRXz_X9N5DJdGg2G6v3uw9wA2WJsfxOhDWK9nc_sIUV6ddf1WI_D-vK3zFxK2XfA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facile+subsequently+light-induced+route+to+highly+efficient+and+stable+sunlight-driven+Ag-AgBr+plasmonic+photocatalyst&rft.jtitle=Langmuir&rft.au=Kuai%2C+Long&rft.au=Geng%2C+Baoyou&rft.au=Chen%2C+Xiaoting&rft.au=Zhao%2C+Yanyan&rft.date=2010-12-21&rft.eissn=1520-5827&rft.volume=26&rft.issue=24&rft.spage=18723&rft_id=info:doi/10.1021%2Fla104022g&rft_id=info%3Apmid%2F21114257&rft.externalDocID=21114257 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon |