In Vitro/In Vivo Electrochemical Detection of Pt(II) Species
The biodistribution of chemotherapy compounds within tumor tissue is one of the main challenges in the development of antineoplastic drugs, and techniques for simple, inexpensive, sensitive, and selective detection of various analytes in tumors are of great importance. In this paper we propose the u...
Saved in:
Published in | Analytical chemistry (Washington) Vol. 94; no. 12; pp. 4901 - 4905 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
29.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The biodistribution of chemotherapy compounds within tumor tissue is one of the main challenges in the development of antineoplastic drugs, and techniques for simple, inexpensive, sensitive, and selective detection of various analytes in tumors are of great importance. In this paper we propose the use of platinized carbon nanoelectrodes (PtNEs) for the electrochemical detection of platinum-based drugs in various biological models, including single cells and tumor spheroids in vitro and inside solid tumors in vivo. We have demonstrated the quantitative direct detection of Pt(II) in breast adenocarcinoma MCF-7 cells treated with cisplatin and a cisplatin-based DNP prodrug. To realize the potential of this technique in advanced tumor models, we measured Pt(II) in 3D tumor spheroids in vitro and in tumor-bearing mice in vivo. The concentration gradient of Pt(II) species correlated with the distance from the sample surface in MCF-7 tumor spheroids. We then performed the detection of Pt(II) species in tumor-bearing mice treated intravenously with cisplatin and DNP. We found that there was deeper penetration of DNP in comparison to cisplatin. This research demonstrates a minimally invasive, real-time electrochemical technique for the study of platinum-based drugs. |
---|---|
AbstractList | The biodistribution of chemotherapy compounds within tumor tissue is one of the main challenges in the development of antineoplastic drugs, and techniques for simple, inexpensive, sensitive, and selective detection of various analytes in tumors are of great importance. In this paper we propose the use of platinized carbon nanoelectrodes (PtNEs) for the electrochemical detection of platinum-based drugs in various biological models, including single cells and tumor spheroids in vitro and inside solid tumors in vivo. We have demonstrated the quantitative direct detection of Pt(II) in breast adenocarcinoma MCF-7 cells treated with cisplatin and a cisplatin-based DNP prodrug. To realize the potential of this technique in advanced tumor models, we measured Pt(II) in 3D tumor spheroids in vitro and in tumor-bearing mice in vivo. The concentration gradient of Pt(II) species correlated with the distance from the sample surface in MCF-7 tumor spheroids. We then performed the detection of Pt(II) species in tumor-bearing mice treated intravenously with cisplatin and DNP. We found that there was deeper penetration of DNP in comparison to cisplatin. This research demonstrates a minimally invasive, real-time electrochemical technique for the study of platinum-based drugs. The biodistribution of chemotherapy compounds within tumor tissue is one of the main challenges in the development of antineoplastic drugs, and techniques for simple, inexpensive, sensitive, and selective detection of various analytes in tumors are of great importance. In this paper we propose the use of platinized carbon nanoelectrodes (PtNEs) for the electrochemical detection of platinum-based drugs in various biological models, including single cells and tumor spheroids in vitro and inside solid tumors in vivo. We have demonstrated the quantitative direct detection of Pt(II) in breast adenocarcinoma MCF-7 cells treated with cisplatin and a cisplatin-based DNP prodrug. To realize the potential of this technique in advanced tumor models, we measured Pt(II) in 3D tumor spheroids in vitro and in tumor-bearing mice in vivo. The concentration gradient of Pt(II) species correlated with the distance from the sample surface in MCF-7 tumor spheroids. We then performed the detection of Pt(II) species in tumor-bearing mice treated intravenously with cisplatin and DNP. We found that there was deeper penetration of DNP in comparison to cisplatin. This research demonstrates a minimally invasive, real-time electrochemical technique for the study of platinum-based drugs. The biodistribution of chemotherapy compounds within tumor tissue is one of the main challenges in the development of antineoplastic drugs, and techniques for simple, inexpensive, sensitive, and selective detection of various analytes in tumors are of great importance. In this paper we propose the use of platinized carbon nanoelectrodes (PtNEs) for the electrochemical detection of platinum-based drugs in various biological models, including single cells and tumor spheroids and inside solid tumors . We have demonstrated the quantitative direct detection of Pt(II) in breast adenocarcinoma MCF-7 cells treated with cisplatin and a cisplatin-based DNP prodrug. To realize the potential of this technique in advanced tumor models, we measured Pt(II) in 3D tumor spheroids and in tumor-bearing mice . The concentration gradient of Pt(II) species correlated with the distance from the sample surface in MCF-7 tumor spheroids. We then performed the detection of Pt(II) species in tumor-bearing mice treated intravenously with cisplatin and DNP. We found that there was deeper penetration of DNP in comparison to cisplatin. This research demonstrates a minimally invasive, real-time electrochemical technique for the study of platinum-based drugs. The biodistribution of chemotherapy compounds within tumor tissue is one of the main challenges in the development of antineoplastic drugs, and techniques for simple, inexpensive, sensitive, and selective detection of various analytes in tumors are of great importance. In this paper we propose the use of platinized carbon nanoelectrodes (PtNEs) for the electrochemical detection of platinum-based drugs in various biological models, including single cells and tumor spheroids in vitro and inside solid tumors in vivo. We have demonstrated the quantitative direct detection of Pt(II) in breast adenocarcinoma MCF-7 cells treated with cisplatin and a cisplatin-based DNP prodrug. To realize the potential of this technique in advanced tumor models, we measured Pt(II) in 3D tumor spheroids in vitro and in tumor-bearing mice in vivo. The concentration gradient of Pt(II) species correlated with the distance from the sample surface in MCF-7 tumor spheroids. We then performed the detection of Pt(II) species in tumor-bearing mice treated intravenously with cisplatin and DNP. We found that there was deeper penetration of DNP in comparison to cisplatin. This research demonstrates a minimally invasive, real-time electrochemical technique for the study of platinum-based drugs.The biodistribution of chemotherapy compounds within tumor tissue is one of the main challenges in the development of antineoplastic drugs, and techniques for simple, inexpensive, sensitive, and selective detection of various analytes in tumors are of great importance. In this paper we propose the use of platinized carbon nanoelectrodes (PtNEs) for the electrochemical detection of platinum-based drugs in various biological models, including single cells and tumor spheroids in vitro and inside solid tumors in vivo. We have demonstrated the quantitative direct detection of Pt(II) in breast adenocarcinoma MCF-7 cells treated with cisplatin and a cisplatin-based DNP prodrug. To realize the potential of this technique in advanced tumor models, we measured Pt(II) in 3D tumor spheroids in vitro and in tumor-bearing mice in vivo. The concentration gradient of Pt(II) species correlated with the distance from the sample surface in MCF-7 tumor spheroids. We then performed the detection of Pt(II) species in tumor-bearing mice treated intravenously with cisplatin and DNP. We found that there was deeper penetration of DNP in comparison to cisplatin. This research demonstrates a minimally invasive, real-time electrochemical technique for the study of platinum-based drugs. |
Author | Vaneev, Alexander N Zhang, Yanjun Klyachko, Natalia L Takahashi, Yasufumi Timoshenko, Roman V Salikhov, Sergey V Lopatukhina, Elena V Erofeev, Alexander S Krasnovskaya, Olga O Akasov, Roman A Edwards, Christopher R. W Garanina, Anastasiia S Korchev, Yuri E Gorelkin, Petr V Spector, Daniil V Majouga, Alexander G |
AuthorAffiliation | Sechenov First Moscow State Medical University Chemistry Department Department of Medicine National University of Science and Technology (MISIS) Federal Scientific Research Centre “Crystallography and Photonics” Nano Life Science Institute (WPI-NanoLSI) |
AuthorAffiliation_xml | – name: Nano Life Science Institute (WPI-NanoLSI) – name: Federal Scientific Research Centre “Crystallography and Photonics” – name: National University of Science and Technology (MISIS) – name: Chemistry Department – name: Sechenov First Moscow State Medical University – name: Department of Medicine |
Author_xml | – sequence: 1 givenname: Alexander N orcidid: 0000-0001-8201-8498 surname: Vaneev fullname: Vaneev, Alexander N email: vaneev.aleksandr@gmail.com organization: Chemistry Department – sequence: 2 givenname: Petr V surname: Gorelkin fullname: Gorelkin, Petr V email: peter.gorelkin@gmail.com organization: National University of Science and Technology (MISIS) – sequence: 3 givenname: Olga O orcidid: 0000-0002-4948-2747 surname: Krasnovskaya fullname: Krasnovskaya, Olga O organization: Chemistry Department – sequence: 4 givenname: Roman A orcidid: 0000-0001-6486-8114 surname: Akasov fullname: Akasov, Roman A organization: Sechenov First Moscow State Medical University – sequence: 5 givenname: Daniil V surname: Spector fullname: Spector, Daniil V organization: Chemistry Department – sequence: 6 givenname: Elena V surname: Lopatukhina fullname: Lopatukhina, Elena V organization: National University of Science and Technology (MISIS) – sequence: 7 givenname: Roman V surname: Timoshenko fullname: Timoshenko, Roman V organization: National University of Science and Technology (MISIS) – sequence: 8 givenname: Anastasiia S surname: Garanina fullname: Garanina, Anastasiia S organization: National University of Science and Technology (MISIS) – sequence: 9 givenname: Yanjun surname: Zhang fullname: Zhang, Yanjun organization: Nano Life Science Institute (WPI-NanoLSI) – sequence: 10 givenname: Sergey V surname: Salikhov fullname: Salikhov, Sergey V organization: National University of Science and Technology (MISIS) – sequence: 11 givenname: Christopher R. W surname: Edwards fullname: Edwards, Christopher R. W organization: Department of Medicine – sequence: 12 givenname: Natalia L orcidid: 0000-0002-9357-8236 surname: Klyachko fullname: Klyachko, Natalia L organization: Chemistry Department – sequence: 13 givenname: Yasufumi orcidid: 0000-0003-2834-8300 surname: Takahashi fullname: Takahashi, Yasufumi organization: Nano Life Science Institute (WPI-NanoLSI) – sequence: 14 givenname: Alexander G orcidid: 0000-0002-5184-5551 surname: Majouga fullname: Majouga, Alexander G organization: National University of Science and Technology (MISIS) – sequence: 15 givenname: Yuri E surname: Korchev fullname: Korchev, Yuri E email: y.korchev@ic.ac.uk organization: Department of Medicine – sequence: 16 givenname: Alexander S surname: Erofeev fullname: Erofeev, Alexander S email: erofeev@polly.phys.msu.ru organization: Chemistry Department |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35285614$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU9LAzEQxYMo2qrfQGTBSz1snWSz6a54kVq1IChYvC6TdIIr203dbAW_van9c_CgnjLJ_N4jvNdlu7WribETDn0Ogl-g8X2ssTKvNOsLA8ATtcM6PBUQqywTu6wDAEksBgAHrOv9W0A4cLXPDpJUZKnissOuxnX0UraNu_gePlw0qsiE-9K2NFhFN9SGh9LVkbPRU9sbj8-j5zmZkvwR27NYeTpen4dscjuaDO_jh8e78fD6IUYJeRvjlIyYWtI80Skaoa3MUXJhrZQ6zbVVilLMEwuYasy5NTKXEiHJiLjWySHrrWznjXtfkG-LWekNVRXW5Ba-EEpm2QCUyP-BJlkuOSgV0LMf6JtbNCHQlaEKzEAG6nRNLfSMpsW8KWfYfBabBAMgV4BpnPcN2S3CoVgWVYSiik1RxbqoILv8ITNli8uY2wbL6i8xrMTL7fbXv0q-ABn8q0U |
CitedBy_id | crossref_primary_10_1016_j_aca_2024_342612 crossref_primary_10_1021_acsabm_4c00345 crossref_primary_10_3390_nano12213736 crossref_primary_10_3390_brainsci14101042 crossref_primary_10_59761_RCR5096 crossref_primary_10_1021_acsami_3c01600 crossref_primary_10_3390_inorganics11020081 crossref_primary_10_1021_acsami_3c01771 crossref_primary_10_1002_cbic_202400341 crossref_primary_10_1021_acssensors_4c00077 crossref_primary_10_1021_acs_jmedchem_1c02136 crossref_primary_10_1016_j_jelechem_2024_118796 crossref_primary_10_1021_acs_analchem_3c03337 crossref_primary_10_2174_0115680266286981240207053402 crossref_primary_10_3390_ijms25158030 crossref_primary_10_1016_j_jelechem_2022_117125 crossref_primary_10_1021_acs_inorgchem_2c02062 crossref_primary_10_1016_j_microc_2023_108817 |
Cites_doi | 10.1002/ange.201902734 10.1038/s41551-017-0118-5 10.1021/acs.analchem.0c01256 10.3390/ijms22083817 10.1016/j.electacta.2015.01.184 10.1080/01913120290104610 10.1016/j.electacta.2006.03.077 10.1038/nmeth.1306 10.1016/j.jpba.2008.01.047 10.1039/D1DT00898F 10.1021/acs.analchem.0c04361 10.1016/j.aca.2021.338424 10.1016/S1452-3981(23)07811-2 10.1038/s41467-019-13535-1 10.1021/acs.analchem.6b04308 10.1021/nn405612q 10.1002/anie.202011273 10.1016/j.bios.2014.02.070 10.1016/j.microc.2020.104658 10.1038/s41598-018-25852-4 10.1038/srep29999 10.1038/s41568-020-00308-y 10.1038/nm0297-177 10.1016/j.snb.2019.126975 10.1016/j.jelechem.2020.114253 10.1002/etc.4709 10.1385/1-59259-012-8:3 10.1039/D0NR08349F 10.1021/acs.analchem.8b05885 |
ContentType | Journal Article |
Copyright | 2022 American Chemical Society Copyright American Chemical Society Mar 29, 2022 |
Copyright_xml | – notice: 2022 American Chemical Society – notice: Copyright American Chemical Society Mar 29, 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7S9 L.6 |
DOI | 10.1021/acs.analchem.2c00136 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Toxicology Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Toxicology Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-6882 |
EndPage | 4905 |
ExternalDocumentID | 35285614 10_1021_acs_analchem_2c00136 a253594449 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 02 23M 4.4 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABFRP ABMVS ABOCM ABPPZ ABPTK ABUCX ACGFS ACGOD ACIWK ACJ ACNCT ACPRK ACS AEESW AENEX AFEFF AFRAH AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 D0L DZ EBS ED F5P GGK GNL IH9 IHE JG K2 P2P PQEST PQQKQ ROL RXW TAE TN5 UHB UI2 UKR VF5 VG9 VQA W1F WH7 X X6Y YZZ --- -DZ -~X .DC .K2 53G 6J9 AAHBH AAYXX ABBLG ABHFT ABHMW ABJNI ABLBI ABQRX ACBEA ACGFO ACKOT ADHLV CITATION CUPRZ ED~ JG~ KZ1 LMP XSW ZCA ~02 CGR CUY CVF ECM EIF NPM YIN 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a409t-adec2dfeb13b5ac2bf49a412ff44b59bf66e5a93f0a5ba91fc4944a038ee1bb3 |
IEDL.DBID | ACS |
ISSN | 0003-2700 1520-6882 |
IngestDate | Fri Jul 11 11:14:04 EDT 2025 Fri Jul 11 07:25:25 EDT 2025 Mon Jun 30 08:11:49 EDT 2025 Wed Feb 19 02:27:01 EST 2025 Tue Jul 01 03:28:04 EDT 2025 Thu Apr 24 23:01:06 EDT 2025 Thu Mar 31 03:29:45 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a409t-adec2dfeb13b5ac2bf49a412ff44b59bf66e5a93f0a5ba91fc4944a038ee1bb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4948-2747 0000-0003-2834-8300 0000-0001-6486-8114 0000-0001-8201-8498 0000-0002-9357-8236 0000-0002-5184-5551 |
PMID | 35285614 |
PQID | 2648606674 |
PQPubID | 45400 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2648870629 proquest_miscellaneous_2638941066 proquest_journals_2648606674 pubmed_primary_35285614 crossref_primary_10_1021_acs_analchem_2c00136 crossref_citationtrail_10_1021_acs_analchem_2c00136 acs_journals_10_1021_acs_analchem_2c00136 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-29 |
PublicationDateYYYYMMDD | 2022-03-29 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Analytical chemistry (Washington) |
PublicationTitleAlternate | Anal. Chem |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref2/cit2 Ye L. (ref3/cit3) 2014; 9 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 Berners-Price S. J. (ref27/cit27) 2000 ref22/cit22 ref13/cit13 ref4/cit4 ref1/cit1 ref24/cit24 ref7/cit7 |
References_xml | – ident: ref20/cit20 doi: 10.1002/ange.201902734 – ident: ref8/cit8 doi: 10.1038/s41551-017-0118-5 – ident: ref25/cit25 doi: 10.1021/acs.analchem.0c01256 – ident: ref2/cit2 doi: 10.3390/ijms22083817 – ident: ref10/cit10 doi: 10.1016/j.electacta.2015.01.184 – ident: ref5/cit5 doi: 10.1080/01913120290104610 – ident: ref11/cit11 doi: 10.1016/j.electacta.2006.03.077 – ident: ref17/cit17 doi: 10.1038/nmeth.1306 – ident: ref4/cit4 doi: 10.1016/j.jpba.2008.01.047 – ident: ref28/cit28 doi: 10.1039/D1DT00898F – ident: ref16/cit16 doi: 10.1021/acs.analchem.0c04361 – ident: ref29/cit29 doi: 10.1016/j.aca.2021.338424 – volume: 9 start-page: 1537 issue: 3 year: 2014 ident: ref3/cit3 publication-title: Int. J. Electrochem. Sci. doi: 10.1016/S1452-3981(23)07811-2 – ident: ref19/cit19 doi: 10.1038/s41467-019-13535-1 – ident: ref9/cit9 doi: 10.1021/acs.analchem.6b04308 – ident: ref15/cit15 doi: 10.1021/nn405612q – ident: ref24/cit24 doi: 10.1002/anie.202011273 – ident: ref12/cit12 doi: 10.1016/j.bios.2014.02.070 – ident: ref21/cit21 doi: 10.1016/j.microc.2020.104658 – ident: ref23/cit23 doi: 10.1038/s41598-018-25852-4 – ident: ref6/cit6 doi: 10.1038/srep29999 – ident: ref1/cit1 doi: 10.1038/s41568-020-00308-y – ident: ref26/cit26 doi: 10.1038/nm0297-177 – ident: ref13/cit13 doi: 10.1016/j.snb.2019.126975 – ident: ref14/cit14 doi: 10.1016/j.jelechem.2020.114253 – ident: ref7/cit7 doi: 10.1002/etc.4709 – start-page: 3 volume-title: Platinum-Based Drugs in Cancer Therapy year: 2000 ident: ref27/cit27 doi: 10.1385/1-59259-012-8:3 – ident: ref18/cit18 doi: 10.1039/D0NR08349F – ident: ref22/cit22 doi: 10.1021/acs.analchem.8b05885 |
SSID | ssj0011016 |
Score | 2.4867163 |
Snippet | The biodistribution of chemotherapy compounds within tumor tissue is one of the main challenges in the development of antineoplastic drugs, and techniques for... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4901 |
SubjectTerms | Adenocarcinoma Analytical chemistry Animals Antineoplastic Agents Antineoplastic drugs Biological models (mathematics) Breast breasts carbon Cell culture chemical species Chemistry Chemotherapy Cisplatin Cisplatin - chemistry Cisplatin - pharmacology Concentration gradient Drug development Drugs Electrochemical analysis Electrochemistry Humans intravenous injection MCF-7 Cells Mice Platinum Prodrugs - chemistry Solid tumors Species Spheroids Tissue Distribution Tumors |
Title | In Vitro/In Vivo Electrochemical Detection of Pt(II) Species |
URI | http://dx.doi.org/10.1021/acs.analchem.2c00136 https://www.ncbi.nlm.nih.gov/pubmed/35285614 https://www.proquest.com/docview/2648606674 https://www.proquest.com/docview/2638941066 https://www.proquest.com/docview/2648870629 |
Volume | 94 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xHIAD-1I2BYkDHFIaZ5LUEhdUQBSJRWJRb5Ht2hICEkRTDnw9nixlExRuVjKO7FnsmYz9BmAbVRQYFmiX6ZC7GBnlcmlbAiOlVNiVxtD_jrPz8OQGTztB5z1Q_JrBZ96eUL26sEy1c3isM5WDjI3COAutHZMr1LoaZA0oEq0q5FFCtboq98NXaENSvc8b0g9eZr7bHM_ARXVnpzhkcl_vZ7KuXr9DOP5xIrMwXTqezkGhKXMwopN5mGhV9d7mYeoDNOEC7LcT5_Yue0738sZL6hwVBXNUiTDgHOosP8aVOKlxLrOddnvXyavZ694iXB8fXbdO3LLSgpVJg2eu6GrFusau274MhGLSIBfoMWMQZcClCUMdCO6bhgik4J5RyBFFw29q7UnpL8FYkiZ6BRyfcd2UiFqbLlI41bQugCFhhExKbNZg1_IhLg2lF-c5cObF9LBiTlwypwZ-JZlYlYjlVDjjYUgvd9DrqUDsGEK_Xgn9fVh07o9CuwhrsDV4bQVC6RSR6LRPNNbZQxtSh7_R2AUysnPnNVguFGowKMLVIRzW1X-wZA0mGd2_IAXn6zCWPff1hvWKMrmZm8Ibh3cHdA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8BewAetvHdjUGQeICHlMa5JLXES9VRtRsgJAriLbJdW0JAMpF0D_vr53OTAJMY4s1ybOt8d7bvcvbvAPZRJZFhkfaZjrmPiVE-l7YkMFFKxRNpDP3vODuPh1f44ya6mYOofgtjiSjsSIUL4j-hCwRHVCcsb-1UHtpMOayxefhg7RFGit3rXzbBA3JI60R5FFetX8y9MgqdS6p4eS69Ymy6Q2fwCa4bct1dk7v2tJRt9ecfJMd3z-czfKzMUK8305sVmNPZKiz26-xvq7D8DKhwDY5HmXd9Wz7mR67wO_dOZulzVIU34H3XpbvUlXm58S7Kg9Ho0HO57XWxDuPBybg_9Ku8C1ZCHV76YqIVmxi7i4cyEopJg1xgwIxBlBGXJo51JHhoOiKSggdGIUcUnbCrdSBluAELWZ7pLfBCxnVXImptJkjOVdcaBIZkEjMpsduCQ8uHtFo2Reoi4ixIqbJmTloxpwVhLaBUVfjllEbj_o1eftPr1wy_443227Xsn8iiW4Dk6CXYgr3msxUIBVdEpvMptbGmH1oHO_5fG7tdJnbuvAWbM71qiCKUHUJl_fIOluzC4nB8dpqejs5_foUlRi8zSOf5NiyUj1P9zdpLpdxxq-MvXKEP1Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9swED5BkWB7GIyxrRuDTOIBHlIa55LU0l5QoaIwENIAIV4i27ElxJagJt3Dfv18bpIxJIbGm-XY1vnubN_l7O8AtlAlkWGR9pmOuY-JUT6XtiQwUUrFmTSG_necnMaHF3h0FV3dS_VliSjtSKUL4tOqvstMjTAQ7FK9sPy10_nRY8rhjc3DAkXuSLn3ht_aAAI5pU2yPIqtNq_mHhmFziZV_n02PWJwuoNntAzXLcnuvsltb1rJnvr1AM3xWXNagVe1OertzfTnNczpfBWWhk0WuFV4eQ-w8A18Gefe5U01KXZd4WfhHczS6Kgad8Db15W73JV7hfHOqu3xeMdzOe51uQbno4Pz4aFf51-wkurzyheZViwzdjcPZSQUkwa5wIAZgygjLk0c60jw0PRFJAUPjEKOKPrhQOtAyvAtdPIi1-_BCxnXA4motcmQnKyBNQwMySVmUuKgCzuWD2m9fMrURcZZkFJlw5y0Zk4XwkZIqapxzCmdxvcnevltr7sZjscT7dcb-f8hi24DksOXYBc-t5-tQCjIInJdTKmNNQHROtrxv9rYbTOxc-ddeDfTrZYoQtshdNYP_8GSTVg82x-lX8enxx_hBaMHGqT2fB061WSqP1mzqZIbboH8BiezElg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Vitro%2FIn+Vivo+Electrochemical+Detection+of+Pt%28II%29+Species&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Vaneev%2C+Alexander+N&rft.au=Gorelkin%2C+Petr+V&rft.au=Krasnovskaya%2C+Olga+O&rft.au=Akasov%2C+Roman+A&rft.date=2022-03-29&rft.pub=American+Chemical+Society&rft.issn=0003-2700&rft.eissn=1520-6882&rft.volume=94&rft.issue=12&rft.spage=4901&rft.epage=4905&rft_id=info:doi/10.1021%2Facs.analchem.2c00136&rft.externalDocID=a253594449 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon |