Dual Functional Conjugated Acetylenic Polymers: High-Efficacy Modulation for Organic Photoelectrochemical Transistors and Structural Evolution for Bioelectronic Detection

Conjugated acetylenic polymers (CAPs) have emerged as a unique class of metal-free semiconductors with tunable electrical and optical properties yet their full potential remains largely unexplored. Organic bioelectronics is envisioned to create more opportunities for innovative biomedical applicatio...

Full description

Saved in:
Bibliographic Details
Published inAnalytical chemistry (Washington) Vol. 95; no. 8; pp. 4243 - 4250
Main Authors Chen, Jia-Hao, Wang, Cheng-Shuang, Li, Zheng, Hu, Jin, Yu, Si-Yuan, Xu, Yi-Tong, Lin, Peng, Zhao, Wei-Wei
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 28.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Conjugated acetylenic polymers (CAPs) have emerged as a unique class of metal-free semiconductors with tunable electrical and optical properties yet their full potential remains largely unexplored. Organic bioelectronics is envisioned to create more opportunities for innovative biomedical applications. Herein, we report a poly­(1,4-diethynylbenzene) (pDEB)/NiO gated enhancement-mode poly­(ethylene dioxythiophene)–poly­(styrene sulfonate) organic photoelectrochemical transistor (OPECT) and its structural evolution toward bioelectronic detection. pDEB was synthesized via copper-mediated Glaser polycondensation of DEB monomers on the NiO/FTO substrate, and the as-synthesized pDEB/NiO/FTO can efficiently modulate the enhancement-mode device with a high current gain. Linking with a sandwich immunoassay, the labeled alkaline phosphatase can catalyze sodium thiophosphate to generate H2S, which will react with the diacetylene group in pDEB through the Michael addition reaction, resulting in an altered molecular structure and thus the transistor response. Exemplified by HIgG as the model target, the developed biosensor achieves highly sensitive detection with a linear range of 70 fg mL–1–10 ng mL–1 and a low detection limit of 28.5 fg mL–1. This work features the dual functional CAP-gated OPECT, providing not only a novel gating module but also a structurally new rationale for bioelectronic detection.
AbstractList Conjugated acetylenic polymers (CAPs) have emerged as a unique class of metal-free semiconductors with tunable electrical and optical properties yet their full potential remains largely unexplored. Organic bioelectronics is envisioned to create more opportunities for innovative biomedical applications. Herein, we report a poly­(1,4-diethynylbenzene) (pDEB)/NiO gated enhancement-mode poly­(ethylene dioxythiophene)–poly­(styrene sulfonate) organic photoelectrochemical transistor (OPECT) and its structural evolution toward bioelectronic detection. pDEB was synthesized via copper-mediated Glaser polycondensation of DEB monomers on the NiO/FTO substrate, and the as-synthesized pDEB/NiO/FTO can efficiently modulate the enhancement-mode device with a high current gain. Linking with a sandwich immunoassay, the labeled alkaline phosphatase can catalyze sodium thiophosphate to generate H₂S, which will react with the diacetylene group in pDEB through the Michael addition reaction, resulting in an altered molecular structure and thus the transistor response. Exemplified by HIgG as the model target, the developed biosensor achieves highly sensitive detection with a linear range of 70 fg mL–¹–10 ng mL–¹ and a low detection limit of 28.5 fg mL–¹. This work features the dual functional CAP-gated OPECT, providing not only a novel gating module but also a structurally new rationale for bioelectronic detection.
Conjugated acetylenic polymers (CAPs) have emerged as a unique class of metal-free semiconductors with tunable electrical and optical properties yet their full potential remains largely unexplored. Organic bioelectronics is envisioned to create more opportunities for innovative biomedical applications. Herein, we report a poly(1,4-diethynylbenzene) (pDEB)/NiO gated enhancement-mode poly(ethylene dioxythiophene)–poly(styrene sulfonate) organic photoelectrochemical transistor (OPECT) and its structural evolution toward bioelectronic detection. pDEB was synthesized via copper-mediated Glaser polycondensation of DEB monomers on the NiO/FTO substrate, and the as-synthesized pDEB/NiO/FTO can efficiently modulate the enhancement-mode device with a high current gain. Linking with a sandwich immunoassay, the labeled alkaline phosphatase can catalyze sodium thiophosphate to generate H2S, which will react with the diacetylene group in pDEB through the Michael addition reaction, resulting in an altered molecular structure and thus the transistor response. Exemplified by HIgG as the model target, the developed biosensor achieves highly sensitive detection with a linear range of 70 fg mL–1–10 ng mL–1 and a low detection limit of 28.5 fg mL–1. This work features the dual functional CAP-gated OPECT, providing not only a novel gating module but also a structurally new rationale for bioelectronic detection.
Conjugated acetylenic polymers (CAPs) have emerged as a unique class of metal-free semiconductors with tunable electrical and optical properties yet their full potential remains largely unexplored. Organic bioelectronics is envisioned to create more opportunities for innovative biomedical applications. Herein, we report a poly(1,4-diethynylbenzene) (pDEB)/NiO gated enhancement-mode poly(ethylene dioxythiophene)-poly(styrene sulfonate) organic photoelectrochemical transistor (OPECT) and its structural evolution toward bioelectronic detection. pDEB was synthesized via copper-mediated Glaser polycondensation of DEB monomers on the NiO/FTO substrate, and the as-synthesized pDEB/NiO/FTO can efficiently modulate the enhancement-mode device with a high current gain. Linking with a sandwich immunoassay, the labeled alkaline phosphatase can catalyze sodium thiophosphate to generate H2S, which will react with the diacetylene group in pDEB through the Michael addition reaction, resulting in an altered molecular structure and thus the transistor response. Exemplified by HIgG as the model target, the developed biosensor achieves highly sensitive detection with a linear range of 70 fg mL-1-10 ng mL-1 and a low detection limit of 28.5 fg mL-1. This work features the dual functional CAP-gated OPECT, providing not only a novel gating module but also a structurally new rationale for bioelectronic detection.Conjugated acetylenic polymers (CAPs) have emerged as a unique class of metal-free semiconductors with tunable electrical and optical properties yet their full potential remains largely unexplored. Organic bioelectronics is envisioned to create more opportunities for innovative biomedical applications. Herein, we report a poly(1,4-diethynylbenzene) (pDEB)/NiO gated enhancement-mode poly(ethylene dioxythiophene)-poly(styrene sulfonate) organic photoelectrochemical transistor (OPECT) and its structural evolution toward bioelectronic detection. pDEB was synthesized via copper-mediated Glaser polycondensation of DEB monomers on the NiO/FTO substrate, and the as-synthesized pDEB/NiO/FTO can efficiently modulate the enhancement-mode device with a high current gain. Linking with a sandwich immunoassay, the labeled alkaline phosphatase can catalyze sodium thiophosphate to generate H2S, which will react with the diacetylene group in pDEB through the Michael addition reaction, resulting in an altered molecular structure and thus the transistor response. Exemplified by HIgG as the model target, the developed biosensor achieves highly sensitive detection with a linear range of 70 fg mL-1-10 ng mL-1 and a low detection limit of 28.5 fg mL-1. This work features the dual functional CAP-gated OPECT, providing not only a novel gating module but also a structurally new rationale for bioelectronic detection.
Conjugated acetylenic polymers (CAPs) have emerged as a unique class of metal-free semiconductors with tunable electrical and optical properties yet their full potential remains largely unexplored. Organic bioelectronics is envisioned to create more opportunities for innovative biomedical applications. Herein, we report a poly(1,4-diethynylbenzene) (pDEB)/NiO gated enhancement-mode poly(ethylene dioxythiophene)-poly(styrene sulfonate) organic photoelectrochemical transistor (OPECT) and its structural evolution toward bioelectronic detection. pDEB was synthesized via copper-mediated Glaser polycondensation of DEB monomers on the NiO/FTO substrate, and the as-synthesized pDEB/NiO/FTO can efficiently modulate the enhancement-mode device with a high current gain. Linking with a sandwich immunoassay, the labeled alkaline phosphatase can catalyze sodium thiophosphate to generate H S, which will react with the diacetylene group in pDEB through the Michael addition reaction, resulting in an altered molecular structure and thus the transistor response. Exemplified by HIgG as the model target, the developed biosensor achieves highly sensitive detection with a linear range of 70 fg mL -10 ng mL and a low detection limit of 28.5 fg mL . This work features the dual functional CAP-gated OPECT, providing not only a novel gating module but also a structurally new rationale for bioelectronic detection.
Conjugated acetylenic polymers (CAPs) have emerged as a unique class of metal-free semiconductors with tunable electrical and optical properties yet their full potential remains largely unexplored. Organic bioelectronics is envisioned to create more opportunities for innovative biomedical applications. Herein, we report a poly­(1,4-diethynylbenzene) (pDEB)/NiO gated enhancement-mode poly­(ethylene dioxythiophene)–poly­(styrene sulfonate) organic photoelectrochemical transistor (OPECT) and its structural evolution toward bioelectronic detection. pDEB was synthesized via copper-mediated Glaser polycondensation of DEB monomers on the NiO/FTO substrate, and the as-synthesized pDEB/NiO/FTO can efficiently modulate the enhancement-mode device with a high current gain. Linking with a sandwich immunoassay, the labeled alkaline phosphatase can catalyze sodium thiophosphate to generate H2S, which will react with the diacetylene group in pDEB through the Michael addition reaction, resulting in an altered molecular structure and thus the transistor response. Exemplified by HIgG as the model target, the developed biosensor achieves highly sensitive detection with a linear range of 70 fg mL–1–10 ng mL–1 and a low detection limit of 28.5 fg mL–1. This work features the dual functional CAP-gated OPECT, providing not only a novel gating module but also a structurally new rationale for bioelectronic detection.
Author Xu, Yi-Tong
Li, Zheng
Yu, Si-Yuan
Zhao, Wei-Wei
Wang, Cheng-Shuang
Lin, Peng
Chen, Jia-Hao
Hu, Jin
AuthorAffiliation Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering
School of Materials Science and Engineering
AuthorAffiliation_xml – name: State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering
– name: School of Materials Science and Engineering
– name: Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering
Author_xml – sequence: 1
  givenname: Jia-Hao
  surname: Chen
  fullname: Chen, Jia-Hao
  organization: State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering
– sequence: 2
  givenname: Cheng-Shuang
  orcidid: 0000-0003-1703-2327
  surname: Wang
  fullname: Wang, Cheng-Shuang
  email: wcsycit@163.com
  organization: State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering
– sequence: 3
  givenname: Zheng
  surname: Li
  fullname: Li, Zheng
  organization: State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering
– sequence: 4
  givenname: Jin
  surname: Hu
  fullname: Hu, Jin
  organization: Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering
– sequence: 5
  givenname: Si-Yuan
  surname: Yu
  fullname: Yu, Si-Yuan
  organization: State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering
– sequence: 6
  givenname: Yi-Tong
  orcidid: 0000-0002-4613-9345
  surname: Xu
  fullname: Xu, Yi-Tong
  organization: State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering
– sequence: 7
  givenname: Peng
  orcidid: 0000-0002-6154-4859
  surname: Lin
  fullname: Lin, Peng
  email: lin.peng@szu.edu.cn
  organization: Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering
– sequence: 8
  givenname: Wei-Wei
  orcidid: 0000-0002-8179-4775
  surname: Zhao
  fullname: Zhao, Wei-Wei
  email: zww@nju.edu.cn
  organization: State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36799075$$D View this record in MEDLINE/PubMed
BookMark eNqFkstuEzEUhi1URNPCGyBkiQ2bCcf2jD3urqQpRSoqEmU9cjyeZCJnXHxByivxlHhyW3RBV16c7_t15PNfoLPBDQah9wSmBCj5rHSYqkFZvTKbKdVQCSleoQmpKBS8rukZmgAAK6gAOEcXIawBCAHC36BzxoWUIKoJ-nuTlMW3adCxdzkNz9ywTksVTYuvtYlba4Ze4x_ObjfGhyt81y9Xxbzreq30Fn93bbJqVHHnPH7wS7XDVy46Y42O3o37ZdjiR6-G0IfofMBqaPHP6JOOyefR_I-z6ZTypT-6Y9aNiWa33Fv0ulM2mHeH9xL9up0_zu6K-4ev32bX94UqQcaihRJU26mF0YrThWJEcGI00K6roKwlEZIwzhgrF7oiXVlxXUkhwXAhmJGUXaJP-9wn734nE2Kz6YM21qrBuBQaWteCs0qW5GVU1CB4RUuZ0Y_P0LVLPv_4npL5MhQy9eFApcXGtM2T7zfKb5vjwTJQ7gHtXQjedCeEQDP2osm9aI69aA69yNrVM033cXe36FVvX5JhL4_T09b_Vf4B7A3VbA
CitedBy_id crossref_primary_10_1002_adfm_202424871
crossref_primary_10_1016_j_cclet_2024_110080
crossref_primary_10_1016_j_bios_2024_116745
crossref_primary_10_1021_acssensors_3c00289
crossref_primary_10_1002_adfm_202412928
crossref_primary_10_1021_acs_jafc_4c04191
crossref_primary_10_3390_bios13090855
crossref_primary_10_1021_acs_analchem_3c04263
crossref_primary_10_1021_acs_analchem_4c03220
crossref_primary_10_1021_acs_analchem_3c01401
crossref_primary_10_1002_adfm_202405913
crossref_primary_10_1021_acs_analchem_3c04875
crossref_primary_10_1021_acs_analchem_4c01610
crossref_primary_10_1002_adfm_202407201
crossref_primary_10_1016_j_snb_2025_137541
crossref_primary_10_1016_j_bios_2024_116336
crossref_primary_10_1016_j_bios_2024_116877
crossref_primary_10_1039_D4CC05991C
crossref_primary_10_1039_D4NR03421J
crossref_primary_10_1016_j_bioelechem_2024_108794
crossref_primary_10_1021_acs_analchem_3c04258
crossref_primary_10_1021_acs_analchem_4c01369
crossref_primary_10_1021_acs_analchem_4c01789
crossref_primary_10_1021_acs_analchem_3c01185
crossref_primary_10_1021_acs_analchem_4c04755
crossref_primary_10_1002_adfm_202412554
crossref_primary_10_1002_adma_202308952
crossref_primary_10_1002_cjoc_202400206
crossref_primary_10_1016_j_snb_2024_136144
crossref_primary_10_1002_adma_202306252
Cites_doi 10.1016/j.cej.2021.133698
10.1002/adfm.202211277
10.1038/natrevmats.2017.86
10.1021/acs.analchem.2c03859
10.1039/C4CS00228H
10.1002/adom.202102687
10.1016/j.bios.2022.114224
10.1002/adfm.202100723
10.1002/adma.202000270
10.1021/cr500100j
10.1038/s41467-018-03444-0
10.1021/acs.analchem.2c00283
10.1021/acs.analchem.9b04710
10.1002/adfm.202010868
10.1021/acssensors.1c00463
10.1016/j.snb.2021.130207
10.1002/anie.202111608
10.1021/acs.analchem.7b03491
10.1002/sstr.202100087
10.1021/acs.analchem.8b03011
10.1021/acs.analchem.2c00066
10.1021/acs.analchem.2c01373
10.1021/acs.analchem.7b04625
10.1002/anie.201904978
10.1038/s41467-022-32937-2
10.1002/anie.202212752
10.1002/adma.201800528
10.1021/acs.accounts.8b00448
10.1007/s11426-022-1425-9
10.1021/acssensors.2c01493
10.1039/D1TC02958D
10.1021/ja910420t
10.1021/jacs.6b05280
10.1016/j.bios.2022.114700
10.1021/acs.chemrev.8b00022
10.1016/0379-6779(81)90056-4
10.1039/C1CS15205J
10.1002/adhm.201800536
10.1002/adma.202106235
10.1039/D1CS00808K
10.1002/aenm.202101530
10.1016/j.aca.2020.11.046
10.1002/adma.201702428
10.1002/adfm.202109046
10.1039/D1CS00592H
10.1021/acs.chemrev.1c00971
10.1002/adma.201806712
10.1002/adma.201900961
10.1002/jrs.2580
10.1021/acs.analchem.2c02848
ContentType Journal Article
Copyright 2023 American Chemical Society
Copyright American Chemical Society Feb 28, 2023
Copyright_xml – notice: 2023 American Chemical Society
– notice: Copyright American Chemical Society Feb 28, 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7S9
L.6
DOI 10.1021/acs.analchem.2c05797
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Toxicology Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Materials Research Database
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-6882
EndPage 4250
ExternalDocumentID 36799075
10_1021_acs_analchem_2c05797
a736230673
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
.K2
23M
4.4
55A
5GY
5RE
5VS
6J9
7~N
85S
8W4
AABXI
ABFLS
ABFRP
ABHFT
ABMVS
ABOCM
ABPPZ
ABPTK
ABQRX
ABUCX
ACGFO
ACGFS
ACGOD
ACIWK
ACJ
ACKOT
ACNCT
ACPRK
ACS
ADHLV
AEESW
AENEX
AFEFF
AFRAH
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
D0L
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
KZ1
LMP
P2P
PQEST
PQQKQ
ROL
RXW
TAE
TAF
TN5
UHB
UI2
UKR
VF5
VG9
VQA
W1F
WH7
X6Y
XSW
YZZ
ZCA
~02
53G
AAHBH
AAYXX
ABBLG
ABHMW
ABJNI
ABLBI
ACBEA
AGXLV
CITATION
CUPRZ
CGR
CUY
CVF
ECM
EIF
NPM
YIN
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7S9
L.6
ID FETCH-LOGICAL-a409t-d040adfabeca62ba31761ec02ff504891791363334bc51f456c59790e6773e923
IEDL.DBID ACS
ISSN 0003-2700
1520-6882
IngestDate Thu Jul 10 23:52:01 EDT 2025
Fri Jul 11 00:10:32 EDT 2025
Mon Jun 30 10:15:49 EDT 2025
Wed Feb 19 02:25:12 EST 2025
Tue Jul 01 03:28:23 EDT 2025
Thu Apr 24 23:07:57 EDT 2025
Thu Mar 02 03:47:17 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a409t-d040adfabeca62ba31761ec02ff504891791363334bc51f456c59790e6773e923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4613-9345
0000-0002-6154-4859
0000-0002-8179-4775
0000-0003-1703-2327
PMID 36799075
PQID 2780910120
PQPubID 45400
PageCount 8
ParticipantIDs proquest_miscellaneous_2887635941
proquest_miscellaneous_2780765249
proquest_journals_2780910120
pubmed_primary_36799075
crossref_primary_10_1021_acs_analchem_2c05797
crossref_citationtrail_10_1021_acs_analchem_2c05797
acs_journals_10_1021_acs_analchem_2c05797
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-28
PublicationDateYYYYMMDD 2023-02-28
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-28
  day: 28
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Analytical chemistry (Washington)
PublicationTitleAlternate Anal. Chem
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref42/cit42
  doi: 10.1016/j.cej.2021.133698
– ident: ref30/cit30
  doi: 10.1002/adfm.202211277
– ident: ref18/cit18
  doi: 10.1038/natrevmats.2017.86
– ident: ref32/cit32
  doi: 10.1021/acs.analchem.2c03859
– ident: ref22/cit22
  doi: 10.1039/C4CS00228H
– ident: ref33/cit33
  doi: 10.1002/adom.202102687
– ident: ref31/cit31
  doi: 10.1016/j.bios.2022.114224
– ident: ref14/cit14
  doi: 10.1002/adfm.202100723
– ident: ref19/cit19
  doi: 10.1002/adma.202000270
– ident: ref21/cit21
  doi: 10.1021/cr500100j
– ident: ref6/cit6
  doi: 10.1038/s41467-018-03444-0
– ident: ref34/cit34
  doi: 10.1021/acs.analchem.2c00283
– ident: ref48/cit48
  doi: 10.1021/acs.analchem.9b04710
– ident: ref50/cit50
  doi: 10.1002/adfm.202010868
– ident: ref20/cit20
  doi: 10.1021/acssensors.1c00463
– ident: ref43/cit43
  doi: 10.1016/j.snb.2021.130207
– ident: ref23/cit23
  doi: 10.1002/anie.202111608
– ident: ref46/cit46
  doi: 10.1021/acs.analchem.7b03491
– ident: ref28/cit28
  doi: 10.1002/sstr.202100087
– ident: ref47/cit47
  doi: 10.1021/acs.analchem.8b03011
– ident: ref26/cit26
  doi: 10.1021/acs.analchem.2c00066
– ident: ref27/cit27
  doi: 10.1021/acs.analchem.2c01373
– ident: ref45/cit45
  doi: 10.1021/acs.analchem.7b04625
– ident: ref44/cit44
  doi: 10.1002/anie.201904978
– ident: ref4/cit4
  doi: 10.1038/s41467-022-32937-2
– ident: ref24/cit24
  doi: 10.1002/anie.202212752
– ident: ref11/cit11
  doi: 10.1002/adma.201800528
– ident: ref17/cit17
  doi: 10.1021/acs.accounts.8b00448
– ident: ref38/cit38
  doi: 10.1007/s11426-022-1425-9
– ident: ref49/cit49
  doi: 10.1021/acssensors.2c01493
– ident: ref10/cit10
  doi: 10.1039/D1TC02958D
– ident: ref7/cit7
  doi: 10.1021/ja910420t
– ident: ref13/cit13
  doi: 10.1021/jacs.6b05280
– ident: ref39/cit39
  doi: 10.1016/j.bios.2022.114700
– ident: ref8/cit8
  doi: 10.1021/acs.chemrev.8b00022
– ident: ref1/cit1
  doi: 10.1016/0379-6779(81)90056-4
– ident: ref9/cit9
  doi: 10.1039/C1CS15205J
– ident: ref25/cit25
  doi: 10.1002/adhm.201800536
– ident: ref15/cit15
  doi: 10.1002/adma.202106235
– ident: ref3/cit3
  doi: 10.1039/D1CS00808K
– ident: ref12/cit12
  doi: 10.1002/aenm.202101530
– ident: ref36/cit36
  doi: 10.1016/j.aca.2020.11.046
– ident: ref40/cit40
  doi: 10.1002/adma.201702428
– ident: ref29/cit29
  doi: 10.1002/adfm.202109046
– ident: ref2/cit2
  doi: 10.1039/D1CS00592H
– ident: ref5/cit5
  doi: 10.1021/acs.chemrev.1c00971
– ident: ref16/cit16
  doi: 10.1002/adma.201806712
– ident: ref37/cit37
  doi: 10.1002/adma.201900961
– ident: ref41/cit41
  doi: 10.1002/jrs.2580
– ident: ref35/cit35
  doi: 10.1021/acs.analchem.2c02848
SSID ssj0011016
Score 2.5497491
Snippet Conjugated acetylenic polymers (CAPs) have emerged as a unique class of metal-free semiconductors with tunable electrical and optical properties yet their full...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4243
SubjectTerms Acetylene
Alkaline phosphatase
Alkynes
analytical chemistry
Bioelectricity
Biomedical materials
Biosensing Techniques - methods
Biosensors
chemical structure
Chemistry
condensation reactions
detection limit
Evolution
Hydrogen sulfide
Immunoassay
immunoassays
Medical innovations
Michael reaction
Molecular structure
Monomers
nickel oxide
Nickel oxides
Optical properties
Polymers
Polymers - chemistry
Polystyrene resins
Semiconductor devices
Semiconductors
sodium
Styrene
Substrates
sulfonates
Synthesis
Thiophosphate
Transistors
Title Dual Functional Conjugated Acetylenic Polymers: High-Efficacy Modulation for Organic Photoelectrochemical Transistors and Structural Evolution for Bioelectronic Detection
URI http://dx.doi.org/10.1021/acs.analchem.2c05797
https://www.ncbi.nlm.nih.gov/pubmed/36799075
https://www.proquest.com/docview/2780910120
https://www.proquest.com/docview/2780765249
https://www.proquest.com/docview/2887635941
Volume 95
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5ROLQ9QEt5LNDKlXrpIduNHdsJt2XZFaoEVKJI3CLHccQzqbRZpOUn9Vd27Di7FESh12RsJfbY843H8w3AF6poaAyu71yILIg0F0HCOLoqMs4F2kdDhU1OPjwSB6fR9zN-NncUH0bwafhN6XFX4aDiP9x0qbbJk_IVLFERS-ts9Qcns6iB9UTbCnk2oNqmyj3RizVIevy3QXoCZTprM1qB4zZnp7lkctWd1FlX3z2mcHzhj7yDZQ88Sb_RlPewYMpVeD1o672twtt71IQf4Pf-BKVHaPWaw0IyqMrLiT1zy0lfm3qK1upCkx_V9dSefO8Se2EkGFpCCqWn5LDKfV0wgqiYNBmfKH5e1ZWvvKM9VQFx5tKxlYyJKnNy4ihtLR0IGd76leF62buo5lV7yL6p3TWycg1OR8Ofg4PA13UIFHqTdZDjxqHyQqH6KEEzhRBGhEb3aFFw3FASy5jKBGMsyjQPC4R4Gt2epGeElMwgIl2HxbIqzSYQlqherBIEYUkUFTyLeRFHNMwiXsgio6oDX3HYU78ux6kLudMwtQ_buUj9XHSAtYqQak-Qbut0XD_TKpi1-tUQhDwjv9Pq2PyzqIwtbgtprwOfZ69x_m30RpWmmjQyUnB0l_8hEzuCwSQKO7DR6O_so5iQiDwk3_qPIdmGNxRBXZPCvwOLOP_mI4KwOvvkVt4f0sYwxA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcigceBRoFwoYiQuHLBs_E27LdlcLdCuktqi3yHEctVCSSskiLT-JX8nYeSwglarXZGw59jjzjcfzDcBrqmloLe7vTMo04EbIIGYCXRUVZRLto6XSJScvDuX8hH88FacbILpcGBxEhT1VPoi_ZhcI37pnGucWP-X7kBqXQ6luwW3EI9T5XOPJUR88cA5pVyjPxVW7jLkrenF2yVR_26UrwKY3OrP78KUfrr9r8m24rNOh-fkPk-ONv-cB3GthKBk3evMQNmyxDVuTrvrbNtz9g6jwEfzaX6L0DG1gc3RIJmXxdelO4DIyNrZeoe06N-RzebFy5-DviLs-EkwdPYU2K7Ios7ZKGEGMTJr8TxQ_K-uyrcNjWuIC4o2n5y6piC4ycuQJbh05CJn-aPeJ7-X9ebmu4UP2be0vlRWP4WQ2PZ7Mg7bKQ6DRt6yDDH8jOss1KpOWNNUIaGRozYjmucDfS-z4U5lkjPHUiDBHwGfQCYpHVirFLOLTJ7BZlIXdBcJiPYp0jJAs5jwXaSTyiNMw5SJXeUr1AN7gtCftLq0SH4CnYeIedmuRtGsxANbpQ2JaunRXtePimlZB3-qyoQu5Rn6vU7X1sKiKHIoL6WgAr_rXuP4ulqMLWy4bGYW6z-P_yESebjDm4QB2GjXuB8WkQhyixNMbTMlL2JofLw6Sgw-Hn57BHYpwr0nu34NN1AX7HOFZnb7wm_E35q45JQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkXgceJTXQgEjceGQZePETsJt2YfKo1WlUqniEjmOLQolqZQs0vKT-JXMOE5akEoF18S2HHsm843H8w3AC654aAzqdyllEcRayCCLBLoqSVpKtI-GS0pO3tmV2wfxu0NxeKbUF06iwZEaF8QnrT4prWcYCF_Rc4Xri5_zbcw15VEml-EKRe7I75rO9ocAAjmlfbE8iq32WXPnjEK2STe_26ZzAKczPMtb8GmYsrtv8nW8aoux_vEHm-N_fdNtuOnhKJt28nMHLplqE67N-ipwm3DjDGHhXfg5X2HrJdrC7giRzerqy4pO4ko21aZdow070myvPl7TefhrRtdIggXRVCi9Zjt16auFMcTKrMsDxeaf67b29Xi0JzBgzog6DpOGqapk-47olkhC2OK71xc3ypuj-rSWD5ub1l0uq-7BwXLxcbYd-GoPgUIfsw1K_J2o0ioUKiV5oRDYyNDoCbdW4G8mIx7VSEZRFBdahBaBn0ZnKJsYmSSRQZx6HzaqujIPgUWZmqQqQ2iWxbEVRSpsGvOwiIVNbMHVCF7isudeW5vcBeJ5mNPDfi9yvxcjiHqZyLWnTafqHccX9AqGXicdbcgF7bd6cTudFk9SQnMhn4zg-fAa959iOqoy9aprk0iBTvRf2qSOdjCLwxE86ER5mFQkE8QjiXj0D0vyDK7uzZf5h7e77x_DdY6or8vx34INFAXzBFFaWzx1-vgLvhs7qA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual+Functional+Conjugated+Acetylenic+Polymers%3A+High-Efficacy+Modulation+for+Organic+Photoelectrochemical+Transistors+and+Structural+Evolution+for+Bioelectronic+Detection&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Chen%2C+Jia-Hao&rft.au=Wang%2C+Cheng-Shuang&rft.au=Li%2C+Zheng&rft.au=Hu%2C+Jin&rft.date=2023-02-28&rft.eissn=1520-6882&rft.volume=95&rft.issue=8&rft.spage=4243&rft_id=info:doi/10.1021%2Facs.analchem.2c05797&rft_id=info%3Apmid%2F36799075&rft.externalDocID=36799075
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon