Zippering DNA Tetrahedral Hyperlink for Ultrasensitive Electrochemical MicroRNA Detection

Pluripotency of a DNA tetrahedron (DNATT) has made the iconic framework a compelling keystone in biosensors and biodevices. Herein, distinct from the well-tapped applications in substrate fabrication, we focus on exploring their tracing and signaling potentials. A homologous family of four isostruct...

Full description

Saved in:
Bibliographic Details
Published inAnalytical chemistry (Washington) Vol. 92; no. 22; pp. 15137 - 15144
Main Authors Wan, Ying, Wang, Huan, Ji, Jinyu, Kang, Kai, Yang, Meng, Huang, Yaqi, Su, Yan, Ma, Kefeng, Zhu, Longyi, Deng, Shengyuan
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 17.11.2020
Subjects
Online AccessGet full text
ISSN0003-2700
1520-6882
1520-6882
DOI10.1021/acs.analchem.0c03553

Cover

Loading…
Abstract Pluripotency of a DNA tetrahedron (DNATT) has made the iconic framework a compelling keystone in biosensors and biodevices. Herein, distinct from the well-tapped applications in substrate fabrication, we focus on exploring their tracing and signaling potentials. A homologous family of four isostructural DNATT, i.e., DNATTα/β/γ/δ, was engineered to form a sensor circuitry, in which a target-specific monolayer of thiolated DNATTγ pinned down the analyte jointly with the reciprocal DNATTδ into a sandwich complex; the latter further rallied an in situ interdigital relay of biotinylated DNATTα/β into a microsized hyperlink dubbed polyDNATT. Its scale and growth factors were illuminated rudimentarily in transmission electron microscopy and confocal laser scanning microscopy. Using a nonsmall-cell lung cancer-related microRNA (hsa-miR-193a-3p) as the subject, a compound DNA-backboned construct was synthesized, fusing all building blocks together. Its superb tacticity and stereochemical conformality avail the templating of a horseradish peroxidase train, which boosted the paralleled catalytic surge of proton donors, resulting in an attomolar detection limit and a broad calibration range of more than seven orders of magnitude. Such oligomerization bested the conventional hybridization chain reaction laddering at both biomechanical stability and stoichiometric congruency. More significantly, it demonstrates the flexibility of DNA architectures and their multitasking ability in biosensing.
AbstractList Pluripotency of a DNA tetrahedron (DNATT) has made the iconic framework a compelling keystone in biosensors and biodevices. Herein, distinct from the well-tapped applications in substrate fabrication, we focus on exploring their tracing and signaling potentials. A homologous family of four isostructural DNATT, i.e., DNATTα/β/γ/δ, was engineered to form a sensor circuitry, in which a target-specific monolayer of thiolated DNATTγ pinned down the analyte jointly with the reciprocal DNATTδ into a sandwich complex; the latter further rallied an in situ interdigital relay of biotinylated DNATTα/β into a microsized hyperlink dubbed polyDNATT. Its scale and growth factors were illuminated rudimentarily in transmission electron microscopy and confocal laser scanning microscopy. Using a nonsmall-cell lung cancer-related microRNA (hsa-miR-193a-3p) as the subject, a compound DNA-backboned construct was synthesized, fusing all building blocks together. Its superb tacticity and stereochemical conformality avail the templating of a horseradish peroxidase train, which boosted the paralleled catalytic surge of proton donors, resulting in an attomolar detection limit and a broad calibration range of more than seven orders of magnitude. Such oligomerization bested the conventional hybridization chain reaction laddering at both biomechanical stability and stoichiometric congruency. More significantly, it demonstrates the flexibility of DNA architectures and their multitasking ability in biosensing.Pluripotency of a DNA tetrahedron (DNATT) has made the iconic framework a compelling keystone in biosensors and biodevices. Herein, distinct from the well-tapped applications in substrate fabrication, we focus on exploring their tracing and signaling potentials. A homologous family of four isostructural DNATT, i.e., DNATTα/β/γ/δ, was engineered to form a sensor circuitry, in which a target-specific monolayer of thiolated DNATTγ pinned down the analyte jointly with the reciprocal DNATTδ into a sandwich complex; the latter further rallied an in situ interdigital relay of biotinylated DNATTα/β into a microsized hyperlink dubbed polyDNATT. Its scale and growth factors were illuminated rudimentarily in transmission electron microscopy and confocal laser scanning microscopy. Using a nonsmall-cell lung cancer-related microRNA (hsa-miR-193a-3p) as the subject, a compound DNA-backboned construct was synthesized, fusing all building blocks together. Its superb tacticity and stereochemical conformality avail the templating of a horseradish peroxidase train, which boosted the paralleled catalytic surge of proton donors, resulting in an attomolar detection limit and a broad calibration range of more than seven orders of magnitude. Such oligomerization bested the conventional hybridization chain reaction laddering at both biomechanical stability and stoichiometric congruency. More significantly, it demonstrates the flexibility of DNA architectures and their multitasking ability in biosensing.
Pluripotency of a DNA tetrahedron (DNA ) has made the iconic framework a compelling keystone in biosensors and biodevices. Herein, distinct from the well-tapped applications in substrate fabrication, we focus on exploring their tracing and signaling potentials. A homologous family of four isostructural DNA , ., DNA , was engineered to form a sensor circuitry, in which a target-specific monolayer of thiolated DNA pinned down the analyte jointly with the reciprocal DNA into a sandwich complex; the latter further rallied an interdigital relay of biotinylated DNA into a microsized hyperlink dubbed polyDNA . Its scale and growth factors were illuminated rudimentarily in transmission electron microscopy and confocal laser scanning microscopy. Using a nonsmall-cell lung cancer-related microRNA (hsa-miR-193a-3p) as the subject, a compound DNA-backboned construct was synthesized, fusing all building blocks together. Its superb tacticity and stereochemical conformality avail the templating of a horseradish peroxidase train, which boosted the paralleled catalytic surge of proton donors, resulting in an attomolar detection limit and a broad calibration range of more than seven orders of magnitude. Such oligomerization bested the conventional hybridization chain reaction laddering at both biomechanical stability and stoichiometric congruency. More significantly, it demonstrates the flexibility of DNA architectures and their multitasking ability in biosensing.
Pluripotency of a DNA tetrahedron (DNATT) has made the iconic framework a compelling keystone in biosensors and biodevices. Herein, distinct from the well-tapped applications in substrate fabrication, we focus on exploring their tracing and signaling potentials. A homologous family of four isostructural DNATT, i.e., DNATTα/β/γ/δ, was engineered to form a sensor circuitry, in which a target-specific monolayer of thiolated DNATTγ pinned down the analyte jointly with the reciprocal DNATTδ into a sandwich complex; the latter further rallied an in situ interdigital relay of biotinylated DNATTα/β into a microsized hyperlink dubbed polyDNATT. Its scale and growth factors were illuminated rudimentarily in transmission electron microscopy and confocal laser scanning microscopy. Using a nonsmall-cell lung cancer-related microRNA (hsa-miR-193a-3p) as the subject, a compound DNA-backboned construct was synthesized, fusing all building blocks together. Its superb tacticity and stereochemical conformality avail the templating of a horseradish peroxidase train, which boosted the paralleled catalytic surge of proton donors, resulting in an attomolar detection limit and a broad calibration range of more than seven orders of magnitude. Such oligomerization bested the conventional hybridization chain reaction laddering at both biomechanical stability and stoichiometric congruency. More significantly, it demonstrates the flexibility of DNA architectures and their multitasking ability in biosensing.
Pluripotency of a DNA tetrahedron (DNAᵀᵀ) has made the iconic framework a compelling keystone in biosensors and biodevices. Herein, distinct from the well-tapped applications in substrate fabrication, we focus on exploring their tracing and signaling potentials. A homologous family of four isostructural DNAᵀᵀ, i.e., DNAᵀᵀᵅ/ᵝ/ᵞ/ᵟ, was engineered to form a sensor circuitry, in which a target-specific monolayer of thiolated DNAᵀᵀᵞ pinned down the analyte jointly with the reciprocal DNAᵀᵀᵟ into a sandwich complex; the latter further rallied an in situ interdigital relay of biotinylated DNAᵀᵀᵅ/ᵝ into a microsized hyperlink dubbed polyDNAᵀᵀ. Its scale and growth factors were illuminated rudimentarily in transmission electron microscopy and confocal laser scanning microscopy. Using a nonsmall-cell lung cancer-related microRNA (hsa-miR-193a-3p) as the subject, a compound DNA-backboned construct was synthesized, fusing all building blocks together. Its superb tacticity and stereochemical conformality avail the templating of a horseradish peroxidase train, which boosted the paralleled catalytic surge of proton donors, resulting in an attomolar detection limit and a broad calibration range of more than seven orders of magnitude. Such oligomerization bested the conventional hybridization chain reaction laddering at both biomechanical stability and stoichiometric congruency. More significantly, it demonstrates the flexibility of DNA architectures and their multitasking ability in biosensing.
Author Wang, Huan
Yang, Meng
Ma, Kefeng
Deng, Shengyuan
Wan, Ying
Huang, Yaqi
Su, Yan
Zhu, Longyi
Kang, Kai
Ji, Jinyu
AuthorAffiliation School of Chemical Engineering
School of Environmental and Biological Engineering
School of Mechanical Engineering
AuthorAffiliation_xml – name: School of Chemical Engineering
– name: School of Mechanical Engineering
– name: School of Environmental and Biological Engineering
Author_xml – sequence: 1
  givenname: Ying
  surname: Wan
  fullname: Wan, Ying
– sequence: 2
  givenname: Huan
  surname: Wang
  fullname: Wang, Huan
– sequence: 3
  givenname: Jinyu
  surname: Ji
  fullname: Ji, Jinyu
– sequence: 4
  givenname: Kai
  surname: Kang
  fullname: Kang, Kai
– sequence: 5
  givenname: Meng
  surname: Yang
  fullname: Yang, Meng
– sequence: 6
  givenname: Yaqi
  surname: Huang
  fullname: Huang, Yaqi
– sequence: 7
  givenname: Yan
  surname: Su
  fullname: Su, Yan
  email: suyan@njust.edu.cn
– sequence: 8
  givenname: Kefeng
  surname: Ma
  fullname: Ma, Kefeng
– sequence: 9
  givenname: Longyi
  orcidid: 0000-0002-0898-4804
  surname: Zhu
  fullname: Zhu, Longyi
– sequence: 10
  givenname: Shengyuan
  orcidid: 0000-0002-6382-0976
  surname: Deng
  fullname: Deng, Shengyuan
  email: sydeng@njust.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33119272$$D View this record in MEDLINE/PubMed
BookMark eNqFkTtPHDEUha2IKCyb_IMoGilNmlnu9Ws86RCPEIkkUgQFNJbx2MHEO7PYs5H493i0uxQUoXJxvnOudc4B2euH3hHyEWGBQPHQ2LwwvYn2zi0XYIEJwd6QGQoKtVSK7pEZALCaNgD75CDnewBEQPmO7DOG2NKGzsj1TVitXAr9n-rk51F16cZk7lyXTKzOH4sQQ_-38kOqrmJRsutzGMM_V51GZ8c0TMeDLfCPYNPwuyScuLEoYejfk7fexOw-bN85uTo7vTw-ry9-fft-fHRRGw7tWHvWoFLCS-sFl74Bedsx77q2UUrxzjW2FaxVwFtrEVVjhPCWe0tZQZW3bE6-bHJXaXhYuzzqZcjWxWh6N6yzpoJyhhKwfR3lQnJUspnQzy_Q-2GdSt0TJSWTCku5c_JpS61vl67TqxSWJj3qXb8F-LoBSjs5J-e1DaOZ6ilthqgR9DSmLmPq3Zh6O2Yx8xfmXf4rNtjYJvX51_-1PAFYYbYl
CitedBy_id crossref_primary_10_1016_j_mtbio_2025_101486
crossref_primary_10_1007_s00604_024_06378_1
crossref_primary_10_1016_j_trac_2023_116979
crossref_primary_10_1021_acs_analchem_1c00295
crossref_primary_10_3390_bios13050543
crossref_primary_10_1016_j_apsb_2022_10_019
crossref_primary_10_1016_j_talanta_2021_122735
crossref_primary_10_1021_acssensors_4c02493
crossref_primary_10_3390_bios11040118
crossref_primary_10_1016_j_snb_2023_134567
crossref_primary_10_1016_j_snb_2025_137257
crossref_primary_10_1039_D1CC03071J
Cites_doi 10.1021/acs.analchem.8b02686
10.1039/C9SC04823E
10.1021/la800525n
10.1038/nnano.2010.193
10.1021/am5047735
10.1002/adma.201002767
10.1021/ac201491p
10.1016/S0040-6031(01)00769-9
10.1021/ja5101307
10.1002/anie.201701868
10.1021/acs.analchem.6b01373
10.1021/ed047p261
10.1002/bip.360220415
10.1016/0304-3991(92)90413-E
10.1016/j.bios.2019.04.053
10.1021/acsami.7b04553
10.1021/jacs.8b10529
10.1093/bioinformatics/bti164
10.1038/nprot.2016.071
10.1111/j.0022-2720.2004.01372.x
10.1016/j.bios.2015.04.006
10.1016/j.tcb.2009.05.002
10.1016/j.ebiom.2015.07.034
10.1038/nature09012
10.1007/s11426-011-4327-6
10.1016/0167-4781(94)90076-0
10.1074/jbc.M114.621409
10.1038/s41467-019-08647-7
10.1002/anie.200705982
10.1021/nn402642a
10.1002/smll.201900013
10.1039/c2cc35208g
10.1021/ja800554t
10.1021/acsami.7b05981
10.1039/C3CS60476D
10.1038/am.2013.22
10.1016/j.bios.2013.02.045
10.1080/10717544.2017.1373166
10.1177/27.10.41873
10.1021/ac4037262
10.1002/adma.201506407
10.1021/ar500073a
10.1021/acs.analchem.6b04609
10.1016/j.bios.2017.06.022
10.1039/b917661f
10.1016/j.bios.2012.09.017
10.1021/cm5019663
10.1002/ange.201410720
10.1021/acs.analchem.8b02826
10.1006/abio.1999.4360
10.1038/s41586-018-0332-7
10.1039/C7AN01154G
10.1126/science.1202998
10.1073/pnas.1408869112
10.1021/ma201331f
10.1021/ac203368h
ContentType Journal Article
Copyright 2020 American Chemical Society
Copyright American Chemical Society Nov 17, 2020
Copyright_xml – notice: 2020 American Chemical Society
– notice: Copyright American Chemical Society Nov 17, 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7S9
L.6
DOI 10.1021/acs.analchem.0c03553
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Toxicology Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

AGRICOLA
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-6882
EndPage 15144
ExternalDocumentID 33119272
10_1021_acs_analchem_0c03553
a658530594
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
1AW
23M
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABOCM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACNCT
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
D0L
DZ
EBS
ED
ED~
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
P2P
PQEST
PQQKQ
ROL
RXW
TAE
TN5
UHB
UI2
UKR
VF5
VG9
VQA
W1F
WH7
X
X6Y
XFK
YZZ
---
-DZ
-~X
.DC
4.4
53G
6J9
AAHBH
AAYXX
ABBLG
ABHFT
ABHMW
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ACKOT
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
KZ1
LMP
XSW
ZCA
~02
CGR
CUY
CVF
ECM
EIF
NPM
YIN
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7S9
L.6
ID FETCH-LOGICAL-a409t-f371885f6cf546f706bd3fed978884de7c95398049cc1187a55fc4fc237068fc3
IEDL.DBID ACS
ISSN 0003-2700
1520-6882
IngestDate Thu Jul 10 23:42:14 EDT 2025
Fri Jul 11 12:25:44 EDT 2025
Mon Jun 30 08:21:21 EDT 2025
Wed Feb 19 02:29:32 EST 2025
Tue Jul 01 01:19:14 EDT 2025
Thu Apr 24 23:01:06 EDT 2025
Thu Nov 19 16:43:29 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a409t-f371885f6cf546f706bd3fed978884de7c95398049cc1187a55fc4fc237068fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0898-4804
0000-0002-6382-0976
PMID 33119272
PQID 2466368100
PQPubID 45400
PageCount 8
ParticipantIDs proquest_miscellaneous_2524316019
proquest_miscellaneous_2456418679
proquest_journals_2466368100
pubmed_primary_33119272
crossref_citationtrail_10_1021_acs_analchem_0c03553
crossref_primary_10_1021_acs_analchem_0c03553
acs_journals_10_1021_acs_analchem_0c03553
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-17
PublicationDateYYYYMMDD 2020-11-17
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-17
  day: 17
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Analytical chemistry (Washington)
PublicationTitleAlternate Anal. Chem
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref33/cit33
  doi: 10.1021/acs.analchem.8b02686
– ident: ref17/cit17
  doi: 10.1039/C9SC04823E
– ident: ref49/cit49
  doi: 10.1021/la800525n
– ident: ref2/cit2
  doi: 10.1038/nnano.2010.193
– ident: ref20/cit20
  doi: 10.1021/am5047735
– ident: ref21/cit21
  doi: 10.1002/adma.201002767
– ident: ref27/cit27
  doi: 10.1021/ac201491p
– ident: ref46/cit46
  doi: 10.1016/S0040-6031(01)00769-9
– ident: ref19/cit19
  doi: 10.1021/ja5101307
– ident: ref10/cit10
  doi: 10.1002/anie.201701868
– ident: ref22/cit22
  doi: 10.1021/acs.analchem.6b01373
– ident: ref48/cit48
  doi: 10.1021/ed047p261
– ident: ref47/cit47
  doi: 10.1002/bip.360220415
– ident: ref35/cit35
  doi: 10.1016/0304-3991(92)90413-E
– ident: ref37/cit37
  doi: 10.1016/j.bios.2019.04.053
– ident: ref26/cit26
  doi: 10.1021/acsami.7b04553
– ident: ref1/cit1
  doi: 10.1021/jacs.8b10529
– ident: ref40/cit40
  doi: 10.1093/bioinformatics/bti164
– ident: ref32/cit32
  doi: 10.1038/nprot.2016.071
– ident: ref34/cit34
  doi: 10.1111/j.0022-2720.2004.01372.x
– ident: ref55/cit55
  doi: 10.1016/j.bios.2015.04.006
– ident: ref11/cit11
  doi: 10.1016/j.tcb.2009.05.002
– ident: ref30/cit30
  doi: 10.1016/j.ebiom.2015.07.034
– ident: ref6/cit6
  doi: 10.1038/nature09012
– ident: ref25/cit25
  doi: 10.1007/s11426-011-4327-6
– ident: ref51/cit51
  doi: 10.1016/0167-4781(94)90076-0
– ident: ref29/cit29
  doi: 10.1074/jbc.M114.621409
– ident: ref5/cit5
  doi: 10.1038/s41467-019-08647-7
– ident: ref42/cit42
  doi: 10.1002/anie.200705982
– ident: ref23/cit23
  doi: 10.1021/nn402642a
– ident: ref8/cit8
  doi: 10.1002/smll.201900013
– ident: ref28/cit28
  doi: 10.1039/c2cc35208g
– ident: ref50/cit50
  doi: 10.1021/ja800554t
– ident: ref56/cit56
  doi: 10.1021/acsami.7b05981
– ident: ref38/cit38
  doi: 10.1039/C3CS60476D
– ident: ref13/cit13
  doi: 10.1038/am.2013.22
– ident: ref31/cit31
  doi: 10.1016/j.bios.2013.02.045
– ident: ref18/cit18
  doi: 10.1080/10717544.2017.1373166
– ident: ref36/cit36
  doi: 10.1177/27.10.41873
– ident: ref43/cit43
  doi: 10.1021/ac4037262
– ident: ref15/cit15
  doi: 10.1002/adma.201506407
– ident: ref12/cit12
  doi: 10.1021/ar500073a
– ident: ref53/cit53
  doi: 10.1021/acs.analchem.6b04609
– ident: ref54/cit54
  doi: 10.1016/j.bios.2017.06.022
– ident: ref24/cit24
  doi: 10.1039/b917661f
– ident: ref44/cit44
  doi: 10.1016/j.bios.2012.09.017
– ident: ref39/cit39
  doi: 10.1021/cm5019663
– ident: ref14/cit14
  doi: 10.1002/ange.201410720
– ident: ref16/cit16
  doi: 10.1021/acs.analchem.8b02826
– ident: ref45/cit45
  doi: 10.1006/abio.1999.4360
– ident: ref4/cit4
  doi: 10.1038/s41586-018-0332-7
– ident: ref9/cit9
  doi: 10.1039/C7AN01154G
– ident: ref3/cit3
  doi: 10.1126/science.1202998
– ident: ref7/cit7
  doi: 10.1073/pnas.1408869112
– ident: ref41/cit41
  doi: 10.1021/ma201331f
– ident: ref52/cit52
  doi: 10.1021/ac203368h
SSID ssj0011016
Score 2.4194303
Snippet Pluripotency of a DNA tetrahedron (DNATT) has made the iconic framework a compelling keystone in biosensors and biodevices. Herein, distinct from the...
Pluripotency of a DNA tetrahedron (DNA ) has made the iconic framework a compelling keystone in biosensors and biodevices. Herein, distinct from the...
Pluripotency of a DNA tetrahedron (DNAᵀᵀ) has made the iconic framework a compelling keystone in biosensors and biodevices. Herein, distinct from the...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 15137
SubjectTerms Analytical chemistry
Biomechanics
Biosensing Techniques - methods
Biosensors
calibration
Cell Line, Tumor
Chemistry
Circuits
Confocal microscopy
Deoxyribonucleic acid
detection limit
DNA
DNA - chemistry
Electrochemistry
Fabrication
Growth factors
Homology
Horseradish peroxidase
Humans
Hybridization
hybridization chain reaction
Limit of Detection
Lung cancer
lungs
microRNA
MicroRNAs
MicroRNAs - analysis
MicroRNAs - chemistry
Microscopy
miRNA
Multitasking
Nanostructures - chemistry
Nucleic Acid Hybridization
Oligomerization
Peroxidase
Pluripotency
Ribonucleic acid
RNA
Scanning microscopy
stereochemistry
stoichiometry
Substrates
Tacticity
Tetrahedra
Transmission electron microscopy
Title Zippering DNA Tetrahedral Hyperlink for Ultrasensitive Electrochemical MicroRNA Detection
URI http://dx.doi.org/10.1021/acs.analchem.0c03553
https://www.ncbi.nlm.nih.gov/pubmed/33119272
https://www.proquest.com/docview/2466368100
https://www.proquest.com/docview/2456418679
https://www.proquest.com/docview/2524316019
Volume 92
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB5RONAeeJXSQECu1EsPTp19-HFEARQhAVJLJOjFWo93pQowEXEu_fWd8SPhIV43y95d7c4-5hvP7DcA3-kANJnBvk-2gPWVjbWf6CTxDa1oFWAuo8qje3IaDkfq-EJfzA3Fxx580f9pcNIzJFQaw00vwIAUpPwASyIkpM1QaPB75jVgS7TNkMcO1faq3DOtsELCyUOF9AzKrLTN0SqctXd26iCTq960zHr47ymF4xsHsgYrDfD09uuVsg4LttiA5UGb720DPt2jJvwMl3_-jsfVs3dwuu-d25JOJZvfURNDMl2ZI-vKI8Drja7py4TD4Png9A7rtDrY8BB4Jxzw94taOLBlFfVVbMLo6PB8MPSbNAy-IeOv9J0k_RVrF6LTKnRREGa5dDZP2HpWuY0w0TKJydRA5OTlRmuHyqGgeQ5jh_ILLBa3hf0KHsE3gYFViXRKZTowlvAQCpOHcRbZwHbgB0kpbbbRJK085KKf8stWdGkjug7Idt5SbPjMOa3G9Su1_Fmtcc3n8Ur5brsk5t0SinAaE7kFHfg2-0zTxc4WU9jbKZfRoWK2wOSFMlowEwGh7A5s1ctt1ikp-wS-I7H9DpHswEfBvwM4SjHqwmJ5N7W7hJnKbK_aKP8BncARpA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB6lcKAcKG_SAjVSLz04OPvw4xgFUKAkB5pUwMVar3clBJgIO5f--s44timVKMrNWq9Xu7PjnW88428AvuEBqBKluy76AsYVJpRuJKPIVajRwtMpD8qI7nDkDybi4lpet0DW_8LgJHIcKS-D-C_sAt1jalMoW1zKY8fTHtpJ_gGWEY8wyuTr9X82wQNySOtCeRRXrf-Ye2MUsks6f22X3gCbpdE5-wS_mumWuSb3nVmRdPTvf5gcF17POqxVMNTpzfVmA1om24SVfl39bRNW_yIq3IKb27vptLx2TkY9Z2wKPKNM-oxDDNCRJcasewfhrzN5wDs5JcXTMeqczovs6IqVwBlS-t8VjnBiijIHLNuGydnpuD9wq6IMrkJXsHAtR2sWSutrK4VvA89PUm5NGpEvLVIT6EjyKETHQ2sqZa6ktFpYzXDX_dBqvgNL2VNm9sBBMMe0Z0TErRCJ9JRBdKSZSv0wCYxn2vAdpRRXL1Uel_Fy1o2psRZdXImuDbzevlhX7OZUZOPhnafc5qnpnN3jnf77tWa8TIsJRG1E6-a14ai5jdtFoReVmacZ9ZG-IO7A6D99JCNeAsTcbdida10zKc67CMUD9nkBkXyFlcF4eBlfno9-fIGPjD4UUP5isA9LxfPMHCCaKpLD8t35A4DMGgU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8xJjF4YIzxUcZYJu1lDylJbOfjsWqpClsrtFGp60vkOLaEWkJF0pf99btLk4xNgmp7ixzbss8f97vc5XcAn_AClIlUro22gLa5DoUdiSiyJe5o7qiUBaVHdzjyB2N-NRGTR6m-cBA59pSXTnw61YvUVAwD7jmVS5QvTueu7SgHdSV7AS_Jc0fRfJ3u98aBQEZpnSyPfKv1X3NP9EK6SeV_6qYnAGepePqvYdoMuYw3mbWXRdJWP_9ic_yvOe3BbgVHrc5q_7yBDZ3tw6tunQVuH3YeERa-hR_T28WifLZ6o451owu8q3T6gF0M0KAl5qyZhTDYGs_xTU7B8XSdWherZDuqYiewhhQG-A176OmijAXLDmDcv7jpDuwqOYMt0SQsbMNQq4XC-MoI7pvA8ZOUGZ1GZFPzVAcqEiwK0QBRilKaSyGM4kZ5uPp-aBQ7hM3sPtPHYCGo85SjecQM54lwpEaUpDyZ-mESaEe34DNKKa4OVx6XfnPPjamwFl1cia4FrF7CWFUs55RsY76mld20WqxYPtbUP613x-9heRzRG9G7OS342LzG5SIXjMz0_ZLqCJ8Th2D0TB3hET8BYu8WHK12XjMoxlyE5IF38g8i-QBb171-_PVy9OUdbHv0vYDCGINT2Cwelvo9gqoiOSuPzy-ORhyI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zippering+DNA+Tetrahedral+Hyperlink+for+Ultrasensitive+Electrochemical+MicroRNA+Detection&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Wan%2C+Ying&rft.au=Wang%2C+Huan&rft.au=Ji%2C+Jinyu&rft.au=Kang%2C+Kai&rft.date=2020-11-17&rft.issn=1520-6882&rft.volume=92&rft.issue=22+p.15137-15144&rft.spage=15137&rft.epage=15144&rft_id=info:doi/10.1021%2Facs.analchem.0c03553&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon