Nanolantern-Based DNA Probe and Signal Amplifier for Tumor-Related Biomarker Detection in Living Cells

The introduction of nanotechnology can overcome some inherent drawbacks of traditional DNA probes, thus promoting their applications in living cells. Herein, a three-dimensional DNA nanostructure, a DNA nanolantern, was prepared via simple nucleotide hybridization of four short-stranded oligonucleot...

Full description

Saved in:
Bibliographic Details
Published inAnalytical chemistry (Washington) Vol. 91; no. 20; pp. 13165 - 13173
Main Authors Wang, Dong-Xia, Wang, Jing, Cui, Yun-Xi, Wang, Ya-Xin, Tang, An-Na, Kong, De-Ming
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 15.10.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The introduction of nanotechnology can overcome some inherent drawbacks of traditional DNA probes, thus promoting their applications in living cells. Herein, a three-dimensional DNA nanostructure, a DNA nanolantern, was prepared via simple nucleotide hybridization of four short-stranded oligonucleotides and successfully applied to the construction of a novel DNA probe and signal amplifier. Compared to most reported DNA nanostructures, a DNA nanolantern shows the distinct advantages of low cost, easy design and preparation, more and arbitrary adjusted probe numbers, and high fluorescence resonance energy transfer (FRET) signal readout. Compared to traditional DNA probes, the constructed nanolantern-based one has improved cell internalization efficiency, enhanced biostability, accelerated reaction kinetics, excellent biocompatibility, and greatly reduced false-positive output and was demonstrated to work well for probing the expression level of tumor-related mRNA and microRNA in living cells. The DNA nanolantern can also be easily integrated with some reported signal amplification strategies, e.g., isothermal hybridization chain reaction (HCR), and the obtained signal amplifier combines the advantages of the DNA nanolantern and the HCR, enabling sensitive imaging detection of ultralow abundance targets in living cells. This work demonstrated that this simple DNA nanostructure can not only improve the performance of traditional DNA probes but can also be easily integrated with reported DNA-based strategy and technology, thus showing a broad application prospect.
AbstractList The introduction of nanotechnology can overcome some inherent drawbacks of traditional DNA probes, thus promoting their applications in living cells. Herein, a three-dimensional DNA nanostructure, a DNA nanolantern, was prepared via simple nucleotide hybridization of four short-stranded oligonucleotides and successfully applied to the construction of a novel DNA probe and signal amplifier. Compared to most reported DNA nanostructures, a DNA nanolantern shows the distinct advantages of low cost, easy design and preparation, more and arbitrary adjusted probe numbers, and high fluorescence resonance energy transfer (FRET) signal readout. Compared to traditional DNA probes, the constructed nanolantern-based one has improved cell internalization efficiency, enhanced biostability, accelerated reaction kinetics, excellent biocompatibility, and greatly reduced false-positive output and was demonstrated to work well for probing the expression level of tumor-related mRNA and microRNA in living cells. The DNA nanolantern can also be easily integrated with some reported signal amplification strategies, e.g., isothermal hybridization chain reaction (HCR), and the obtained signal amplifier combines the advantages of the DNA nanolantern and the HCR, enabling sensitive imaging detection of ultralow abundance targets in living cells. This work demonstrated that this simple DNA nanostructure can not only improve the performance of traditional DNA probes but can also be easily integrated with reported DNA-based strategy and technology, thus showing a broad application prospect.
The introduction of nanotechnology can overcome some inherent drawbacks of traditional DNA probes, thus promoting their applications in living cells. Herein, a three-dimensional DNA nanostructure, a DNA nanolantern, was prepared via simple nucleotide hybridization of four short-stranded oligonucleotides and successfully applied to the construction of a novel DNA probe and signal amplifier. Compared to most reported DNA nanostructures, a DNA nanolantern shows the distinct advantages of low cost, easy design and preparation, more and arbitrary adjusted probe numbers, and high fluorescence resonance energy transfer (FRET) signal readout. Compared to traditional DNA probes, the constructed nanolantern-based one has improved cell internalization efficiency, enhanced biostability, accelerated reaction kinetics, excellent biocompatibility, and greatly reduced false-positive output and was demonstrated to work well for probing the expression level of tumor-related mRNA and microRNA in living cells. The DNA nanolantern can also be easily integrated with some reported signal amplification strategies, e.g., isothermal hybridization chain reaction (HCR), and the obtained signal amplifier combines the advantages of the DNA nanolantern and the HCR, enabling sensitive imaging detection of ultralow abundance targets in living cells. This work demonstrated that this simple DNA nanostructure can not only improve the performance of traditional DNA probes but can also be easily integrated with reported DNA-based strategy and technology, thus showing a broad application prospect.The introduction of nanotechnology can overcome some inherent drawbacks of traditional DNA probes, thus promoting their applications in living cells. Herein, a three-dimensional DNA nanostructure, a DNA nanolantern, was prepared via simple nucleotide hybridization of four short-stranded oligonucleotides and successfully applied to the construction of a novel DNA probe and signal amplifier. Compared to most reported DNA nanostructures, a DNA nanolantern shows the distinct advantages of low cost, easy design and preparation, more and arbitrary adjusted probe numbers, and high fluorescence resonance energy transfer (FRET) signal readout. Compared to traditional DNA probes, the constructed nanolantern-based one has improved cell internalization efficiency, enhanced biostability, accelerated reaction kinetics, excellent biocompatibility, and greatly reduced false-positive output and was demonstrated to work well for probing the expression level of tumor-related mRNA and microRNA in living cells. The DNA nanolantern can also be easily integrated with some reported signal amplification strategies, e.g., isothermal hybridization chain reaction (HCR), and the obtained signal amplifier combines the advantages of the DNA nanolantern and the HCR, enabling sensitive imaging detection of ultralow abundance targets in living cells. This work demonstrated that this simple DNA nanostructure can not only improve the performance of traditional DNA probes but can also be easily integrated with reported DNA-based strategy and technology, thus showing a broad application prospect.
Author Wang, Ya-Xin
Tang, An-Na
Kong, De-Ming
Wang, Dong-Xia
Wang, Jing
Cui, Yun-Xi
AuthorAffiliation State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry
AuthorAffiliation_xml – name: State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry
Author_xml – sequence: 1
  givenname: Dong-Xia
  surname: Wang
  fullname: Wang, Dong-Xia
  organization: State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry
– sequence: 2
  givenname: Jing
  orcidid: 0000-0002-9100-6429
  surname: Wang
  fullname: Wang, Jing
  organization: State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry
– sequence: 3
  givenname: Yun-Xi
  orcidid: 0000-0002-3830-3336
  surname: Cui
  fullname: Cui, Yun-Xi
  organization: State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry
– sequence: 4
  givenname: Ya-Xin
  surname: Wang
  fullname: Wang, Ya-Xin
  organization: State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry
– sequence: 5
  givenname: An-Na
  orcidid: 0000-0001-5411-9216
  surname: Tang
  fullname: Tang, An-Na
  organization: State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry
– sequence: 6
  givenname: De-Ming
  orcidid: 0000-0002-9216-8040
  surname: Kong
  fullname: Kong, De-Ming
  email: kongdem@nankai.edu.cn
  organization: State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31512479$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9v1DAQxS1URLeFb4CQJS5csoz_JHa4bbcUkFYFQTlb3mRSXBJ7aydIfPs62l0OPdDTHOb33ozeOyMnPngk5DWDJQPO3tsmLa23ffMLh2W9BSFL8YwsWMmhqLTmJ2QBAKLgCuCUnKV0B8AYsOoFORWsZFyqekG6a-tDb_2I0RcXNmFLL69X9FsMW6TWt_SHu81H6GrY9a5zGGkXIr2ZhhCL79jbMQsuXBhs_J13lzhiM7rgqfN04_44f0vX2PfpJXne2T7hq8M8Jz-vPt6sPxebr5--rFebwkqox0JLDahEyduqlUzyVnSsakpdttyKLTRY6VZIpZiuWWWZFFJjq6DrFFq0Qopz8m7vu4vhfsI0msGlJn9gPYYpGZ69pZSC10-jXNelkhLKjL59hN6FKeZYZkNQQldVPVNvDtS0HbA1u-hyLH_NMewMfNgDTQwpRexM40Y7xzVG63rDwMzNmtysOTZrDs1msXwkPvo_IYO9bN7--_q_kgcX47li
CitedBy_id crossref_primary_10_1016_j_aca_2020_12_050
crossref_primary_10_1016_j_cclet_2021_06_067
crossref_primary_10_1021_acs_analchem_1c00873
crossref_primary_10_1039_D1SC00587A
crossref_primary_10_1016_j_talanta_2022_123377
crossref_primary_10_1016_j_talanta_2024_126665
crossref_primary_10_1021_acs_analchem_2c01159
crossref_primary_10_1021_acs_analchem_2c03658
crossref_primary_10_1021_acs_analchem_2c05415
crossref_primary_10_1021_acs_analchem_3c05554
crossref_primary_10_1016_j_talanta_2021_122846
crossref_primary_10_1016_j_colsurfb_2022_113122
crossref_primary_10_1016_j_snb_2020_129335
crossref_primary_10_1021_acs_analchem_2c05200
crossref_primary_10_1021_acs_analchem_2c02110
crossref_primary_10_1039_D1CC02455H
crossref_primary_10_1016_j_cclet_2024_109848
crossref_primary_10_1016_j_aca_2021_338413
crossref_primary_10_1039_D1AN00275A
crossref_primary_10_3389_fmicb_2022_934475
crossref_primary_10_1016_j_snb_2023_134973
crossref_primary_10_1021_acs_analchem_4c02949
crossref_primary_10_1021_acs_analchem_1c01453
crossref_primary_10_1039_D1AN01371H
crossref_primary_10_1039_D1QM00141H
crossref_primary_10_1039_D2CC03980J
crossref_primary_10_1021_acs_analchem_9b05648
crossref_primary_10_1016_j_bios_2021_113739
crossref_primary_10_1007_s10895_024_03668_y
crossref_primary_10_1021_acs_analchem_3c02014
crossref_primary_10_1039_D0CC08172H
crossref_primary_10_1016_j_nantod_2021_101156
crossref_primary_10_1016_j_trac_2023_116933
crossref_primary_10_3390_chemistry5030129
crossref_primary_10_1002_asia_202101315
crossref_primary_10_1021_acs_analchem_2c05373
crossref_primary_10_1021_acs_analchem_1c04113
Cites_doi 10.1039/C6SC03162E
10.1039/C5CS00700C
10.1038/35025220
10.1002/anie.201403202
10.1021/acs.analchem.8b05778
10.1002/anie.201802701
10.1021/acs.analchem.8b02847
10.1002/anie.201904182
10.1021/jacs.9b01759
10.1021/acs.analchem.9b00007
10.1002/ange.201203767
10.1038/s41580-018-0045-7
10.1021/acsami.8b10761
10.1002/anie.201812449
10.1021/jacs.8b10529
10.1038/natrevmats.2017.68
10.1038/s41557-019-0251-8
10.1021/jacs.8b04648
10.1039/C8SC02943A
10.1002/anie.201807779
10.1021/jacs.5b04007
10.1038/nrc3066
10.1021/acssensors.7b00290
10.1021/acsnano.7b00725
10.1002/adma.201703658
10.1111/cas.13642
10.1021/acs.chemrev.6b00825
10.2217/14622416.8.5.473
10.1038/nchem.2420
10.1038/s41467-019-10845-2
10.1093/nar/gkm112
10.1038/nprot.2006.236
10.1039/C5CC09980C
10.1039/C8SC01001C
10.1021/acs.analchem.6b02871
10.1038/ncomms4256
10.1021/acssensors.6b00593
10.1093/nar/gnh062
10.1021/acs.analchem.7b02763
10.2144/000112776
10.1021/acsnano.8b09147
10.1021/acsnano.7b06200
10.1021/jacs.7b09789
10.1021/cr300362f
10.1021/jacs.9b01931
10.1038/305829a0
ContentType Journal Article
Copyright Copyright American Chemical Society Oct 15, 2019
Copyright_xml – notice: Copyright American Chemical Society Oct 15, 2019
DBID AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7S9
L.6
DOI 10.1021/acs.analchem.9b03453
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Toxicology Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
AGRICOLA
MEDLINE - Academic
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-6882
EndPage 13173
ExternalDocumentID 31512479
10_1021_acs_analchem_9b03453
d142049545
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
1AW
23M
53G
53T
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABOCM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACNCT
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
D0L
DZ
EBS
ED
ED~
EJD
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
P2P
PQEST
PQQKQ
ROL
RXW
TAE
TN5
UHB
UI2
UKR
VF5
VG9
VQA
W1F
WH7
X
X6Y
XFK
YZZ
---
-DZ
-~X
.DC
4.4
6J9
AAHBH
AAYXX
ABBLG
ABHFT
ABHMW
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ACKOT
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
KZ1
LMP
XSW
ZCA
~02
NPM
YIN
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7S9
L.6
ID FETCH-LOGICAL-a409t-8480e7352d6d4142d3f16c585d2a3b0ce68d347718916a14348ed70ff7eaea343
IEDL.DBID ACS
ISSN 0003-2700
1520-6882
IngestDate Fri Jul 11 00:56:15 EDT 2025
Fri Jul 11 03:17:42 EDT 2025
Mon Jun 30 10:19:03 EDT 2025
Wed Feb 19 02:30:26 EST 2025
Thu Apr 24 23:06:38 EDT 2025
Tue Jul 01 04:15:20 EDT 2025
Thu Aug 27 13:41:56 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a409t-8480e7352d6d4142d3f16c585d2a3b0ce68d347718916a14348ed70ff7eaea343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3830-3336
0000-0002-9100-6429
0000-0002-9216-8040
0000-0001-5411-9216
PMID 31512479
PQID 2307386695
PQPubID 45400
PageCount 9
ParticipantIDs proquest_miscellaneous_2352444329
proquest_miscellaneous_2289574405
proquest_journals_2307386695
pubmed_primary_31512479
crossref_citationtrail_10_1021_acs_analchem_9b03453
crossref_primary_10_1021_acs_analchem_9b03453
acs_journals_10_1021_acs_analchem_9b03453
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-15
PublicationDateYYYYMMDD 2019-10-15
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Analytical chemistry (Washington)
PublicationTitleAlternate Anal. Chem
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
Li M. (ref17/cit17) 2019; 57
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref46/cit46
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref36/cit36
  doi: 10.1039/C6SC03162E
– ident: ref46/cit46
  doi: 10.1039/C5CS00700C
– ident: ref4/cit4
  doi: 10.1038/35025220
– ident: ref29/cit29
  doi: 10.1002/anie.201403202
– ident: ref35/cit35
  doi: 10.1021/acs.analchem.8b05778
– ident: ref21/cit21
  doi: 10.1002/anie.201802701
– ident: ref38/cit38
  doi: 10.1021/acs.analchem.8b02847
– ident: ref16/cit16
  doi: 10.1002/anie.201904182
– ident: ref30/cit30
  doi: 10.1021/jacs.9b01759
– ident: ref18/cit18
  doi: 10.1021/acs.analchem.9b00007
– ident: ref5/cit5
  doi: 10.1002/ange.201203767
– ident: ref7/cit7
  doi: 10.1038/s41580-018-0045-7
– ident: ref27/cit27
  doi: 10.1021/acsami.8b10761
– ident: ref6/cit6
  doi: 10.1002/anie.201812449
– ident: ref33/cit33
  doi: 10.1021/jacs.8b10529
– ident: ref25/cit25
  doi: 10.1038/natrevmats.2017.68
– ident: ref24/cit24
  doi: 10.1038/s41557-019-0251-8
– ident: ref13/cit13
  doi: 10.1021/jacs.8b04648
– ident: ref20/cit20
  doi: 10.1039/C8SC02943A
– ident: ref32/cit32
  doi: 10.1002/anie.201807779
– ident: ref37/cit37
  doi: 10.1021/jacs.5b04007
– ident: ref2/cit2
  doi: 10.1038/nrc3066
– ident: ref39/cit39
  doi: 10.1021/acssensors.7b00290
– ident: ref47/cit47
  doi: 10.1021/acsnano.7b00725
– ident: ref3/cit3
  doi: 10.1002/adma.201703658
– ident: ref1/cit1
  doi: 10.1111/cas.13642
– ident: ref26/cit26
  doi: 10.1021/acs.chemrev.6b00825
– ident: ref12/cit12
  doi: 10.2217/14622416.8.5.473
– ident: ref22/cit22
  doi: 10.1038/nchem.2420
– ident: ref31/cit31
  doi: 10.1038/s41467-019-10845-2
– ident: ref11/cit11
  doi: 10.1093/nar/gkm112
– ident: ref9/cit9
  doi: 10.1038/nprot.2006.236
– ident: ref41/cit41
  doi: 10.1039/C5CC09980C
– ident: ref43/cit43
  doi: 10.1039/C8SC01001C
– ident: ref42/cit42
  doi: 10.1021/acs.analchem.6b02871
– ident: ref14/cit14
  doi: 10.1038/ncomms4256
– volume: 57
  start-page: 1
  year: 2019
  ident: ref17/cit17
  publication-title: Angew. Chem., Int. Ed.
– ident: ref40/cit40
  doi: 10.1021/acssensors.6b00593
– ident: ref44/cit44
  doi: 10.1093/nar/gnh062
– ident: ref34/cit34
  doi: 10.1021/acs.analchem.7b02763
– ident: ref10/cit10
  doi: 10.2144/000112776
– ident: ref23/cit23
  doi: 10.1021/acsnano.8b09147
– ident: ref28/cit28
  doi: 10.1021/acsnano.7b06200
– ident: ref45/cit45
  doi: 10.1021/jacs.7b09789
– ident: ref8/cit8
  doi: 10.1021/cr300362f
– ident: ref15/cit15
  doi: 10.1021/jacs.9b01931
– ident: ref19/cit19
  doi: 10.1038/305829a0
SSID ssj0011016
Score 2.4784377
Snippet The introduction of nanotechnology can overcome some inherent drawbacks of traditional DNA probes, thus promoting their applications in living cells. Herein, a...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 13165
SubjectTerms Amplifiers
Biocompatibility
Biomarkers
Cells (biology)
Chemistry
Deoxyribonucleic acid
DNA
DNA probes
Energy transfer
Fluorescence
Fluorescence resonance energy transfer
Gene expression
Hybridization
hybridization chain reaction
image analysis
Internalization
messenger RNA
microRNA
miRNA
mRNA
nanomaterials
Nanostructure
Nanotechnology
Nucleotides
Oligonucleotides
Performance enhancement
Probes
Reaction kinetics
Ribonucleic acid
RNA
Target detection
Tumors
Title Nanolantern-Based DNA Probe and Signal Amplifier for Tumor-Related Biomarker Detection in Living Cells
URI http://dx.doi.org/10.1021/acs.analchem.9b03453
https://www.ncbi.nlm.nih.gov/pubmed/31512479
https://www.proquest.com/docview/2307386695
https://www.proquest.com/docview/2289574405
https://www.proquest.com/docview/2352444329
Volume 91
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5ROLQ9AKWlLI_KlXrpwdskdpz4CEsRqlpaCZC4RY49Rit2s2g3e-mv7zibLH2IAtfEYzljO983nvEMwAdnXIaRQW7zUnPpU-Q6kpbH2imRpRqzpiTLtzN1eim_XKVXd4bi3x78JP5k7KxvSKn0DeO-LiMhU_EM1hJF-zhQocH50msQLNGuQl5wqHZX5e7pJQCSnf0JSPewzAZtTjbge3dnZxFkctOf12Xf_vw3heMjP2QT1lviyQ4XK-UVrGC1Bc8HXb23LXj5W2rC1-Dpt0tWb3NeyI8I6hw7PjtkP8LtIWYqx86H101_ISLdE7YyYr_sYj6eTHkTYEcCR8PJOET_TNkx1k3IV8WGFfs6DIcYbICj0ewNXJ58vhic8rYmAzdkCdY8l3mEGbE2p5yMZeKEj5Ulm8MlRpSRRZU7ITNCPOKdhsiYzNFlkfcZGjRCim1YrSYV7gCLndSCCI_PsZTSk2CqvNFWJLFXIsEefCSVFe2emhWNuzyJi_Cw02PR6rEHopvEwrbJzUONjdEDUnwpdbtI7vFA-_1ufdwNK0TSi1wpnfbg_fI1zV3wvJgKJ3NqQ2ZtGlIx_q8NKVVKKRLdg7eLtbcclAi8TGZ69wkq2YMXRO50wNk43YfVejrHAyJQdfmu2TW_AO3SFbQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-N8TD2wGB8rLCBkXjhwV0SO0782HWbCnQV0jq0t8iJbVTRpqhJX_jrObtJNpDGtFfHZ9nnc-53vvMdwEetdGICZWiR5pJyGxsqA17QUGrBkliaxJdkuZiI0RX_ch1fb0HcvoXBSVQ4UuWd-DfZBcJj16aQt7iURV_mAeMxewSPEY9ETrAHw8vOeeAM0rZQnvOrti_m7hjF6aWi-lsv3QE2vdI534Pv3XR9rMnP_rrO-8XvfzI5Png9z-BpA0PJYCM3z2HLlPuwM2yrv-3D7q1EhS_A4k8YbWB_e0hPUPFpcjoZkG_uLRFRpSaXsx9-PBefblHTEsTCZLpeLFfUh9shwclsuXCxQCtyamofAFaSWUnGM3elQYZmPq9ewtX52XQ4ok2FBqrQLqxpytPAJIjhtNA85JFmNhQFWiA6UiwPCiNSzXiC-g9RqEJoxlOjk8DaxCijGGevYLtcluYASKi5ZAh_bGpyzi0SxsIqWbAotIJFpgefkGVZc8KqzDvPozBzjS0fs4aPPWDtXmZFk-rcVdyY30NFO6pfm1Qf9_Q_bMXkZlourp6lQsi4Bx-6z7h3zg-jSrNcYx80cmOXmPF_fZCpnHMWyR683ohgNynmUBpP5JsHsOQ97IymF-Ns_Hny9S08QdgnnQYO40PYrldrc4TQqs7f-YP0B1RFHhU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BkPh44GN8FQYYiRce3CWx8-HHrqUaMKpJ26SJl8iJbVTRplOTvvDXc-cmYSCNCV4dn2Wfz7nf-c53AO-MNqkNtOVlViguXWy5CmTJQ2USkcbKpr4ky5dZcngmP53H55dKfeEkahyp9k58OtUXxrUZBsJ9atfIX1zOcqiKQMhY3IRb5Lkj4R6NT3oHAhmlXbE88q12r-auGIV0U1n_rpuuAJxe8UwfwNd-yj7e5Ptw0xTD8scf2Rz_a00P4X4LR9loKz-P4IatduHOuKsCtwv3LiUsfAwOf8ZoC_tbRH6ACtCwyWzEjulNEdOVYSfzb348ilN3qHEZYmJ2ulmu1tyH3SHBwXy1pJigNZvYxgeCVWxesaM5XW2wsV0s6idwNv1wOj7kbaUGrtE-bHgms8CmiOVMYmQoIyNcmJRoiZhIiyIobZIZIVPUg4hGNUI0mVmTBs6lVlstpHgKO9Wqss-BhUYqgTDIZbaQ0iFhnDitShGFLhGRHcB7ZFnenrQ69070KMypseNj3vJxAKLbz7xsU55T5Y3FNVS8p7rYpvy4pv9eJyq_pkXx9SJLEhUP4G3_GfeO_DG6sqsN9kFjN6YEjX_rg0yVUopIDeDZVgz7SQlCazJVL_6BJW_g9vFkmh99nH1-CXcR_SlSxGG8BzvNemNfIcJqitf-LP0EicMgmA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanolantern-Based+DNA+Probe+and+Signal+Amplifier+for+Tumor-Related+Biomarker+Detection+in+Living+Cells&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Wang%2C+Dong-Xia&rft.au=Wang%2C+Jing&rft.au=Cui%2C+Yun-Xi&rft.au=Wang%2C+Ya-Xin&rft.date=2019-10-15&rft.pub=American+Chemical+Society&rft.issn=0003-2700&rft.eissn=1520-6882&rft.volume=91&rft.issue=20&rft.spage=13165&rft.epage=13173&rft_id=info:doi/10.1021%2Facs.analchem.9b03453&rft.externalDocID=d142049545
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon