Dual Functional Conjugated Acetylenic Polymers: High-Efficacy Modulation for Organic Photoelectrochemical Transistors and Structural Evolution for Bioelectronic Detection
Conjugated acetylenic polymers (CAPs) have emerged as a unique class of metal-free semiconductors with tunable electrical and optical properties yet their full potential remains largely unexplored. Organic bioelectronics is envisioned to create more opportunities for innovative biomedical applicatio...
Saved in:
Published in | Analytical chemistry (Washington) Vol. 95; no. 8; pp. 4243 - 4250 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
28.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Conjugated acetylenic polymers (CAPs) have emerged as a unique class of metal-free semiconductors with tunable electrical and optical properties yet their full potential remains largely unexplored. Organic bioelectronics is envisioned to create more opportunities for innovative biomedical applications. Herein, we report a poly(1,4-diethynylbenzene) (pDEB)/NiO gated enhancement-mode poly(ethylene dioxythiophene)–poly(styrene sulfonate) organic photoelectrochemical transistor (OPECT) and its structural evolution toward bioelectronic detection. pDEB was synthesized via copper-mediated Glaser polycondensation of DEB monomers on the NiO/FTO substrate, and the as-synthesized pDEB/NiO/FTO can efficiently modulate the enhancement-mode device with a high current gain. Linking with a sandwich immunoassay, the labeled alkaline phosphatase can catalyze sodium thiophosphate to generate H2S, which will react with the diacetylene group in pDEB through the Michael addition reaction, resulting in an altered molecular structure and thus the transistor response. Exemplified by HIgG as the model target, the developed biosensor achieves highly sensitive detection with a linear range of 70 fg mL–1–10 ng mL–1 and a low detection limit of 28.5 fg mL–1. This work features the dual functional CAP-gated OPECT, providing not only a novel gating module but also a structurally new rationale for bioelectronic detection. |
---|---|
AbstractList | Conjugated acetylenic polymers (CAPs) have emerged as a unique class of metal-free semiconductors with tunable electrical and optical properties yet their full potential remains largely unexplored. Organic bioelectronics is envisioned to create more opportunities for innovative biomedical applications. Herein, we report a poly(1,4-diethynylbenzene) (pDEB)/NiO gated enhancement-mode poly(ethylene dioxythiophene)–poly(styrene sulfonate) organic photoelectrochemical transistor (OPECT) and its structural evolution toward bioelectronic detection. pDEB was synthesized via copper-mediated Glaser polycondensation of DEB monomers on the NiO/FTO substrate, and the as-synthesized pDEB/NiO/FTO can efficiently modulate the enhancement-mode device with a high current gain. Linking with a sandwich immunoassay, the labeled alkaline phosphatase can catalyze sodium thiophosphate to generate H₂S, which will react with the diacetylene group in pDEB through the Michael addition reaction, resulting in an altered molecular structure and thus the transistor response. Exemplified by HIgG as the model target, the developed biosensor achieves highly sensitive detection with a linear range of 70 fg mL–¹–10 ng mL–¹ and a low detection limit of 28.5 fg mL–¹. This work features the dual functional CAP-gated OPECT, providing not only a novel gating module but also a structurally new rationale for bioelectronic detection. Conjugated acetylenic polymers (CAPs) have emerged as a unique class of metal-free semiconductors with tunable electrical and optical properties yet their full potential remains largely unexplored. Organic bioelectronics is envisioned to create more opportunities for innovative biomedical applications. Herein, we report a poly(1,4-diethynylbenzene) (pDEB)/NiO gated enhancement-mode poly(ethylene dioxythiophene)–poly(styrene sulfonate) organic photoelectrochemical transistor (OPECT) and its structural evolution toward bioelectronic detection. pDEB was synthesized via copper-mediated Glaser polycondensation of DEB monomers on the NiO/FTO substrate, and the as-synthesized pDEB/NiO/FTO can efficiently modulate the enhancement-mode device with a high current gain. Linking with a sandwich immunoassay, the labeled alkaline phosphatase can catalyze sodium thiophosphate to generate H2S, which will react with the diacetylene group in pDEB through the Michael addition reaction, resulting in an altered molecular structure and thus the transistor response. Exemplified by HIgG as the model target, the developed biosensor achieves highly sensitive detection with a linear range of 70 fg mL–1–10 ng mL–1 and a low detection limit of 28.5 fg mL–1. This work features the dual functional CAP-gated OPECT, providing not only a novel gating module but also a structurally new rationale for bioelectronic detection. Conjugated acetylenic polymers (CAPs) have emerged as a unique class of metal-free semiconductors with tunable electrical and optical properties yet their full potential remains largely unexplored. Organic bioelectronics is envisioned to create more opportunities for innovative biomedical applications. Herein, we report a poly(1,4-diethynylbenzene) (pDEB)/NiO gated enhancement-mode poly(ethylene dioxythiophene)-poly(styrene sulfonate) organic photoelectrochemical transistor (OPECT) and its structural evolution toward bioelectronic detection. pDEB was synthesized via copper-mediated Glaser polycondensation of DEB monomers on the NiO/FTO substrate, and the as-synthesized pDEB/NiO/FTO can efficiently modulate the enhancement-mode device with a high current gain. Linking with a sandwich immunoassay, the labeled alkaline phosphatase can catalyze sodium thiophosphate to generate H2S, which will react with the diacetylene group in pDEB through the Michael addition reaction, resulting in an altered molecular structure and thus the transistor response. Exemplified by HIgG as the model target, the developed biosensor achieves highly sensitive detection with a linear range of 70 fg mL-1-10 ng mL-1 and a low detection limit of 28.5 fg mL-1. This work features the dual functional CAP-gated OPECT, providing not only a novel gating module but also a structurally new rationale for bioelectronic detection.Conjugated acetylenic polymers (CAPs) have emerged as a unique class of metal-free semiconductors with tunable electrical and optical properties yet their full potential remains largely unexplored. Organic bioelectronics is envisioned to create more opportunities for innovative biomedical applications. Herein, we report a poly(1,4-diethynylbenzene) (pDEB)/NiO gated enhancement-mode poly(ethylene dioxythiophene)-poly(styrene sulfonate) organic photoelectrochemical transistor (OPECT) and its structural evolution toward bioelectronic detection. pDEB was synthesized via copper-mediated Glaser polycondensation of DEB monomers on the NiO/FTO substrate, and the as-synthesized pDEB/NiO/FTO can efficiently modulate the enhancement-mode device with a high current gain. Linking with a sandwich immunoassay, the labeled alkaline phosphatase can catalyze sodium thiophosphate to generate H2S, which will react with the diacetylene group in pDEB through the Michael addition reaction, resulting in an altered molecular structure and thus the transistor response. Exemplified by HIgG as the model target, the developed biosensor achieves highly sensitive detection with a linear range of 70 fg mL-1-10 ng mL-1 and a low detection limit of 28.5 fg mL-1. This work features the dual functional CAP-gated OPECT, providing not only a novel gating module but also a structurally new rationale for bioelectronic detection. Conjugated acetylenic polymers (CAPs) have emerged as a unique class of metal-free semiconductors with tunable electrical and optical properties yet their full potential remains largely unexplored. Organic bioelectronics is envisioned to create more opportunities for innovative biomedical applications. Herein, we report a poly(1,4-diethynylbenzene) (pDEB)/NiO gated enhancement-mode poly(ethylene dioxythiophene)-poly(styrene sulfonate) organic photoelectrochemical transistor (OPECT) and its structural evolution toward bioelectronic detection. pDEB was synthesized via copper-mediated Glaser polycondensation of DEB monomers on the NiO/FTO substrate, and the as-synthesized pDEB/NiO/FTO can efficiently modulate the enhancement-mode device with a high current gain. Linking with a sandwich immunoassay, the labeled alkaline phosphatase can catalyze sodium thiophosphate to generate H S, which will react with the diacetylene group in pDEB through the Michael addition reaction, resulting in an altered molecular structure and thus the transistor response. Exemplified by HIgG as the model target, the developed biosensor achieves highly sensitive detection with a linear range of 70 fg mL -10 ng mL and a low detection limit of 28.5 fg mL . This work features the dual functional CAP-gated OPECT, providing not only a novel gating module but also a structurally new rationale for bioelectronic detection. Conjugated acetylenic polymers (CAPs) have emerged as a unique class of metal-free semiconductors with tunable electrical and optical properties yet their full potential remains largely unexplored. Organic bioelectronics is envisioned to create more opportunities for innovative biomedical applications. Herein, we report a poly(1,4-diethynylbenzene) (pDEB)/NiO gated enhancement-mode poly(ethylene dioxythiophene)–poly(styrene sulfonate) organic photoelectrochemical transistor (OPECT) and its structural evolution toward bioelectronic detection. pDEB was synthesized via copper-mediated Glaser polycondensation of DEB monomers on the NiO/FTO substrate, and the as-synthesized pDEB/NiO/FTO can efficiently modulate the enhancement-mode device with a high current gain. Linking with a sandwich immunoassay, the labeled alkaline phosphatase can catalyze sodium thiophosphate to generate H2S, which will react with the diacetylene group in pDEB through the Michael addition reaction, resulting in an altered molecular structure and thus the transistor response. Exemplified by HIgG as the model target, the developed biosensor achieves highly sensitive detection with a linear range of 70 fg mL–1–10 ng mL–1 and a low detection limit of 28.5 fg mL–1. This work features the dual functional CAP-gated OPECT, providing not only a novel gating module but also a structurally new rationale for bioelectronic detection. |
Author | Xu, Yi-Tong Li, Zheng Yu, Si-Yuan Zhao, Wei-Wei Wang, Cheng-Shuang Lin, Peng Chen, Jia-Hao Hu, Jin |
AuthorAffiliation | Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering School of Materials Science and Engineering |
AuthorAffiliation_xml | – name: State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering – name: School of Materials Science and Engineering – name: Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering |
Author_xml | – sequence: 1 givenname: Jia-Hao surname: Chen fullname: Chen, Jia-Hao organization: State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering – sequence: 2 givenname: Cheng-Shuang orcidid: 0000-0003-1703-2327 surname: Wang fullname: Wang, Cheng-Shuang email: wcsycit@163.com organization: State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering – sequence: 3 givenname: Zheng surname: Li fullname: Li, Zheng organization: State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering – sequence: 4 givenname: Jin surname: Hu fullname: Hu, Jin organization: Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering – sequence: 5 givenname: Si-Yuan surname: Yu fullname: Yu, Si-Yuan organization: State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering – sequence: 6 givenname: Yi-Tong orcidid: 0000-0002-4613-9345 surname: Xu fullname: Xu, Yi-Tong organization: State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering – sequence: 7 givenname: Peng orcidid: 0000-0002-6154-4859 surname: Lin fullname: Lin, Peng email: lin.peng@szu.edu.cn organization: Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering – sequence: 8 givenname: Wei-Wei orcidid: 0000-0002-8179-4775 surname: Zhao fullname: Zhao, Wei-Wei email: zww@nju.edu.cn organization: State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36799075$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstuEzEUhi1URNPCGyBkiQ2bCcf2jD3urqQpRSoqEmU9cjyeZCJnXHxByivxlHhyW3RBV16c7_t15PNfoLPBDQah9wSmBCj5rHSYqkFZvTKbKdVQCSleoQmpKBS8rukZmgAAK6gAOEcXIawBCAHC36BzxoWUIKoJ-nuTlMW3adCxdzkNz9ywTksVTYuvtYlba4Ze4x_ObjfGhyt81y9Xxbzreq30Fn93bbJqVHHnPH7wS7XDVy46Y42O3o37ZdjiR6-G0IfofMBqaPHP6JOOyefR_I-z6ZTypT-6Y9aNiWa33Fv0ulM2mHeH9xL9up0_zu6K-4ev32bX94UqQcaihRJU26mF0YrThWJEcGI00K6roKwlEZIwzhgrF7oiXVlxXUkhwXAhmJGUXaJP-9wn734nE2Kz6YM21qrBuBQaWteCs0qW5GVU1CB4RUuZ0Y_P0LVLPv_4npL5MhQy9eFApcXGtM2T7zfKb5vjwTJQ7gHtXQjedCeEQDP2osm9aI69aA69yNrVM033cXe36FVvX5JhL4_T09b_Vf4B7A3VbA |
CitedBy_id | crossref_primary_10_1002_adfm_202424871 crossref_primary_10_1016_j_cclet_2024_110080 crossref_primary_10_1016_j_bios_2024_116745 crossref_primary_10_1021_acssensors_3c00289 crossref_primary_10_1002_adfm_202412928 crossref_primary_10_1021_acs_jafc_4c04191 crossref_primary_10_3390_bios13090855 crossref_primary_10_1021_acs_analchem_3c04263 crossref_primary_10_1021_acs_analchem_4c03220 crossref_primary_10_1021_acs_analchem_3c01401 crossref_primary_10_1002_adfm_202405913 crossref_primary_10_1021_acs_analchem_3c04875 crossref_primary_10_1021_acs_analchem_4c01610 crossref_primary_10_1002_adfm_202407201 crossref_primary_10_1016_j_snb_2025_137541 crossref_primary_10_1016_j_bios_2024_116336 crossref_primary_10_1016_j_bios_2024_116877 crossref_primary_10_1039_D4CC05991C crossref_primary_10_1039_D4NR03421J crossref_primary_10_1016_j_bioelechem_2024_108794 crossref_primary_10_1021_acs_analchem_3c04258 crossref_primary_10_1021_acs_analchem_4c01369 crossref_primary_10_1021_acs_analchem_4c01789 crossref_primary_10_1021_acs_analchem_3c01185 crossref_primary_10_1021_acs_analchem_4c04755 crossref_primary_10_1002_adfm_202412554 crossref_primary_10_1002_adma_202308952 crossref_primary_10_1002_cjoc_202400206 crossref_primary_10_1016_j_snb_2024_136144 crossref_primary_10_1002_adma_202306252 |
Cites_doi | 10.1016/j.cej.2021.133698 10.1002/adfm.202211277 10.1038/natrevmats.2017.86 10.1021/acs.analchem.2c03859 10.1039/C4CS00228H 10.1002/adom.202102687 10.1016/j.bios.2022.114224 10.1002/adfm.202100723 10.1002/adma.202000270 10.1021/cr500100j 10.1038/s41467-018-03444-0 10.1021/acs.analchem.2c00283 10.1021/acs.analchem.9b04710 10.1002/adfm.202010868 10.1021/acssensors.1c00463 10.1016/j.snb.2021.130207 10.1002/anie.202111608 10.1021/acs.analchem.7b03491 10.1002/sstr.202100087 10.1021/acs.analchem.8b03011 10.1021/acs.analchem.2c00066 10.1021/acs.analchem.2c01373 10.1021/acs.analchem.7b04625 10.1002/anie.201904978 10.1038/s41467-022-32937-2 10.1002/anie.202212752 10.1002/adma.201800528 10.1021/acs.accounts.8b00448 10.1007/s11426-022-1425-9 10.1021/acssensors.2c01493 10.1039/D1TC02958D 10.1021/ja910420t 10.1021/jacs.6b05280 10.1016/j.bios.2022.114700 10.1021/acs.chemrev.8b00022 10.1016/0379-6779(81)90056-4 10.1039/C1CS15205J 10.1002/adhm.201800536 10.1002/adma.202106235 10.1039/D1CS00808K 10.1002/aenm.202101530 10.1016/j.aca.2020.11.046 10.1002/adma.201702428 10.1002/adfm.202109046 10.1039/D1CS00592H 10.1021/acs.chemrev.1c00971 10.1002/adma.201806712 10.1002/adma.201900961 10.1002/jrs.2580 10.1021/acs.analchem.2c02848 |
ContentType | Journal Article |
Copyright | 2023 American Chemical Society Copyright American Chemical Society Feb 28, 2023 |
Copyright_xml | – notice: 2023 American Chemical Society – notice: Copyright American Chemical Society Feb 28, 2023 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7S9 L.6 |
DOI | 10.1021/acs.analchem.2c05797 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Toxicology Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Toxicology Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Materials Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-6882 |
EndPage | 4250 |
ExternalDocumentID | 36799075 10_1021_acs_analchem_2c05797 a736230673 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .DC .K2 23M 4.4 55A 5GY 5RE 5VS 6J9 7~N 85S 8W4 AABXI ABFLS ABFRP ABHFT ABMVS ABOCM ABPPZ ABPTK ABQRX ABUCX ACGFO ACGFS ACGOD ACIWK ACJ ACKOT ACNCT ACPRK ACS ADHLV AEESW AENEX AFEFF AFRAH AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 D0L EBS ED~ F5P GGK GNL IH9 IHE JG~ KZ1 LMP P2P PQEST PQQKQ ROL RXW TAE TAF TN5 UHB UI2 UKR VF5 VG9 VQA W1F WH7 X6Y XSW YZZ ZCA ~02 53G AAHBH AAYXX ABBLG ABHMW ABJNI ABLBI ACBEA AGXLV CITATION CUPRZ CGR CUY CVF ECM EIF NPM YIN 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a409t-d040adfabeca62ba31761ec02ff504891791363334bc51f456c59790e6773e923 |
IEDL.DBID | ACS |
ISSN | 0003-2700 1520-6882 |
IngestDate | Thu Jul 10 23:52:01 EDT 2025 Fri Jul 11 00:10:32 EDT 2025 Mon Jun 30 10:15:49 EDT 2025 Wed Feb 19 02:25:12 EST 2025 Tue Jul 01 03:28:23 EDT 2025 Thu Apr 24 23:07:57 EDT 2025 Thu Mar 02 03:47:17 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a409t-d040adfabeca62ba31761ec02ff504891791363334bc51f456c59790e6773e923 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4613-9345 0000-0002-6154-4859 0000-0002-8179-4775 0000-0003-1703-2327 |
PMID | 36799075 |
PQID | 2780910120 |
PQPubID | 45400 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2887635941 proquest_miscellaneous_2780765249 proquest_journals_2780910120 pubmed_primary_36799075 crossref_primary_10_1021_acs_analchem_2c05797 crossref_citationtrail_10_1021_acs_analchem_2c05797 acs_journals_10_1021_acs_analchem_2c05797 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-28 |
PublicationDateYYYYMMDD | 2023-02-28 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Analytical chemistry (Washington) |
PublicationTitleAlternate | Anal. Chem |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref42/cit42 doi: 10.1016/j.cej.2021.133698 – ident: ref30/cit30 doi: 10.1002/adfm.202211277 – ident: ref18/cit18 doi: 10.1038/natrevmats.2017.86 – ident: ref32/cit32 doi: 10.1021/acs.analchem.2c03859 – ident: ref22/cit22 doi: 10.1039/C4CS00228H – ident: ref33/cit33 doi: 10.1002/adom.202102687 – ident: ref31/cit31 doi: 10.1016/j.bios.2022.114224 – ident: ref14/cit14 doi: 10.1002/adfm.202100723 – ident: ref19/cit19 doi: 10.1002/adma.202000270 – ident: ref21/cit21 doi: 10.1021/cr500100j – ident: ref6/cit6 doi: 10.1038/s41467-018-03444-0 – ident: ref34/cit34 doi: 10.1021/acs.analchem.2c00283 – ident: ref48/cit48 doi: 10.1021/acs.analchem.9b04710 – ident: ref50/cit50 doi: 10.1002/adfm.202010868 – ident: ref20/cit20 doi: 10.1021/acssensors.1c00463 – ident: ref43/cit43 doi: 10.1016/j.snb.2021.130207 – ident: ref23/cit23 doi: 10.1002/anie.202111608 – ident: ref46/cit46 doi: 10.1021/acs.analchem.7b03491 – ident: ref28/cit28 doi: 10.1002/sstr.202100087 – ident: ref47/cit47 doi: 10.1021/acs.analchem.8b03011 – ident: ref26/cit26 doi: 10.1021/acs.analchem.2c00066 – ident: ref27/cit27 doi: 10.1021/acs.analchem.2c01373 – ident: ref45/cit45 doi: 10.1021/acs.analchem.7b04625 – ident: ref44/cit44 doi: 10.1002/anie.201904978 – ident: ref4/cit4 doi: 10.1038/s41467-022-32937-2 – ident: ref24/cit24 doi: 10.1002/anie.202212752 – ident: ref11/cit11 doi: 10.1002/adma.201800528 – ident: ref17/cit17 doi: 10.1021/acs.accounts.8b00448 – ident: ref38/cit38 doi: 10.1007/s11426-022-1425-9 – ident: ref49/cit49 doi: 10.1021/acssensors.2c01493 – ident: ref10/cit10 doi: 10.1039/D1TC02958D – ident: ref7/cit7 doi: 10.1021/ja910420t – ident: ref13/cit13 doi: 10.1021/jacs.6b05280 – ident: ref39/cit39 doi: 10.1016/j.bios.2022.114700 – ident: ref8/cit8 doi: 10.1021/acs.chemrev.8b00022 – ident: ref1/cit1 doi: 10.1016/0379-6779(81)90056-4 – ident: ref9/cit9 doi: 10.1039/C1CS15205J – ident: ref25/cit25 doi: 10.1002/adhm.201800536 – ident: ref15/cit15 doi: 10.1002/adma.202106235 – ident: ref3/cit3 doi: 10.1039/D1CS00808K – ident: ref12/cit12 doi: 10.1002/aenm.202101530 – ident: ref36/cit36 doi: 10.1016/j.aca.2020.11.046 – ident: ref40/cit40 doi: 10.1002/adma.201702428 – ident: ref29/cit29 doi: 10.1002/adfm.202109046 – ident: ref2/cit2 doi: 10.1039/D1CS00592H – ident: ref5/cit5 doi: 10.1021/acs.chemrev.1c00971 – ident: ref16/cit16 doi: 10.1002/adma.201806712 – ident: ref37/cit37 doi: 10.1002/adma.201900961 – ident: ref41/cit41 doi: 10.1002/jrs.2580 – ident: ref35/cit35 doi: 10.1021/acs.analchem.2c02848 |
SSID | ssj0011016 |
Score | 2.5497491 |
Snippet | Conjugated acetylenic polymers (CAPs) have emerged as a unique class of metal-free semiconductors with tunable electrical and optical properties yet their full... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4243 |
SubjectTerms | Acetylene Alkaline phosphatase Alkynes analytical chemistry Bioelectricity Biomedical materials Biosensing Techniques - methods Biosensors chemical structure Chemistry condensation reactions detection limit Evolution Hydrogen sulfide Immunoassay immunoassays Medical innovations Michael reaction Molecular structure Monomers nickel oxide Nickel oxides Optical properties Polymers Polymers - chemistry Polystyrene resins Semiconductor devices Semiconductors sodium Styrene Substrates sulfonates Synthesis Thiophosphate Transistors |
Title | Dual Functional Conjugated Acetylenic Polymers: High-Efficacy Modulation for Organic Photoelectrochemical Transistors and Structural Evolution for Bioelectronic Detection |
URI | http://dx.doi.org/10.1021/acs.analchem.2c05797 https://www.ncbi.nlm.nih.gov/pubmed/36799075 https://www.proquest.com/docview/2780910120 https://www.proquest.com/docview/2780765249 https://www.proquest.com/docview/2887635941 |
Volume | 95 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5ROLQ9QEt5LNDKlXrpIduNHdsJt2XZFaoEVKJI3CLHccQzqbRZpOUn9Vd27Di7FESh12RsJfbY843H8w3AF6poaAyu71yILIg0F0HCOLoqMs4F2kdDhU1OPjwSB6fR9zN-NncUH0bwafhN6XFX4aDiP9x0qbbJk_IVLFERS-ts9Qcns6iB9UTbCnk2oNqmyj3RizVIevy3QXoCZTprM1qB4zZnp7lkctWd1FlX3z2mcHzhj7yDZQ88Sb_RlPewYMpVeD1o672twtt71IQf4Pf-BKVHaPWaw0IyqMrLiT1zy0lfm3qK1upCkx_V9dSefO8Se2EkGFpCCqWn5LDKfV0wgqiYNBmfKH5e1ZWvvKM9VQFx5tKxlYyJKnNy4ihtLR0IGd76leF62buo5lV7yL6p3TWycg1OR8Ofg4PA13UIFHqTdZDjxqHyQqH6KEEzhRBGhEb3aFFw3FASy5jKBGMsyjQPC4R4Gt2epGeElMwgIl2HxbIqzSYQlqherBIEYUkUFTyLeRFHNMwiXsgio6oDX3HYU78ux6kLudMwtQ_buUj9XHSAtYqQak-Qbut0XD_TKpi1-tUQhDwjv9Pq2PyzqIwtbgtprwOfZ69x_m30RpWmmjQyUnB0l_8hEzuCwSQKO7DR6O_so5iQiDwk3_qPIdmGNxRBXZPCvwOLOP_mI4KwOvvkVt4f0sYwxA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcigceBRoFwoYiQuHLBs_E27LdlcLdCuktqi3yHEctVCSSskiLT-JX8nYeSwglarXZGw59jjzjcfzDcBrqmloLe7vTMo04EbIIGYCXRUVZRLto6XSJScvDuX8hH88FacbILpcGBxEhT1VPoi_ZhcI37pnGucWP-X7kBqXQ6luwW3EI9T5XOPJUR88cA5pVyjPxVW7jLkrenF2yVR_26UrwKY3OrP78KUfrr9r8m24rNOh-fkPk-ONv-cB3GthKBk3evMQNmyxDVuTrvrbNtz9g6jwEfzaX6L0DG1gc3RIJmXxdelO4DIyNrZeoe06N-RzebFy5-DviLs-EkwdPYU2K7Ios7ZKGEGMTJr8TxQ_K-uyrcNjWuIC4o2n5y6piC4ycuQJbh05CJn-aPeJ7-X9ebmu4UP2be0vlRWP4WQ2PZ7Mg7bKQ6DRt6yDDH8jOss1KpOWNNUIaGRozYjmucDfS-z4U5lkjPHUiDBHwGfQCYpHVirFLOLTJ7BZlIXdBcJiPYp0jJAs5jwXaSTyiNMw5SJXeUr1AN7gtCftLq0SH4CnYeIedmuRtGsxANbpQ2JaunRXtePimlZB3-qyoQu5Rn6vU7X1sKiKHIoL6WgAr_rXuP4ulqMLWy4bGYW6z-P_yESebjDm4QB2GjXuB8WkQhyixNMbTMlL2JofLw6Sgw-Hn57BHYpwr0nu34NN1AX7HOFZnb7wm_E35q45JQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkXgceJTXQgEjceGQZePETsJt2YfKo1WlUqniEjmOLQolqZQs0vKT-JXMOE5akEoF18S2HHsm843H8w3AC654aAzqdyllEcRayCCLBLoqSVpKtI-GS0pO3tmV2wfxu0NxeKbUF06iwZEaF8QnrT4prWcYCF_Rc4Xri5_zbcw15VEml-EKRe7I75rO9ocAAjmlfbE8iq32WXPnjEK2STe_26ZzAKczPMtb8GmYsrtv8nW8aoux_vEHm-N_fdNtuOnhKJt28nMHLplqE67N-ipwm3DjDGHhXfg5X2HrJdrC7giRzerqy4pO4ko21aZdow070myvPl7TefhrRtdIggXRVCi9Zjt16auFMcTKrMsDxeaf67b29Xi0JzBgzog6DpOGqapk-47olkhC2OK71xc3ypuj-rSWD5ub1l0uq-7BwXLxcbYd-GoPgUIfsw1K_J2o0ioUKiV5oRDYyNDoCbdW4G8mIx7VSEZRFBdahBaBn0ZnKJsYmSSRQZx6HzaqujIPgUWZmqQqQ2iWxbEVRSpsGvOwiIVNbMHVCF7isudeW5vcBeJ5mNPDfi9yvxcjiHqZyLWnTafqHccX9AqGXicdbcgF7bd6cTudFk9SQnMhn4zg-fAa959iOqoy9aprk0iBTvRf2qSOdjCLwxE86ER5mFQkE8QjiXj0D0vyDK7uzZf5h7e77x_DdY6or8vx34INFAXzBFFaWzx1-vgLvhs7qA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual+Functional+Conjugated+Acetylenic+Polymers%3A+High-Efficacy+Modulation+for+Organic+Photoelectrochemical+Transistors+and+Structural+Evolution+for+Bioelectronic+Detection&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Chen%2C+Jia-Hao&rft.au=Wang%2C+Cheng-Shuang&rft.au=Li%2C+Zheng&rft.au=Hu%2C+Jin&rft.date=2023-02-28&rft.eissn=1520-6882&rft.volume=95&rft.issue=8&rft.spage=4243&rft_id=info:doi/10.1021%2Facs.analchem.2c05797&rft_id=info%3Apmid%2F36799075&rft.externalDocID=36799075 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon |