Zippering DNA Tetrahedral Hyperlink for Ultrasensitive Electrochemical MicroRNA Detection
Pluripotency of a DNA tetrahedron (DNATT) has made the iconic framework a compelling keystone in biosensors and biodevices. Herein, distinct from the well-tapped applications in substrate fabrication, we focus on exploring their tracing and signaling potentials. A homologous family of four isostruct...
Saved in:
Published in | Analytical chemistry (Washington) Vol. 92; no. 22; pp. 15137 - 15144 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
17.11.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0003-2700 1520-6882 1520-6882 |
DOI | 10.1021/acs.analchem.0c03553 |
Cover
Loading…
Abstract | Pluripotency of a DNA tetrahedron (DNATT) has made the iconic framework a compelling keystone in biosensors and biodevices. Herein, distinct from the well-tapped applications in substrate fabrication, we focus on exploring their tracing and signaling potentials. A homologous family of four isostructural DNATT, i.e., DNATTα/β/γ/δ, was engineered to form a sensor circuitry, in which a target-specific monolayer of thiolated DNATTγ pinned down the analyte jointly with the reciprocal DNATTδ into a sandwich complex; the latter further rallied an in situ interdigital relay of biotinylated DNATTα/β into a microsized hyperlink dubbed polyDNATT. Its scale and growth factors were illuminated rudimentarily in transmission electron microscopy and confocal laser scanning microscopy. Using a nonsmall-cell lung cancer-related microRNA (hsa-miR-193a-3p) as the subject, a compound DNA-backboned construct was synthesized, fusing all building blocks together. Its superb tacticity and stereochemical conformality avail the templating of a horseradish peroxidase train, which boosted the paralleled catalytic surge of proton donors, resulting in an attomolar detection limit and a broad calibration range of more than seven orders of magnitude. Such oligomerization bested the conventional hybridization chain reaction laddering at both biomechanical stability and stoichiometric congruency. More significantly, it demonstrates the flexibility of DNA architectures and their multitasking ability in biosensing. |
---|---|
AbstractList | Pluripotency of a DNA tetrahedron (DNATT) has made the iconic framework a compelling keystone in biosensors and biodevices. Herein, distinct from the well-tapped applications in substrate fabrication, we focus on exploring their tracing and signaling potentials. A homologous family of four isostructural DNATT, i.e., DNATTα/β/γ/δ, was engineered to form a sensor circuitry, in which a target-specific monolayer of thiolated DNATTγ pinned down the analyte jointly with the reciprocal DNATTδ into a sandwich complex; the latter further rallied an in situ interdigital relay of biotinylated DNATTα/β into a microsized hyperlink dubbed polyDNATT. Its scale and growth factors were illuminated rudimentarily in transmission electron microscopy and confocal laser scanning microscopy. Using a nonsmall-cell lung cancer-related microRNA (hsa-miR-193a-3p) as the subject, a compound DNA-backboned construct was synthesized, fusing all building blocks together. Its superb tacticity and stereochemical conformality avail the templating of a horseradish peroxidase train, which boosted the paralleled catalytic surge of proton donors, resulting in an attomolar detection limit and a broad calibration range of more than seven orders of magnitude. Such oligomerization bested the conventional hybridization chain reaction laddering at both biomechanical stability and stoichiometric congruency. More significantly, it demonstrates the flexibility of DNA architectures and their multitasking ability in biosensing.Pluripotency of a DNA tetrahedron (DNATT) has made the iconic framework a compelling keystone in biosensors and biodevices. Herein, distinct from the well-tapped applications in substrate fabrication, we focus on exploring their tracing and signaling potentials. A homologous family of four isostructural DNATT, i.e., DNATTα/β/γ/δ, was engineered to form a sensor circuitry, in which a target-specific monolayer of thiolated DNATTγ pinned down the analyte jointly with the reciprocal DNATTδ into a sandwich complex; the latter further rallied an in situ interdigital relay of biotinylated DNATTα/β into a microsized hyperlink dubbed polyDNATT. Its scale and growth factors were illuminated rudimentarily in transmission electron microscopy and confocal laser scanning microscopy. Using a nonsmall-cell lung cancer-related microRNA (hsa-miR-193a-3p) as the subject, a compound DNA-backboned construct was synthesized, fusing all building blocks together. Its superb tacticity and stereochemical conformality avail the templating of a horseradish peroxidase train, which boosted the paralleled catalytic surge of proton donors, resulting in an attomolar detection limit and a broad calibration range of more than seven orders of magnitude. Such oligomerization bested the conventional hybridization chain reaction laddering at both biomechanical stability and stoichiometric congruency. More significantly, it demonstrates the flexibility of DNA architectures and their multitasking ability in biosensing. Pluripotency of a DNA tetrahedron (DNA ) has made the iconic framework a compelling keystone in biosensors and biodevices. Herein, distinct from the well-tapped applications in substrate fabrication, we focus on exploring their tracing and signaling potentials. A homologous family of four isostructural DNA , ., DNA , was engineered to form a sensor circuitry, in which a target-specific monolayer of thiolated DNA pinned down the analyte jointly with the reciprocal DNA into a sandwich complex; the latter further rallied an interdigital relay of biotinylated DNA into a microsized hyperlink dubbed polyDNA . Its scale and growth factors were illuminated rudimentarily in transmission electron microscopy and confocal laser scanning microscopy. Using a nonsmall-cell lung cancer-related microRNA (hsa-miR-193a-3p) as the subject, a compound DNA-backboned construct was synthesized, fusing all building blocks together. Its superb tacticity and stereochemical conformality avail the templating of a horseradish peroxidase train, which boosted the paralleled catalytic surge of proton donors, resulting in an attomolar detection limit and a broad calibration range of more than seven orders of magnitude. Such oligomerization bested the conventional hybridization chain reaction laddering at both biomechanical stability and stoichiometric congruency. More significantly, it demonstrates the flexibility of DNA architectures and their multitasking ability in biosensing. Pluripotency of a DNA tetrahedron (DNATT) has made the iconic framework a compelling keystone in biosensors and biodevices. Herein, distinct from the well-tapped applications in substrate fabrication, we focus on exploring their tracing and signaling potentials. A homologous family of four isostructural DNATT, i.e., DNATTα/β/γ/δ, was engineered to form a sensor circuitry, in which a target-specific monolayer of thiolated DNATTγ pinned down the analyte jointly with the reciprocal DNATTδ into a sandwich complex; the latter further rallied an in situ interdigital relay of biotinylated DNATTα/β into a microsized hyperlink dubbed polyDNATT. Its scale and growth factors were illuminated rudimentarily in transmission electron microscopy and confocal laser scanning microscopy. Using a nonsmall-cell lung cancer-related microRNA (hsa-miR-193a-3p) as the subject, a compound DNA-backboned construct was synthesized, fusing all building blocks together. Its superb tacticity and stereochemical conformality avail the templating of a horseradish peroxidase train, which boosted the paralleled catalytic surge of proton donors, resulting in an attomolar detection limit and a broad calibration range of more than seven orders of magnitude. Such oligomerization bested the conventional hybridization chain reaction laddering at both biomechanical stability and stoichiometric congruency. More significantly, it demonstrates the flexibility of DNA architectures and their multitasking ability in biosensing. Pluripotency of a DNA tetrahedron (DNAᵀᵀ) has made the iconic framework a compelling keystone in biosensors and biodevices. Herein, distinct from the well-tapped applications in substrate fabrication, we focus on exploring their tracing and signaling potentials. A homologous family of four isostructural DNAᵀᵀ, i.e., DNAᵀᵀᵅ/ᵝ/ᵞ/ᵟ, was engineered to form a sensor circuitry, in which a target-specific monolayer of thiolated DNAᵀᵀᵞ pinned down the analyte jointly with the reciprocal DNAᵀᵀᵟ into a sandwich complex; the latter further rallied an in situ interdigital relay of biotinylated DNAᵀᵀᵅ/ᵝ into a microsized hyperlink dubbed polyDNAᵀᵀ. Its scale and growth factors were illuminated rudimentarily in transmission electron microscopy and confocal laser scanning microscopy. Using a nonsmall-cell lung cancer-related microRNA (hsa-miR-193a-3p) as the subject, a compound DNA-backboned construct was synthesized, fusing all building blocks together. Its superb tacticity and stereochemical conformality avail the templating of a horseradish peroxidase train, which boosted the paralleled catalytic surge of proton donors, resulting in an attomolar detection limit and a broad calibration range of more than seven orders of magnitude. Such oligomerization bested the conventional hybridization chain reaction laddering at both biomechanical stability and stoichiometric congruency. More significantly, it demonstrates the flexibility of DNA architectures and their multitasking ability in biosensing. |
Author | Wang, Huan Yang, Meng Ma, Kefeng Deng, Shengyuan Wan, Ying Huang, Yaqi Su, Yan Zhu, Longyi Kang, Kai Ji, Jinyu |
AuthorAffiliation | School of Chemical Engineering School of Environmental and Biological Engineering School of Mechanical Engineering |
AuthorAffiliation_xml | – name: School of Chemical Engineering – name: School of Mechanical Engineering – name: School of Environmental and Biological Engineering |
Author_xml | – sequence: 1 givenname: Ying surname: Wan fullname: Wan, Ying – sequence: 2 givenname: Huan surname: Wang fullname: Wang, Huan – sequence: 3 givenname: Jinyu surname: Ji fullname: Ji, Jinyu – sequence: 4 givenname: Kai surname: Kang fullname: Kang, Kai – sequence: 5 givenname: Meng surname: Yang fullname: Yang, Meng – sequence: 6 givenname: Yaqi surname: Huang fullname: Huang, Yaqi – sequence: 7 givenname: Yan surname: Su fullname: Su, Yan email: suyan@njust.edu.cn – sequence: 8 givenname: Kefeng surname: Ma fullname: Ma, Kefeng – sequence: 9 givenname: Longyi orcidid: 0000-0002-0898-4804 surname: Zhu fullname: Zhu, Longyi – sequence: 10 givenname: Shengyuan orcidid: 0000-0002-6382-0976 surname: Deng fullname: Deng, Shengyuan email: sydeng@njust.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33119272$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkTtPHDEUha2IKCyb_IMoGilNmlnu9Ws86RCPEIkkUgQFNJbx2MHEO7PYs5H493i0uxQUoXJxvnOudc4B2euH3hHyEWGBQPHQ2LwwvYn2zi0XYIEJwd6QGQoKtVSK7pEZALCaNgD75CDnewBEQPmO7DOG2NKGzsj1TVitXAr9n-rk51F16cZk7lyXTKzOH4sQQ_-38kOqrmJRsutzGMM_V51GZ8c0TMeDLfCPYNPwuyScuLEoYejfk7fexOw-bN85uTo7vTw-ry9-fft-fHRRGw7tWHvWoFLCS-sFl74Bedsx77q2UUrxzjW2FaxVwFtrEVVjhPCWe0tZQZW3bE6-bHJXaXhYuzzqZcjWxWh6N6yzpoJyhhKwfR3lQnJUspnQzy_Q-2GdSt0TJSWTCku5c_JpS61vl67TqxSWJj3qXb8F-LoBSjs5J-e1DaOZ6ilthqgR9DSmLmPq3Zh6O2Yx8xfmXf4rNtjYJvX51_-1PAFYYbYl |
CitedBy_id | crossref_primary_10_1016_j_mtbio_2025_101486 crossref_primary_10_1007_s00604_024_06378_1 crossref_primary_10_1016_j_trac_2023_116979 crossref_primary_10_1021_acs_analchem_1c00295 crossref_primary_10_3390_bios13050543 crossref_primary_10_1016_j_apsb_2022_10_019 crossref_primary_10_1016_j_talanta_2021_122735 crossref_primary_10_1021_acssensors_4c02493 crossref_primary_10_3390_bios11040118 crossref_primary_10_1016_j_snb_2023_134567 crossref_primary_10_1016_j_snb_2025_137257 crossref_primary_10_1039_D1CC03071J |
Cites_doi | 10.1021/acs.analchem.8b02686 10.1039/C9SC04823E 10.1021/la800525n 10.1038/nnano.2010.193 10.1021/am5047735 10.1002/adma.201002767 10.1021/ac201491p 10.1016/S0040-6031(01)00769-9 10.1021/ja5101307 10.1002/anie.201701868 10.1021/acs.analchem.6b01373 10.1021/ed047p261 10.1002/bip.360220415 10.1016/0304-3991(92)90413-E 10.1016/j.bios.2019.04.053 10.1021/acsami.7b04553 10.1021/jacs.8b10529 10.1093/bioinformatics/bti164 10.1038/nprot.2016.071 10.1111/j.0022-2720.2004.01372.x 10.1016/j.bios.2015.04.006 10.1016/j.tcb.2009.05.002 10.1016/j.ebiom.2015.07.034 10.1038/nature09012 10.1007/s11426-011-4327-6 10.1016/0167-4781(94)90076-0 10.1074/jbc.M114.621409 10.1038/s41467-019-08647-7 10.1002/anie.200705982 10.1021/nn402642a 10.1002/smll.201900013 10.1039/c2cc35208g 10.1021/ja800554t 10.1021/acsami.7b05981 10.1039/C3CS60476D 10.1038/am.2013.22 10.1016/j.bios.2013.02.045 10.1080/10717544.2017.1373166 10.1177/27.10.41873 10.1021/ac4037262 10.1002/adma.201506407 10.1021/ar500073a 10.1021/acs.analchem.6b04609 10.1016/j.bios.2017.06.022 10.1039/b917661f 10.1016/j.bios.2012.09.017 10.1021/cm5019663 10.1002/ange.201410720 10.1021/acs.analchem.8b02826 10.1006/abio.1999.4360 10.1038/s41586-018-0332-7 10.1039/C7AN01154G 10.1126/science.1202998 10.1073/pnas.1408869112 10.1021/ma201331f 10.1021/ac203368h |
ContentType | Journal Article |
Copyright | 2020 American Chemical Society Copyright American Chemical Society Nov 17, 2020 |
Copyright_xml | – notice: 2020 American Chemical Society – notice: Copyright American Chemical Society Nov 17, 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7S9 L.6 |
DOI | 10.1021/acs.analchem.0c03553 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Toxicology Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Toxicology Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-6882 |
EndPage | 15144 |
ExternalDocumentID | 33119272 10_1021_acs_analchem_0c03553 a658530594 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 1AW 23M 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABOCM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACNCT ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 D0L DZ EBS ED ED~ F20 F5P GNL IH9 IHE JG JG~ K2 P2P PQEST PQQKQ ROL RXW TAE TN5 UHB UI2 UKR VF5 VG9 VQA W1F WH7 X X6Y XFK YZZ --- -DZ -~X .DC 4.4 53G 6J9 AAHBH AAYXX ABBLG ABHFT ABHMW ABJNI ABLBI ABQRX ACBEA ACGFO ACKOT ADHLV AGXLV AHGAQ CITATION CUPRZ GGK KZ1 LMP XSW ZCA ~02 CGR CUY CVF ECM EIF NPM YIN 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a409t-f371885f6cf546f706bd3fed978884de7c95398049cc1187a55fc4fc237068fc3 |
IEDL.DBID | ACS |
ISSN | 0003-2700 1520-6882 |
IngestDate | Thu Jul 10 23:42:14 EDT 2025 Fri Jul 11 12:25:44 EDT 2025 Mon Jun 30 08:21:21 EDT 2025 Wed Feb 19 02:29:32 EST 2025 Tue Jul 01 01:19:14 EDT 2025 Thu Apr 24 23:01:06 EDT 2025 Thu Nov 19 16:43:29 EST 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a409t-f371885f6cf546f706bd3fed978884de7c95398049cc1187a55fc4fc237068fc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0898-4804 0000-0002-6382-0976 |
PMID | 33119272 |
PQID | 2466368100 |
PQPubID | 45400 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2524316019 proquest_miscellaneous_2456418679 proquest_journals_2466368100 pubmed_primary_33119272 crossref_citationtrail_10_1021_acs_analchem_0c03553 crossref_primary_10_1021_acs_analchem_0c03553 acs_journals_10_1021_acs_analchem_0c03553 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-17 |
PublicationDateYYYYMMDD | 2020-11-17 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Analytical chemistry (Washington) |
PublicationTitleAlternate | Anal. Chem |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref33/cit33 doi: 10.1021/acs.analchem.8b02686 – ident: ref17/cit17 doi: 10.1039/C9SC04823E – ident: ref49/cit49 doi: 10.1021/la800525n – ident: ref2/cit2 doi: 10.1038/nnano.2010.193 – ident: ref20/cit20 doi: 10.1021/am5047735 – ident: ref21/cit21 doi: 10.1002/adma.201002767 – ident: ref27/cit27 doi: 10.1021/ac201491p – ident: ref46/cit46 doi: 10.1016/S0040-6031(01)00769-9 – ident: ref19/cit19 doi: 10.1021/ja5101307 – ident: ref10/cit10 doi: 10.1002/anie.201701868 – ident: ref22/cit22 doi: 10.1021/acs.analchem.6b01373 – ident: ref48/cit48 doi: 10.1021/ed047p261 – ident: ref47/cit47 doi: 10.1002/bip.360220415 – ident: ref35/cit35 doi: 10.1016/0304-3991(92)90413-E – ident: ref37/cit37 doi: 10.1016/j.bios.2019.04.053 – ident: ref26/cit26 doi: 10.1021/acsami.7b04553 – ident: ref1/cit1 doi: 10.1021/jacs.8b10529 – ident: ref40/cit40 doi: 10.1093/bioinformatics/bti164 – ident: ref32/cit32 doi: 10.1038/nprot.2016.071 – ident: ref34/cit34 doi: 10.1111/j.0022-2720.2004.01372.x – ident: ref55/cit55 doi: 10.1016/j.bios.2015.04.006 – ident: ref11/cit11 doi: 10.1016/j.tcb.2009.05.002 – ident: ref30/cit30 doi: 10.1016/j.ebiom.2015.07.034 – ident: ref6/cit6 doi: 10.1038/nature09012 – ident: ref25/cit25 doi: 10.1007/s11426-011-4327-6 – ident: ref51/cit51 doi: 10.1016/0167-4781(94)90076-0 – ident: ref29/cit29 doi: 10.1074/jbc.M114.621409 – ident: ref5/cit5 doi: 10.1038/s41467-019-08647-7 – ident: ref42/cit42 doi: 10.1002/anie.200705982 – ident: ref23/cit23 doi: 10.1021/nn402642a – ident: ref8/cit8 doi: 10.1002/smll.201900013 – ident: ref28/cit28 doi: 10.1039/c2cc35208g – ident: ref50/cit50 doi: 10.1021/ja800554t – ident: ref56/cit56 doi: 10.1021/acsami.7b05981 – ident: ref38/cit38 doi: 10.1039/C3CS60476D – ident: ref13/cit13 doi: 10.1038/am.2013.22 – ident: ref31/cit31 doi: 10.1016/j.bios.2013.02.045 – ident: ref18/cit18 doi: 10.1080/10717544.2017.1373166 – ident: ref36/cit36 doi: 10.1177/27.10.41873 – ident: ref43/cit43 doi: 10.1021/ac4037262 – ident: ref15/cit15 doi: 10.1002/adma.201506407 – ident: ref12/cit12 doi: 10.1021/ar500073a – ident: ref53/cit53 doi: 10.1021/acs.analchem.6b04609 – ident: ref54/cit54 doi: 10.1016/j.bios.2017.06.022 – ident: ref24/cit24 doi: 10.1039/b917661f – ident: ref44/cit44 doi: 10.1016/j.bios.2012.09.017 – ident: ref39/cit39 doi: 10.1021/cm5019663 – ident: ref14/cit14 doi: 10.1002/ange.201410720 – ident: ref16/cit16 doi: 10.1021/acs.analchem.8b02826 – ident: ref45/cit45 doi: 10.1006/abio.1999.4360 – ident: ref4/cit4 doi: 10.1038/s41586-018-0332-7 – ident: ref9/cit9 doi: 10.1039/C7AN01154G – ident: ref3/cit3 doi: 10.1126/science.1202998 – ident: ref7/cit7 doi: 10.1073/pnas.1408869112 – ident: ref41/cit41 doi: 10.1021/ma201331f – ident: ref52/cit52 doi: 10.1021/ac203368h |
SSID | ssj0011016 |
Score | 2.4194303 |
Snippet | Pluripotency of a DNA tetrahedron (DNATT) has made the iconic framework a compelling keystone in biosensors and biodevices. Herein, distinct from the... Pluripotency of a DNA tetrahedron (DNA ) has made the iconic framework a compelling keystone in biosensors and biodevices. Herein, distinct from the... Pluripotency of a DNA tetrahedron (DNAᵀᵀ) has made the iconic framework a compelling keystone in biosensors and biodevices. Herein, distinct from the... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 15137 |
SubjectTerms | Analytical chemistry Biomechanics Biosensing Techniques - methods Biosensors calibration Cell Line, Tumor Chemistry Circuits Confocal microscopy Deoxyribonucleic acid detection limit DNA DNA - chemistry Electrochemistry Fabrication Growth factors Homology Horseradish peroxidase Humans Hybridization hybridization chain reaction Limit of Detection Lung cancer lungs microRNA MicroRNAs MicroRNAs - analysis MicroRNAs - chemistry Microscopy miRNA Multitasking Nanostructures - chemistry Nucleic Acid Hybridization Oligomerization Peroxidase Pluripotency Ribonucleic acid RNA Scanning microscopy stereochemistry stoichiometry Substrates Tacticity Tetrahedra Transmission electron microscopy |
Title | Zippering DNA Tetrahedral Hyperlink for Ultrasensitive Electrochemical MicroRNA Detection |
URI | http://dx.doi.org/10.1021/acs.analchem.0c03553 https://www.ncbi.nlm.nih.gov/pubmed/33119272 https://www.proquest.com/docview/2466368100 https://www.proquest.com/docview/2456418679 https://www.proquest.com/docview/2524316019 |
Volume | 92 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB5RONAeeJXSQECu1EsPTp19-HFEARQhAVJLJOjFWo93pQowEXEu_fWd8SPhIV43y95d7c4-5hvP7DcA3-kANJnBvk-2gPWVjbWf6CTxDa1oFWAuo8qje3IaDkfq-EJfzA3Fxx580f9pcNIzJFQaw00vwIAUpPwASyIkpM1QaPB75jVgS7TNkMcO1faq3DOtsELCyUOF9AzKrLTN0SqctXd26iCTq960zHr47ymF4xsHsgYrDfD09uuVsg4LttiA5UGb720DPt2jJvwMl3_-jsfVs3dwuu-d25JOJZvfURNDMl2ZI-vKI8Drja7py4TD4Png9A7rtDrY8BB4Jxzw94taOLBlFfVVbMLo6PB8MPSbNAy-IeOv9J0k_RVrF6LTKnRREGa5dDZP2HpWuY0w0TKJydRA5OTlRmuHyqGgeQ5jh_ILLBa3hf0KHsE3gYFViXRKZTowlvAQCpOHcRbZwHbgB0kpbbbRJK085KKf8stWdGkjug7Idt5SbPjMOa3G9Su1_Fmtcc3n8Ur5brsk5t0SinAaE7kFHfg2-0zTxc4WU9jbKZfRoWK2wOSFMlowEwGh7A5s1ctt1ikp-wS-I7H9DpHswEfBvwM4SjHqwmJ5N7W7hJnKbK_aKP8BncARpA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB6lcKAcKG_SAjVSLz04OPvw4xgFUKAkB5pUwMVar3clBJgIO5f--s44timVKMrNWq9Xu7PjnW88428AvuEBqBKluy76AsYVJpRuJKPIVajRwtMpD8qI7nDkDybi4lpet0DW_8LgJHIcKS-D-C_sAt1jalMoW1zKY8fTHtpJ_gGWEY8wyuTr9X82wQNySOtCeRRXrf-Ye2MUsks6f22X3gCbpdE5-wS_mumWuSb3nVmRdPTvf5gcF17POqxVMNTpzfVmA1om24SVfl39bRNW_yIq3IKb27vptLx2TkY9Z2wKPKNM-oxDDNCRJcasewfhrzN5wDs5JcXTMeqczovs6IqVwBlS-t8VjnBiijIHLNuGydnpuD9wq6IMrkJXsHAtR2sWSutrK4VvA89PUm5NGpEvLVIT6EjyKETHQ2sqZa6ktFpYzXDX_dBqvgNL2VNm9sBBMMe0Z0TErRCJ9JRBdKSZSv0wCYxn2vAdpRRXL1Uel_Fy1o2psRZdXImuDbzevlhX7OZUZOPhnafc5qnpnN3jnf77tWa8TIsJRG1E6-a14ai5jdtFoReVmacZ9ZG-IO7A6D99JCNeAsTcbdida10zKc67CMUD9nkBkXyFlcF4eBlfno9-fIGPjD4UUP5isA9LxfPMHCCaKpLD8t35A4DMGgU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8xJjF4YIzxUcZYJu1lDylJbOfjsWqpClsrtFGp60vkOLaEWkJF0pf99btLk4xNgmp7ixzbss8f97vc5XcAn_AClIlUro22gLa5DoUdiSiyJe5o7qiUBaVHdzjyB2N-NRGTR6m-cBA59pSXTnw61YvUVAwD7jmVS5QvTueu7SgHdSV7AS_Jc0fRfJ3u98aBQEZpnSyPfKv1X3NP9EK6SeV_6qYnAGepePqvYdoMuYw3mbWXRdJWP_9ic_yvOe3BbgVHrc5q_7yBDZ3tw6tunQVuH3YeERa-hR_T28WifLZ6o451owu8q3T6gF0M0KAl5qyZhTDYGs_xTU7B8XSdWherZDuqYiewhhQG-A176OmijAXLDmDcv7jpDuwqOYMt0SQsbMNQq4XC-MoI7pvA8ZOUGZ1GZFPzVAcqEiwK0QBRilKaSyGM4kZ5uPp-aBQ7hM3sPtPHYCGo85SjecQM54lwpEaUpDyZ-mESaEe34DNKKa4OVx6XfnPPjamwFl1cia4FrF7CWFUs55RsY76mld20WqxYPtbUP613x-9heRzRG9G7OS342LzG5SIXjMz0_ZLqCJ8Th2D0TB3hET8BYu8WHK12XjMoxlyE5IF38g8i-QBb171-_PVy9OUdbHv0vYDCGINT2Cwelvo9gqoiOSuPzy-ORhyI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zippering+DNA+Tetrahedral+Hyperlink+for+Ultrasensitive+Electrochemical+MicroRNA+Detection&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Wan%2C+Ying&rft.au=Wang%2C+Huan&rft.au=Ji%2C+Jinyu&rft.au=Kang%2C+Kai&rft.date=2020-11-17&rft.issn=1520-6882&rft.volume=92&rft.issue=22+p.15137-15144&rft.spage=15137&rft.epage=15144&rft_id=info:doi/10.1021%2Facs.analchem.0c03553&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon |