Highly Sensitive and Selective Detection of Dopamine Using One-Pot Synthesized Highly Photoluminescent Silicon Nanoparticles

A simple and highly efficient method for dopamine (DA) detection using water-soluble silicon nanoparticles (SiNPs) was reported. The SiNPs with a high quantum yield of 23.6% were synthesized by using a one-pot microwave-assisted method. The fluorescence quenching capability of a variety of molecules...

Full description

Saved in:
Bibliographic Details
Published inAnalytical chemistry (Washington) Vol. 87; no. 6; pp. 3360 - 3365
Main Authors Zhang, Xiaodong, Chen, Xiaokai, Kai, Siqi, Wang, Hong-Yin, Yang, Jingjing, Wu, Fu-Gen, Chen, Zhan
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 17.03.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A simple and highly efficient method for dopamine (DA) detection using water-soluble silicon nanoparticles (SiNPs) was reported. The SiNPs with a high quantum yield of 23.6% were synthesized by using a one-pot microwave-assisted method. The fluorescence quenching capability of a variety of molecules on the synthesized SiNPs has been tested; only DA molecules were found to be able to quench the fluorescence of these SiNPs effectively. Therefore, such a quenching effect can be used to selectively detect DA. All other molecules tested have little interference with the dopamine detection, including ascorbic acid, which commonly exists in cells and can possibly affect the dopamine detection. The ratio of the fluorescence intensity difference between the quenched and unquenched cases versus the fluorescence intensity without quenching (ΔI/I) was observed to be linearly proportional to the DA analyte concentration in the range from 0.005 to 10.0 μM, with a detection limit of 0.3 nM (S/N = 3). To the best of our knowledge, this is the lowest limit for DA detection reported so far. The mechanism of fluorescence quenching is attributed to the energy transfer from the SiNPs to the oxidized dopamine molecules through Förster resonance energy transfer. The reported method of SiNP synthesis is very simple and cheap, making the above sensitive and selective DA detection approach using SiNPs practical for many applications.
AbstractList A simple and highly efficient method for dopamine (DA) detection using water-soluble silicon nanoparticles (SiNPs) was reported. The SiNPs with a high quantum yield of 23.6% were synthesized by using a one-pot microwave-assisted method. The fluorescence quenching capability of a variety of molecules on the synthesized SiNPs has been tested; only DA molecules were found to be able to quench the fluorescence of these SiNPs effectively. Therefore, such a quenching effect can be used to selectively detect DA. All other molecules tested have little interference with the dopamine detection, including ascorbic acid, which commonly exists in cells and can possibly affect the dopamine detection. The ratio of the fluorescence intensity difference between the quenched and unquenched cases versus the fluorescence intensity without quenching (ΔI/I) was observed to be linearly proportional to the DA analyte concentration in the range from 0.005 to 10.0 μM, with a detection limit of 0.3 nM (S/N = 3). To the best of our knowledge, this is the lowest limit for DA detection reported so far. The mechanism of fluorescence quenching is attributed to the energy transfer from the SiNPs to the oxidized dopamine molecules through Förster resonance energy transfer. The reported method of SiNP synthesis is very simple and cheap, making the above sensitive and selective DA detection approach using SiNPs practical for many applications.
A simple and highly efficient method for dopamine (DA) detection using water-soluble silicon nanoparticles (SiNPs) was reported. The SiNPs with a high quantum yield of 23.6% were synthesized by using a one-pot microwave-assisted method. The fluorescence quenching capability of a variety of molecules on the synthesized SiNPs has been tested; only DA molecules were found to be able to quench the fluorescence of these SiNPs effectively. Therefore, such a quenching effect can be used to selectively detect DA. All other molecules tested have little interference with the dopamine detection, including ascorbic acid, which commonly exists in cells and can possibly affect the dopamine detection. The ratio of the fluorescence intensity difference between the quenched and unquenched cases versus the fluorescence intensity without quenching (...I/I) was observed to be linearly proportional to the DA analyte concentration in the range from 0.005 to 10.0 ...M, with a detection limit of 0.3 nM (S/N = 3). To the best of our knowledge, this is the lowest limit for DA detection reported so far. The mechanism of fluorescence quenching is attributed to the energy transfer from the SiNPs to the oxidized dopamine molecules through Forster resonance energy transfer. The reported method of SiNP synthesis is very simple and cheap, making the above sensitive and selective DA detection approach using SiNPs practical for many applications. (ProQuest: ... denotes formulae/symbols omitted.)
A simple and highly efficient method for dopamine (DA) detection using water-soluble silicon nanoparticles (SiNPs) was reported. The SiNPs with a high quantum yield of 23.6% were synthesized by using a one-pot microwave-assisted method. The fluorescence quenching capability of a variety of molecules on the synthesized SiNPs has been tested; only DA molecules were found to be able to quench the fluorescence of these SiNPs effectively. Therefore, such a quenching effect can be used to selectively detect DA. All other molecules tested have little interference with the dopamine detection, including ascorbic acid, which commonly exists in cells and can possibly affect the dopamine detection. The ratio of the fluorescence intensity difference between the quenched and unquenched cases versus the fluorescence intensity without quenching (ΔI/I) was observed to be linearly proportional to the DA analyte concentration in the range from 0.005 to 10.0 μM, with a detection limit of 0.3 nM (S/N = 3). To the best of our knowledge, this is the lowest limit for DA detection reported so far. The mechanism of fluorescence quenching is attributed to the energy transfer from the SiNPs to the oxidized dopamine molecules through Förster resonance energy transfer. The reported method of SiNP synthesis is very simple and cheap, making the above sensitive and selective DA detection approach using SiNPs practical for many applications.
A simple and highly efficient method for dopamine (DA) detection using water-soluble silicon nanoparticles (SiNPs) was reported. The SiNPs with a high quantum yield of 23.6% were synthesized by using a one-pot microwave-assisted method. The fluorescence quenching capability of a variety of molecules on the synthesized SiNPs has been tested; only DA molecules were found to be able to quench the fluorescence of these SiNPs effectively. Therefore, such a quenching effect can be used to selectively detect DA. All other molecules tested have little interference with the dopamine detection, including ascorbic acid, which commonly exists in cells and can possibly affect the dopamine detection. The ratio of the fluorescence intensity difference between the quenched and unquenched cases versus the fluorescence intensity without quenching (ΔI/I) was observed to be linearly proportional to the DA analyte concentration in the range from 0.005 to 10.0 μM, with a detection limit of 0.3 nM (S/N = 3). To the best of our knowledge, this is the lowest limit for DA detection reported so far. The mechanism of fluorescence quenching is attributed to the energy transfer from the SiNPs to the oxidized dopamine molecules through Förster resonance energy transfer. The reported method of SiNP synthesis is very simple and cheap, making the above sensitive and selective DA detection approach using SiNPs practical for many applications.A simple and highly efficient method for dopamine (DA) detection using water-soluble silicon nanoparticles (SiNPs) was reported. The SiNPs with a high quantum yield of 23.6% were synthesized by using a one-pot microwave-assisted method. The fluorescence quenching capability of a variety of molecules on the synthesized SiNPs has been tested; only DA molecules were found to be able to quench the fluorescence of these SiNPs effectively. Therefore, such a quenching effect can be used to selectively detect DA. All other molecules tested have little interference with the dopamine detection, including ascorbic acid, which commonly exists in cells and can possibly affect the dopamine detection. The ratio of the fluorescence intensity difference between the quenched and unquenched cases versus the fluorescence intensity without quenching (ΔI/I) was observed to be linearly proportional to the DA analyte concentration in the range from 0.005 to 10.0 μM, with a detection limit of 0.3 nM (S/N = 3). To the best of our knowledge, this is the lowest limit for DA detection reported so far. The mechanism of fluorescence quenching is attributed to the energy transfer from the SiNPs to the oxidized dopamine molecules through Förster resonance energy transfer. The reported method of SiNP synthesis is very simple and cheap, making the above sensitive and selective DA detection approach using SiNPs practical for many applications.
Author Chen, Xiaokai
Wang, Hong-Yin
Chen, Zhan
Zhang, Xiaodong
Wu, Fu-Gen
Kai, Siqi
Yang, Jingjing
AuthorAffiliation Department of Chemistry
University of Michigan
Southeast University
AuthorAffiliation_xml – name: Southeast University
– name: University of Michigan
– name: Department of Chemistry
Author_xml – sequence: 1
  givenname: Xiaodong
  surname: Zhang
  fullname: Zhang, Xiaodong
  organization: Southeast University
– sequence: 2
  givenname: Xiaokai
  surname: Chen
  fullname: Chen, Xiaokai
  organization: Southeast University
– sequence: 3
  givenname: Siqi
  surname: Kai
  fullname: Kai, Siqi
  organization: Southeast University
– sequence: 4
  givenname: Hong-Yin
  surname: Wang
  fullname: Wang, Hong-Yin
  organization: Southeast University
– sequence: 5
  givenname: Jingjing
  surname: Yang
  fullname: Yang, Jingjing
  organization: Southeast University
– sequence: 6
  givenname: Fu-Gen
  surname: Wu
  fullname: Wu, Fu-Gen
  email: wufg@seu.edu.cn
  organization: Southeast University
– sequence: 7
  givenname: Zhan
  surname: Chen
  fullname: Chen, Zhan
  email: zhanc@umich.edu
  organization: University of Michigan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25671464$$D View this record in MEDLINE/PubMed
BookMark eNqNkt9rFDEQgINU7PX0wX9AFkSoD2snPzbZfSxttUKxhdrnJZedvUvJJecmK5z4x5v1riJV0KfJwDcfM5k5Igc-eCTkJYV3FBg90aYCUTFYPiEzmmMp65odkBkA8JIpgENyFOM9AKVA5TNyyCqpqJBiRr5f2uXKbYtb9NEm-xUL7bucOTQ_s3NM0yv4IvTFedjotfVY3EXrl8W1x_ImpOJ269MKo_2GXbHX3axCCm6c4GjQZ8Y6a7Llk_ZZMiRrHMbn5GmvXcQX-zgnd-8vPp9dllfXHz6enV6VWkCTygVALRvKFTMNINeSKa0Mihp5t-C9oXrR11xTrDsjqOqwqboeOtDY6EYrwefkeOfdDOHLiDG1a5vbck57DGNsWf4oJlWt6n-iVDaM86qq6X-gUijFlZisrx-h92EcfJ55oioOXGVyTl7tqXGxxq7dDHath237sK0MnOwAM4QYB-xbY5OetpMGbV1LoZ3uof11D7ni7aOKB-nf2Dc7Vpv4W39_cD8A_VjA4A
CODEN ANCHAM
CitedBy_id crossref_primary_10_1016_j_colsurfa_2022_130304
crossref_primary_10_1002_mame_202200553
crossref_primary_10_1016_j_snb_2017_09_088
crossref_primary_10_1016_j_snb_2017_07_111
crossref_primary_10_1186_s40580_022_00303_z
crossref_primary_10_1002_zaac_202000260
crossref_primary_10_1021_acs_chemmater_9b01067
crossref_primary_10_1039_C5AY03325J
crossref_primary_10_1016_j_microc_2021_106152
crossref_primary_10_1021_acs_jpcb_1c04262
crossref_primary_10_1016_j_microc_2023_108583
crossref_primary_10_1016_j_bios_2018_08_043
crossref_primary_10_1016_j_arr_2025_102656
crossref_primary_10_1002_anie_201506065
crossref_primary_10_1021_acsnanoscienceau_2c00039
crossref_primary_10_1002_elan_202000067
crossref_primary_10_1007_s00216_022_04110_7
crossref_primary_10_1016_j_jphotochem_2024_116034
crossref_primary_10_3390_nano12020213
crossref_primary_10_1016_j_jphotochem_2018_11_010
crossref_primary_10_1016_j_diamond_2023_110471
crossref_primary_10_1021_acssensors_8b00368
crossref_primary_10_1016_j_talanta_2019_120636
crossref_primary_10_1021_acs_analchem_6b03209
crossref_primary_10_1021_acsami_2c04141
crossref_primary_10_1002_elan_201500393
crossref_primary_10_1002_smll_201901647
crossref_primary_10_1039_C7AY00755H
crossref_primary_10_1016_j_snb_2018_03_076
crossref_primary_10_1007_s00604_019_3541_3
crossref_primary_10_1007_s00604_025_06993_6
crossref_primary_10_1016_j_jconrel_2019_08_022
crossref_primary_10_1002_elan_202060126
crossref_primary_10_1016_j_biosx_2022_100112
crossref_primary_10_1021_acs_bioconjchem_6b00003
crossref_primary_10_1021_acs_analchem_6b04509
crossref_primary_10_1021_acs_analchem_6b02448
crossref_primary_10_1007_s00604_017_2183_6
crossref_primary_10_1016_j_fochx_2024_101843
crossref_primary_10_1039_C6AN01251E
crossref_primary_10_1016_j_apsusc_2018_12_137
crossref_primary_10_1021_acs_nanolett_7b04700
crossref_primary_10_1016_j_optmat_2020_110085
crossref_primary_10_1021_acsami_1c15772
crossref_primary_10_1039_C8AN01659C
crossref_primary_10_1016_j_ecoenv_2022_113502
crossref_primary_10_1039_C6TC01159D
crossref_primary_10_1149_2_0191812jes
crossref_primary_10_1007_s00604_021_04755_8
crossref_primary_10_1007_s00604_018_3135_5
crossref_primary_10_1016_j_carbon_2019_02_040
crossref_primary_10_1039_D4CC05494F
crossref_primary_10_1007_s40242_021_1180_9
crossref_primary_10_1016_j_bioelechem_2020_107480
crossref_primary_10_1021_acsanm_1c01466
crossref_primary_10_1002_bio_4331
crossref_primary_10_1021_acs_analchem_3c00171
crossref_primary_10_1039_C5AN00480B
crossref_primary_10_1039_C7AN00961E
crossref_primary_10_1016_S1872_2040_20_60035_4
crossref_primary_10_1016_j_jallcom_2023_173392
crossref_primary_10_1016_j_carbon_2018_02_063
crossref_primary_10_1007_s13206_019_3106_x
crossref_primary_10_1016_j_talanta_2020_121410
crossref_primary_10_1016_j_talanta_2021_122465
crossref_primary_10_1016_j_cjac_2022_100111
crossref_primary_10_1021_acsomega_2c03463
crossref_primary_10_1002_adfm_201807772
crossref_primary_10_1039_C6CC02940J
crossref_primary_10_1016_j_nano_2020_102222
crossref_primary_10_1016_j_apsusc_2021_151457
crossref_primary_10_1016_j_talanta_2016_12_073
crossref_primary_10_1016_j_snb_2020_129350
crossref_primary_10_1021_acsomega_1c04467
crossref_primary_10_1016_j_snb_2019_05_031
crossref_primary_10_1016_j_micromeso_2019_109591
crossref_primary_10_1016_j_ces_2021_117326
crossref_primary_10_1039_D1QO01821C
crossref_primary_10_1016_j_talanta_2019_120552
crossref_primary_10_1039_C7AY01566F
crossref_primary_10_1016_j_talanta_2022_123700
crossref_primary_10_1016_j_bios_2022_114773
crossref_primary_10_1002_admi_201500360
crossref_primary_10_1016_j_jcis_2018_06_041
crossref_primary_10_1039_C8TB02109K
crossref_primary_10_1021_acsanm_1c00906
crossref_primary_10_1021_acs_cgd_4c01476
crossref_primary_10_1016_j_trac_2019_115766
crossref_primary_10_1002_bio_4195
crossref_primary_10_1021_acsami_6b10398
crossref_primary_10_1039_C9TB02681A
crossref_primary_10_1016_j_apsusc_2024_159523
crossref_primary_10_1002_ange_201506065
crossref_primary_10_1039_C7AN01770G
crossref_primary_10_1016_j_talanta_2025_127975
crossref_primary_10_1021_acs_analchem_6b02488
crossref_primary_10_1021_acs_analchem_7b02498
crossref_primary_10_1021_acssuschemeng_8b03684
crossref_primary_10_1149_1945_7111_ad1305
crossref_primary_10_1016_j_talanta_2019_01_002
crossref_primary_10_1016_j_materresbull_2018_10_044
crossref_primary_10_1016_j_microc_2019_02_067
crossref_primary_10_1007_s00216_015_9160_x
crossref_primary_10_1016_j_talanta_2020_121081
crossref_primary_10_1021_acs_analchem_0c05107
crossref_primary_10_1039_D0CC01573C
crossref_primary_10_1002_adma_201601173
crossref_primary_10_1016_j_microc_2021_106224
crossref_primary_10_1021_acs_inorgchem_2c02810
crossref_primary_10_1021_acs_analchem_5b04207
crossref_primary_10_1002_bio_3442
crossref_primary_10_1016_j_saa_2021_119555
crossref_primary_10_1021_acsami_8b09242
crossref_primary_10_1039_D4RA00110A
crossref_primary_10_1016_j_ab_2024_115726
crossref_primary_10_1002_jrs_5800
crossref_primary_10_3390_nano9050693
crossref_primary_10_1021_acs_analchem_8b04670
crossref_primary_10_1002_elan_202200112
crossref_primary_10_1016_j_microc_2020_105185
crossref_primary_10_1039_C7AY00295E
crossref_primary_10_1002_slct_201803966
crossref_primary_10_1021_acs_cgd_6b00936
crossref_primary_10_3390_ijms251910346
crossref_primary_10_1021_acsanm_1c02982
crossref_primary_10_1016_j_saa_2019_02_078
crossref_primary_10_1038_s41598_022_13016_4
crossref_primary_10_2174_1573413717666210412152255
crossref_primary_10_1039_D2CS00830K
crossref_primary_10_1016_j_microc_2022_108106
crossref_primary_10_1021_acschemneuro_7b00391
crossref_primary_10_1042_NS20180132
crossref_primary_10_3389_fchem_2022_928607
crossref_primary_10_1016_j_jhazmat_2019_121956
crossref_primary_10_1021_acsomega_9b02637
crossref_primary_10_1007_s00216_020_02686_6
crossref_primary_10_1016_j_msec_2015_12_038
crossref_primary_10_1007_s10895_021_02840_y
crossref_primary_10_17341_gazimmfd_525552
crossref_primary_10_1007_s00604_024_06786_3
crossref_primary_10_1364_PRJ_403223
crossref_primary_10_1007_s00604_019_3751_8
crossref_primary_10_1021_jacs_5b12727
crossref_primary_10_1002_cplu_202000248
crossref_primary_10_1021_acs_chemrev_1c00746
crossref_primary_10_1088_1361_6528_abb84d
crossref_primary_10_1016_j_snb_2022_132271
crossref_primary_10_1016_j_snb_2017_02_110
crossref_primary_10_1016_j_jinorgbio_2022_111902
crossref_primary_10_1109_TNB_2022_3216312
crossref_primary_10_1016_j_saa_2021_119519
crossref_primary_10_1364_OE_24_000A85
crossref_primary_10_1002_jccs_202400075
crossref_primary_10_3390_s17020268
crossref_primary_10_1007_s12274_017_1677_1
crossref_primary_10_1016_j_biomaterials_2020_120492
crossref_primary_10_3390_s20041039
crossref_primary_10_1002_sstr_202200033
crossref_primary_10_1364_OE_391722
crossref_primary_10_1016_j_procbio_2019_12_016
crossref_primary_10_1016_j_microc_2020_105718
crossref_primary_10_1039_C5RA20462C
crossref_primary_10_3390_pr9010170
crossref_primary_10_1007_s00604_019_3228_9
crossref_primary_10_1016_j_jelechem_2020_114462
crossref_primary_10_1021_acsomega_0c01803
crossref_primary_10_1039_C9NJ02106J
crossref_primary_10_1039_C9AN00395A
crossref_primary_10_1039_C8AN01640B
crossref_primary_10_1016_j_ccr_2023_215012
crossref_primary_10_1039_C8NR05368E
crossref_primary_10_1021_acs_analchem_2c01308
crossref_primary_10_2139_ssrn_4006863
crossref_primary_10_1039_D3AN00590A
crossref_primary_10_3389_fchem_2021_772267
crossref_primary_10_1021_acsanm_2c01294
crossref_primary_10_1002_ppsc_201900034
crossref_primary_10_1016_j_surfin_2024_104087
crossref_primary_10_1002_celc_202000099
crossref_primary_10_3390_nano13232989
crossref_primary_10_1016_j_microc_2019_03_018
crossref_primary_10_1016_j_microc_2020_105263
crossref_primary_10_1039_C8NJ00067K
crossref_primary_10_1021_acs_analchem_3c02313
crossref_primary_10_1039_D4NH00107A
crossref_primary_10_1080_00032719_2020_1720222
crossref_primary_10_1007_s10800_018_1175_5
crossref_primary_10_1039_C6NR03829H
crossref_primary_10_1016_j_aca_2021_338394
crossref_primary_10_1016_j_talanta_2017_11_042
crossref_primary_10_1039_D2TB01450E
crossref_primary_10_1016_j_aca_2021_338393
crossref_primary_10_1007_s12678_023_00833_y
crossref_primary_10_1016_j_aca_2016_08_047
crossref_primary_10_1016_j_dyepig_2017_11_041
crossref_primary_10_1016_j_saa_2018_01_062
crossref_primary_10_1016_j_bios_2018_03_026
crossref_primary_10_1016_j_jallcom_2021_161120
crossref_primary_10_1360_SSC_2024_0002
crossref_primary_10_1002_bio_3389
crossref_primary_10_1002_adfm_201602185
crossref_primary_10_1149_2_0931908jes
crossref_primary_10_1016_j_snb_2018_11_016
crossref_primary_10_3390_bios12111000
crossref_primary_10_1016_j_saa_2020_118463
crossref_primary_10_1039_C5TB02183A
crossref_primary_10_1016_j_snb_2023_133478
crossref_primary_10_1039_D0FD00018C
crossref_primary_10_1007_s42864_024_00297_7
crossref_primary_10_2174_1573412914666180427152544
crossref_primary_10_1021_acsomega_2c04134
crossref_primary_10_1007_s00604_020_04245_3
crossref_primary_10_1007_s11814_020_0507_4
crossref_primary_10_1016_j_inoche_2023_111228
crossref_primary_10_1016_j_saa_2021_119962
crossref_primary_10_1039_C8NR05767B
crossref_primary_10_1021_acsnano_4c01041
crossref_primary_10_1039_C5AN01378J
crossref_primary_10_1039_C7TB01803G
crossref_primary_10_1016_j_snb_2018_02_163
crossref_primary_10_1021_acsami_6b12047
crossref_primary_10_1007_s00216_019_01597_5
crossref_primary_10_1016_j_talanta_2021_122294
crossref_primary_10_1002_elps_201900023
crossref_primary_10_1016_j_cclet_2021_03_061
crossref_primary_10_1039_C7NR00530J
crossref_primary_10_1039_C8TB00415C
crossref_primary_10_1016_j_msec_2017_01_005
crossref_primary_10_1016_j_ab_2023_115154
crossref_primary_10_1016_j_foodchem_2019_02_111
crossref_primary_10_1016_j_microc_2020_105590
crossref_primary_10_1016_j_msec_2018_08_024
crossref_primary_10_1088_2053_1583_ac040e
crossref_primary_10_1016_j_jelechem_2016_08_027
crossref_primary_10_1016_j_talanta_2024_125674
crossref_primary_10_1016_j_jphotochem_2020_113019
crossref_primary_10_3390_molecules29122915
crossref_primary_10_3390_molecules27103081
crossref_primary_10_1038_s41598_023_49414_5
Cites_doi 10.1021/nn700319z
10.1039/c2ay25794g
10.1039/c2nr32375c
10.1021/jp305411u
10.1039/C0NR00559B
10.1002/smll.201401658
10.1021/nn2050449
10.1039/C3CS60353A
10.1021/ja068894w
10.1016/j.talanta.2005.04.027
10.1021/jz401896k
10.1021/ac102623r
10.1021/la0008636
10.1021/ar400221g
10.1016/j.talanta.2012.05.013
10.1039/c3nr05896d
10.1002/anie.200802230
10.1002/adma.200801642
10.1007/s00216-012-6578-2
10.1039/c1an15025a
10.1038/nmat2811
10.1016/j.talanta.2011.08.032
10.1016/j.talanta.2013.01.006
10.1002/anie.200501256
10.1021/ac901744s
10.1021/nn301536n
10.2147/nano.2006.1.4.451
10.1039/C3NR06271F
10.1016/S0003-2670(01)01358-7
10.1039/C4RA08090D
10.1039/C4TB00366G
10.1021/ja4026227
10.1038/35094560
10.1039/C2CC36282A
10.1021/cr068081q
10.1021/ac403257p
10.1039/c1cc12995c
10.1021/nl401802h
10.1002/adhm.201300157
10.1212/WNL.57.5.833
10.1039/C3AN01592K
10.1002/smll.201401471
10.1021/ac010406+
10.1039/c2an35586h
10.1021/nl048417g
10.1002/smll.200800903
10.1021/nl052105b
10.1021/ja075184x
10.1039/c2an35734h
10.1016/S0039-9140(99)00164-2
10.1021/ja808827g
ContentType Journal Article
Copyright Copyright American Chemical Society Mar 17, 2015
Copyright_xml – notice: Copyright American Chemical Society Mar 17, 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7SU
7S9
L.6
DOI 10.1021/ac504520g
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Environmental Engineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Toxicology Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
Environmental Engineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Materials Research Database
AGRICOLA
MEDLINE - Academic
Materials Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-6882
EndPage 3365
ExternalDocumentID 3632574851
25671464
10_1021_ac504520g
e80518966
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID -
.K2
02
1AW
23M
4.4
53G
53T
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABOCM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACNCT
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
D0L
DZ
EBS
ED
ED~
EJD
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
P2P
PQEST
PQQKQ
ROL
RXW
TAE
TAF
TN5
UHB
UI2
UKR
VF5
VG9
VQA
W1F
WH7
X
X6Y
XFK
YZZ
---
-DZ
-~X
.DC
6J9
AAHBH
AAYXX
ABBLG
ABHFT
ABHMW
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ACKOT
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
KZ1
LMP
XSW
ZCA
~02
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7SU
7S9
L.6
ID FETCH-LOGICAL-a409t-b008691372c90e3a627a7ce48e3db3fc1abf83a1e8dc417de95df0d0ae9a9a743
IEDL.DBID ACS
ISSN 0003-2700
1520-6882
IngestDate Fri Jul 11 03:38:00 EDT 2025
Fri Jul 11 08:01:23 EDT 2025
Fri Jul 11 07:27:28 EDT 2025
Mon Jun 30 08:33:41 EDT 2025
Mon Jul 21 05:25:58 EDT 2025
Thu Apr 24 22:59:54 EDT 2025
Tue Jul 01 02:49:11 EDT 2025
Thu Aug 27 13:42:35 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a409t-b008691372c90e3a627a7ce48e3db3fc1abf83a1e8dc417de95df0d0ae9a9a743
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 25671464
PQID 1665303777
PQPubID 45400
PageCount 6
ParticipantIDs proquest_miscellaneous_2000267878
proquest_miscellaneous_1692335581
proquest_miscellaneous_1664773748
proquest_journals_1665303777
pubmed_primary_25671464
crossref_citationtrail_10_1021_ac504520g
crossref_primary_10_1021_ac504520g
acs_journals_10_1021_ac504520g
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-03-17
PublicationDateYYYYMMDD 2015-03-17
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-17
  day: 17
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Analytical chemistry (Washington)
PublicationTitleAlternate Anal. Chem
PublicationYear 2015
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Kang Z. H. (ref28/cit28) 2007; 129
Liu Q. (ref4/cit4) 2012; 97
Zhang Y. X. (ref24/cit24) 2012; 4
Jackowska K. (ref18/cit18) 2013; 405
She G. W. (ref19/cit19) 2014; 10
He Y. (ref44/cit44) 2009; 131
Warner J. H. (ref40/cit40) 2005; 44
Zhang L. H. (ref13/cit13) 1999; 50
Erogbogbo F. (ref42/cit42) 2008; 2
Lee H. C. (ref11/cit11) 2012; 137
Su S. (ref30/cit30) 2012; 6
M. Gonzalez C. (ref35/cit35) 2014; 6
Nikolajsen R. P. H. (ref12/cit12) 2001; 449
Peng F. (ref39/cit39) 2014; 47
Ma Y. (ref14/cit14) 2005; 67
Cheng X. Y. (ref36/cit36) 2014; 43
Yu C. M. (ref15/cit15) 2011; 47
Tyagi P. (ref7/cit7) 2009; 81
Zhao Y. S. (ref8/cit8) 2011; 85
O’Farrell N. (ref41/cit41) 2006; 1
Hyman S. E. (ref2/cit2) 2001; 2
Santra S. (ref22/cit22) 2001; 17
Robinson D. L. (ref1/cit1) 2008; 108
Liu L. (ref9/cit9) 2012; 137
Wang J. (ref33/cit33) 2014; 2
Medintz I. L. (ref50/cit50) 2010; 9
Zhang Y. X. (ref25/cit25) 2012; 116
Kang Z. H. (ref29/cit29) 2007; 129
Lu X. T. (ref31/cit31) 2013; 13
Zhou J. W. (ref5/cit5) 2014; 4
Li L. L. (ref3/cit3) 2011; 83
Santra S. (ref21/cit21) 2001; 73
Zhong Y. L. (ref48/cit48) 2013; 135
Wang L. (ref23/cit23) 2006; 6
Chinnathambi S. (ref34/cit34) 2014; 3
Kang Z. H. (ref26/cit26) 2011; 3
Zhang J. (ref37/cit37) 2014; 6
Singh M. P. (ref46/cit46) 2012; 6
Fuzell J. (ref32/cit32) 2013; 4
Zhang X. D. (ref49/cit49) 2014; 10
Wang L. (ref20/cit20) 2005; 5
Zhao D. (ref16/cit16) 2013; 107
Koehne J. E. (ref6/cit6) 2011; 136
Yi Y. H. (ref47/cit47) 2013; 85
Su H. C. (ref10/cit10) 2012; 4
Kang Z. H. (ref27/cit27) 2009; 21
Sander D. (ref51/cit51) 2001; 57
Alsharif N. H. (ref45/cit45) 2009; 5
Mu Q. (ref17/cit17) 2014; 139
Yi Y. H. (ref38/cit38) 2013; 49
He Y. (ref43/cit43) 2009; 48
References_xml – volume: 2
  start-page: 873
  year: 2008
  ident: ref42/cit42
  publication-title: ACS Nano
  doi: 10.1021/nn700319z
– volume: 4
  start-page: 3981
  year: 2012
  ident: ref10/cit10
  publication-title: Anal. Methods
  doi: 10.1039/c2ay25794g
– volume: 4
  start-page: 7760
  year: 2012
  ident: ref24/cit24
  publication-title: Nanoscale
  doi: 10.1039/c2nr32375c
– volume: 116
  start-page: 20363
  year: 2012
  ident: ref25/cit25
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp305411u
– volume: 3
  start-page: 777
  year: 2011
  ident: ref26/cit26
  publication-title: Nanoscale
  doi: 10.1039/C0NR00559B
– volume: 10
  start-page: 5170
  year: 2014
  ident: ref49/cit49
  publication-title: Small
  doi: 10.1002/smll.201401658
– volume: 6
  start-page: 2582
  year: 2012
  ident: ref30/cit30
  publication-title: ACS Nano
  doi: 10.1021/nn2050449
– volume: 43
  start-page: 2680
  year: 2014
  ident: ref36/cit36
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60353A
– volume: 129
  start-page: 5326
  year: 2007
  ident: ref28/cit28
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja068894w
– volume: 67
  start-page: 979
  year: 2005
  ident: ref14/cit14
  publication-title: Talanta
  doi: 10.1016/j.talanta.2005.04.027
– volume: 4
  start-page: 3806
  year: 2013
  ident: ref32/cit32
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz401896k
– volume: 83
  start-page: 661
  year: 2011
  ident: ref3/cit3
  publication-title: Anal. Chem.
  doi: 10.1021/ac102623r
– volume: 17
  start-page: 2900
  year: 2001
  ident: ref22/cit22
  publication-title: Langmuir
  doi: 10.1021/la0008636
– volume: 47
  start-page: 612
  year: 2014
  ident: ref39/cit39
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar400221g
– volume: 97
  start-page: 557
  year: 2012
  ident: ref4/cit4
  publication-title: Talanta
  doi: 10.1016/j.talanta.2012.05.013
– volume: 6
  start-page: 4096
  year: 2014
  ident: ref37/cit37
  publication-title: Nanoscale
  doi: 10.1039/c3nr05896d
– volume: 48
  start-page: 128
  year: 2009
  ident: ref43/cit43
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200802230
– volume: 21
  start-page: 661
  year: 2009
  ident: ref27/cit27
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200801642
– volume: 405
  start-page: 3753
  year: 2013
  ident: ref18/cit18
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-012-6578-2
– volume: 136
  start-page: 1802
  year: 2011
  ident: ref6/cit6
  publication-title: Analyst
  doi: 10.1039/c1an15025a
– volume: 9
  start-page: 676
  year: 2010
  ident: ref50/cit50
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2811
– volume: 85
  start-page: 2650
  year: 2011
  ident: ref8/cit8
  publication-title: Talanta
  doi: 10.1016/j.talanta.2011.08.032
– volume: 107
  start-page: 133
  year: 2013
  ident: ref16/cit16
  publication-title: Talanta
  doi: 10.1016/j.talanta.2013.01.006
– volume: 44
  start-page: 4550
  year: 2005
  ident: ref40/cit40
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200501256
– volume: 81
  start-page: 9979
  year: 2009
  ident: ref7/cit7
  publication-title: Anal. Chem.
  doi: 10.1021/ac901744s
– volume: 6
  start-page: 5596
  year: 2012
  ident: ref46/cit46
  publication-title: ACS Nano
  doi: 10.1021/nn301536n
– volume: 1
  start-page: 451
  year: 2006
  ident: ref41/cit41
  publication-title: Int. J. Nanomed.
  doi: 10.2147/nano.2006.1.4.451
– volume: 6
  start-page: 2608
  year: 2014
  ident: ref35/cit35
  publication-title: Nanoscale
  doi: 10.1039/C3NR06271F
– volume: 449
  start-page: 1
  year: 2001
  ident: ref12/cit12
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(01)01358-7
– volume: 4
  start-page: 52250
  year: 2014
  ident: ref5/cit5
  publication-title: RSC Adv.
  doi: 10.1039/C4RA08090D
– volume: 2
  start-page: 4338
  year: 2014
  ident: ref33/cit33
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C4TB00366G
– volume: 135
  start-page: 8350
  year: 2013
  ident: ref48/cit48
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4026227
– volume: 2
  start-page: 695
  year: 2001
  ident: ref2/cit2
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/35094560
– volume: 49
  start-page: 612
  year: 2013
  ident: ref38/cit38
  publication-title: Chem. Commun.
  doi: 10.1039/C2CC36282A
– volume: 108
  start-page: 2554
  year: 2008
  ident: ref1/cit1
  publication-title: Chem. Rev.
  doi: 10.1021/cr068081q
– volume: 85
  start-page: 11464
  year: 2013
  ident: ref47/cit47
  publication-title: Anal. Chem.
  doi: 10.1021/ac403257p
– volume: 47
  start-page: 9086
  year: 2011
  ident: ref15/cit15
  publication-title: Chem. Commun.
  doi: 10.1039/c1cc12995c
– volume: 13
  start-page: 3101
  year: 2013
  ident: ref31/cit31
  publication-title: Nano Lett.
  doi: 10.1021/nl401802h
– volume: 3
  start-page: 10
  year: 2014
  ident: ref34/cit34
  publication-title: Adv. Healthcare Mater.
  doi: 10.1002/adhm.201300157
– volume: 57
  start-page: 833
  year: 2001
  ident: ref51/cit51
  publication-title: Neurology
  doi: 10.1212/WNL.57.5.833
– volume: 139
  start-page: 93
  year: 2014
  ident: ref17/cit17
  publication-title: Analyst
  doi: 10.1039/C3AN01592K
– volume: 10
  start-page: 4685
  year: 2014
  ident: ref19/cit19
  publication-title: Small
  doi: 10.1002/smll.201401471
– volume: 73
  start-page: 4988
  year: 2001
  ident: ref21/cit21
  publication-title: Anal. Chem.
  doi: 10.1021/ac010406+
– volume: 137
  start-page: 5352
  year: 2012
  ident: ref11/cit11
  publication-title: Analyst
  doi: 10.1039/c2an35586h
– volume: 5
  start-page: 37
  year: 2005
  ident: ref20/cit20
  publication-title: Nano Lett.
  doi: 10.1021/nl048417g
– volume: 5
  start-page: 221
  year: 2009
  ident: ref45/cit45
  publication-title: Small
  doi: 10.1002/smll.200800903
– volume: 6
  start-page: 84
  year: 2006
  ident: ref23/cit23
  publication-title: Nano Lett.
  doi: 10.1021/nl052105b
– volume: 129
  start-page: 12090
  year: 2007
  ident: ref29/cit29
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja075184x
– volume: 137
  start-page: 3794
  year: 2012
  ident: ref9/cit9
  publication-title: Analyst
  doi: 10.1039/c2an35734h
– volume: 50
  start-page: 677
  year: 1999
  ident: ref13/cit13
  publication-title: Talanta
  doi: 10.1016/S0039-9140(99)00164-2
– volume: 131
  start-page: 4434
  year: 2009
  ident: ref44/cit44
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja808827g
SSID ssj0011016
Score 2.5813131
Snippet A simple and highly efficient method for dopamine (DA) detection using water-soluble silicon nanoparticles (SiNPs) was reported. The SiNPs with a high quantum...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3360
SubjectTerms ascorbic acid
Cells
detection limit
Dopamine
Dopamine - analysis
Energy transfer
Fluorescence
Fluorescent Dyes - chemistry
Limit of Detection
microwave treatment
Molecules
Nanoparticles
Nanoparticles - chemistry
Nanotechnology
Photoluminescence
Quenching
Quenching (cooling)
Silicon
Silicon - chemistry
Spectrometry, Fluorescence
Water - chemistry
Title Highly Sensitive and Selective Detection of Dopamine Using One-Pot Synthesized Highly Photoluminescent Silicon Nanoparticles
URI http://dx.doi.org/10.1021/ac504520g
https://www.ncbi.nlm.nih.gov/pubmed/25671464
https://www.proquest.com/docview/1665303777
https://www.proquest.com/docview/1664773748
https://www.proquest.com/docview/1692335581
https://www.proquest.com/docview/2000267878
Volume 87
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6VcgAOFAqFhVKZx4FL2jiJX8dql6pCAiotlXpbObYDVbcJYrOHVvx4ZvLSVnTLMcrYiTzjmc-azzMAHxBB-NhKHWkhJB5QTBEZUehIOW_iXHJtC8rofvkqj0-zz2fibAPer8ngJ_zAOkFlv-Mf9-B-IrWiE9bheDqkCuj42bfFoyxqXz5odSiFHre4GXrW4MkmrhxtwaS_ndPSSS72l3W-767_LdZ41y8_gccdrmSHrSE8hY1QbsODcd_ObRserVQefAZ_iN8xv2JT4q-Tx2O29Pg0b_0fm4S64WiVrCrYBA_WlziWNfwC9q0M0UlVs-lViehxcX4dPOumO_lZ1eTuiEtPtE82PZ-jqZUMnThO0pHwnsPp0afv4-Ooa8QQWdReTU16tDQ8VYkzcUitTJRVLmQ6pD5PC8dtXujU8qC9y7jywQhfxGgDwVhjEaPswGZZleElMKmC0Dz1xhR55kKqBYkrlwTFhTbJCPZQU7NuIy1mTY484bNhSUfwsVfizHVlzKmbxvw20XeD6K-2dsdtQru9Jax8VUqBsV0pNYK3w2tUGGVTbBmqZSOTKUXVe-6SQfxMBez5ehm6K5UgZFA4z4vWEoe_RTyqMJRlr_63Kq_hISI5QeQ4rnZhs_69DG8QLdX5XrNb_gL3Ww3w
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHAoHHuW1UIpBHLikxEn8OlZbqgXaUmlbqbfIsR2oWBJEsodW_HhmnAcLaoFjlLFj2RPPZ83nbwh5BQjCxUaoSHEu4ICiy0jzUkXSOh0XgilTYkb34FDMTrL3p_y0l8nBuzAwiAZ6akIS_5e6AHtjLEf17_jTdXIDQEiCB62d6XzMGOApdKiOh8nUQUVotSlGINv8HoGugJUhvOzd6eoUhYEFVsmX7WVbbNuLPzQb_2_kd8ntHmXSnc4t7pFrvtog69OhuNsGubWiQ3if_EC2x-KczpHNjvsfNZWDp0W3G9Jd3wbGVkXrku7CMfsrtKWBbUA_Vj46qls6P68ASzZnF97Rvrujz3WLmx8y65EESudnC3C8isKWDp30lLwH5GTv7fF0FvVlGSIDa9liyR4lNEtlYnXsUyMSaaT1mfKpK9LSMlOUKjXMK2czJp3X3JUxeITXRhtALA_JWlVX_jGhQnquWOq0LovM-lRxNJc28ZJxpZMJ2YIZzfvfqslDxjxh-TilE_J6WMvc9qLmWFtjcZnpy9H0W6fkcZnR5uAQK18VgkOkl1JOyIvxNSwY5lZM5etlsMmkRC2fv9kAmkY5e3a1Dd6cSgBASOjnUeeQ42gBnUoIbNmTf83Kc7I-Oz7Yz_ffHX54Sm4CxuNIm2Nyk6y135f-GeCottgKP9BPkLoWUQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSFAOPAqFhVIM4sAlJU7i17HaZVVe7UpLpd4ixw-oWJKKZA-t-PHMZJNoQS1wXGXiteyx5xvNl28IeQUIwsVGqEhxLiBB0SHSPKhIWqfjQjBlAlZ0Px2Kg-Ps_Qk_6RJF_BYGJlHDSHVbxMdTfeZCpzDA3hjLUQE8_nKd3MByHSZb--P5UDXATLTvkIcF1V5JaP1VjEK2_j0KXQEt2xAzvUuOhsm1zJJve8um2LMXf-g2_v_s75E7Hdqk-yv3uE-u-XKL3Br3Td62yO01PcIH5CeyPhbndI6sdrwHqSkd_FqsbkU68U3L3CppFegE0u3v8C5tWQf0qPTRrGro_LwETFmfXnhHu-FmX6sGL0Fk2CMZlM5PF-CAJYWrHQbpqHkPyfH07efxQdS1Z4gM7GmDrXuU0CyVidWxT41IpJHWZ8qnrkiDZaYIKjXMK2czJp3X3IUYPMNrow0gl22yUValf0yokJ4rljqtQ5FZnyqO5tImXjKudDIiu7CqeXe86rytnCcsH5Z0RF73-5nbTtwce2wsLjN9OZierRQ9LjPa6Z1i7V-F4BDxpZQj8mJ4DBuGNRZT-mrZ2mRSoqbP32wAVaOsPbvaBr-gSgBISBjn0coph9kCSpUQ4LIn_1qV5-TmbDLNP747_PCUbALU48ieY3KHbDQ_lv4ZwKmm2G3P0C-QGBjU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Sensitive+and+Selective+Detection+of+Dopamine+Using+One-Pot+Synthesized+Highly+Photoluminescent+Silicon+Nanoparticles&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Zhang%2C+Xiaodong&rft.au=Chen%2C+Xiaokai&rft.au=Kai%2C+Siqi&rft.au=Wang%2C+Hong-Yin&rft.date=2015-03-17&rft.pub=American+Chemical+Society&rft.issn=0003-2700&rft.eissn=1520-6882&rft.volume=87&rft.issue=6&rft.spage=3360&rft_id=info:doi/10.1021%2Fac504520g&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3632574851
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon