Size Exclusion Chromatography: An Indispensable Tool for the Isolation of Monodisperse Gold Nanomolecules

Highly monodisperse and pure samples of atomically precise gold nanomolecules (AuNMs) are essential to understand their properties and to develop applications using them. Unfortunately, the synthetic protocols that yield a single-sized nanomolecule in a single-step reaction are unavailable. Instead,...

Full description

Saved in:
Bibliographic Details
Published inAnalytical chemistry (Washington) Vol. 93; no. 8; pp. 3987 - 3996
Main Authors Sakthivel, Naga Arjun, Jupally, Vijay Reddy, Eswaramoorthy, Senthil Kumar, Wijesinghe, Kalpani Hirunika, Nimmala, Praneeth Reddy, Kumara, Chanaka, Rambukwella, Milan, Jones, Tanya, Dass, Amala
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 02.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Highly monodisperse and pure samples of atomically precise gold nanomolecules (AuNMs) are essential to understand their properties and to develop applications using them. Unfortunately, the synthetic protocols that yield a single-sized nanomolecule in a single-step reaction are unavailable. Instead, we observe a polydisperse product with a mixture of core sizes. This product requires post-synthetic reactions and separation techniques to isolate pure nanomolecules. Solvent fractionation based on the varying solubility of different sizes serves well to a certain extent in isolating pure compounds. It becomes tedious and offers less control while separating AuNMs that are very similar in size. Here, we report the versatile and the indispensable nature of using size exclusion chromatography (SEC) as a tool for separating nanomolecules and nanoparticles. We have demonstrated the following: (1) the ease of separation offered by SEC over solvent fractionation; (2) the separation of a wider size range (∼5–200 kDa or ∼1–3 nm) and larger-scale separation (20–100 mg per load); (3) the separation of closely sized AuNMs, demonstrated by purifying Au137(SR)56 from a mixture of Au329(SR)84, Au144(SR)60, Au137(SR)56, and Au130(SR)50, which could not be achieved using solvent fractionation; (4) the separation of AuNMs protected by different thiolate ligands (aliphatic, aromatic, and bulky); and (5) the separation can be improved by increasing the column length. Mass spectrometry was used for analyzing the SEC fractions.
AbstractList Highly monodisperse and pure samples of atomically precise gold nanomolecules (AuNMs) are essential to understand their properties and to develop applications using them. Unfortunately, the synthetic protocols that yield a single-sized nanomolecule in a single-step reaction are unavailable. Instead, we observe a polydisperse product with a mixture of core sizes. This product requires post-synthetic reactions and separation techniques to isolate pure nanomolecules. Solvent fractionation based on the varying solubility of different sizes serves well to a certain extent in isolating pure compounds. It becomes tedious and offers less control while separating AuNMs that are very similar in size. Here, we report the versatile and the indispensable nature of using size exclusion chromatography (SEC) as a tool for separating nanomolecules and nanoparticles. We have demonstrated the following: (1) the ease of separation offered by SEC over solvent fractionation; (2) the separation of a wider size range (∼5–200 kDa or ∼1–3 nm) and larger-scale separation (20–100 mg per load); (3) the separation of closely sized AuNMs, demonstrated by purifying Au₁₃₇(SR)₅₆ from a mixture of Au₃₂₉(SR)₈₄, Au₁₄₄(SR)₆₀, Au₁₃₇(SR)₅₆, and Au₁₃₀(SR)₅₀, which could not be achieved using solvent fractionation; (4) the separation of AuNMs protected by different thiolate ligands (aliphatic, aromatic, and bulky); and (5) the separation can be improved by increasing the column length. Mass spectrometry was used for analyzing the SEC fractions.
Highly monodisperse and pure samples of atomically precise gold nanomolecules (AuNMs) are essential to understand their properties and to develop applications using them. Unfortunately, the synthetic protocols that yield a single-sized nanomolecule in a single-step reaction are unavailable. Instead, we observe a polydisperse product with a mixture of core sizes. This product requires post-synthetic reactions and separation techniques to isolate pure nanomolecules. Solvent fractionation based on the varying solubility of different sizes serves well to a certain extent in isolating pure compounds. It becomes tedious and offers less control while separating AuNMs that are very similar in size. Here, we report the versatile and the indispensable nature of using size exclusion chromatography (SEC) as a tool for separating nanomolecules and nanoparticles. We have demonstrated the following: (1) the ease of separation offered by SEC over solvent fractionation; (2) the separation of a wider size range (∼5–200 kDa or ∼1–3 nm) and larger-scale separation (20–100 mg per load); (3) the separation of closely sized AuNMs, demonstrated by purifying Au137(SR)56 from a mixture of Au329(SR)84, Au144(SR)60, Au137(SR)56, and Au130(SR)50, which could not be achieved using solvent fractionation; (4) the separation of AuNMs protected by different thiolate ligands (aliphatic, aromatic, and bulky); and (5) the separation can be improved by increasing the column length. Mass spectrometry was used for analyzing the SEC fractions.
Highly monodisperse and pure samples of atomically precise gold nanomolecules (AuNMs) are essential to understand their properties and to develop applications using them. Unfortunately, the synthetic protocols that yield a single-sized nanomolecule in a single-step reaction are unavailable. Instead, we observe a polydisperse product with a mixture of core sizes. This product requires post-synthetic reactions and separation techniques to isolate pure nanomolecules. Solvent fractionation based on the varying solubility of different sizes serves well to a certain extent in isolating pure compounds. It becomes tedious and offers less control while separating AuNMs that are very similar in size. Here, we report the versatile and the indispensable nature of using size exclusion chromatography (SEC) as a tool for separating nanomolecules and nanoparticles. We have demonstrated the following: (1) the ease of separation offered by SEC over solvent fractionation; (2) the separation of a wider size range (∼5-200 kDa or ∼1-3 nm) and larger-scale separation (20-100 mg per load); (3) the separation of closely sized AuNMs, demonstrated by purifying Au137(SR)56 from a mixture of Au329(SR)84, Au144(SR)60, Au137(SR)56, and Au130(SR)50, which could not be achieved using solvent fractionation; (4) the separation of AuNMs protected by different thiolate ligands (aliphatic, aromatic, and bulky); and (5) the separation can be improved by increasing the column length. Mass spectrometry was used for analyzing the SEC fractions.Highly monodisperse and pure samples of atomically precise gold nanomolecules (AuNMs) are essential to understand their properties and to develop applications using them. Unfortunately, the synthetic protocols that yield a single-sized nanomolecule in a single-step reaction are unavailable. Instead, we observe a polydisperse product with a mixture of core sizes. This product requires post-synthetic reactions and separation techniques to isolate pure nanomolecules. Solvent fractionation based on the varying solubility of different sizes serves well to a certain extent in isolating pure compounds. It becomes tedious and offers less control while separating AuNMs that are very similar in size. Here, we report the versatile and the indispensable nature of using size exclusion chromatography (SEC) as a tool for separating nanomolecules and nanoparticles. We have demonstrated the following: (1) the ease of separation offered by SEC over solvent fractionation; (2) the separation of a wider size range (∼5-200 kDa or ∼1-3 nm) and larger-scale separation (20-100 mg per load); (3) the separation of closely sized AuNMs, demonstrated by purifying Au137(SR)56 from a mixture of Au329(SR)84, Au144(SR)60, Au137(SR)56, and Au130(SR)50, which could not be achieved using solvent fractionation; (4) the separation of AuNMs protected by different thiolate ligands (aliphatic, aromatic, and bulky); and (5) the separation can be improved by increasing the column length. Mass spectrometry was used for analyzing the SEC fractions.
Highly monodisperse and pure samples of atomically precise gold nanomolecules (AuNMs) are essential to understand their properties and to develop applications using them. Unfortunately, the synthetic protocols that yield a single-sized nanomolecule in a single-step reaction are unavailable. Instead, we observe a polydisperse product with a mixture of core sizes. This product requires post-synthetic reactions and separation techniques to isolate pure nanomolecules. Solvent fractionation based on the varying solubility of different sizes serves well to a certain extent in isolating pure compounds. It becomes tedious and offers less control while separating AuNMs that are very similar in size. Here, we report the versatile and the indispensable nature of using size exclusion chromatography (SEC) as a tool for separating nanomolecules and nanoparticles. We have demonstrated the following: (1) the offered by SEC over solvent fractionation; (2) the separation of a (∼5-200 kDa or ∼1-3 nm) and separation (20-100 mg per load); (3) the separation of , demonstrated by purifying Au (SR) from a mixture of Au (SR) , Au (SR) , Au (SR) , and Au (SR) , which could not be achieved using solvent fractionation; (4) the separation of (aliphatic, aromatic, and bulky); and (5) the separation can be improved by increasing the column length. Mass spectrometry was used for analyzing the SEC fractions.
Author Nimmala, Praneeth Reddy
Kumara, Chanaka
Dass, Amala
Rambukwella, Milan
Sakthivel, Naga Arjun
Wijesinghe, Kalpani Hirunika
Eswaramoorthy, Senthil Kumar
Jones, Tanya
Jupally, Vijay Reddy
AuthorAffiliation Department of Chemistry and Biochemistry
AuthorAffiliation_xml – name: Department of Chemistry and Biochemistry
Author_xml – sequence: 1
  givenname: Naga Arjun
  orcidid: 0000-0001-8134-905X
  surname: Sakthivel
  fullname: Sakthivel, Naga Arjun
– sequence: 2
  givenname: Vijay Reddy
  surname: Jupally
  fullname: Jupally, Vijay Reddy
– sequence: 3
  givenname: Senthil Kumar
  orcidid: 0000-0001-8015-1391
  surname: Eswaramoorthy
  fullname: Eswaramoorthy, Senthil Kumar
– sequence: 4
  givenname: Kalpani Hirunika
  orcidid: 0000-0002-7049-0370
  surname: Wijesinghe
  fullname: Wijesinghe, Kalpani Hirunika
– sequence: 5
  givenname: Praneeth Reddy
  surname: Nimmala
  fullname: Nimmala, Praneeth Reddy
– sequence: 6
  givenname: Chanaka
  orcidid: 0000-0002-1496-8886
  surname: Kumara
  fullname: Kumara, Chanaka
– sequence: 7
  givenname: Milan
  surname: Rambukwella
  fullname: Rambukwella, Milan
– sequence: 8
  givenname: Tanya
  surname: Jones
  fullname: Jones, Tanya
– sequence: 9
  givenname: Amala
  orcidid: 0000-0001-6942-5451
  surname: Dass
  fullname: Dass, Amala
  email: amal@olemiss.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33606508$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi1URLeFf4CQJS5csoy_snFv1aqUlQocKOfI8U7YVI5nsROp5deT_WgPPdCLffDzjDzve8ZOIkVk7L2AuQApPjuf5y664DfYz8GDtqV4xWbCSCjKqpInbAYAqpALgFN2lvMdgBAgyjfsVKkSSgPVjHU_u7_Ir-59GHNHkS83iXo30O_ktpuHC34Z-Squu7zFmF0TkN8SBd5S4sMG-SpTcMPOo5Z_o0h7MmXk1xTW_LuL1FNAPwbMb9nr1oWM7473Ofv15ep2-bW4-XG9Wl7eFE6DHQpXmdI0rVeicWXVWFALBK3WWstpHSut1UYbp0rroDF-obxGnA61gKYF6dQ5-3SYu030Z8Q81H2XPYbgItKYa2mkltpMo15GtRVWWSXNhH58ht7RmKb491SlpTBaT9SHIzU2Pa7rbep6lx7qx7wnQB8AnyjnhO0TIqDe1VpPtdaPtdbHWift4pnmu2Ef_JBcF16S4SDvXp9-_V_lH8veu48
CitedBy_id crossref_primary_10_1016_j_matpr_2021_07_466
crossref_primary_10_1021_acsanm_3c00618
crossref_primary_10_1021_acs_langmuir_2c00381
crossref_primary_10_1021_acs_jpcc_1c09453
crossref_primary_10_1039_D1NJ04042A
crossref_primary_10_1038_s41578_024_00741_7
crossref_primary_10_1016_j_aca_2024_342672
crossref_primary_10_1016_j_talanta_2023_124560
crossref_primary_10_3390_pr10122566
crossref_primary_10_1002_jms_4998
crossref_primary_10_1039_D4FO05802J
Cites_doi 10.1021/acs.accounts.8b00150
10.1021/cr1002547
10.1021/jp506508x
10.1021/a19600193
10.1021/ja513152h
10.1039/c3nr03872f
10.1039/c39940000801
10.1021/jp027575y
10.1021/ja0349305
10.1039/c9an02043h
10.1021/ja053968+
10.1021/ja061659t
10.1021/jp962922n
10.1021/jp8115098
10.1038/nature12523
10.1007/978-3-642-60854-4_120
10.1021/ac200789v
10.1039/c6cc06108g
10.1021/jz300547d
10.1039/c4cc03424d
10.1021/ja906087a
10.1002/adma.201901015
10.1021/ja404058q
10.1126/science.280.5372.2098
10.1021/jp311491v
10.1021/ja1006383
10.1021/ac0260589
10.1021/jp993229d
10.1021/jacs.0c05685
10.1021/acs.analchem.8b05064
10.1039/d0nr00824a
10.1126/science.1148624
10.1021/acs.iecr.8b00480
10.1021/ja409998j
10.1021/jacs.5b12747
10.1039/c3cp54343a
10.1021/ja058717f
10.1021/acs.analchem.7b04104
10.1126/sciadv.aat7259
10.1021/jp011122w
10.1021/acsenergylett.9b02528
10.1021/ja201685f
10.1021/a1980015t
10.1002/anie.201207098
10.1021/acs.jpclett.8b00308
10.1021/jp971438x
10.1021/cr030698+
10.1021/la000669j
10.1021/ja800561b
10.1016/s0009-2614(02)00306-8
10.1021/jacs.7b08651
10.1021/ja5109968
10.1021/acs.jpclett.7b01892
10.1021/acs.chemrev.8b00726
10.1021/acs.jpcc.8b01106
10.1073/pnas.0801001105
10.1021/ja8005379
10.1002/anie.201804481
10.1021/ja207992r
10.1021/jacs.6b04835
10.1021/nn500805n
10.1038/ncomms11859
10.1038/ncomms9667
10.1021/ja960198g
10.1021/cr500506r
10.1002/adma.19960080513
10.1021/acs.jpclett.6b01403
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright American Chemical Society Mar 2, 2021
Copyright_xml – notice: 2021 American Chemical Society
– notice: Copyright American Chemical Society Mar 2, 2021
DBID AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7S9
L.6
DOI 10.1021/acs.analchem.0c04961
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Toxicology Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic
PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-6882
EndPage 3996
ExternalDocumentID 33606508
10_1021_acs_analchem_0c04961
a341763
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
1AW
23M
4.4
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABOCM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACNCT
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
D0L
DZ
EBS
ED
ED~
F5P
GNL
IH9
IHE
JG
JG~
K2
P2P
PQEST
PQQKQ
ROL
RXW
TAE
TN5
UHB
UI2
UKR
VF5
VG9
VQA
W1F
WH7
X
X6Y
XFK
YZZ
---
-DZ
-~X
.DC
53G
6J9
AAHBH
AAYXX
ABBLG
ABHFT
ABHMW
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ACKOT
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
KZ1
LMP
XSW
ZCA
~02
NPM
YIN
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7S9
L.6
ID FETCH-LOGICAL-a409t-a8565bfc31ba68b9037e043d44200092994545a369a0b5c73c4ee3c4370bf02a3
IEDL.DBID ACS
ISSN 0003-2700
1520-6882
IngestDate Fri Jul 11 07:23:09 EDT 2025
Thu Jul 10 23:04:04 EDT 2025
Mon Jun 30 08:40:01 EDT 2025
Wed Feb 19 02:27:46 EST 2025
Thu Apr 24 23:06:37 EDT 2025
Tue Jul 01 01:19:19 EDT 2025
Thu Mar 04 07:00:13 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a409t-a8565bfc31ba68b9037e043d44200092994545a369a0b5c73c4ee3c4370bf02a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1496-8886
0000-0001-8015-1391
0000-0002-7049-0370
0000-0001-6942-5451
0000-0001-8134-905X
PMID 33606508
PQID 2498421544
PQPubID 45400
PageCount 10
ParticipantIDs proquest_miscellaneous_2524245092
proquest_miscellaneous_2491939325
proquest_journals_2498421544
pubmed_primary_33606508
crossref_primary_10_1021_acs_analchem_0c04961
crossref_citationtrail_10_1021_acs_analchem_0c04961
acs_journals_10_1021_acs_analchem_0c04961
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-02
PublicationDateYYYYMMDD 2021-03-02
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-02
  day: 02
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Analytical chemistry (Washington)
PublicationTitleAlternate Anal. Chem
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref63/cit63
  doi: 10.1021/acs.accounts.8b00150
– ident: ref12/cit12
  doi: 10.1021/cr1002547
– ident: ref52/cit52
  doi: 10.1021/jp506508x
– ident: ref43/cit43
  doi: 10.1021/a19600193
– ident: ref47/cit47
  doi: 10.1021/ja513152h
– ident: ref50/cit50
  doi: 10.1039/c3nr03872f
– ident: ref6/cit6
  doi: 10.1039/c39940000801
– ident: ref32/cit32
  doi: 10.1021/jp027575y
– ident: ref62/cit62
  doi: 10.1021/ja0349305
– ident: ref30/cit30
  doi: 10.1039/c9an02043h
– ident: ref19/cit19
  doi: 10.1021/ja053968+
– ident: ref33/cit33
  doi: 10.1021/ja061659t
– ident: ref10/cit10
  doi: 10.1021/jp962922n
– ident: ref58/cit58
  doi: 10.1021/jp8115098
– ident: ref40/cit40
  doi: 10.1038/nature12523
– ident: ref16/cit16
  doi: 10.1007/978-3-642-60854-4_120
– ident: ref34/cit34
  doi: 10.1021/ac200789v
– ident: ref68/cit68
  doi: 10.1039/c6cc06108g
– ident: ref25/cit25
  doi: 10.1021/jz300547d
– ident: ref36/cit36
  doi: 10.1039/c4cc03424d
– ident: ref54/cit54
  doi: 10.1021/ja906087a
– ident: ref22/cit22
  doi: 10.1002/adma.201901015
– ident: ref64/cit64
  doi: 10.1021/ja404058q
– ident: ref3/cit3
  doi: 10.1126/science.280.5372.2098
– ident: ref23/cit23
  doi: 10.1021/jp311491v
– ident: ref35/cit35
  doi: 10.1021/ja1006383
– ident: ref24/cit24
  doi: 10.1021/ac0260589
– ident: ref7/cit7
  doi: 10.1021/jp993229d
– ident: ref9/cit9
  doi: 10.1021/jacs.0c05685
– ident: ref28/cit28
  doi: 10.1021/acs.analchem.8b05064
– ident: ref41/cit41
  doi: 10.1039/d0nr00824a
– ident: ref5/cit5
  doi: 10.1126/science.1148624
– ident: ref27/cit27
  doi: 10.1021/acs.iecr.8b00480
– ident: ref61/cit61
  doi: 10.1021/ja409998j
– ident: ref66/cit66
  doi: 10.1021/jacs.5b12747
– ident: ref55/cit55
  doi: 10.1039/c3cp54343a
– ident: ref39/cit39
  doi: 10.1021/ja058717f
– ident: ref42/cit42
  doi: 10.1021/acs.analchem.7b04104
– ident: ref57/cit57
  doi: 10.1126/sciadv.aat7259
– ident: ref17/cit17
  doi: 10.1021/jp011122w
– ident: ref46/cit46
  doi: 10.1021/acsenergylett.9b02528
– ident: ref51/cit51
  doi: 10.1021/ja201685f
– ident: ref44/cit44
  doi: 10.1021/a1980015t
– ident: ref65/cit65
  doi: 10.1002/anie.201207098
– ident: ref53/cit53
  doi: 10.1021/acs.jpclett.8b00308
– ident: ref18/cit18
  doi: 10.1021/jp971438x
– ident: ref20/cit20
  doi: 10.1021/cr030698+
– ident: ref31/cit31
  doi: 10.1021/la000669j
– ident: ref45/cit45
– ident: ref4/cit4
  doi: 10.1021/ja800561b
– ident: ref15/cit15
  doi: 10.1016/s0009-2614(02)00306-8
– ident: ref48/cit48
  doi: 10.1021/jacs.7b08651
– ident: ref26/cit26
  doi: 10.1021/ja5109968
– ident: ref11/cit11
  doi: 10.1021/acs.jpclett.7b01892
– ident: ref21/cit21
  doi: 10.1021/acs.chemrev.8b00726
– ident: ref49/cit49
  doi: 10.1021/acs.jpcc.8b01106
– ident: ref14/cit14
  doi: 10.1073/pnas.0801001105
– ident: ref56/cit56
  doi: 10.1021/ja8005379
– ident: ref59/cit59
  doi: 10.1002/anie.201804481
– ident: ref8/cit8
  doi: 10.1021/ja207992r
– ident: ref67/cit67
  doi: 10.1021/jacs.6b04835
– ident: ref38/cit38
  doi: 10.1021/nn500805n
– ident: ref60/cit60
  doi: 10.1038/ncomms11859
– ident: ref37/cit37
  doi: 10.1038/ncomms9667
– ident: ref2/cit2
  doi: 10.1021/ja960198g
– ident: ref13/cit13
  doi: 10.1021/cr500506r
– ident: ref1/cit1
  doi: 10.1002/adma.19960080513
– ident: ref29/cit29
  doi: 10.1021/acs.jpclett.6b01403
SSID ssj0011016
Score 2.4139748
Snippet Highly monodisperse and pure samples of atomically precise gold nanomolecules (AuNMs) are essential to understand their properties and to develop applications...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3987
SubjectTerms analytical chemistry
Chemistry
Chromatography
Fractionation
gel chromatography
Gold
Ions
ligands
Mass spectrometry
Mass spectroscopy
Nanoparticles
Separation
Separation techniques
Size exclusion chromatography
solubility
Solvent fractionation
Solvents
Title Size Exclusion Chromatography: An Indispensable Tool for the Isolation of Monodisperse Gold Nanomolecules
URI http://dx.doi.org/10.1021/acs.analchem.0c04961
https://www.ncbi.nlm.nih.gov/pubmed/33606508
https://www.proquest.com/docview/2498421544
https://www.proquest.com/docview/2491939325
https://www.proquest.com/docview/2524245092
Volume 93
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5VcCgcSsurS2llJC4csiS28zC31QoKlYADIHGLbMeRViwJ2uxKaH89M3ksLRWFXnJIxpE9HtvfeF4A-zLTIsqE8ISJlCeN1V6SKO5lPh72oTB55uhC__wiOr2Rv27D22dF8aUFnweH2lZ9jUzFMdz3fYuIlrSdZR4lMSlbg-HVwmpAmmhXIY8Mql2o3Ct_oQPJVn8eSK-gzPq0OVmDyy5mp3EyuevPpqZv53-ncHznQD7DpxZ4skEjKV_ggyvW4eOwq_e2Dqu_pSbcgNHVaO7Y8aMdz-g-jVESXQS3bYLrIzYo2FmRjaoHVIMp-opdl-WYIQJmiCjZGUp0PeWszBluG2VNOakc-1mOM4Zbennf1OV11SbcnBxfD0-9tiyDp1EZnHo6QRBocisCo6PEKF_Ezpcik5LCfhBuKYmwDEVAad-ENhZWOocPEfsm97kWW7BUlIX7CgyVMRNoFWRB7csaKxW7MNEqV9KJWJkeHCDX0nZZVWltMedBSi87VqYtK3sgunlMbZvfnMpsjN9o5S1aPTT5Pd6g3-1E5LlbqMImklNeox7sLT7j9JHxRReunNU0iJURLYf_oAkpWAchHO_BdiN-i04JEdVoeuc_WPINVji54JDLHN-Fpelk5r4jhpqaH_XCeQIIGxbs
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9wwEB5RONAeKKUPlkLrSu2hh2wT23m4EofVAt0tjwuLxC21HUdadUkQ2VUL_6d_pb-rY28SaCWKekDqZQ9Zx5p4xpnvi-cB8JZnkkUZYx5TkfC40tJLEkG9zEdnHzKVZ8Z-0D88igYn_PNpeLoAP5pcGBSiwpkqd4h_XV0g-GCvSVxbfJSzrq8R2EZBHUu5by6_IVOrtoc7qNZ3lO7tjvoDr24m4EmkMFNPJghdVK5ZoGSUKOGz2PicZZzbZBUECYIjmEDBhfRVqGOmuTH4w2Jf5T6VDOd9AEs4CbUcr9c_bg8rLAFuGvPZc9wmQ-8Wqa0f1NXvfvAWcOuc3N5j-Nkuj4tt-dqdTVVXX_1ROfK_X79VWKlhNunN98UTWDDFGiz3m-52a_DoRiHGpzA-Hl8ZsvtdT2b26yGxJYMRytflvD-SXkGGRTauzpH021wzMirLCUG8TxA_kyHuX2fgpMwJviRLN_KiMuRTOckIOrDybN6F2FTP4ORenvs5LBZlYdaBIPVUgRRBFrjI3ViI2ISJFLnghsVCdeA9aimtXyJV6uIDaJDai43q0lp1HWCN-aS6ruZum4pM7rjLa-86n1czuWP8ZmOZ12IhYU84tVWcOvCm_RvVZ4-aZGHKmRuDzAC5QfiXMaFNTULASjvwYm71rVCMRY47bPzDkryG5cHo8CA9GB7tv4SH1AYf2WBBugmL04uZ2UL0OFWv3N4l8OW-jf0XTH52qQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIvE48ChQFgoYCQ4csiSx8zASh9W2S5dChdRW6i21HUdadZusml0B_Uf8FX4VM94kPKRSceiBSw6JEzmeceb7Mi-AFyJXPM4597iOpSe0UV6aytDLfTT2EddFbumH_sfdePtAvD-MDlfgW5sLg5Oo8Um1c-LTrp7lRVNhIHhN5xWuL77OSd83CG7joImn3LFfPyNbq9-ON1G0L8NwtLU_3PaahgKeQhoz91SK8EUXhgdaxamWPk-sL3guBCWsIFCQAgEFTl4qX0cm4UZYiwee-LrwQ8XxuVfgKnkKiecNhnudw4JIcNucj3y5bZbeObMmW2jq323hOQDXGbrRbfjeLZGLbznuL-a6b87-qB75X6zhHbjVwG02WO6Pu7BiyzW4Pmy73K3BzV8KMt6Dyd7kzLKtL2a6oL-IjEoHI6Rvynq_YYOSjct8Us-Q_FPOGduvqilD3M8QR7Mx7mOn6KwqGH4sKzfytLbsXTXNGRqy6mTZjdjW9-HgUt77AayWVWkfAkMKqgMlgzxwEbyJlImNUiULKSxPpO7BK5RS1nxM6szFCYRBRidb0WWN6HrAWxXKTFPVnZqLTC-4y-vumi2rmlwwfqPVzp_TQuKeipCqOfXgeXcZxUcuJ1XaauHGIENAjhD9ZUxEKUoIXMMerC81v5sU57HjEI_-YUmewbVPm6Psw3h35zHcCCkGiWIGww1YnZ8u7BMEkXP91G1fBkeXres_AKLeeSw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Size+Exclusion+Chromatography%3A+An+Indispensable+Tool+for+the+Isolation+of+Monodisperse+Gold+Nanomolecules&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Sakthivel%2C+Naga+Arjun&rft.au=Jupally%2C+Vijay+Reddy&rft.au=Eswaramoorthy%2C+Senthil+Kumar&rft.au=Wijesinghe%2C+Kalpani+Hirunika&rft.date=2021-03-02&rft.pub=American+Chemical+Society&rft.issn=0003-2700&rft.eissn=1520-6882&rft.volume=93&rft.issue=8&rft.spage=3987&rft_id=info:doi/10.1021%2Facs.analchem.0c04961&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon