Nanolantern-Based DNA Probe and Signal Amplifier for Tumor-Related Biomarker Detection in Living Cells
The introduction of nanotechnology can overcome some inherent drawbacks of traditional DNA probes, thus promoting their applications in living cells. Herein, a three-dimensional DNA nanostructure, a DNA nanolantern, was prepared via simple nucleotide hybridization of four short-stranded oligonucleot...
Saved in:
Published in | Analytical chemistry (Washington) Vol. 91; no. 20; pp. 13165 - 13173 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
15.10.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The introduction of nanotechnology can overcome some inherent drawbacks of traditional DNA probes, thus promoting their applications in living cells. Herein, a three-dimensional DNA nanostructure, a DNA nanolantern, was prepared via simple nucleotide hybridization of four short-stranded oligonucleotides and successfully applied to the construction of a novel DNA probe and signal amplifier. Compared to most reported DNA nanostructures, a DNA nanolantern shows the distinct advantages of low cost, easy design and preparation, more and arbitrary adjusted probe numbers, and high fluorescence resonance energy transfer (FRET) signal readout. Compared to traditional DNA probes, the constructed nanolantern-based one has improved cell internalization efficiency, enhanced biostability, accelerated reaction kinetics, excellent biocompatibility, and greatly reduced false-positive output and was demonstrated to work well for probing the expression level of tumor-related mRNA and microRNA in living cells. The DNA nanolantern can also be easily integrated with some reported signal amplification strategies, e.g., isothermal hybridization chain reaction (HCR), and the obtained signal amplifier combines the advantages of the DNA nanolantern and the HCR, enabling sensitive imaging detection of ultralow abundance targets in living cells. This work demonstrated that this simple DNA nanostructure can not only improve the performance of traditional DNA probes but can also be easily integrated with reported DNA-based strategy and technology, thus showing a broad application prospect. |
---|---|
AbstractList | The introduction of nanotechnology can overcome some inherent drawbacks of traditional DNA probes, thus promoting their applications in living cells. Herein, a three-dimensional DNA nanostructure, a DNA nanolantern, was prepared via simple nucleotide hybridization of four short-stranded oligonucleotides and successfully applied to the construction of a novel DNA probe and signal amplifier. Compared to most reported DNA nanostructures, a DNA nanolantern shows the distinct advantages of low cost, easy design and preparation, more and arbitrary adjusted probe numbers, and high fluorescence resonance energy transfer (FRET) signal readout. Compared to traditional DNA probes, the constructed nanolantern-based one has improved cell internalization efficiency, enhanced biostability, accelerated reaction kinetics, excellent biocompatibility, and greatly reduced false-positive output and was demonstrated to work well for probing the expression level of tumor-related mRNA and microRNA in living cells. The DNA nanolantern can also be easily integrated with some reported signal amplification strategies, e.g., isothermal hybridization chain reaction (HCR), and the obtained signal amplifier combines the advantages of the DNA nanolantern and the HCR, enabling sensitive imaging detection of ultralow abundance targets in living cells. This work demonstrated that this simple DNA nanostructure can not only improve the performance of traditional DNA probes but can also be easily integrated with reported DNA-based strategy and technology, thus showing a broad application prospect. The introduction of nanotechnology can overcome some inherent drawbacks of traditional DNA probes, thus promoting their applications in living cells. Herein, a three-dimensional DNA nanostructure, a DNA nanolantern, was prepared via simple nucleotide hybridization of four short-stranded oligonucleotides and successfully applied to the construction of a novel DNA probe and signal amplifier. Compared to most reported DNA nanostructures, a DNA nanolantern shows the distinct advantages of low cost, easy design and preparation, more and arbitrary adjusted probe numbers, and high fluorescence resonance energy transfer (FRET) signal readout. Compared to traditional DNA probes, the constructed nanolantern-based one has improved cell internalization efficiency, enhanced biostability, accelerated reaction kinetics, excellent biocompatibility, and greatly reduced false-positive output and was demonstrated to work well for probing the expression level of tumor-related mRNA and microRNA in living cells. The DNA nanolantern can also be easily integrated with some reported signal amplification strategies, e.g., isothermal hybridization chain reaction (HCR), and the obtained signal amplifier combines the advantages of the DNA nanolantern and the HCR, enabling sensitive imaging detection of ultralow abundance targets in living cells. This work demonstrated that this simple DNA nanostructure can not only improve the performance of traditional DNA probes but can also be easily integrated with reported DNA-based strategy and technology, thus showing a broad application prospect.The introduction of nanotechnology can overcome some inherent drawbacks of traditional DNA probes, thus promoting their applications in living cells. Herein, a three-dimensional DNA nanostructure, a DNA nanolantern, was prepared via simple nucleotide hybridization of four short-stranded oligonucleotides and successfully applied to the construction of a novel DNA probe and signal amplifier. Compared to most reported DNA nanostructures, a DNA nanolantern shows the distinct advantages of low cost, easy design and preparation, more and arbitrary adjusted probe numbers, and high fluorescence resonance energy transfer (FRET) signal readout. Compared to traditional DNA probes, the constructed nanolantern-based one has improved cell internalization efficiency, enhanced biostability, accelerated reaction kinetics, excellent biocompatibility, and greatly reduced false-positive output and was demonstrated to work well for probing the expression level of tumor-related mRNA and microRNA in living cells. The DNA nanolantern can also be easily integrated with some reported signal amplification strategies, e.g., isothermal hybridization chain reaction (HCR), and the obtained signal amplifier combines the advantages of the DNA nanolantern and the HCR, enabling sensitive imaging detection of ultralow abundance targets in living cells. This work demonstrated that this simple DNA nanostructure can not only improve the performance of traditional DNA probes but can also be easily integrated with reported DNA-based strategy and technology, thus showing a broad application prospect. |
Author | Wang, Ya-Xin Tang, An-Na Kong, De-Ming Wang, Dong-Xia Wang, Jing Cui, Yun-Xi |
AuthorAffiliation | State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry |
AuthorAffiliation_xml | – name: State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry |
Author_xml | – sequence: 1 givenname: Dong-Xia surname: Wang fullname: Wang, Dong-Xia organization: State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry – sequence: 2 givenname: Jing orcidid: 0000-0002-9100-6429 surname: Wang fullname: Wang, Jing organization: State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry – sequence: 3 givenname: Yun-Xi orcidid: 0000-0002-3830-3336 surname: Cui fullname: Cui, Yun-Xi organization: State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry – sequence: 4 givenname: Ya-Xin surname: Wang fullname: Wang, Ya-Xin organization: State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry – sequence: 5 givenname: An-Na orcidid: 0000-0001-5411-9216 surname: Tang fullname: Tang, An-Na organization: State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry – sequence: 6 givenname: De-Ming orcidid: 0000-0002-9216-8040 surname: Kong fullname: Kong, De-Ming email: kongdem@nankai.edu.cn organization: State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31512479$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9v1DAQxS1URLeFb4CQJS5csoz_JHa4bbcUkFYFQTlb3mRSXBJ7aydIfPs62l0OPdDTHOb33ozeOyMnPngk5DWDJQPO3tsmLa23ffMLh2W9BSFL8YwsWMmhqLTmJ2QBAKLgCuCUnKV0B8AYsOoFORWsZFyqekG6a-tDb_2I0RcXNmFLL69X9FsMW6TWt_SHu81H6GrY9a5zGGkXIr2ZhhCL79jbMQsuXBhs_J13lzhiM7rgqfN04_44f0vX2PfpJXne2T7hq8M8Jz-vPt6sPxebr5--rFebwkqox0JLDahEyduqlUzyVnSsakpdttyKLTRY6VZIpZiuWWWZFFJjq6DrFFq0Qopz8m7vu4vhfsI0msGlJn9gPYYpGZ69pZSC10-jXNelkhLKjL59hN6FKeZYZkNQQldVPVNvDtS0HbA1u-hyLH_NMewMfNgDTQwpRexM40Y7xzVG63rDwMzNmtysOTZrDs1msXwkPvo_IYO9bN7--_q_kgcX47li |
CitedBy_id | crossref_primary_10_1016_j_aca_2020_12_050 crossref_primary_10_1016_j_cclet_2021_06_067 crossref_primary_10_1021_acs_analchem_1c00873 crossref_primary_10_1039_D1SC00587A crossref_primary_10_1016_j_talanta_2022_123377 crossref_primary_10_1016_j_talanta_2024_126665 crossref_primary_10_1021_acs_analchem_2c01159 crossref_primary_10_1021_acs_analchem_2c03658 crossref_primary_10_1021_acs_analchem_2c05415 crossref_primary_10_1021_acs_analchem_3c05554 crossref_primary_10_1016_j_talanta_2021_122846 crossref_primary_10_1016_j_colsurfb_2022_113122 crossref_primary_10_1016_j_snb_2020_129335 crossref_primary_10_1021_acs_analchem_2c05200 crossref_primary_10_1021_acs_analchem_2c02110 crossref_primary_10_1039_D1CC02455H crossref_primary_10_1016_j_cclet_2024_109848 crossref_primary_10_1016_j_aca_2021_338413 crossref_primary_10_1039_D1AN00275A crossref_primary_10_3389_fmicb_2022_934475 crossref_primary_10_1016_j_snb_2023_134973 crossref_primary_10_1021_acs_analchem_4c02949 crossref_primary_10_1021_acs_analchem_1c01453 crossref_primary_10_1039_D1AN01371H crossref_primary_10_1039_D1QM00141H crossref_primary_10_1039_D2CC03980J crossref_primary_10_1021_acs_analchem_9b05648 crossref_primary_10_1016_j_bios_2021_113739 crossref_primary_10_1007_s10895_024_03668_y crossref_primary_10_1021_acs_analchem_3c02014 crossref_primary_10_1039_D0CC08172H crossref_primary_10_1016_j_nantod_2021_101156 crossref_primary_10_1016_j_trac_2023_116933 crossref_primary_10_3390_chemistry5030129 crossref_primary_10_1002_asia_202101315 crossref_primary_10_1021_acs_analchem_2c05373 crossref_primary_10_1021_acs_analchem_1c04113 |
Cites_doi | 10.1039/C6SC03162E 10.1039/C5CS00700C 10.1038/35025220 10.1002/anie.201403202 10.1021/acs.analchem.8b05778 10.1002/anie.201802701 10.1021/acs.analchem.8b02847 10.1002/anie.201904182 10.1021/jacs.9b01759 10.1021/acs.analchem.9b00007 10.1002/ange.201203767 10.1038/s41580-018-0045-7 10.1021/acsami.8b10761 10.1002/anie.201812449 10.1021/jacs.8b10529 10.1038/natrevmats.2017.68 10.1038/s41557-019-0251-8 10.1021/jacs.8b04648 10.1039/C8SC02943A 10.1002/anie.201807779 10.1021/jacs.5b04007 10.1038/nrc3066 10.1021/acssensors.7b00290 10.1021/acsnano.7b00725 10.1002/adma.201703658 10.1111/cas.13642 10.1021/acs.chemrev.6b00825 10.2217/14622416.8.5.473 10.1038/nchem.2420 10.1038/s41467-019-10845-2 10.1093/nar/gkm112 10.1038/nprot.2006.236 10.1039/C5CC09980C 10.1039/C8SC01001C 10.1021/acs.analchem.6b02871 10.1038/ncomms4256 10.1021/acssensors.6b00593 10.1093/nar/gnh062 10.1021/acs.analchem.7b02763 10.2144/000112776 10.1021/acsnano.8b09147 10.1021/acsnano.7b06200 10.1021/jacs.7b09789 10.1021/cr300362f 10.1021/jacs.9b01931 10.1038/305829a0 |
ContentType | Journal Article |
Copyright | Copyright American Chemical Society Oct 15, 2019 |
Copyright_xml | – notice: Copyright American Chemical Society Oct 15, 2019 |
DBID | AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7S9 L.6 |
DOI | 10.1021/acs.analchem.9b03453 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Toxicology Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Toxicology Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-6882 |
EndPage | 13173 |
ExternalDocumentID | 31512479 10_1021_acs_analchem_9b03453 d142049545 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 1AW 23M 53G 53T 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABOCM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACNCT ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 D0L DZ EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 P2P PQEST PQQKQ ROL RXW TAE TN5 UHB UI2 UKR VF5 VG9 VQA W1F WH7 X X6Y XFK YZZ --- -DZ -~X .DC 4.4 6J9 AAHBH AAYXX ABBLG ABHFT ABHMW ABJNI ABLBI ABQRX ACBEA ACGFO ACKOT ADHLV AGXLV AHGAQ CITATION CUPRZ GGK KZ1 LMP XSW ZCA ~02 NPM YIN 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a409t-8480e7352d6d4142d3f16c585d2a3b0ce68d347718916a14348ed70ff7eaea343 |
IEDL.DBID | ACS |
ISSN | 0003-2700 1520-6882 |
IngestDate | Fri Jul 11 00:56:15 EDT 2025 Fri Jul 11 03:17:42 EDT 2025 Mon Jun 30 10:19:03 EDT 2025 Wed Feb 19 02:30:26 EST 2025 Thu Apr 24 23:06:38 EDT 2025 Tue Jul 01 04:15:20 EDT 2025 Thu Aug 27 13:41:56 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a409t-8480e7352d6d4142d3f16c585d2a3b0ce68d347718916a14348ed70ff7eaea343 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3830-3336 0000-0002-9100-6429 0000-0002-9216-8040 0000-0001-5411-9216 |
PMID | 31512479 |
PQID | 2307386695 |
PQPubID | 45400 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2352444329 proquest_miscellaneous_2289574405 proquest_journals_2307386695 pubmed_primary_31512479 crossref_citationtrail_10_1021_acs_analchem_9b03453 crossref_primary_10_1021_acs_analchem_9b03453 acs_journals_10_1021_acs_analchem_9b03453 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-15 |
PublicationDateYYYYMMDD | 2019-10-15 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Analytical chemistry (Washington) |
PublicationTitleAlternate | Anal. Chem |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 Li M. (ref17/cit17) 2019; 57 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref46/cit46 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref36/cit36 doi: 10.1039/C6SC03162E – ident: ref46/cit46 doi: 10.1039/C5CS00700C – ident: ref4/cit4 doi: 10.1038/35025220 – ident: ref29/cit29 doi: 10.1002/anie.201403202 – ident: ref35/cit35 doi: 10.1021/acs.analchem.8b05778 – ident: ref21/cit21 doi: 10.1002/anie.201802701 – ident: ref38/cit38 doi: 10.1021/acs.analchem.8b02847 – ident: ref16/cit16 doi: 10.1002/anie.201904182 – ident: ref30/cit30 doi: 10.1021/jacs.9b01759 – ident: ref18/cit18 doi: 10.1021/acs.analchem.9b00007 – ident: ref5/cit5 doi: 10.1002/ange.201203767 – ident: ref7/cit7 doi: 10.1038/s41580-018-0045-7 – ident: ref27/cit27 doi: 10.1021/acsami.8b10761 – ident: ref6/cit6 doi: 10.1002/anie.201812449 – ident: ref33/cit33 doi: 10.1021/jacs.8b10529 – ident: ref25/cit25 doi: 10.1038/natrevmats.2017.68 – ident: ref24/cit24 doi: 10.1038/s41557-019-0251-8 – ident: ref13/cit13 doi: 10.1021/jacs.8b04648 – ident: ref20/cit20 doi: 10.1039/C8SC02943A – ident: ref32/cit32 doi: 10.1002/anie.201807779 – ident: ref37/cit37 doi: 10.1021/jacs.5b04007 – ident: ref2/cit2 doi: 10.1038/nrc3066 – ident: ref39/cit39 doi: 10.1021/acssensors.7b00290 – ident: ref47/cit47 doi: 10.1021/acsnano.7b00725 – ident: ref3/cit3 doi: 10.1002/adma.201703658 – ident: ref1/cit1 doi: 10.1111/cas.13642 – ident: ref26/cit26 doi: 10.1021/acs.chemrev.6b00825 – ident: ref12/cit12 doi: 10.2217/14622416.8.5.473 – ident: ref22/cit22 doi: 10.1038/nchem.2420 – ident: ref31/cit31 doi: 10.1038/s41467-019-10845-2 – ident: ref11/cit11 doi: 10.1093/nar/gkm112 – ident: ref9/cit9 doi: 10.1038/nprot.2006.236 – ident: ref41/cit41 doi: 10.1039/C5CC09980C – ident: ref43/cit43 doi: 10.1039/C8SC01001C – ident: ref42/cit42 doi: 10.1021/acs.analchem.6b02871 – ident: ref14/cit14 doi: 10.1038/ncomms4256 – volume: 57 start-page: 1 year: 2019 ident: ref17/cit17 publication-title: Angew. Chem., Int. Ed. – ident: ref40/cit40 doi: 10.1021/acssensors.6b00593 – ident: ref44/cit44 doi: 10.1093/nar/gnh062 – ident: ref34/cit34 doi: 10.1021/acs.analchem.7b02763 – ident: ref10/cit10 doi: 10.2144/000112776 – ident: ref23/cit23 doi: 10.1021/acsnano.8b09147 – ident: ref28/cit28 doi: 10.1021/acsnano.7b06200 – ident: ref45/cit45 doi: 10.1021/jacs.7b09789 – ident: ref8/cit8 doi: 10.1021/cr300362f – ident: ref15/cit15 doi: 10.1021/jacs.9b01931 – ident: ref19/cit19 doi: 10.1038/305829a0 |
SSID | ssj0011016 |
Score | 2.4784377 |
Snippet | The introduction of nanotechnology can overcome some inherent drawbacks of traditional DNA probes, thus promoting their applications in living cells. Herein, a... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 13165 |
SubjectTerms | Amplifiers Biocompatibility Biomarkers Cells (biology) Chemistry Deoxyribonucleic acid DNA DNA probes Energy transfer Fluorescence Fluorescence resonance energy transfer Gene expression Hybridization hybridization chain reaction image analysis Internalization messenger RNA microRNA miRNA mRNA nanomaterials Nanostructure Nanotechnology Nucleotides Oligonucleotides Performance enhancement Probes Reaction kinetics Ribonucleic acid RNA Target detection Tumors |
Title | Nanolantern-Based DNA Probe and Signal Amplifier for Tumor-Related Biomarker Detection in Living Cells |
URI | http://dx.doi.org/10.1021/acs.analchem.9b03453 https://www.ncbi.nlm.nih.gov/pubmed/31512479 https://www.proquest.com/docview/2307386695 https://www.proquest.com/docview/2289574405 https://www.proquest.com/docview/2352444329 |
Volume | 91 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5ROLQ9AKWlLI_KlXrpwdskdpz4CEsRqlpaCZC4RY49Rit2s2g3e-mv7zibLH2IAtfEYzljO983nvEMwAdnXIaRQW7zUnPpU-Q6kpbH2imRpRqzpiTLtzN1eim_XKVXd4bi3x78JP5k7KxvSKn0DeO-LiMhU_EM1hJF-zhQocH50msQLNGuQl5wqHZX5e7pJQCSnf0JSPewzAZtTjbge3dnZxFkctOf12Xf_vw3heMjP2QT1lviyQ4XK-UVrGC1Bc8HXb23LXj5W2rC1-Dpt0tWb3NeyI8I6hw7PjtkP8LtIWYqx86H101_ISLdE7YyYr_sYj6eTHkTYEcCR8PJOET_TNkx1k3IV8WGFfs6DIcYbICj0ewNXJ58vhic8rYmAzdkCdY8l3mEGbE2p5yMZeKEj5Ulm8MlRpSRRZU7ITNCPOKdhsiYzNFlkfcZGjRCim1YrSYV7gCLndSCCI_PsZTSk2CqvNFWJLFXIsEefCSVFe2emhWNuzyJi_Cw02PR6rEHopvEwrbJzUONjdEDUnwpdbtI7vFA-_1ufdwNK0TSi1wpnfbg_fI1zV3wvJgKJ3NqQ2ZtGlIx_q8NKVVKKRLdg7eLtbcclAi8TGZ69wkq2YMXRO50wNk43YfVejrHAyJQdfmu2TW_AO3SFbQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-N8TD2wGB8rLCBkXjhwV0SO0782HWbCnQV0jq0t8iJbVTRpqhJX_jrObtJNpDGtFfHZ9nnc-53vvMdwEetdGICZWiR5pJyGxsqA17QUGrBkliaxJdkuZiI0RX_ch1fb0HcvoXBSVQ4UuWd-DfZBcJj16aQt7iURV_mAeMxewSPEY9ETrAHw8vOeeAM0rZQnvOrti_m7hjF6aWi-lsv3QE2vdI534Pv3XR9rMnP_rrO-8XvfzI5Png9z-BpA0PJYCM3z2HLlPuwM2yrv-3D7q1EhS_A4k8YbWB_e0hPUPFpcjoZkG_uLRFRpSaXsx9-PBefblHTEsTCZLpeLFfUh9shwclsuXCxQCtyamofAFaSWUnGM3elQYZmPq9ewtX52XQ4ok2FBqrQLqxpytPAJIjhtNA85JFmNhQFWiA6UiwPCiNSzXiC-g9RqEJoxlOjk8DaxCijGGevYLtcluYASKi5ZAh_bGpyzi0SxsIqWbAotIJFpgefkGVZc8KqzDvPozBzjS0fs4aPPWDtXmZFk-rcVdyY30NFO6pfm1Qf9_Q_bMXkZlourp6lQsi4Bx-6z7h3zg-jSrNcYx80cmOXmPF_fZCpnHMWyR683ohgNynmUBpP5JsHsOQ97IymF-Ns_Hny9S08QdgnnQYO40PYrldrc4TQqs7f-YP0B1RFHhU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BkPh44GN8FQYYiRce3CWx8-HHrqUaMKpJ26SJl8iJbVTRplOTvvDXc-cmYSCNCV4dn2Wfz7nf-c53AO-MNqkNtOVlViguXWy5CmTJQ2USkcbKpr4ky5dZcngmP53H55dKfeEkahyp9k58OtUXxrUZBsJ9atfIX1zOcqiKQMhY3IRb5Lkj4R6NT3oHAhmlXbE88q12r-auGIV0U1n_rpuuAJxe8UwfwNd-yj7e5Ptw0xTD8scf2Rz_a00P4X4LR9loKz-P4IatduHOuKsCtwv3LiUsfAwOf8ZoC_tbRH6ACtCwyWzEjulNEdOVYSfzb348ilN3qHEZYmJ2ulmu1tyH3SHBwXy1pJigNZvYxgeCVWxesaM5XW2wsV0s6idwNv1wOj7kbaUGrtE-bHgms8CmiOVMYmQoIyNcmJRoiZhIiyIobZIZIVPUg4hGNUI0mVmTBs6lVlstpHgKO9Wqss-BhUYqgTDIZbaQ0iFhnDitShGFLhGRHcB7ZFnenrQ69070KMypseNj3vJxAKLbz7xsU55T5Y3FNVS8p7rYpvy4pv9eJyq_pkXx9SJLEhUP4G3_GfeO_DG6sqsN9kFjN6YEjX_rg0yVUopIDeDZVgz7SQlCazJVL_6BJW_g9vFkmh99nH1-CXcR_SlSxGG8BzvNemNfIcJqitf-LP0EicMgmA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanolantern-Based+DNA+Probe+and+Signal+Amplifier+for+Tumor-Related+Biomarker+Detection+in+Living+Cells&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Wang%2C+Dong-Xia&rft.au=Wang%2C+Jing&rft.au=Cui%2C+Yun-Xi&rft.au=Wang%2C+Ya-Xin&rft.date=2019-10-15&rft.pub=American+Chemical+Society&rft.issn=0003-2700&rft.eissn=1520-6882&rft.volume=91&rft.issue=20&rft.spage=13165&rft.epage=13173&rft_id=info:doi/10.1021%2Facs.analchem.9b03453&rft.externalDocID=d142049545 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon |