Highly Sensitive and Selective Detection of Dopamine Using One-Pot Synthesized Highly Photoluminescent Silicon Nanoparticles
A simple and highly efficient method for dopamine (DA) detection using water-soluble silicon nanoparticles (SiNPs) was reported. The SiNPs with a high quantum yield of 23.6% were synthesized by using a one-pot microwave-assisted method. The fluorescence quenching capability of a variety of molecules...
Saved in:
Published in | Analytical chemistry (Washington) Vol. 87; no. 6; pp. 3360 - 3365 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
17.03.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A simple and highly efficient method for dopamine (DA) detection using water-soluble silicon nanoparticles (SiNPs) was reported. The SiNPs with a high quantum yield of 23.6% were synthesized by using a one-pot microwave-assisted method. The fluorescence quenching capability of a variety of molecules on the synthesized SiNPs has been tested; only DA molecules were found to be able to quench the fluorescence of these SiNPs effectively. Therefore, such a quenching effect can be used to selectively detect DA. All other molecules tested have little interference with the dopamine detection, including ascorbic acid, which commonly exists in cells and can possibly affect the dopamine detection. The ratio of the fluorescence intensity difference between the quenched and unquenched cases versus the fluorescence intensity without quenching (ΔI/I) was observed to be linearly proportional to the DA analyte concentration in the range from 0.005 to 10.0 μM, with a detection limit of 0.3 nM (S/N = 3). To the best of our knowledge, this is the lowest limit for DA detection reported so far. The mechanism of fluorescence quenching is attributed to the energy transfer from the SiNPs to the oxidized dopamine molecules through Förster resonance energy transfer. The reported method of SiNP synthesis is very simple and cheap, making the above sensitive and selective DA detection approach using SiNPs practical for many applications. |
---|---|
AbstractList | A simple and highly efficient method for dopamine (DA) detection using water-soluble silicon nanoparticles (SiNPs) was reported. The SiNPs with a high quantum yield of 23.6% were synthesized by using a one-pot microwave-assisted method. The fluorescence quenching capability of a variety of molecules on the synthesized SiNPs has been tested; only DA molecules were found to be able to quench the fluorescence of these SiNPs effectively. Therefore, such a quenching effect can be used to selectively detect DA. All other molecules tested have little interference with the dopamine detection, including ascorbic acid, which commonly exists in cells and can possibly affect the dopamine detection. The ratio of the fluorescence intensity difference between the quenched and unquenched cases versus the fluorescence intensity without quenching (ΔI/I) was observed to be linearly proportional to the DA analyte concentration in the range from 0.005 to 10.0 μM, with a detection limit of 0.3 nM (S/N = 3). To the best of our knowledge, this is the lowest limit for DA detection reported so far. The mechanism of fluorescence quenching is attributed to the energy transfer from the SiNPs to the oxidized dopamine molecules through Förster resonance energy transfer. The reported method of SiNP synthesis is very simple and cheap, making the above sensitive and selective DA detection approach using SiNPs practical for many applications. A simple and highly efficient method for dopamine (DA) detection using water-soluble silicon nanoparticles (SiNPs) was reported. The SiNPs with a high quantum yield of 23.6% were synthesized by using a one-pot microwave-assisted method. The fluorescence quenching capability of a variety of molecules on the synthesized SiNPs has been tested; only DA molecules were found to be able to quench the fluorescence of these SiNPs effectively. Therefore, such a quenching effect can be used to selectively detect DA. All other molecules tested have little interference with the dopamine detection, including ascorbic acid, which commonly exists in cells and can possibly affect the dopamine detection. The ratio of the fluorescence intensity difference between the quenched and unquenched cases versus the fluorescence intensity without quenching (...I/I) was observed to be linearly proportional to the DA analyte concentration in the range from 0.005 to 10.0 ...M, with a detection limit of 0.3 nM (S/N = 3). To the best of our knowledge, this is the lowest limit for DA detection reported so far. The mechanism of fluorescence quenching is attributed to the energy transfer from the SiNPs to the oxidized dopamine molecules through Forster resonance energy transfer. The reported method of SiNP synthesis is very simple and cheap, making the above sensitive and selective DA detection approach using SiNPs practical for many applications. (ProQuest: ... denotes formulae/symbols omitted.) A simple and highly efficient method for dopamine (DA) detection using water-soluble silicon nanoparticles (SiNPs) was reported. The SiNPs with a high quantum yield of 23.6% were synthesized by using a one-pot microwave-assisted method. The fluorescence quenching capability of a variety of molecules on the synthesized SiNPs has been tested; only DA molecules were found to be able to quench the fluorescence of these SiNPs effectively. Therefore, such a quenching effect can be used to selectively detect DA. All other molecules tested have little interference with the dopamine detection, including ascorbic acid, which commonly exists in cells and can possibly affect the dopamine detection. The ratio of the fluorescence intensity difference between the quenched and unquenched cases versus the fluorescence intensity without quenching (ΔI/I) was observed to be linearly proportional to the DA analyte concentration in the range from 0.005 to 10.0 μM, with a detection limit of 0.3 nM (S/N = 3). To the best of our knowledge, this is the lowest limit for DA detection reported so far. The mechanism of fluorescence quenching is attributed to the energy transfer from the SiNPs to the oxidized dopamine molecules through Förster resonance energy transfer. The reported method of SiNP synthesis is very simple and cheap, making the above sensitive and selective DA detection approach using SiNPs practical for many applications. A simple and highly efficient method for dopamine (DA) detection using water-soluble silicon nanoparticles (SiNPs) was reported. The SiNPs with a high quantum yield of 23.6% were synthesized by using a one-pot microwave-assisted method. The fluorescence quenching capability of a variety of molecules on the synthesized SiNPs has been tested; only DA molecules were found to be able to quench the fluorescence of these SiNPs effectively. Therefore, such a quenching effect can be used to selectively detect DA. All other molecules tested have little interference with the dopamine detection, including ascorbic acid, which commonly exists in cells and can possibly affect the dopamine detection. The ratio of the fluorescence intensity difference between the quenched and unquenched cases versus the fluorescence intensity without quenching (ΔI/I) was observed to be linearly proportional to the DA analyte concentration in the range from 0.005 to 10.0 μM, with a detection limit of 0.3 nM (S/N = 3). To the best of our knowledge, this is the lowest limit for DA detection reported so far. The mechanism of fluorescence quenching is attributed to the energy transfer from the SiNPs to the oxidized dopamine molecules through Förster resonance energy transfer. The reported method of SiNP synthesis is very simple and cheap, making the above sensitive and selective DA detection approach using SiNPs practical for many applications.A simple and highly efficient method for dopamine (DA) detection using water-soluble silicon nanoparticles (SiNPs) was reported. The SiNPs with a high quantum yield of 23.6% were synthesized by using a one-pot microwave-assisted method. The fluorescence quenching capability of a variety of molecules on the synthesized SiNPs has been tested; only DA molecules were found to be able to quench the fluorescence of these SiNPs effectively. Therefore, such a quenching effect can be used to selectively detect DA. All other molecules tested have little interference with the dopamine detection, including ascorbic acid, which commonly exists in cells and can possibly affect the dopamine detection. The ratio of the fluorescence intensity difference between the quenched and unquenched cases versus the fluorescence intensity without quenching (ΔI/I) was observed to be linearly proportional to the DA analyte concentration in the range from 0.005 to 10.0 μM, with a detection limit of 0.3 nM (S/N = 3). To the best of our knowledge, this is the lowest limit for DA detection reported so far. The mechanism of fluorescence quenching is attributed to the energy transfer from the SiNPs to the oxidized dopamine molecules through Förster resonance energy transfer. The reported method of SiNP synthesis is very simple and cheap, making the above sensitive and selective DA detection approach using SiNPs practical for many applications. |
Author | Chen, Xiaokai Wang, Hong-Yin Chen, Zhan Zhang, Xiaodong Wu, Fu-Gen Kai, Siqi Yang, Jingjing |
AuthorAffiliation | Department of Chemistry University of Michigan Southeast University |
AuthorAffiliation_xml | – name: Southeast University – name: University of Michigan – name: Department of Chemistry |
Author_xml | – sequence: 1 givenname: Xiaodong surname: Zhang fullname: Zhang, Xiaodong organization: Southeast University – sequence: 2 givenname: Xiaokai surname: Chen fullname: Chen, Xiaokai organization: Southeast University – sequence: 3 givenname: Siqi surname: Kai fullname: Kai, Siqi organization: Southeast University – sequence: 4 givenname: Hong-Yin surname: Wang fullname: Wang, Hong-Yin organization: Southeast University – sequence: 5 givenname: Jingjing surname: Yang fullname: Yang, Jingjing organization: Southeast University – sequence: 6 givenname: Fu-Gen surname: Wu fullname: Wu, Fu-Gen email: wufg@seu.edu.cn organization: Southeast University – sequence: 7 givenname: Zhan surname: Chen fullname: Chen, Zhan email: zhanc@umich.edu organization: University of Michigan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25671464$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkt9rFDEQgINU7PX0wX9AFkSoD2snPzbZfSxttUKxhdrnJZedvUvJJecmK5z4x5v1riJV0KfJwDcfM5k5Igc-eCTkJYV3FBg90aYCUTFYPiEzmmMp65odkBkA8JIpgENyFOM9AKVA5TNyyCqpqJBiRr5f2uXKbYtb9NEm-xUL7bucOTQ_s3NM0yv4IvTFedjotfVY3EXrl8W1x_ImpOJ269MKo_2GXbHX3axCCm6c4GjQZ8Y6a7Llk_ZZMiRrHMbn5GmvXcQX-zgnd-8vPp9dllfXHz6enV6VWkCTygVALRvKFTMNINeSKa0Mihp5t-C9oXrR11xTrDsjqOqwqboeOtDY6EYrwefkeOfdDOHLiDG1a5vbck57DGNsWf4oJlWt6n-iVDaM86qq6X-gUijFlZisrx-h92EcfJ55oioOXGVyTl7tqXGxxq7dDHath237sK0MnOwAM4QYB-xbY5OetpMGbV1LoZ3uof11D7ni7aOKB-nf2Dc7Vpv4W39_cD8A_VjA4A |
CODEN | ANCHAM |
CitedBy_id | crossref_primary_10_1016_j_colsurfa_2022_130304 crossref_primary_10_1002_mame_202200553 crossref_primary_10_1016_j_snb_2017_09_088 crossref_primary_10_1016_j_snb_2017_07_111 crossref_primary_10_1186_s40580_022_00303_z crossref_primary_10_1002_zaac_202000260 crossref_primary_10_1021_acs_chemmater_9b01067 crossref_primary_10_1039_C5AY03325J crossref_primary_10_1016_j_microc_2021_106152 crossref_primary_10_1021_acs_jpcb_1c04262 crossref_primary_10_1016_j_microc_2023_108583 crossref_primary_10_1016_j_bios_2018_08_043 crossref_primary_10_1016_j_arr_2025_102656 crossref_primary_10_1002_anie_201506065 crossref_primary_10_1021_acsnanoscienceau_2c00039 crossref_primary_10_1002_elan_202000067 crossref_primary_10_1007_s00216_022_04110_7 crossref_primary_10_1016_j_jphotochem_2024_116034 crossref_primary_10_3390_nano12020213 crossref_primary_10_1016_j_jphotochem_2018_11_010 crossref_primary_10_1016_j_diamond_2023_110471 crossref_primary_10_1021_acssensors_8b00368 crossref_primary_10_1016_j_talanta_2019_120636 crossref_primary_10_1021_acs_analchem_6b03209 crossref_primary_10_1021_acsami_2c04141 crossref_primary_10_1002_elan_201500393 crossref_primary_10_1002_smll_201901647 crossref_primary_10_1039_C7AY00755H crossref_primary_10_1016_j_snb_2018_03_076 crossref_primary_10_1007_s00604_019_3541_3 crossref_primary_10_1007_s00604_025_06993_6 crossref_primary_10_1016_j_jconrel_2019_08_022 crossref_primary_10_1002_elan_202060126 crossref_primary_10_1016_j_biosx_2022_100112 crossref_primary_10_1021_acs_bioconjchem_6b00003 crossref_primary_10_1021_acs_analchem_6b04509 crossref_primary_10_1021_acs_analchem_6b02448 crossref_primary_10_1007_s00604_017_2183_6 crossref_primary_10_1016_j_fochx_2024_101843 crossref_primary_10_1039_C6AN01251E crossref_primary_10_1016_j_apsusc_2018_12_137 crossref_primary_10_1021_acs_nanolett_7b04700 crossref_primary_10_1016_j_optmat_2020_110085 crossref_primary_10_1021_acsami_1c15772 crossref_primary_10_1039_C8AN01659C crossref_primary_10_1016_j_ecoenv_2022_113502 crossref_primary_10_1039_C6TC01159D crossref_primary_10_1149_2_0191812jes crossref_primary_10_1007_s00604_021_04755_8 crossref_primary_10_1007_s00604_018_3135_5 crossref_primary_10_1016_j_carbon_2019_02_040 crossref_primary_10_1039_D4CC05494F crossref_primary_10_1007_s40242_021_1180_9 crossref_primary_10_1016_j_bioelechem_2020_107480 crossref_primary_10_1021_acsanm_1c01466 crossref_primary_10_1002_bio_4331 crossref_primary_10_1021_acs_analchem_3c00171 crossref_primary_10_1039_C5AN00480B crossref_primary_10_1039_C7AN00961E crossref_primary_10_1016_S1872_2040_20_60035_4 crossref_primary_10_1016_j_jallcom_2023_173392 crossref_primary_10_1016_j_carbon_2018_02_063 crossref_primary_10_1007_s13206_019_3106_x crossref_primary_10_1016_j_talanta_2020_121410 crossref_primary_10_1016_j_talanta_2021_122465 crossref_primary_10_1016_j_cjac_2022_100111 crossref_primary_10_1021_acsomega_2c03463 crossref_primary_10_1002_adfm_201807772 crossref_primary_10_1039_C6CC02940J crossref_primary_10_1016_j_nano_2020_102222 crossref_primary_10_1016_j_apsusc_2021_151457 crossref_primary_10_1016_j_talanta_2016_12_073 crossref_primary_10_1016_j_snb_2020_129350 crossref_primary_10_1021_acsomega_1c04467 crossref_primary_10_1016_j_snb_2019_05_031 crossref_primary_10_1016_j_micromeso_2019_109591 crossref_primary_10_1016_j_ces_2021_117326 crossref_primary_10_1039_D1QO01821C crossref_primary_10_1016_j_talanta_2019_120552 crossref_primary_10_1039_C7AY01566F crossref_primary_10_1016_j_talanta_2022_123700 crossref_primary_10_1016_j_bios_2022_114773 crossref_primary_10_1002_admi_201500360 crossref_primary_10_1016_j_jcis_2018_06_041 crossref_primary_10_1039_C8TB02109K crossref_primary_10_1021_acsanm_1c00906 crossref_primary_10_1021_acs_cgd_4c01476 crossref_primary_10_1016_j_trac_2019_115766 crossref_primary_10_1002_bio_4195 crossref_primary_10_1021_acsami_6b10398 crossref_primary_10_1039_C9TB02681A crossref_primary_10_1016_j_apsusc_2024_159523 crossref_primary_10_1002_ange_201506065 crossref_primary_10_1039_C7AN01770G crossref_primary_10_1016_j_talanta_2025_127975 crossref_primary_10_1021_acs_analchem_6b02488 crossref_primary_10_1021_acs_analchem_7b02498 crossref_primary_10_1021_acssuschemeng_8b03684 crossref_primary_10_1149_1945_7111_ad1305 crossref_primary_10_1016_j_talanta_2019_01_002 crossref_primary_10_1016_j_materresbull_2018_10_044 crossref_primary_10_1016_j_microc_2019_02_067 crossref_primary_10_1007_s00216_015_9160_x crossref_primary_10_1016_j_talanta_2020_121081 crossref_primary_10_1021_acs_analchem_0c05107 crossref_primary_10_1039_D0CC01573C crossref_primary_10_1002_adma_201601173 crossref_primary_10_1016_j_microc_2021_106224 crossref_primary_10_1021_acs_inorgchem_2c02810 crossref_primary_10_1021_acs_analchem_5b04207 crossref_primary_10_1002_bio_3442 crossref_primary_10_1016_j_saa_2021_119555 crossref_primary_10_1021_acsami_8b09242 crossref_primary_10_1039_D4RA00110A crossref_primary_10_1016_j_ab_2024_115726 crossref_primary_10_1002_jrs_5800 crossref_primary_10_3390_nano9050693 crossref_primary_10_1021_acs_analchem_8b04670 crossref_primary_10_1002_elan_202200112 crossref_primary_10_1016_j_microc_2020_105185 crossref_primary_10_1039_C7AY00295E crossref_primary_10_1002_slct_201803966 crossref_primary_10_1021_acs_cgd_6b00936 crossref_primary_10_3390_ijms251910346 crossref_primary_10_1021_acsanm_1c02982 crossref_primary_10_1016_j_saa_2019_02_078 crossref_primary_10_1038_s41598_022_13016_4 crossref_primary_10_2174_1573413717666210412152255 crossref_primary_10_1039_D2CS00830K crossref_primary_10_1016_j_microc_2022_108106 crossref_primary_10_1021_acschemneuro_7b00391 crossref_primary_10_1042_NS20180132 crossref_primary_10_3389_fchem_2022_928607 crossref_primary_10_1016_j_jhazmat_2019_121956 crossref_primary_10_1021_acsomega_9b02637 crossref_primary_10_1007_s00216_020_02686_6 crossref_primary_10_1016_j_msec_2015_12_038 crossref_primary_10_1007_s10895_021_02840_y crossref_primary_10_17341_gazimmfd_525552 crossref_primary_10_1007_s00604_024_06786_3 crossref_primary_10_1364_PRJ_403223 crossref_primary_10_1007_s00604_019_3751_8 crossref_primary_10_1021_jacs_5b12727 crossref_primary_10_1002_cplu_202000248 crossref_primary_10_1021_acs_chemrev_1c00746 crossref_primary_10_1088_1361_6528_abb84d crossref_primary_10_1016_j_snb_2022_132271 crossref_primary_10_1016_j_snb_2017_02_110 crossref_primary_10_1016_j_jinorgbio_2022_111902 crossref_primary_10_1109_TNB_2022_3216312 crossref_primary_10_1016_j_saa_2021_119519 crossref_primary_10_1364_OE_24_000A85 crossref_primary_10_1002_jccs_202400075 crossref_primary_10_3390_s17020268 crossref_primary_10_1007_s12274_017_1677_1 crossref_primary_10_1016_j_biomaterials_2020_120492 crossref_primary_10_3390_s20041039 crossref_primary_10_1002_sstr_202200033 crossref_primary_10_1364_OE_391722 crossref_primary_10_1016_j_procbio_2019_12_016 crossref_primary_10_1016_j_microc_2020_105718 crossref_primary_10_1039_C5RA20462C crossref_primary_10_3390_pr9010170 crossref_primary_10_1007_s00604_019_3228_9 crossref_primary_10_1016_j_jelechem_2020_114462 crossref_primary_10_1021_acsomega_0c01803 crossref_primary_10_1039_C9NJ02106J crossref_primary_10_1039_C9AN00395A crossref_primary_10_1039_C8AN01640B crossref_primary_10_1016_j_ccr_2023_215012 crossref_primary_10_1039_C8NR05368E crossref_primary_10_1021_acs_analchem_2c01308 crossref_primary_10_2139_ssrn_4006863 crossref_primary_10_1039_D3AN00590A crossref_primary_10_3389_fchem_2021_772267 crossref_primary_10_1021_acsanm_2c01294 crossref_primary_10_1002_ppsc_201900034 crossref_primary_10_1016_j_surfin_2024_104087 crossref_primary_10_1002_celc_202000099 crossref_primary_10_3390_nano13232989 crossref_primary_10_1016_j_microc_2019_03_018 crossref_primary_10_1016_j_microc_2020_105263 crossref_primary_10_1039_C8NJ00067K crossref_primary_10_1021_acs_analchem_3c02313 crossref_primary_10_1039_D4NH00107A crossref_primary_10_1080_00032719_2020_1720222 crossref_primary_10_1007_s10800_018_1175_5 crossref_primary_10_1039_C6NR03829H crossref_primary_10_1016_j_aca_2021_338394 crossref_primary_10_1016_j_talanta_2017_11_042 crossref_primary_10_1039_D2TB01450E crossref_primary_10_1016_j_aca_2021_338393 crossref_primary_10_1007_s12678_023_00833_y crossref_primary_10_1016_j_aca_2016_08_047 crossref_primary_10_1016_j_dyepig_2017_11_041 crossref_primary_10_1016_j_saa_2018_01_062 crossref_primary_10_1016_j_bios_2018_03_026 crossref_primary_10_1016_j_jallcom_2021_161120 crossref_primary_10_1360_SSC_2024_0002 crossref_primary_10_1002_bio_3389 crossref_primary_10_1002_adfm_201602185 crossref_primary_10_1149_2_0931908jes crossref_primary_10_1016_j_snb_2018_11_016 crossref_primary_10_3390_bios12111000 crossref_primary_10_1016_j_saa_2020_118463 crossref_primary_10_1039_C5TB02183A crossref_primary_10_1016_j_snb_2023_133478 crossref_primary_10_1039_D0FD00018C crossref_primary_10_1007_s42864_024_00297_7 crossref_primary_10_2174_1573412914666180427152544 crossref_primary_10_1021_acsomega_2c04134 crossref_primary_10_1007_s00604_020_04245_3 crossref_primary_10_1007_s11814_020_0507_4 crossref_primary_10_1016_j_inoche_2023_111228 crossref_primary_10_1016_j_saa_2021_119962 crossref_primary_10_1039_C8NR05767B crossref_primary_10_1021_acsnano_4c01041 crossref_primary_10_1039_C5AN01378J crossref_primary_10_1039_C7TB01803G crossref_primary_10_1016_j_snb_2018_02_163 crossref_primary_10_1021_acsami_6b12047 crossref_primary_10_1007_s00216_019_01597_5 crossref_primary_10_1016_j_talanta_2021_122294 crossref_primary_10_1002_elps_201900023 crossref_primary_10_1016_j_cclet_2021_03_061 crossref_primary_10_1039_C7NR00530J crossref_primary_10_1039_C8TB00415C crossref_primary_10_1016_j_msec_2017_01_005 crossref_primary_10_1016_j_ab_2023_115154 crossref_primary_10_1016_j_foodchem_2019_02_111 crossref_primary_10_1016_j_microc_2020_105590 crossref_primary_10_1016_j_msec_2018_08_024 crossref_primary_10_1088_2053_1583_ac040e crossref_primary_10_1016_j_jelechem_2016_08_027 crossref_primary_10_1016_j_talanta_2024_125674 crossref_primary_10_1016_j_jphotochem_2020_113019 crossref_primary_10_3390_molecules29122915 crossref_primary_10_3390_molecules27103081 crossref_primary_10_1038_s41598_023_49414_5 |
Cites_doi | 10.1021/nn700319z 10.1039/c2ay25794g 10.1039/c2nr32375c 10.1021/jp305411u 10.1039/C0NR00559B 10.1002/smll.201401658 10.1021/nn2050449 10.1039/C3CS60353A 10.1021/ja068894w 10.1016/j.talanta.2005.04.027 10.1021/jz401896k 10.1021/ac102623r 10.1021/la0008636 10.1021/ar400221g 10.1016/j.talanta.2012.05.013 10.1039/c3nr05896d 10.1002/anie.200802230 10.1002/adma.200801642 10.1007/s00216-012-6578-2 10.1039/c1an15025a 10.1038/nmat2811 10.1016/j.talanta.2011.08.032 10.1016/j.talanta.2013.01.006 10.1002/anie.200501256 10.1021/ac901744s 10.1021/nn301536n 10.2147/nano.2006.1.4.451 10.1039/C3NR06271F 10.1016/S0003-2670(01)01358-7 10.1039/C4RA08090D 10.1039/C4TB00366G 10.1021/ja4026227 10.1038/35094560 10.1039/C2CC36282A 10.1021/cr068081q 10.1021/ac403257p 10.1039/c1cc12995c 10.1021/nl401802h 10.1002/adhm.201300157 10.1212/WNL.57.5.833 10.1039/C3AN01592K 10.1002/smll.201401471 10.1021/ac010406+ 10.1039/c2an35586h 10.1021/nl048417g 10.1002/smll.200800903 10.1021/nl052105b 10.1021/ja075184x 10.1039/c2an35734h 10.1016/S0039-9140(99)00164-2 10.1021/ja808827g |
ContentType | Journal Article |
Copyright | Copyright American Chemical Society Mar 17, 2015 |
Copyright_xml | – notice: Copyright American Chemical Society Mar 17, 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7SU 7S9 L.6 |
DOI | 10.1021/ac504520g |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Toxicology Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic Environmental Engineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Toxicology Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic Environmental Engineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database AGRICOLA MEDLINE - Academic Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-6882 |
EndPage | 3365 |
ExternalDocumentID | 3632574851 25671464 10_1021_ac504520g e80518966 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | - .K2 02 1AW 23M 4.4 53G 53T 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABOCM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACNCT ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 D0L DZ EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 LG6 P2P PQEST PQQKQ ROL RXW TAE TAF TN5 UHB UI2 UKR VF5 VG9 VQA W1F WH7 X X6Y XFK YZZ --- -DZ -~X .DC 6J9 AAHBH AAYXX ABBLG ABHFT ABHMW ABJNI ABLBI ABQRX ACBEA ACGFO ACKOT ADHLV AGXLV AHGAQ CITATION CUPRZ GGK KZ1 LMP XSW ZCA ~02 CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7SU 7S9 L.6 |
ID | FETCH-LOGICAL-a409t-b008691372c90e3a627a7ce48e3db3fc1abf83a1e8dc417de95df0d0ae9a9a743 |
IEDL.DBID | ACS |
ISSN | 0003-2700 1520-6882 |
IngestDate | Fri Jul 11 03:38:00 EDT 2025 Fri Jul 11 08:01:23 EDT 2025 Fri Jul 11 07:27:28 EDT 2025 Mon Jun 30 08:33:41 EDT 2025 Mon Jul 21 05:25:58 EDT 2025 Thu Apr 24 22:59:54 EDT 2025 Tue Jul 01 02:49:11 EDT 2025 Thu Aug 27 13:42:35 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a409t-b008691372c90e3a627a7ce48e3db3fc1abf83a1e8dc417de95df0d0ae9a9a743 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 25671464 |
PQID | 1665303777 |
PQPubID | 45400 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2000267878 proquest_miscellaneous_1692335581 proquest_miscellaneous_1664773748 proquest_journals_1665303777 pubmed_primary_25671464 crossref_citationtrail_10_1021_ac504520g crossref_primary_10_1021_ac504520g acs_journals_10_1021_ac504520g |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-03-17 |
PublicationDateYYYYMMDD | 2015-03-17 |
PublicationDate_xml | – month: 03 year: 2015 text: 2015-03-17 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Analytical chemistry (Washington) |
PublicationTitleAlternate | Anal. Chem |
PublicationYear | 2015 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Kang Z. H. (ref28/cit28) 2007; 129 Liu Q. (ref4/cit4) 2012; 97 Zhang Y. X. (ref24/cit24) 2012; 4 Jackowska K. (ref18/cit18) 2013; 405 She G. W. (ref19/cit19) 2014; 10 He Y. (ref44/cit44) 2009; 131 Warner J. H. (ref40/cit40) 2005; 44 Zhang L. H. (ref13/cit13) 1999; 50 Erogbogbo F. (ref42/cit42) 2008; 2 Lee H. C. (ref11/cit11) 2012; 137 Su S. (ref30/cit30) 2012; 6 M. Gonzalez C. (ref35/cit35) 2014; 6 Nikolajsen R. P. H. (ref12/cit12) 2001; 449 Peng F. (ref39/cit39) 2014; 47 Ma Y. (ref14/cit14) 2005; 67 Cheng X. Y. (ref36/cit36) 2014; 43 Yu C. M. (ref15/cit15) 2011; 47 Tyagi P. (ref7/cit7) 2009; 81 Zhao Y. S. (ref8/cit8) 2011; 85 O’Farrell N. (ref41/cit41) 2006; 1 Hyman S. E. (ref2/cit2) 2001; 2 Santra S. (ref22/cit22) 2001; 17 Robinson D. L. (ref1/cit1) 2008; 108 Liu L. (ref9/cit9) 2012; 137 Wang J. (ref33/cit33) 2014; 2 Medintz I. L. (ref50/cit50) 2010; 9 Zhang Y. X. (ref25/cit25) 2012; 116 Kang Z. H. (ref29/cit29) 2007; 129 Lu X. T. (ref31/cit31) 2013; 13 Zhou J. W. (ref5/cit5) 2014; 4 Li L. L. (ref3/cit3) 2011; 83 Santra S. (ref21/cit21) 2001; 73 Zhong Y. L. (ref48/cit48) 2013; 135 Wang L. (ref23/cit23) 2006; 6 Chinnathambi S. (ref34/cit34) 2014; 3 Kang Z. H. (ref26/cit26) 2011; 3 Zhang J. (ref37/cit37) 2014; 6 Singh M. P. (ref46/cit46) 2012; 6 Fuzell J. (ref32/cit32) 2013; 4 Zhang X. D. (ref49/cit49) 2014; 10 Wang L. (ref20/cit20) 2005; 5 Zhao D. (ref16/cit16) 2013; 107 Koehne J. E. (ref6/cit6) 2011; 136 Yi Y. H. (ref47/cit47) 2013; 85 Su H. C. (ref10/cit10) 2012; 4 Kang Z. H. (ref27/cit27) 2009; 21 Sander D. (ref51/cit51) 2001; 57 Alsharif N. H. (ref45/cit45) 2009; 5 Mu Q. (ref17/cit17) 2014; 139 Yi Y. H. (ref38/cit38) 2013; 49 He Y. (ref43/cit43) 2009; 48 |
References_xml | – volume: 2 start-page: 873 year: 2008 ident: ref42/cit42 publication-title: ACS Nano doi: 10.1021/nn700319z – volume: 4 start-page: 3981 year: 2012 ident: ref10/cit10 publication-title: Anal. Methods doi: 10.1039/c2ay25794g – volume: 4 start-page: 7760 year: 2012 ident: ref24/cit24 publication-title: Nanoscale doi: 10.1039/c2nr32375c – volume: 116 start-page: 20363 year: 2012 ident: ref25/cit25 publication-title: J. Phys. Chem. C doi: 10.1021/jp305411u – volume: 3 start-page: 777 year: 2011 ident: ref26/cit26 publication-title: Nanoscale doi: 10.1039/C0NR00559B – volume: 10 start-page: 5170 year: 2014 ident: ref49/cit49 publication-title: Small doi: 10.1002/smll.201401658 – volume: 6 start-page: 2582 year: 2012 ident: ref30/cit30 publication-title: ACS Nano doi: 10.1021/nn2050449 – volume: 43 start-page: 2680 year: 2014 ident: ref36/cit36 publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60353A – volume: 129 start-page: 5326 year: 2007 ident: ref28/cit28 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja068894w – volume: 67 start-page: 979 year: 2005 ident: ref14/cit14 publication-title: Talanta doi: 10.1016/j.talanta.2005.04.027 – volume: 4 start-page: 3806 year: 2013 ident: ref32/cit32 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz401896k – volume: 83 start-page: 661 year: 2011 ident: ref3/cit3 publication-title: Anal. Chem. doi: 10.1021/ac102623r – volume: 17 start-page: 2900 year: 2001 ident: ref22/cit22 publication-title: Langmuir doi: 10.1021/la0008636 – volume: 47 start-page: 612 year: 2014 ident: ref39/cit39 publication-title: Acc. Chem. Res. doi: 10.1021/ar400221g – volume: 97 start-page: 557 year: 2012 ident: ref4/cit4 publication-title: Talanta doi: 10.1016/j.talanta.2012.05.013 – volume: 6 start-page: 4096 year: 2014 ident: ref37/cit37 publication-title: Nanoscale doi: 10.1039/c3nr05896d – volume: 48 start-page: 128 year: 2009 ident: ref43/cit43 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200802230 – volume: 21 start-page: 661 year: 2009 ident: ref27/cit27 publication-title: Adv. Mater. doi: 10.1002/adma.200801642 – volume: 405 start-page: 3753 year: 2013 ident: ref18/cit18 publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-012-6578-2 – volume: 136 start-page: 1802 year: 2011 ident: ref6/cit6 publication-title: Analyst doi: 10.1039/c1an15025a – volume: 9 start-page: 676 year: 2010 ident: ref50/cit50 publication-title: Nat. Mater. doi: 10.1038/nmat2811 – volume: 85 start-page: 2650 year: 2011 ident: ref8/cit8 publication-title: Talanta doi: 10.1016/j.talanta.2011.08.032 – volume: 107 start-page: 133 year: 2013 ident: ref16/cit16 publication-title: Talanta doi: 10.1016/j.talanta.2013.01.006 – volume: 44 start-page: 4550 year: 2005 ident: ref40/cit40 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200501256 – volume: 81 start-page: 9979 year: 2009 ident: ref7/cit7 publication-title: Anal. Chem. doi: 10.1021/ac901744s – volume: 6 start-page: 5596 year: 2012 ident: ref46/cit46 publication-title: ACS Nano doi: 10.1021/nn301536n – volume: 1 start-page: 451 year: 2006 ident: ref41/cit41 publication-title: Int. J. Nanomed. doi: 10.2147/nano.2006.1.4.451 – volume: 6 start-page: 2608 year: 2014 ident: ref35/cit35 publication-title: Nanoscale doi: 10.1039/C3NR06271F – volume: 449 start-page: 1 year: 2001 ident: ref12/cit12 publication-title: Anal. Chim. Acta doi: 10.1016/S0003-2670(01)01358-7 – volume: 4 start-page: 52250 year: 2014 ident: ref5/cit5 publication-title: RSC Adv. doi: 10.1039/C4RA08090D – volume: 2 start-page: 4338 year: 2014 ident: ref33/cit33 publication-title: J. Mater. Chem. B doi: 10.1039/C4TB00366G – volume: 135 start-page: 8350 year: 2013 ident: ref48/cit48 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4026227 – volume: 2 start-page: 695 year: 2001 ident: ref2/cit2 publication-title: Nat. Rev. Neurosci. doi: 10.1038/35094560 – volume: 49 start-page: 612 year: 2013 ident: ref38/cit38 publication-title: Chem. Commun. doi: 10.1039/C2CC36282A – volume: 108 start-page: 2554 year: 2008 ident: ref1/cit1 publication-title: Chem. Rev. doi: 10.1021/cr068081q – volume: 85 start-page: 11464 year: 2013 ident: ref47/cit47 publication-title: Anal. Chem. doi: 10.1021/ac403257p – volume: 47 start-page: 9086 year: 2011 ident: ref15/cit15 publication-title: Chem. Commun. doi: 10.1039/c1cc12995c – volume: 13 start-page: 3101 year: 2013 ident: ref31/cit31 publication-title: Nano Lett. doi: 10.1021/nl401802h – volume: 3 start-page: 10 year: 2014 ident: ref34/cit34 publication-title: Adv. Healthcare Mater. doi: 10.1002/adhm.201300157 – volume: 57 start-page: 833 year: 2001 ident: ref51/cit51 publication-title: Neurology doi: 10.1212/WNL.57.5.833 – volume: 139 start-page: 93 year: 2014 ident: ref17/cit17 publication-title: Analyst doi: 10.1039/C3AN01592K – volume: 10 start-page: 4685 year: 2014 ident: ref19/cit19 publication-title: Small doi: 10.1002/smll.201401471 – volume: 73 start-page: 4988 year: 2001 ident: ref21/cit21 publication-title: Anal. Chem. doi: 10.1021/ac010406+ – volume: 137 start-page: 5352 year: 2012 ident: ref11/cit11 publication-title: Analyst doi: 10.1039/c2an35586h – volume: 5 start-page: 37 year: 2005 ident: ref20/cit20 publication-title: Nano Lett. doi: 10.1021/nl048417g – volume: 5 start-page: 221 year: 2009 ident: ref45/cit45 publication-title: Small doi: 10.1002/smll.200800903 – volume: 6 start-page: 84 year: 2006 ident: ref23/cit23 publication-title: Nano Lett. doi: 10.1021/nl052105b – volume: 129 start-page: 12090 year: 2007 ident: ref29/cit29 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja075184x – volume: 137 start-page: 3794 year: 2012 ident: ref9/cit9 publication-title: Analyst doi: 10.1039/c2an35734h – volume: 50 start-page: 677 year: 1999 ident: ref13/cit13 publication-title: Talanta doi: 10.1016/S0039-9140(99)00164-2 – volume: 131 start-page: 4434 year: 2009 ident: ref44/cit44 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja808827g |
SSID | ssj0011016 |
Score | 2.5813131 |
Snippet | A simple and highly efficient method for dopamine (DA) detection using water-soluble silicon nanoparticles (SiNPs) was reported. The SiNPs with a high quantum... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3360 |
SubjectTerms | ascorbic acid Cells detection limit Dopamine Dopamine - analysis Energy transfer Fluorescence Fluorescent Dyes - chemistry Limit of Detection microwave treatment Molecules Nanoparticles Nanoparticles - chemistry Nanotechnology Photoluminescence Quenching Quenching (cooling) Silicon Silicon - chemistry Spectrometry, Fluorescence Water - chemistry |
Title | Highly Sensitive and Selective Detection of Dopamine Using One-Pot Synthesized Highly Photoluminescent Silicon Nanoparticles |
URI | http://dx.doi.org/10.1021/ac504520g https://www.ncbi.nlm.nih.gov/pubmed/25671464 https://www.proquest.com/docview/1665303777 https://www.proquest.com/docview/1664773748 https://www.proquest.com/docview/1692335581 https://www.proquest.com/docview/2000267878 |
Volume | 87 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6VcgAOFAqFhVKZx4FL2jiJX8dql6pCAiotlXpbObYDVbcJYrOHVvx4ZvLSVnTLMcrYiTzjmc-azzMAHxBB-NhKHWkhJB5QTBEZUehIOW_iXHJtC8rofvkqj0-zz2fibAPer8ngJ_zAOkFlv-Mf9-B-IrWiE9bheDqkCuj42bfFoyxqXz5odSiFHre4GXrW4MkmrhxtwaS_ndPSSS72l3W-767_LdZ41y8_gccdrmSHrSE8hY1QbsODcd_ObRserVQefAZ_iN8xv2JT4q-Tx2O29Pg0b_0fm4S64WiVrCrYBA_WlziWNfwC9q0M0UlVs-lViehxcX4dPOumO_lZ1eTuiEtPtE82PZ-jqZUMnThO0pHwnsPp0afv4-Ooa8QQWdReTU16tDQ8VYkzcUitTJRVLmQ6pD5PC8dtXujU8qC9y7jywQhfxGgDwVhjEaPswGZZleElMKmC0Dz1xhR55kKqBYkrlwTFhTbJCPZQU7NuIy1mTY484bNhSUfwsVfizHVlzKmbxvw20XeD6K-2dsdtQru9Jax8VUqBsV0pNYK3w2tUGGVTbBmqZSOTKUXVe-6SQfxMBez5ehm6K5UgZFA4z4vWEoe_RTyqMJRlr_63Kq_hISI5QeQ4rnZhs_69DG8QLdX5XrNb_gL3Ww3w |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHAoHHuW1UIpBHLikxEn8OlZbqgXaUmlbqbfIsR2oWBJEsodW_HhmnAcLaoFjlLFj2RPPZ83nbwh5BQjCxUaoSHEu4ICiy0jzUkXSOh0XgilTYkb34FDMTrL3p_y0l8nBuzAwiAZ6akIS_5e6AHtjLEf17_jTdXIDQEiCB62d6XzMGOApdKiOh8nUQUVotSlGINv8HoGugJUhvOzd6eoUhYEFVsmX7WVbbNuLPzQb_2_kd8ntHmXSnc4t7pFrvtog69OhuNsGubWiQ3if_EC2x-KczpHNjvsfNZWDp0W3G9Jd3wbGVkXrku7CMfsrtKWBbUA_Vj46qls6P68ASzZnF97Rvrujz3WLmx8y65EESudnC3C8isKWDp30lLwH5GTv7fF0FvVlGSIDa9liyR4lNEtlYnXsUyMSaaT1mfKpK9LSMlOUKjXMK2czJp3X3JUxeITXRhtALA_JWlVX_jGhQnquWOq0LovM-lRxNJc28ZJxpZMJ2YIZzfvfqslDxjxh-TilE_J6WMvc9qLmWFtjcZnpy9H0W6fkcZnR5uAQK18VgkOkl1JOyIvxNSwY5lZM5etlsMmkRC2fv9kAmkY5e3a1Dd6cSgBASOjnUeeQ42gBnUoIbNmTf83Kc7I-Oz7Yz_ffHX54Sm4CxuNIm2Nyk6y135f-GeCottgKP9BPkLoWUQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSFAOPAqFhVIM4sAlJU7i17HaZVVe7UpLpd4ixw-oWJKKZA-t-PHMZJNoQS1wXGXiteyx5xvNl28IeQUIwsVGqEhxLiBB0SHSPKhIWqfjQjBlAlZ0Px2Kg-Ps_Qk_6RJF_BYGJlHDSHVbxMdTfeZCpzDA3hjLUQE8_nKd3MByHSZb--P5UDXATLTvkIcF1V5JaP1VjEK2_j0KXQEt2xAzvUuOhsm1zJJve8um2LMXf-g2_v_s75E7Hdqk-yv3uE-u-XKL3Br3Td62yO01PcIH5CeyPhbndI6sdrwHqSkd_FqsbkU68U3L3CppFegE0u3v8C5tWQf0qPTRrGro_LwETFmfXnhHu-FmX6sGL0Fk2CMZlM5PF-CAJYWrHQbpqHkPyfH07efxQdS1Z4gM7GmDrXuU0CyVidWxT41IpJHWZ8qnrkiDZaYIKjXMK2czJp3X3IUYPMNrow0gl22yUValf0yokJ4rljqtQ5FZnyqO5tImXjKudDIiu7CqeXe86rytnCcsH5Z0RF73-5nbTtwce2wsLjN9OZierRQ9LjPa6Z1i7V-F4BDxpZQj8mJ4DBuGNRZT-mrZ2mRSoqbP32wAVaOsPbvaBr-gSgBISBjn0coph9kCSpUQ4LIn_1qV5-TmbDLNP747_PCUbALU48ieY3KHbDQ_lv4ZwKmm2G3P0C-QGBjU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Sensitive+and+Selective+Detection+of+Dopamine+Using+One-Pot+Synthesized+Highly+Photoluminescent+Silicon+Nanoparticles&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Zhang%2C+Xiaodong&rft.au=Chen%2C+Xiaokai&rft.au=Kai%2C+Siqi&rft.au=Wang%2C+Hong-Yin&rft.date=2015-03-17&rft.pub=American+Chemical+Society&rft.issn=0003-2700&rft.eissn=1520-6882&rft.volume=87&rft.issue=6&rft.spage=3360&rft_id=info:doi/10.1021%2Fac504520g&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3632574851 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon |