Size Exclusion Chromatography: An Indispensable Tool for the Isolation of Monodisperse Gold Nanomolecules
Highly monodisperse and pure samples of atomically precise gold nanomolecules (AuNMs) are essential to understand their properties and to develop applications using them. Unfortunately, the synthetic protocols that yield a single-sized nanomolecule in a single-step reaction are unavailable. Instead,...
Saved in:
Published in | Analytical chemistry (Washington) Vol. 93; no. 8; pp. 3987 - 3996 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
02.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Highly monodisperse and pure samples of atomically precise gold nanomolecules (AuNMs) are essential to understand their properties and to develop applications using them. Unfortunately, the synthetic protocols that yield a single-sized nanomolecule in a single-step reaction are unavailable. Instead, we observe a polydisperse product with a mixture of core sizes. This product requires post-synthetic reactions and separation techniques to isolate pure nanomolecules. Solvent fractionation based on the varying solubility of different sizes serves well to a certain extent in isolating pure compounds. It becomes tedious and offers less control while separating AuNMs that are very similar in size. Here, we report the versatile and the indispensable nature of using size exclusion chromatography (SEC) as a tool for separating nanomolecules and nanoparticles. We have demonstrated the following: (1) the ease of separation offered by SEC over solvent fractionation; (2) the separation of a wider size range (∼5–200 kDa or ∼1–3 nm) and larger-scale separation (20–100 mg per load); (3) the separation of closely sized AuNMs, demonstrated by purifying Au137(SR)56 from a mixture of Au329(SR)84, Au144(SR)60, Au137(SR)56, and Au130(SR)50, which could not be achieved using solvent fractionation; (4) the separation of AuNMs protected by different thiolate ligands (aliphatic, aromatic, and bulky); and (5) the separation can be improved by increasing the column length. Mass spectrometry was used for analyzing the SEC fractions. |
---|---|
AbstractList | Highly monodisperse and pure samples of atomically precise gold nanomolecules (AuNMs) are essential to understand their properties and to develop applications using them. Unfortunately, the synthetic protocols that yield a single-sized nanomolecule in a single-step reaction are unavailable. Instead, we observe a polydisperse product with a mixture of core sizes. This product requires post-synthetic reactions and separation techniques to isolate pure nanomolecules. Solvent fractionation based on the varying solubility of different sizes serves well to a certain extent in isolating pure compounds. It becomes tedious and offers less control while separating AuNMs that are very similar in size. Here, we report the versatile and the indispensable nature of using size exclusion chromatography (SEC) as a tool for separating nanomolecules and nanoparticles. We have demonstrated the following: (1) the ease of separation offered by SEC over solvent fractionation; (2) the separation of a wider size range (∼5–200 kDa or ∼1–3 nm) and larger-scale separation (20–100 mg per load); (3) the separation of closely sized AuNMs, demonstrated by purifying Au₁₃₇(SR)₅₆ from a mixture of Au₃₂₉(SR)₈₄, Au₁₄₄(SR)₆₀, Au₁₃₇(SR)₅₆, and Au₁₃₀(SR)₅₀, which could not be achieved using solvent fractionation; (4) the separation of AuNMs protected by different thiolate ligands (aliphatic, aromatic, and bulky); and (5) the separation can be improved by increasing the column length. Mass spectrometry was used for analyzing the SEC fractions. Highly monodisperse and pure samples of atomically precise gold nanomolecules (AuNMs) are essential to understand their properties and to develop applications using them. Unfortunately, the synthetic protocols that yield a single-sized nanomolecule in a single-step reaction are unavailable. Instead, we observe a polydisperse product with a mixture of core sizes. This product requires post-synthetic reactions and separation techniques to isolate pure nanomolecules. Solvent fractionation based on the varying solubility of different sizes serves well to a certain extent in isolating pure compounds. It becomes tedious and offers less control while separating AuNMs that are very similar in size. Here, we report the versatile and the indispensable nature of using size exclusion chromatography (SEC) as a tool for separating nanomolecules and nanoparticles. We have demonstrated the following: (1) the ease of separation offered by SEC over solvent fractionation; (2) the separation of a wider size range (∼5–200 kDa or ∼1–3 nm) and larger-scale separation (20–100 mg per load); (3) the separation of closely sized AuNMs, demonstrated by purifying Au137(SR)56 from a mixture of Au329(SR)84, Au144(SR)60, Au137(SR)56, and Au130(SR)50, which could not be achieved using solvent fractionation; (4) the separation of AuNMs protected by different thiolate ligands (aliphatic, aromatic, and bulky); and (5) the separation can be improved by increasing the column length. Mass spectrometry was used for analyzing the SEC fractions. Highly monodisperse and pure samples of atomically precise gold nanomolecules (AuNMs) are essential to understand their properties and to develop applications using them. Unfortunately, the synthetic protocols that yield a single-sized nanomolecule in a single-step reaction are unavailable. Instead, we observe a polydisperse product with a mixture of core sizes. This product requires post-synthetic reactions and separation techniques to isolate pure nanomolecules. Solvent fractionation based on the varying solubility of different sizes serves well to a certain extent in isolating pure compounds. It becomes tedious and offers less control while separating AuNMs that are very similar in size. Here, we report the versatile and the indispensable nature of using size exclusion chromatography (SEC) as a tool for separating nanomolecules and nanoparticles. We have demonstrated the following: (1) the ease of separation offered by SEC over solvent fractionation; (2) the separation of a wider size range (∼5-200 kDa or ∼1-3 nm) and larger-scale separation (20-100 mg per load); (3) the separation of closely sized AuNMs, demonstrated by purifying Au137(SR)56 from a mixture of Au329(SR)84, Au144(SR)60, Au137(SR)56, and Au130(SR)50, which could not be achieved using solvent fractionation; (4) the separation of AuNMs protected by different thiolate ligands (aliphatic, aromatic, and bulky); and (5) the separation can be improved by increasing the column length. Mass spectrometry was used for analyzing the SEC fractions.Highly monodisperse and pure samples of atomically precise gold nanomolecules (AuNMs) are essential to understand their properties and to develop applications using them. Unfortunately, the synthetic protocols that yield a single-sized nanomolecule in a single-step reaction are unavailable. Instead, we observe a polydisperse product with a mixture of core sizes. This product requires post-synthetic reactions and separation techniques to isolate pure nanomolecules. Solvent fractionation based on the varying solubility of different sizes serves well to a certain extent in isolating pure compounds. It becomes tedious and offers less control while separating AuNMs that are very similar in size. Here, we report the versatile and the indispensable nature of using size exclusion chromatography (SEC) as a tool for separating nanomolecules and nanoparticles. We have demonstrated the following: (1) the ease of separation offered by SEC over solvent fractionation; (2) the separation of a wider size range (∼5-200 kDa or ∼1-3 nm) and larger-scale separation (20-100 mg per load); (3) the separation of closely sized AuNMs, demonstrated by purifying Au137(SR)56 from a mixture of Au329(SR)84, Au144(SR)60, Au137(SR)56, and Au130(SR)50, which could not be achieved using solvent fractionation; (4) the separation of AuNMs protected by different thiolate ligands (aliphatic, aromatic, and bulky); and (5) the separation can be improved by increasing the column length. Mass spectrometry was used for analyzing the SEC fractions. Highly monodisperse and pure samples of atomically precise gold nanomolecules (AuNMs) are essential to understand their properties and to develop applications using them. Unfortunately, the synthetic protocols that yield a single-sized nanomolecule in a single-step reaction are unavailable. Instead, we observe a polydisperse product with a mixture of core sizes. This product requires post-synthetic reactions and separation techniques to isolate pure nanomolecules. Solvent fractionation based on the varying solubility of different sizes serves well to a certain extent in isolating pure compounds. It becomes tedious and offers less control while separating AuNMs that are very similar in size. Here, we report the versatile and the indispensable nature of using size exclusion chromatography (SEC) as a tool for separating nanomolecules and nanoparticles. We have demonstrated the following: (1) the offered by SEC over solvent fractionation; (2) the separation of a (∼5-200 kDa or ∼1-3 nm) and separation (20-100 mg per load); (3) the separation of , demonstrated by purifying Au (SR) from a mixture of Au (SR) , Au (SR) , Au (SR) , and Au (SR) , which could not be achieved using solvent fractionation; (4) the separation of (aliphatic, aromatic, and bulky); and (5) the separation can be improved by increasing the column length. Mass spectrometry was used for analyzing the SEC fractions. |
Author | Nimmala, Praneeth Reddy Kumara, Chanaka Dass, Amala Rambukwella, Milan Sakthivel, Naga Arjun Wijesinghe, Kalpani Hirunika Eswaramoorthy, Senthil Kumar Jones, Tanya Jupally, Vijay Reddy |
AuthorAffiliation | Department of Chemistry and Biochemistry |
AuthorAffiliation_xml | – name: Department of Chemistry and Biochemistry |
Author_xml | – sequence: 1 givenname: Naga Arjun orcidid: 0000-0001-8134-905X surname: Sakthivel fullname: Sakthivel, Naga Arjun – sequence: 2 givenname: Vijay Reddy surname: Jupally fullname: Jupally, Vijay Reddy – sequence: 3 givenname: Senthil Kumar orcidid: 0000-0001-8015-1391 surname: Eswaramoorthy fullname: Eswaramoorthy, Senthil Kumar – sequence: 4 givenname: Kalpani Hirunika orcidid: 0000-0002-7049-0370 surname: Wijesinghe fullname: Wijesinghe, Kalpani Hirunika – sequence: 5 givenname: Praneeth Reddy surname: Nimmala fullname: Nimmala, Praneeth Reddy – sequence: 6 givenname: Chanaka orcidid: 0000-0002-1496-8886 surname: Kumara fullname: Kumara, Chanaka – sequence: 7 givenname: Milan surname: Rambukwella fullname: Rambukwella, Milan – sequence: 8 givenname: Tanya surname: Jones fullname: Jones, Tanya – sequence: 9 givenname: Amala orcidid: 0000-0001-6942-5451 surname: Dass fullname: Dass, Amala email: amal@olemiss.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33606508$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQhi1URLeFf4CQJS5csoy_snFv1aqUlQocKOfI8U7YVI5nsROp5deT_WgPPdCLffDzjDzve8ZOIkVk7L2AuQApPjuf5y664DfYz8GDtqV4xWbCSCjKqpInbAYAqpALgFN2lvMdgBAgyjfsVKkSSgPVjHU_u7_Ir-59GHNHkS83iXo30O_ktpuHC34Z-Squu7zFmF0TkN8SBd5S4sMG-SpTcMPOo5Z_o0h7MmXk1xTW_LuL1FNAPwbMb9nr1oWM7473Ofv15ep2-bW4-XG9Wl7eFE6DHQpXmdI0rVeicWXVWFALBK3WWstpHSut1UYbp0rroDF-obxGnA61gKYF6dQ5-3SYu030Z8Q81H2XPYbgItKYa2mkltpMo15GtRVWWSXNhH58ht7RmKb491SlpTBaT9SHIzU2Pa7rbep6lx7qx7wnQB8AnyjnhO0TIqDe1VpPtdaPtdbHWift4pnmu2Ef_JBcF16S4SDvXp9-_V_lH8veu48 |
CitedBy_id | crossref_primary_10_1016_j_matpr_2021_07_466 crossref_primary_10_1021_acsanm_3c00618 crossref_primary_10_1021_acs_langmuir_2c00381 crossref_primary_10_1021_acs_jpcc_1c09453 crossref_primary_10_1039_D1NJ04042A crossref_primary_10_1038_s41578_024_00741_7 crossref_primary_10_1016_j_aca_2024_342672 crossref_primary_10_1016_j_talanta_2023_124560 crossref_primary_10_3390_pr10122566 crossref_primary_10_1002_jms_4998 crossref_primary_10_1039_D4FO05802J |
Cites_doi | 10.1021/acs.accounts.8b00150 10.1021/cr1002547 10.1021/jp506508x 10.1021/a19600193 10.1021/ja513152h 10.1039/c3nr03872f 10.1039/c39940000801 10.1021/jp027575y 10.1021/ja0349305 10.1039/c9an02043h 10.1021/ja053968+ 10.1021/ja061659t 10.1021/jp962922n 10.1021/jp8115098 10.1038/nature12523 10.1007/978-3-642-60854-4_120 10.1021/ac200789v 10.1039/c6cc06108g 10.1021/jz300547d 10.1039/c4cc03424d 10.1021/ja906087a 10.1002/adma.201901015 10.1021/ja404058q 10.1126/science.280.5372.2098 10.1021/jp311491v 10.1021/ja1006383 10.1021/ac0260589 10.1021/jp993229d 10.1021/jacs.0c05685 10.1021/acs.analchem.8b05064 10.1039/d0nr00824a 10.1126/science.1148624 10.1021/acs.iecr.8b00480 10.1021/ja409998j 10.1021/jacs.5b12747 10.1039/c3cp54343a 10.1021/ja058717f 10.1021/acs.analchem.7b04104 10.1126/sciadv.aat7259 10.1021/jp011122w 10.1021/acsenergylett.9b02528 10.1021/ja201685f 10.1021/a1980015t 10.1002/anie.201207098 10.1021/acs.jpclett.8b00308 10.1021/jp971438x 10.1021/cr030698+ 10.1021/la000669j 10.1021/ja800561b 10.1016/s0009-2614(02)00306-8 10.1021/jacs.7b08651 10.1021/ja5109968 10.1021/acs.jpclett.7b01892 10.1021/acs.chemrev.8b00726 10.1021/acs.jpcc.8b01106 10.1073/pnas.0801001105 10.1021/ja8005379 10.1002/anie.201804481 10.1021/ja207992r 10.1021/jacs.6b04835 10.1021/nn500805n 10.1038/ncomms11859 10.1038/ncomms9667 10.1021/ja960198g 10.1021/cr500506r 10.1002/adma.19960080513 10.1021/acs.jpclett.6b01403 |
ContentType | Journal Article |
Copyright | 2021 American Chemical Society Copyright American Chemical Society Mar 2, 2021 |
Copyright_xml | – notice: 2021 American Chemical Society – notice: Copyright American Chemical Society Mar 2, 2021 |
DBID | AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7S9 L.6 |
DOI | 10.1021/acs.analchem.0c04961 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Toxicology Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Toxicology Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-6882 |
EndPage | 3996 |
ExternalDocumentID | 33606508 10_1021_acs_analchem_0c04961 a341763 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 1AW 23M 4.4 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABOCM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACNCT ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 D0L DZ EBS ED ED~ F5P GNL IH9 IHE JG JG~ K2 P2P PQEST PQQKQ ROL RXW TAE TN5 UHB UI2 UKR VF5 VG9 VQA W1F WH7 X X6Y XFK YZZ --- -DZ -~X .DC 53G 6J9 AAHBH AAYXX ABBLG ABHFT ABHMW ABJNI ABLBI ABQRX ACBEA ACGFO ACKOT ADHLV AGXLV AHGAQ CITATION CUPRZ GGK KZ1 LMP XSW ZCA ~02 NPM YIN 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a409t-a8565bfc31ba68b9037e043d44200092994545a369a0b5c73c4ee3c4370bf02a3 |
IEDL.DBID | ACS |
ISSN | 0003-2700 1520-6882 |
IngestDate | Fri Jul 11 07:23:09 EDT 2025 Thu Jul 10 23:04:04 EDT 2025 Mon Jun 30 08:40:01 EDT 2025 Wed Feb 19 02:27:46 EST 2025 Thu Apr 24 23:06:37 EDT 2025 Tue Jul 01 01:19:19 EDT 2025 Thu Mar 04 07:00:13 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a409t-a8565bfc31ba68b9037e043d44200092994545a369a0b5c73c4ee3c4370bf02a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1496-8886 0000-0001-8015-1391 0000-0002-7049-0370 0000-0001-6942-5451 0000-0001-8134-905X |
PMID | 33606508 |
PQID | 2498421544 |
PQPubID | 45400 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2524245092 proquest_miscellaneous_2491939325 proquest_journals_2498421544 pubmed_primary_33606508 crossref_primary_10_1021_acs_analchem_0c04961 crossref_citationtrail_10_1021_acs_analchem_0c04961 acs_journals_10_1021_acs_analchem_0c04961 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-02 |
PublicationDateYYYYMMDD | 2021-03-02 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Analytical chemistry (Washington) |
PublicationTitleAlternate | Anal. Chem |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref63/cit63 doi: 10.1021/acs.accounts.8b00150 – ident: ref12/cit12 doi: 10.1021/cr1002547 – ident: ref52/cit52 doi: 10.1021/jp506508x – ident: ref43/cit43 doi: 10.1021/a19600193 – ident: ref47/cit47 doi: 10.1021/ja513152h – ident: ref50/cit50 doi: 10.1039/c3nr03872f – ident: ref6/cit6 doi: 10.1039/c39940000801 – ident: ref32/cit32 doi: 10.1021/jp027575y – ident: ref62/cit62 doi: 10.1021/ja0349305 – ident: ref30/cit30 doi: 10.1039/c9an02043h – ident: ref19/cit19 doi: 10.1021/ja053968+ – ident: ref33/cit33 doi: 10.1021/ja061659t – ident: ref10/cit10 doi: 10.1021/jp962922n – ident: ref58/cit58 doi: 10.1021/jp8115098 – ident: ref40/cit40 doi: 10.1038/nature12523 – ident: ref16/cit16 doi: 10.1007/978-3-642-60854-4_120 – ident: ref34/cit34 doi: 10.1021/ac200789v – ident: ref68/cit68 doi: 10.1039/c6cc06108g – ident: ref25/cit25 doi: 10.1021/jz300547d – ident: ref36/cit36 doi: 10.1039/c4cc03424d – ident: ref54/cit54 doi: 10.1021/ja906087a – ident: ref22/cit22 doi: 10.1002/adma.201901015 – ident: ref64/cit64 doi: 10.1021/ja404058q – ident: ref3/cit3 doi: 10.1126/science.280.5372.2098 – ident: ref23/cit23 doi: 10.1021/jp311491v – ident: ref35/cit35 doi: 10.1021/ja1006383 – ident: ref24/cit24 doi: 10.1021/ac0260589 – ident: ref7/cit7 doi: 10.1021/jp993229d – ident: ref9/cit9 doi: 10.1021/jacs.0c05685 – ident: ref28/cit28 doi: 10.1021/acs.analchem.8b05064 – ident: ref41/cit41 doi: 10.1039/d0nr00824a – ident: ref5/cit5 doi: 10.1126/science.1148624 – ident: ref27/cit27 doi: 10.1021/acs.iecr.8b00480 – ident: ref61/cit61 doi: 10.1021/ja409998j – ident: ref66/cit66 doi: 10.1021/jacs.5b12747 – ident: ref55/cit55 doi: 10.1039/c3cp54343a – ident: ref39/cit39 doi: 10.1021/ja058717f – ident: ref42/cit42 doi: 10.1021/acs.analchem.7b04104 – ident: ref57/cit57 doi: 10.1126/sciadv.aat7259 – ident: ref17/cit17 doi: 10.1021/jp011122w – ident: ref46/cit46 doi: 10.1021/acsenergylett.9b02528 – ident: ref51/cit51 doi: 10.1021/ja201685f – ident: ref44/cit44 doi: 10.1021/a1980015t – ident: ref65/cit65 doi: 10.1002/anie.201207098 – ident: ref53/cit53 doi: 10.1021/acs.jpclett.8b00308 – ident: ref18/cit18 doi: 10.1021/jp971438x – ident: ref20/cit20 doi: 10.1021/cr030698+ – ident: ref31/cit31 doi: 10.1021/la000669j – ident: ref45/cit45 – ident: ref4/cit4 doi: 10.1021/ja800561b – ident: ref15/cit15 doi: 10.1016/s0009-2614(02)00306-8 – ident: ref48/cit48 doi: 10.1021/jacs.7b08651 – ident: ref26/cit26 doi: 10.1021/ja5109968 – ident: ref11/cit11 doi: 10.1021/acs.jpclett.7b01892 – ident: ref21/cit21 doi: 10.1021/acs.chemrev.8b00726 – ident: ref49/cit49 doi: 10.1021/acs.jpcc.8b01106 – ident: ref14/cit14 doi: 10.1073/pnas.0801001105 – ident: ref56/cit56 doi: 10.1021/ja8005379 – ident: ref59/cit59 doi: 10.1002/anie.201804481 – ident: ref8/cit8 doi: 10.1021/ja207992r – ident: ref67/cit67 doi: 10.1021/jacs.6b04835 – ident: ref38/cit38 doi: 10.1021/nn500805n – ident: ref60/cit60 doi: 10.1038/ncomms11859 – ident: ref37/cit37 doi: 10.1038/ncomms9667 – ident: ref2/cit2 doi: 10.1021/ja960198g – ident: ref13/cit13 doi: 10.1021/cr500506r – ident: ref1/cit1 doi: 10.1002/adma.19960080513 – ident: ref29/cit29 doi: 10.1021/acs.jpclett.6b01403 |
SSID | ssj0011016 |
Score | 2.4139748 |
Snippet | Highly monodisperse and pure samples of atomically precise gold nanomolecules (AuNMs) are essential to understand their properties and to develop applications... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3987 |
SubjectTerms | analytical chemistry Chemistry Chromatography Fractionation gel chromatography Gold Ions ligands Mass spectrometry Mass spectroscopy Nanoparticles Separation Separation techniques Size exclusion chromatography solubility Solvent fractionation Solvents |
Title | Size Exclusion Chromatography: An Indispensable Tool for the Isolation of Monodisperse Gold Nanomolecules |
URI | http://dx.doi.org/10.1021/acs.analchem.0c04961 https://www.ncbi.nlm.nih.gov/pubmed/33606508 https://www.proquest.com/docview/2498421544 https://www.proquest.com/docview/2491939325 https://www.proquest.com/docview/2524245092 |
Volume | 93 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5VcCgcSsurS2llJC4csiS28zC31QoKlYADIHGLbMeRViwJ2uxKaH89M3ksLRWFXnJIxpE9HtvfeF4A-zLTIsqE8ISJlCeN1V6SKO5lPh72oTB55uhC__wiOr2Rv27D22dF8aUFnweH2lZ9jUzFMdz3fYuIlrSdZR4lMSlbg-HVwmpAmmhXIY8Mql2o3Ct_oQPJVn8eSK-gzPq0OVmDyy5mp3EyuevPpqZv53-ncHznQD7DpxZ4skEjKV_ggyvW4eOwq_e2Dqu_pSbcgNHVaO7Y8aMdz-g-jVESXQS3bYLrIzYo2FmRjaoHVIMp-opdl-WYIQJmiCjZGUp0PeWszBluG2VNOakc-1mOM4Zbennf1OV11SbcnBxfD0-9tiyDp1EZnHo6QRBocisCo6PEKF_Ezpcik5LCfhBuKYmwDEVAad-ENhZWOocPEfsm97kWW7BUlIX7CgyVMRNoFWRB7csaKxW7MNEqV9KJWJkeHCDX0nZZVWltMedBSi87VqYtK3sgunlMbZvfnMpsjN9o5S1aPTT5Pd6g3-1E5LlbqMImklNeox7sLT7j9JHxRReunNU0iJURLYf_oAkpWAchHO_BdiN-i04JEdVoeuc_WPINVji54JDLHN-Fpelk5r4jhpqaH_XCeQIIGxbs |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9wwEB5RONAeKKUPlkLrSu2hh2wT23m4EofVAt0tjwuLxC21HUdadUkQ2VUL_6d_pb-rY28SaCWKekDqZQ9Zx5p4xpnvi-cB8JZnkkUZYx5TkfC40tJLEkG9zEdnHzKVZ8Z-0D88igYn_PNpeLoAP5pcGBSiwpkqd4h_XV0g-GCvSVxbfJSzrq8R2EZBHUu5by6_IVOrtoc7qNZ3lO7tjvoDr24m4EmkMFNPJghdVK5ZoGSUKOGz2PicZZzbZBUECYIjmEDBhfRVqGOmuTH4w2Jf5T6VDOd9AEs4CbUcr9c_bg8rLAFuGvPZc9wmQ-8Wqa0f1NXvfvAWcOuc3N5j-Nkuj4tt-dqdTVVXX_1ROfK_X79VWKlhNunN98UTWDDFGiz3m-52a_DoRiHGpzA-Hl8ZsvtdT2b26yGxJYMRytflvD-SXkGGRTauzpH021wzMirLCUG8TxA_kyHuX2fgpMwJviRLN_KiMuRTOckIOrDybN6F2FTP4ORenvs5LBZlYdaBIPVUgRRBFrjI3ViI2ISJFLnghsVCdeA9aimtXyJV6uIDaJDai43q0lp1HWCN-aS6ruZum4pM7rjLa-86n1czuWP8ZmOZ12IhYU84tVWcOvCm_RvVZ4-aZGHKmRuDzAC5QfiXMaFNTULASjvwYm71rVCMRY47bPzDkryG5cHo8CA9GB7tv4SH1AYf2WBBugmL04uZ2UL0OFWv3N4l8OW-jf0XTH52qQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIvE48ChQFgoYCQ4csiSx8zASh9W2S5dChdRW6i21HUdadZusml0B_Uf8FX4VM94kPKRSceiBSw6JEzmeceb7Mi-AFyJXPM4597iOpSe0UV6aytDLfTT2EddFbumH_sfdePtAvD-MDlfgW5sLg5Oo8Um1c-LTrp7lRVNhIHhN5xWuL77OSd83CG7joImn3LFfPyNbq9-ON1G0L8NwtLU_3PaahgKeQhoz91SK8EUXhgdaxamWPk-sL3guBCWsIFCQAgEFTl4qX0cm4UZYiwee-LrwQ8XxuVfgKnkKiecNhnudw4JIcNucj3y5bZbeObMmW2jq323hOQDXGbrRbfjeLZGLbznuL-a6b87-qB75X6zhHbjVwG02WO6Pu7BiyzW4Pmy73K3BzV8KMt6Dyd7kzLKtL2a6oL-IjEoHI6Rvynq_YYOSjct8Us-Q_FPOGduvqilD3M8QR7Mx7mOn6KwqGH4sKzfytLbsXTXNGRqy6mTZjdjW9-HgUt77AayWVWkfAkMKqgMlgzxwEbyJlImNUiULKSxPpO7BK5RS1nxM6szFCYRBRidb0WWN6HrAWxXKTFPVnZqLTC-4y-vumi2rmlwwfqPVzp_TQuKeipCqOfXgeXcZxUcuJ1XaauHGIENAjhD9ZUxEKUoIXMMerC81v5sU57HjEI_-YUmewbVPm6Psw3h35zHcCCkGiWIGww1YnZ8u7BMEkXP91G1fBkeXres_AKLeeSw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Size+Exclusion+Chromatography%3A+An+Indispensable+Tool+for+the+Isolation+of+Monodisperse+Gold+Nanomolecules&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Sakthivel%2C+Naga+Arjun&rft.au=Jupally%2C+Vijay+Reddy&rft.au=Eswaramoorthy%2C+Senthil+Kumar&rft.au=Wijesinghe%2C+Kalpani+Hirunika&rft.date=2021-03-02&rft.pub=American+Chemical+Society&rft.issn=0003-2700&rft.eissn=1520-6882&rft.volume=93&rft.issue=8&rft.spage=3987&rft_id=info:doi/10.1021%2Facs.analchem.0c04961&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon |