Enhanced Photon Emission of Chemiluminescent Luminophore for Ultra-Fast and Semi-Automatic Immunoassay toward Single Molecule Detection
Optical single molecule detection is normally achieved via amplifying the total emission of photons of luminophores and is strongly anticipated to extend the commercialized application of chemiluminescence (CL). To overcome the limited CL photons of molecule luminophores, herein, a nanocrystal (NC)...
Saved in:
Published in | Analytical chemistry (Washington) Vol. 95; no. 20; pp. 8070 - 8076 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
23.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Optical single molecule detection is normally achieved via amplifying the total emission of photons of luminophores and is strongly anticipated to extend the commercialized application of chemiluminescence (CL). To overcome the limited CL photons of molecule luminophores, herein, a nanocrystal (NC) luminophore self-amplified strategy is proposed to repetitively excite CL luminophores for amplifying the total CL photons per luminophore, which can be exploited to perform CL immunoassays (CLIAs) toward single molecule detection via employing KMnO4 as the CL triggering agent and the dual-stabilizer-capped CdTe NCs as the CL luminophore. KMnO4 can oxidize the S element from each stabilizer of mercaptopropionic acid (MPA) and release enough energy to excite the CdTe core for flash CL. The substantial MPA around each CdTe core enables every CdTe luminophore to be repetitively excited and give off amplified total CL photons in a self-enhanced way. The CL of CdTe NCs/KMnO4 can release all photons rapidly, and the collection of all these photons can be utilized to determine the model analyte of thyroid-stimulating hormone antigen (TSH) with a limit of detection of 5 ag/mL (S/N = 3), which is corresponding to about 2–4 TSH molecules in a 20 μL sample. The whole immunologic operating process can be terminated within 6 min. This strategy of repetitively breaking the CL reaction involving chemical bonds within one luminophore is promising for semi-automatic as well as fully automatic single molecule detection and extends the commercialized application of CL immunodiagnosis. |
---|---|
AbstractList | Optical single molecule detection is normally achieved via amplifying the total emission of photons of luminophores and is strongly anticipated to extend the commercialized application of chemiluminescence (CL). To overcome the limited CL photons of molecule luminophores, herein, a nanocrystal (NC) luminophore self-amplified strategy is proposed to repetitively excite CL luminophores for amplifying the total CL photons per luminophore, which can be exploited to perform CL immunoassays (CLIAs) toward single molecule detection via employing KMnO₄ as the CL triggering agent and the dual-stabilizer-capped CdTe NCs as the CL luminophore. KMnO₄ can oxidize the S element from each stabilizer of mercaptopropionic acid (MPA) and release enough energy to excite the CdTe core for flash CL. The substantial MPA around each CdTe core enables every CdTe luminophore to be repetitively excited and give off amplified total CL photons in a self-enhanced way. The CL of CdTe NCs/KMnO₄ can release all photons rapidly, and the collection of all these photons can be utilized to determine the model analyte of thyroid-stimulating hormone antigen (TSH) with a limit of detection of 5 ag/mL (S/N = 3), which is corresponding to about 2–4 TSH molecules in a 20 μL sample. The whole immunologic operating process can be terminated within 6 min. This strategy of repetitively breaking the CL reaction involving chemical bonds within one luminophore is promising for semi-automatic as well as fully automatic single molecule detection and extends the commercialized application of CL immunodiagnosis. Optical single molecule detection is normally achieved via amplifying the total emission of photons of luminophores and is strongly anticipated to extend the commercialized application of chemiluminescence (CL). To overcome the limited CL photons of molecule luminophores, herein, a nanocrystal (NC) luminophore self-amplified strategy is proposed to repetitively excite CL luminophores for amplifying the total CL photons per luminophore, which can be exploited to perform CL immunoassays (CLIAs) toward single molecule detection via employing KMnO4 as the CL triggering agent and the dual-stabilizer-capped CdTe NCs as the CL luminophore. KMnO4 can oxidize the S element from each stabilizer of mercaptopropionic acid (MPA) and release enough energy to excite the CdTe core for flash CL. The substantial MPA around each CdTe core enables every CdTe luminophore to be repetitively excited and give off amplified total CL photons in a self-enhanced way. The CL of CdTe NCs/KMnO4 can release all photons rapidly, and the collection of all these photons can be utilized to determine the model analyte of thyroid-stimulating hormone antigen (TSH) with a limit of detection of 5 ag/mL (S/N = 3), which is corresponding to about 2–4 TSH molecules in a 20 μL sample. The whole immunologic operating process can be terminated within 6 min. This strategy of repetitively breaking the CL reaction involving chemical bonds within one luminophore is promising for semi-automatic as well as fully automatic single molecule detection and extends the commercialized application of CL immunodiagnosis. Optical single molecule detection is normally achieved via amplifying the total emission of photons of luminophores and is strongly anticipated to extend the commercialized application of chemiluminescence (CL). To overcome the limited CL photons of molecule luminophores, herein, a nanocrystal (NC) luminophore self-amplified strategy is proposed to repetitively excite CL luminophores for amplifying the total CL photons per luminophore, which can be exploited to perform CL immunoassays (CLIAs) toward single molecule detection via employing KMnO as the CL triggering agent and the dual-stabilizer-capped CdTe NCs as the CL luminophore. KMnO can oxidize the S element from each stabilizer of mercaptopropionic acid (MPA) and release enough energy to excite the CdTe core for flash CL. The substantial MPA around each CdTe core enables every CdTe luminophore to be repetitively excited and give off amplified total CL photons in a self-enhanced way. The CL of CdTe NCs/KMnO can release all photons rapidly, and the collection of all these photons can be utilized to determine the model analyte of thyroid-stimulating hormone antigen (TSH) with a limit of detection of 5 ag/mL (S/N = 3), which is corresponding to about 2-4 TSH molecules in a 20 μL sample. The whole immunologic operating process can be terminated within 6 min. This strategy of repetitively breaking the CL reaction involving chemical bonds within one luminophore is promising for semi-automatic as well as fully automatic single molecule detection and extends the commercialized application of CL immunodiagnosis. Optical single molecule detection is normally achieved via amplifying the total emission of photons of luminophores and is strongly anticipated to extend the commercialized application of chemiluminescence (CL). To overcome the limited CL photons of molecule luminophores, herein, a nanocrystal (NC) luminophore self-amplified strategy is proposed to repetitively excite CL luminophores for amplifying the total CL photons per luminophore, which can be exploited to perform CL immunoassays (CLIAs) toward single molecule detection via employing KMnO4 as the CL triggering agent and the dual-stabilizer-capped CdTe NCs as the CL luminophore. KMnO4 can oxidize the S element from each stabilizer of mercaptopropionic acid (MPA) and release enough energy to excite the CdTe core for flash CL. The substantial MPA around each CdTe core enables every CdTe luminophore to be repetitively excited and give off amplified total CL photons in a self-enhanced way. The CL of CdTe NCs/KMnO4 can release all photons rapidly, and the collection of all these photons can be utilized to determine the model analyte of thyroid-stimulating hormone antigen (TSH) with a limit of detection of 5 ag/mL (S/N = 3), which is corresponding to about 2-4 TSH molecules in a 20 μL sample. The whole immunologic operating process can be terminated within 6 min. This strategy of repetitively breaking the CL reaction involving chemical bonds within one luminophore is promising for semi-automatic as well as fully automatic single molecule detection and extends the commercialized application of CL immunodiagnosis.Optical single molecule detection is normally achieved via amplifying the total emission of photons of luminophores and is strongly anticipated to extend the commercialized application of chemiluminescence (CL). To overcome the limited CL photons of molecule luminophores, herein, a nanocrystal (NC) luminophore self-amplified strategy is proposed to repetitively excite CL luminophores for amplifying the total CL photons per luminophore, which can be exploited to perform CL immunoassays (CLIAs) toward single molecule detection via employing KMnO4 as the CL triggering agent and the dual-stabilizer-capped CdTe NCs as the CL luminophore. KMnO4 can oxidize the S element from each stabilizer of mercaptopropionic acid (MPA) and release enough energy to excite the CdTe core for flash CL. The substantial MPA around each CdTe core enables every CdTe luminophore to be repetitively excited and give off amplified total CL photons in a self-enhanced way. The CL of CdTe NCs/KMnO4 can release all photons rapidly, and the collection of all these photons can be utilized to determine the model analyte of thyroid-stimulating hormone antigen (TSH) with a limit of detection of 5 ag/mL (S/N = 3), which is corresponding to about 2-4 TSH molecules in a 20 μL sample. The whole immunologic operating process can be terminated within 6 min. This strategy of repetitively breaking the CL reaction involving chemical bonds within one luminophore is promising for semi-automatic as well as fully automatic single molecule detection and extends the commercialized application of CL immunodiagnosis. |
Author | Ren, Xiaoxuan Gao, Xuwen Zou, Guizheng |
AuthorAffiliation | School of Chemistry and Chemical Engineering |
AuthorAffiliation_xml | – name: School of Chemistry and Chemical Engineering |
Author_xml | – sequence: 1 givenname: Xiaoxuan orcidid: 0000-0002-0056-0716 surname: Ren fullname: Ren, Xiaoxuan – sequence: 2 givenname: Xuwen orcidid: 0000-0002-0281-0141 surname: Gao fullname: Gao, Xuwen – sequence: 3 givenname: Guizheng orcidid: 0000-0002-3295-3848 surname: Zou fullname: Zou, Guizheng email: zouguizheng@sdu.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37167106$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFu1DAURS1URKeFP0DIEhs2GZ4dx4nZVcMUKg0CCbq2PM4LkyqxB9tR1S_gt3GYGRZd0JWv5XOv7XcvyJnzDgl5zWDJgLP3xsalcWawOxyXpQUGEp6RBas4FLJp-BlZAEBZ8BrgnFzEeAfAGDD5gpyXNZN1NizI77XbGWexpd92PnlH12MfY5-F7-gqR_fDNPYOo0WX6GbWfr_zAWnnA70dUjDFtYmJGtfS7xkvrqbkR5N6S2_GcXLexGgeaPL3JmSidz8HpF_8gHbK4iMmtClf95I878wQ8dVxvSS31-sfq8_F5uunm9XVpjACVCq4xLIWwFtglTSNKBmrRAuIqGqp2qZSpuzq1nJluDRbYUVTNdu851shkPHykrw75O6D_zVhTDr_1-IwGId-iporwUEpJtTTaMPKSvK6nlPfPkLv_BRyOX-pRlVCljP15khN2xFbvQ_9aMKDPrWRgQ8HwAYfY8BO2z6ZeTx5zP2gGei5ep2r16fq9bH6bBaPzKf8J2xwsM2n_179X8sfp-THFg |
CitedBy_id | crossref_primary_10_1021_acs_analchem_3c04645 crossref_primary_10_1021_acs_analchem_4c00549 crossref_primary_10_1021_acs_analchem_3c03972 |
Cites_doi | 10.1021/acs.analchem.2c01770 10.1002/ejic.201100403 10.1021/acssensors.2c02371 10.1039/c1cc10520e 10.1021/acs.analchem.2c01083 10.1016/j.trac.2008.12.006 10.1021/acsami.1c20489 10.1016/s0039-9140(99)00294-5 10.1021/ac049107l 10.1159/000363153 10.1021/ja102413k 10.1021/a19999022 10.1007/s00216-011-5342-3 10.1021/nl049713w 10.1126/science.1104274 10.1021/jp072463y 10.1016/j.jlumin.2007.12.037 10.1021/acs.chemrev.7b00649 10.1210/jc.2016-1387 10.1002/bio.2802 10.1161/01.res.84.10.1203 10.1016/j.cclet.2016.02.011 10.1007/s00216-013-7490-0 10.1016/j.microc.2009.11.011 10.1016/j.ccr.2013.07.013 10.1016/j.saa.2015.12.015 10.1002/anie.200601196 10.1007/s12010-014-0850-1 10.1021/ja029668z 10.1016/j.jlumin.2020.117111 10.1002/chem.201101154 10.1016/j.talanta.2016.01.055 10.1016/j.trac.2019.115780 10.1016/j.trac.2020.116129 10.1016/S0083-6729(05)71004-9 10.1002/anie.201904719 10.1007/s12291-013-0339-7 10.1002/anie.202210057 10.1021/acs.analchem.1c01380 10.1016/s0003-2670(01)00916-3 10.1016/j.saa.2012.02.019 10.1016/j.trac.2019.115755 10.1002/(sici)1522-7243(200001/02)15:1<51::aid-bio555>3.0.co;2-j 10.1021/jp055023k 10.1039/c4ob00456f 10.1016/s1010-6030(00)00209-4 10.1002/bio.3633 10.1016/j.trac.2010.11.008 10.1016/j.saa.2014.08.032 10.1016/j.trac.2019.06.033 |
ContentType | Journal Article |
Copyright | 2023 American Chemical Society Copyright American Chemical Society May 23, 2023 |
Copyright_xml | – notice: 2023 American Chemical Society – notice: Copyright American Chemical Society May 23, 2023 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7S9 L.6 |
DOI | 10.1021/acs.analchem.3c01060 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Toxicology Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Toxicology Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Materials Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-6882 |
EndPage | 8076 |
ExternalDocumentID | 37167106 10_1021_acs_analchem_3c01060 i86705939 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .DC .K2 23M 4.4 55A 5GY 5RE 5VS 6J9 7~N 85S AABXI ABFRP ABHFT ABHMW ABMVS ABOCM ABPPZ ABPTK ABQRX ABUCX ACGFO ACGFS ACGOD ACIWK ACJ ACKOT ACNCT ACPRK ACS ADHLV AEESW AENEX AFEFF AFRAH AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 D0L EBS ED~ F5P GGK GNL IH9 IHE JG~ KZ1 LMP P2P PQEST PQQKQ ROL RXW TAE TAF TN5 UHB UI2 UKR VF5 VG9 VQA W1F WH7 X6Y XSW YZZ ZCA ~02 53G AAHBH AAYXX ABBLG ABJNI ABLBI ACBEA CITATION CUPRZ CGR CUY CVF ECM EIF NPM YIN 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a409t-26e37402d0156a8431154d0eee9769d859a3f7dc29a26ab4c4858bdc22b44e123 |
IEDL.DBID | ACS |
ISSN | 0003-2700 1520-6882 |
IngestDate | Fri Jul 11 16:54:58 EDT 2025 Fri Jul 11 05:30:51 EDT 2025 Tue Aug 12 22:24:26 EDT 2025 Wed Feb 19 02:23:42 EST 2025 Tue Jul 01 03:28:29 EDT 2025 Thu Apr 24 22:59:51 EDT 2025 Thu Jul 06 08:30:35 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a409t-26e37402d0156a8431154d0eee9769d859a3f7dc29a26ab4c4858bdc22b44e123 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0056-0716 0000-0002-0281-0141 0000-0002-3295-3848 |
PMID | 37167106 |
PQID | 2818954632 |
PQPubID | 45400 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2942099149 proquest_miscellaneous_2813562772 proquest_journals_2818954632 pubmed_primary_37167106 crossref_citationtrail_10_1021_acs_analchem_3c01060 crossref_primary_10_1021_acs_analchem_3c01060 acs_journals_10_1021_acs_analchem_3c01060 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-23 |
PublicationDateYYYYMMDD | 2023-05-23 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Analytical chemistry (Washington) |
PublicationTitleAlternate | Anal. Chem |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref36/cit36 doi: 10.1021/acs.analchem.2c01770 – ident: ref37/cit37 doi: 10.1002/ejic.201100403 – ident: ref20/cit20 doi: 10.1021/acssensors.2c02371 – ident: ref12/cit12 doi: 10.1039/c1cc10520e – ident: ref35/cit35 doi: 10.1021/acs.analchem.2c01083 – ident: ref9/cit9 doi: 10.1016/j.trac.2008.12.006 – ident: ref11/cit11 doi: 10.1021/acsami.1c20489 – ident: ref2/cit2 doi: 10.1016/s0039-9140(99)00294-5 – ident: ref26/cit26 doi: 10.1021/ac049107l – ident: ref44/cit44 doi: 10.1159/000363153 – ident: ref32/cit32 doi: 10.1021/ja102413k – ident: ref10/cit10 doi: 10.1021/a19999022 – ident: ref15/cit15 doi: 10.1007/s00216-011-5342-3 – ident: ref27/cit27 doi: 10.1021/nl049713w – ident: ref24/cit24 doi: 10.1126/science.1104274 – ident: ref38/cit38 doi: 10.1021/jp072463y – ident: ref39/cit39 doi: 10.1016/j.jlumin.2007.12.037 – ident: ref1/cit1 doi: 10.1021/acs.chemrev.7b00649 – ident: ref43/cit43 doi: 10.1210/jc.2016-1387 – ident: ref29/cit29 doi: 10.1002/bio.2802 – ident: ref19/cit19 doi: 10.1161/01.res.84.10.1203 – ident: ref17/cit17 doi: 10.1016/j.cclet.2016.02.011 – ident: ref28/cit28 doi: 10.1007/s00216-013-7490-0 – ident: ref40/cit40 doi: 10.1016/j.microc.2009.11.011 – ident: ref33/cit33 doi: 10.1016/j.ccr.2013.07.013 – ident: ref47/cit47 doi: 10.1016/j.saa.2015.12.015 – ident: ref5/cit5 doi: 10.1002/anie.200601196 – ident: ref13/cit13 doi: 10.1007/s12010-014-0850-1 – ident: ref25/cit25 doi: 10.1021/ja029668z – ident: ref31/cit31 doi: 10.1016/j.jlumin.2020.117111 – ident: ref50/cit50 doi: 10.1002/chem.201101154 – ident: ref49/cit49 doi: 10.1016/j.talanta.2016.01.055 – ident: ref8/cit8 doi: 10.1016/j.trac.2019.115780 – ident: ref23/cit23 doi: 10.1016/j.trac.2020.116129 – ident: ref41/cit41 doi: 10.1016/S0083-6729(05)71004-9 – ident: ref22/cit22 doi: 10.1002/anie.201904719 – ident: ref42/cit42 doi: 10.1007/s12291-013-0339-7 – ident: ref21/cit21 doi: 10.1002/anie.202210057 – ident: ref34/cit34 doi: 10.1021/acs.analchem.1c01380 – ident: ref4/cit4 doi: 10.1016/s0003-2670(01)00916-3 – ident: ref46/cit46 doi: 10.1016/j.saa.2012.02.019 – ident: ref6/cit6 doi: 10.1016/j.trac.2019.115755 – ident: ref18/cit18 doi: 10.1002/(sici)1522-7243(200001/02)15:1<51::aid-bio555>3.0.co;2-j – ident: ref7/cit7 doi: 10.1021/jp055023k – ident: ref14/cit14 doi: 10.1039/c4ob00456f – ident: ref16/cit16 doi: 10.1016/s1010-6030(00)00209-4 – ident: ref30/cit30 doi: 10.1002/bio.3633 – ident: ref3/cit3 doi: 10.1016/j.trac.2010.11.008 – ident: ref48/cit48 doi: 10.1016/j.saa.2014.08.032 – ident: ref45/cit45 doi: 10.1016/j.trac.2019.06.033 |
SSID | ssj0011016 |
Score | 2.4490013 |
Snippet | Optical single molecule detection is normally achieved via amplifying the total emission of photons of luminophores and is strongly anticipated to extend the... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8070 |
SubjectTerms | Amplification analytical chemistry Antigens Cadmium Compounds - chemistry Chemical bonds Chemiluminescence Chemistry Commercialization detection limit Emissions energy Immunoassay Immunoassays Immunodiagnosis Luminescent Measurements Nanocrystals Photon emission Photons Potassium permanganate Quantum Dots serodiagnosis stabilizers Tellurium - chemistry Thyroid Thyroid-stimulating hormone Thyrotropin |
Title | Enhanced Photon Emission of Chemiluminescent Luminophore for Ultra-Fast and Semi-Automatic Immunoassay toward Single Molecule Detection |
URI | http://dx.doi.org/10.1021/acs.analchem.3c01060 https://www.ncbi.nlm.nih.gov/pubmed/37167106 https://www.proquest.com/docview/2818954632 https://www.proquest.com/docview/2813562772 https://www.proquest.com/docview/2942099149 |
Volume | 95 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELbQcgAOCyyvwoKMxIWDS2s7Dx-r0mpBvKRSaW-RHxNVoiSrNj0sf4C_zYyTdHloWbg17TiPiRN_X2fmG8ZeqGAVSF0KZRIQGnwQToaRyMaO9MXLYEJU-_yQniz129Pk9IIo_h7Bl-NX1m-HFp2K1_B1qDxxGKTo12WaZ0S2JtPFPmpATLTvkEcB1b5U7pK90ILkt78uSJegzLjazG-zj33NTptk8mW4a9zQf_tTwvEfL-QOO-yAJ5-0M-UuuwbVEbsx7fu9HbFbP0kT3mPfZ9UqJgfwT6sa8SGfoR39s8brksdR-FajlHnK7uTv6HN9tqo3wBEF8-W62Vgxt9uG2yrwBZqLya6poz4sf0M1KTWidnvOm5i2yxd40DXw922zXuCvoYk5YtV9tpzPPk9PRNe0QVikio2QKagMSWmgGm2ba1Lz0WEEAAh8TMgTY1WZBS-Nlal12us8yR1uS6c14Dr6gB1UdQWPGEdw40yeBqsN2slRXrrMBxgBQiB8RycD9hJ9WnQP3baI8XQ5LujL3tFF5-gBU_1dLnynfk5NONZXjBL7UWet-scV9sf9BLo4LdLbMtR1QA7Y8_3PeNMoNGMrqHfRRiESRarzFxujqc4ZKe2APWwn5_6kFNJexIrp4_9wyRN2UyJio1QIqY7ZQbPZwVNEWI17Fh-rHxbPI0w |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtNAEB5V5VA4FCh_gQKLBAcOG5zddWIfOERpooSmFVIaqTez9q4VidSuYkeovABPwqvwXMxsbBeQSsWhErfEmY03M96db7Iz3wC8lkZLK1TKZehbrmxieCyMx3udmPjFUxMax_Z53B3P1YdT_3QLvte1MDiJAr-pcIf4l-wCnXd0TaNu8aectWVCoYxX5VIe2osvGKkV7ycHaNY3QoyGJ4Mxr5oJcI0hTMlF18oeBkuGaod1oIhlRhnPWosOOTSBH2qZ9kwiQi26OlaJCvwgxvciVsp2iN8Ad_pbiH8ExXj9waw5rKAAuG7MR-e4dYXeFbMmP5gUv_vBK8Ctc3Kju_CjUY_LbfncXpdxO_n6B3Pkf6-_e7BbwWzW36yL-7Blsz3YGdTd7fbgzi9EjA_g2zBbuFQI9nGRIxpmQ5Sj_xFZnjI3CvdwKhCgXFY2pdf5-SJfWYaYn82X5UrzkS5KpjPDZijO--syd2y4bEIVODnGKPqClS5Jmc3wpkvLjjatiS07sKXLiMsewvxGtPIItrM8s0-AIZSLw6BrtApRTnhBGvcSYz2LgA89kt-Ct2jDqNpiishlD4hORBdrw0aVYVsg64crSiqud2o5srxmFG9GnW-4Tq6R36-f28tpEbtYSD0WRAteNR-j0eggSmc2XzsZibgbA7u_yISKqroxgG_B482aaCYlMchHZNx9-g8qeQk745OjaTSdHB8-g9sCsSolgQi5D9vlam2fI7Ys4xduZTP4dNNL4SfRl4PS |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VReJx4FFegQKLBAcOG5zdtWMfOER5qKGlqhQi9WbW3rUiEewodoTKH-C38Ff4VcxsbPOQSsWhB26JMxtvZjw7M5mZbwBeSKOlFSrjMvItVzY1PBHG4_1eQvjimYmMQ_s8Dg7m6u2pf7oD35peGNxEid9UuiQ-afXKZDXCQO81XdfIX_w5n7oypXDGq-spD-3ZZ4zWyjfTEYr2pRCT8fvhAa8HCnCNYUzFRWBlHwMmQ_3DOlSENKOMZ61FoxyZ0I-0zPomFZEWgU5UqkI_TPC9SJSyPcI4wNP-CmUKKc4bDGdtwoKC4GY4H-Vymy69c3ZNtjAtf7eF5zi4ztBNbsH3lkWuvuVjd1Ml3fTLH-iR_wUPb8PN2t1mg61-3IEdm-_BtWEz5W4PbvwCyHgXvo7zhSuJYCeLAr1iNkY6-j-RFRlzq_Asp0YBqmllR_S6WC2KtWXo-7P5slprPtFlxXRu2AzJ-WBTFQ4Vl02pE6fAWEWfscoVK7MZ3nRp2bvtiGLLRrZylXH5PZhfClfuw25e5PYhMHTpkigMjFYR0gkvzJJ-aqxn0fFDy-R34BXKMK6PmjJ2VQSiF9PFRrBxLdgOyOYBi9Ma851GjywvWMXbVast5skF9PvNs_tzW4QyFtGsBdGB5-3HKDRKSOncFhtHI9H_xgDvLzSRou5uDOQ78GCrF-2mJAb76CEHj_6BJc_g6sloEh9Njw8fw3WBLivVggi5D7vVemOfoItZJU-dcjP4cNma8AN1BYZV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Photon+Emission+of+Chemiluminescent+Luminophore+for+Ultra-Fast+and+Semi-Automatic+Immunoassay+toward+Single+Molecule+Detection&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Ren%2C+Xiaoxuan&rft.au=Gao%2C+Xuwen&rft.au=Zou%2C+Guizheng&rft.date=2023-05-23&rft.issn=1520-6882&rft.eissn=1520-6882&rft.volume=95&rft.issue=20&rft.spage=8070&rft_id=info:doi/10.1021%2Facs.analchem.3c01060&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon |