Impact of Nonideal Nanoparticles on X‑ray Photoelectron Spectroscopic Quantitation: An Investigation Using Simulation and Modeling of Gold Nanoparticles

Quantitative X-ray photoelectron spectroscopic (XPS) analysis combined with spectral modeling of photoelectrons can be valuable while investigating the surface chemistry of nanoparticles (NPs) with different morphologies. Herein, with the use of NIST Simulation of Electron Spectra for Surface Analys...

Full description

Saved in:
Bibliographic Details
Published inAnalytical chemistry (Washington) Vol. 90; no. 3; pp. 1621 - 1627
Main Authors Sahoo, Smruti R, Ramacharyulu, P. V. R. K, Ke, Shyue-Chu
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 06.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Quantitative X-ray photoelectron spectroscopic (XPS) analysis combined with spectral modeling of photoelectrons can be valuable while investigating the surface chemistry of nanoparticles (NPs) with different morphologies. Herein, with the use of NIST Simulation of Electron Spectra for Surface Analysis (SESSA), a comparative analysis of experimental and simulated photoelectron peak intensities in gold nanoparticles (AuNPs) of different morphologies is presented. Three sets of supported AuNPs with different morphologies were selected from a series of as synthesized Au-TiO2 catalyst samples. Using transmission electron microscopy (TEM) analyzed morphological information on the AuNPs as input model parameters in SESSA, XPS spectra were generated from the respective input NP morphologies. A degree of greater mismatch between SESSA simulated and experimental XPS spectra was observed while using the TEM obtained average diameter of the nanoparticles. The degree of mismatch lowered when the true nonspherical shape of the nanoparticles as obtained from TEM images was taken into account for the simulation. This demonstrates the impact of surface morphology on the XPS peak intensities which needs to be incorporated to obtain precise quantified information from the supported nanoparticles. This work demonstrates the applicability of SESSA in combination with experimental XPS and TEM measurements for precise quantification of XPS spectra from complex, nonideal shaped nanoparticles. This study can be extended to include a broad range of nanoparticles with ideal or nonideal geometries, thus providing a simple method to utilize quantitative XPS analysis to a wide range of nanomaterials.
AbstractList Quantitative X-ray photoelectron spectroscopic (XPS) analysis combined with spectral modeling of photoelectrons can be valuable while investigating the surface chemistry of nanoparticles (NPs) with different morphologies. Herein, with the use of NIST Simulation of Electron Spectra for Surface Analysis (SESSA), a comparative analysis of experimental and simulated photoelectron peak intensities in gold nanoparticles (AuNPs) of different morphologies is presented. Three sets of supported AuNPs with different morphologies were selected from a series of as synthesized Au-TiO2 catalyst samples. Using transmission electron microscopy (TEM) analyzed morphological information on the AuNPs as input model parameters in SESSA, XPS spectra were generated from the respective input NP morphologies. A degree of greater mismatch between SESSA simulated and experimental XPS spectra was observed while using the TEM obtained average diameter of the nanoparticles. The degree of mismatch lowered when the true nonspherical shape of the nanoparticles as obtained from TEM images was taken into account for the simulation. This demonstrates the impact of surface morphology on the XPS peak intensities which needs to be incorporated to obtain precise quantified information from the supported nanoparticles. This work demonstrates the applicability of SESSA in combination with experimental XPS and TEM measurements for precise quantification of XPS spectra from complex, nonideal shaped nanoparticles. This study can be extended to include a broad range of nanoparticles with ideal or nonideal geometries, thus providing a simple method to utilize quantitative XPS analysis to a wide range of nanomaterials.
Quantitative X-ray photoelectron spectroscopic (XPS) analysis combined with spectral modeling of photoelectrons can be valuable while investigating the surface chemistry of nanoparticles (NPs) with different morphologies. Herein, with the use of NIST Simulation of Electron Spectra for Surface Analysis (SESSA), a comparative analysis of experimental and simulated photoelectron peak intensities in gold nanoparticles (AuNPs) of different morphologies is presented. Three sets of supported AuNPs with different morphologies were selected from a series of as synthesized Au-TiO catalyst samples. Using transmission electron microscopy (TEM) analyzed morphological information on the AuNPs as input model parameters in SESSA, XPS spectra were generated from the respective input NP morphologies. A degree of greater mismatch between SESSA simulated and experimental XPS spectra was observed while using the TEM obtained average diameter of the nanoparticles. The degree of mismatch lowered when the true nonspherical shape of the nanoparticles as obtained from TEM images was taken into account for the simulation. This demonstrates the impact of surface morphology on the XPS peak intensities which needs to be incorporated to obtain precise quantified information from the supported nanoparticles. This work demonstrates the applicability of SESSA in combination with experimental XPS and TEM measurements for precise quantification of XPS spectra from complex, nonideal shaped nanoparticles. This study can be extended to include a broad range of nanoparticles with ideal or nonideal geometries, thus providing a simple method to utilize quantitative XPS analysis to a wide range of nanomaterials.
Quantitative X-ray photoelectron spectroscopic (XPS) analysis combined with spectral modeling of photoelectrons can be valuable while investigating the surface chemistry of nanoparticles (NPs) with different morphologies. Herein, with the use of NIST Simulation of Electron Spectra for Surface Analysis (SESSA), a comparative analysis of experimental and simulated photoelectron peak intensities in gold nanoparticles (AuNPs) of different morphologies is presented. Three sets of supported AuNPs with different morphologies were selected from a series of as synthesized Au-TiO2 catalyst samples. Using transmission electron microscopy (TEM) analyzed morphological information on the AuNPs as input model parameters in SESSA, XPS spectra were generated from the respective input NP morphologies. A degree of greater mismatch between SESSA simulated and experimental XPS spectra was observed while using the TEM obtained average diameter of the nanoparticles. The degree of mismatch lowered when the true nonspherical shape of the nanoparticles as obtained from TEM images was taken into account for the simulation. This demonstrates the impact of surface morphology on the XPS peak intensities which needs to be incorporated to obtain precise quantified information from the supported nanoparticles. This work demonstrates the applicability of SESSA in combination with experimental XPS and TEM measurements for precise quantification of XPS spectra from complex, nonideal shaped nanoparticles. This study can be extended to include a broad range of nanoparticles with ideal or nonideal geometries, thus providing a simple method to utilize quantitative XPS analysis to a wide range of nanomaterials.Quantitative X-ray photoelectron spectroscopic (XPS) analysis combined with spectral modeling of photoelectrons can be valuable while investigating the surface chemistry of nanoparticles (NPs) with different morphologies. Herein, with the use of NIST Simulation of Electron Spectra for Surface Analysis (SESSA), a comparative analysis of experimental and simulated photoelectron peak intensities in gold nanoparticles (AuNPs) of different morphologies is presented. Three sets of supported AuNPs with different morphologies were selected from a series of as synthesized Au-TiO2 catalyst samples. Using transmission electron microscopy (TEM) analyzed morphological information on the AuNPs as input model parameters in SESSA, XPS spectra were generated from the respective input NP morphologies. A degree of greater mismatch between SESSA simulated and experimental XPS spectra was observed while using the TEM obtained average diameter of the nanoparticles. The degree of mismatch lowered when the true nonspherical shape of the nanoparticles as obtained from TEM images was taken into account for the simulation. This demonstrates the impact of surface morphology on the XPS peak intensities which needs to be incorporated to obtain precise quantified information from the supported nanoparticles. This work demonstrates the applicability of SESSA in combination with experimental XPS and TEM measurements for precise quantification of XPS spectra from complex, nonideal shaped nanoparticles. This study can be extended to include a broad range of nanoparticles with ideal or nonideal geometries, thus providing a simple method to utilize quantitative XPS analysis to a wide range of nanomaterials.
Quantitative X-ray photoelectron spectroscopic (XPS) analysis combined with spectral modeling of photoelectrons can be valuable while investigating the surface chemistry of nanoparticles (NPs) with different morphologies. Herein, with the use of NIST Simulation of Electron Spectra for Surface Analysis (SESSA), a comparative analysis of experimental and simulated photoelectron peak intensities in gold nanoparticles (AuNPs) of different morphologies is presented. Three sets of supported AuNPs with different morphologies were selected from a series of as synthesized Au-TiO₂ catalyst samples. Using transmission electron microscopy (TEM) analyzed morphological information on the AuNPs as input model parameters in SESSA, XPS spectra were generated from the respective input NP morphologies. A degree of greater mismatch between SESSA simulated and experimental XPS spectra was observed while using the TEM obtained average diameter of the nanoparticles. The degree of mismatch lowered when the true nonspherical shape of the nanoparticles as obtained from TEM images was taken into account for the simulation. This demonstrates the impact of surface morphology on the XPS peak intensities which needs to be incorporated to obtain precise quantified information from the supported nanoparticles. This work demonstrates the applicability of SESSA in combination with experimental XPS and TEM measurements for precise quantification of XPS spectra from complex, nonideal shaped nanoparticles. This study can be extended to include a broad range of nanoparticles with ideal or nonideal geometries, thus providing a simple method to utilize quantitative XPS analysis to a wide range of nanomaterials.
Author Ramacharyulu, P. V. R. K
Ke, Shyue-Chu
Sahoo, Smruti R
AuthorAffiliation Department of Physics
AuthorAffiliation_xml – name: Department of Physics
Author_xml – sequence: 1
  givenname: Smruti R
  orcidid: 0000-0001-7749-588X
  surname: Sahoo
  fullname: Sahoo, Smruti R
– sequence: 2
  givenname: P. V. R. K
  surname: Ramacharyulu
  fullname: Ramacharyulu, P. V. R. K
– sequence: 3
  givenname: Shyue-Chu
  surname: Ke
  fullname: Ke, Shyue-Chu
  email: ke@mail.ndhu.edu.tw
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29332393$$D View this record in MEDLINE/PubMed
BookMark eNqFks9u1DAQxi1URLeFN0DIEhcuWcZ2_ji9VRUtK5UCKpW4RRPHaV05dogdpN76Clx5PJ4Eb3dbiR7oydbn3-cZzXx7ZMd5pwl5zWDJgLP3qMISHVp1pYdl1QKXonpGFqzgkJVS8h2yAACR8Qpgl-yFcA3AGLDyBdnltRBc1GJBfq-GEVWkvqdn3plOo6Vn6PyIUzTK6kC9o9__3P6a8IZ-ufLRa6tVnJJ6Pt5dgvKjUfTrjC6aiNF4d0APHV25nzpEc3mn0Itg3CU9N8NsNwK6jn7ynbZrPVU_8bb7t_JL8rxHG_Sr7blPLo4_fDv6mJ1-PlkdHZ5mmEMdMw66FKrlvKjbGoUUhVQt5L3AVnFdImsrziQwJZXoKix0JXIlBSsL3ea9qsQ-ebf5d5z8jzn13AwmKG0tOu3n0PA0NMGqsmRPoqyWdSErkDKhbx-h136e0r7Sh5CAumRsTb3ZUnM76K4ZJzPgdNPcLygB-QZQadJh0v0DwqBZ56BJOWjuc9Bsc5BsB49sarubOKGxT5lhY16_PnT9X8tf8_nP-Q
CitedBy_id crossref_primary_10_1016_j_apsusc_2018_09_236
crossref_primary_10_3390_nano11020554
crossref_primary_10_1039_D0NJ03621H
crossref_primary_10_1016_j_saa_2021_120665
crossref_primary_10_1021_acs_jpcc_2c07832
crossref_primary_10_1021_acsomega_8b00109
crossref_primary_10_1116_1_5141419
crossref_primary_10_1007_s11244_019_01191_0
crossref_primary_10_1021_acs_chemmater_1c03186
Cites_doi 10.1039/c3cp54411g
10.7567/JJAP.53.05FP03
10.1016/j.surfrep.2007.07.001
10.1016/j.apcata.2010.05.039
10.1103/PhysRevB.27.3160
10.1098/rsta.2009.0273
10.1063/1.4884065
10.1103/PhysRevB.38.8465
10.1103/PhysRevB.22.1663
10.1021/ac00139a005
10.1016/j.elspec.2010.01.008
10.1021/ar7002804
10.1021/ja907069u
10.1021/jp054790g
10.1016/S0368-2048(98)00300-4
10.1016/S0039-6028(02)02124-6
10.1016/S0039-6028(99)01014-6
10.1021/jp973255g
10.1016/j.apcatb.2014.05.025
10.1039/C6CP03362H
10.1103/PhysRevLett.94.016804
10.1103/PhysRevLett.41.1425
10.1002/sia.2347
10.1021/acs.analchem.6b00100
10.1016/j.nimb.2006.07.003
10.1021/acs.jpclett.6b01301
10.1016/j.molcata.2010.11.029
10.1039/b207290d
10.1021/acs.jpcc.6b07588
10.1021/am507300x
10.1021/jp106956w
10.1021/ja307589n
10.1021/j100475a011
10.1016/S0920-5861(02)00380-2
10.1021/jp014723w
10.1016/S0968-4328(99)00011-6
10.1002/sia.2097
10.1038/nmat3697
10.1016/0039-6028(95)00605-2
10.1021/ac50026a010
10.1021/cr00024a003
10.1002/sia.5549
10.1021/ac201175a
10.1016/S0039-6028(00)00919-5
10.1103/PhysRevB.49.1647
10.1016/0368-2048(76)80015-1
10.1002/adma.200701760
10.1021/cr030067f
10.1039/C5CS00350D
10.1002/cctc.201100213
10.1016/j.apsusc.2016.02.189
10.1103/PhysRevB.95.245402
10.1021/ja036352y
ContentType Journal Article
Copyright Copyright © 2018 American Chemical Society
Copyright American Chemical Society Feb 6, 2018
Copyright_xml – notice: Copyright © 2018 American Chemical Society
– notice: Copyright American Chemical Society Feb 6, 2018
DBID AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7S9
L.6
DOI 10.1021/acs.analchem.7b02837
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Toxicology Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Materials Research Database
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-6882
EndPage 1627
ExternalDocumentID 29332393
10_1021_acs_analchem_7b02837
c925309663
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
1AW
23M
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABOCM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACNCT
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
D0L
DZ
EBS
ED
ED~
EJD
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
P2P
PQEST
PQQKQ
ROL
RXW
TAE
TN5
UHB
UI2
UKR
VF5
VG9
VQA
W1F
WH7
X
X6Y
XFK
YZZ
---
-DZ
-~X
.DC
4.4
6J9
AAHBH
AAYXX
ABBLG
ABHFT
ABHMW
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ACKOT
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
KZ1
LMP
XSW
ZCA
~02
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7S9
L.6
ID FETCH-LOGICAL-a409t-20e63cb2259b9a38358cb04f3abc2e6a1b721801c8c3d7a5e734c83165eb4fc73
IEDL.DBID ACS
ISSN 0003-2700
1520-6882
IngestDate Fri Jul 11 07:24:18 EDT 2025
Thu Jul 10 21:54:07 EDT 2025
Mon Jun 30 10:27:41 EDT 2025
Thu Apr 03 07:03:57 EDT 2025
Thu Apr 24 22:56:25 EDT 2025
Tue Jul 01 04:15:05 EDT 2025
Fri Feb 05 20:53:47 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a409t-20e63cb2259b9a38358cb04f3abc2e6a1b721801c8c3d7a5e734c83165eb4fc73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7749-588X
PMID 29332393
PQID 2008896118
PQPubID 45400
PageCount 7
ParticipantIDs proquest_miscellaneous_2101317661
proquest_miscellaneous_1989587088
proquest_journals_2008896118
pubmed_primary_29332393
crossref_primary_10_1021_acs_analchem_7b02837
crossref_citationtrail_10_1021_acs_analchem_7b02837
acs_journals_10_1021_acs_analchem_7b02837
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180206
2018-02-06
PublicationDateYYYYMMDD 2018-02-06
PublicationDate_xml – month: 02
  year: 2018
  text: 20180206
  day: 06
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Analytical chemistry (Washington)
PublicationTitleAlternate Anal. Chem
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
29533598 - Anal Chem. 2018 Apr 3;90(7):4933
References_xml – ident: ref9/cit9
  doi: 10.1039/c3cp54411g
– ident: ref21/cit21
  doi: 10.7567/JJAP.53.05FP03
– ident: ref53/cit53
  doi: 10.1016/j.surfrep.2007.07.001
– ident: ref36/cit36
  doi: 10.1016/j.apcata.2010.05.039
– ident: ref39/cit39
  doi: 10.1103/PhysRevB.27.3160
– ident: ref5/cit5
  doi: 10.1098/rsta.2009.0273
– ident: ref16/cit16
  doi: 10.1063/1.4884065
– ident: ref43/cit43
  doi: 10.1103/PhysRevB.38.8465
– ident: ref47/cit47
  doi: 10.1103/PhysRevB.22.1663
– ident: ref13/cit13
  doi: 10.1021/ac00139a005
– ident: ref40/cit40
  doi: 10.1016/j.elspec.2010.01.008
– ident: ref3/cit3
  doi: 10.1021/ar7002804
– ident: ref4/cit4
  doi: 10.1021/ja907069u
– ident: ref29/cit29
  doi: 10.1021/jp054790g
– ident: ref49/cit49
  doi: 10.1016/S0368-2048(98)00300-4
– ident: ref41/cit41
  doi: 10.1016/S0039-6028(02)02124-6
– ident: ref42/cit42
  doi: 10.1016/S0039-6028(99)01014-6
– ident: ref51/cit51
  doi: 10.1021/jp973255g
– ident: ref18/cit18
  doi: 10.1016/j.apcatb.2014.05.025
– ident: ref38/cit38
  doi: 10.1039/C6CP03362H
– ident: ref44/cit44
  doi: 10.1103/PhysRevLett.94.016804
– ident: ref34/cit34
  doi: 10.1103/PhysRevLett.41.1425
– ident: ref35/cit35
  doi: 10.1002/sia.2347
– ident: ref27/cit27
  doi: 10.1021/acs.analchem.6b00100
– ident: ref7/cit7
  doi: 10.1016/j.nimb.2006.07.003
– ident: ref24/cit24
  doi: 10.1021/acs.jpclett.6b01301
– ident: ref31/cit31
  doi: 10.1016/j.molcata.2010.11.029
– ident: ref37/cit37
  doi: 10.1039/b207290d
– ident: ref26/cit26
  doi: 10.1021/acs.jpcc.6b07588
– ident: ref23/cit23
  doi: 10.1021/am507300x
– ident: ref17/cit17
  doi: 10.1021/jp106956w
– ident: ref1/cit1
  doi: 10.1021/ja307589n
– ident: ref50/cit50
  doi: 10.1021/j100475a011
– ident: ref12/cit12
  doi: 10.1016/S0920-5861(02)00380-2
– ident: ref33/cit33
  doi: 10.1021/jp014723w
– ident: ref8/cit8
  doi: 10.1016/S0968-4328(99)00011-6
– ident: ref25/cit25
  doi: 10.1002/sia.2097
– ident: ref20/cit20
  doi: 10.1038/nmat3697
– ident: ref52/cit52
  doi: 10.1016/0039-6028(95)00605-2
– ident: ref14/cit14
  doi: 10.1021/ac50026a010
– ident: ref15/cit15
  doi: 10.1021/cr00024a003
– ident: ref19/cit19
  doi: 10.1002/sia.5549
– ident: ref28/cit28
  doi: 10.1021/ac201175a
– ident: ref45/cit45
  doi: 10.1016/S0039-6028(00)00919-5
– ident: ref46/cit46
  doi: 10.1103/PhysRevB.49.1647
– ident: ref48/cit48
  doi: 10.1016/0368-2048(76)80015-1
– ident: ref6/cit6
  doi: 10.1002/adma.200701760
– ident: ref2/cit2
  doi: 10.1021/cr030067f
– ident: ref11/cit11
  doi: 10.1039/C5CS00350D
– ident: ref10/cit10
  doi: 10.1002/cctc.201100213
– ident: ref22/cit22
  doi: 10.1016/j.apsusc.2016.02.189
– ident: ref32/cit32
  doi: 10.1103/PhysRevB.95.245402
– ident: ref30/cit30
  doi: 10.1021/ja036352y
– reference: 29533598 - Anal Chem. 2018 Apr 3;90(7):4933
SSID ssj0011016
Score 2.3048322
Snippet Quantitative X-ray photoelectron spectroscopic (XPS) analysis combined with spectral modeling of photoelectrons can be valuable while investigating the surface...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1621
SubjectTerms catalysts
Chemical synthesis
Chemistry
Comparative analysis
Computer simulation
Electrons
Gold
Impact analysis
Modelling
Morphology
nanogold
Nanomaterials
Nanoparticles
Nanotechnology
Photoelectrons
Quantitation
Simulation
Spectra
Spectrum analysis
Surface analysis (chemical)
Surface chemistry
Titanium dioxide
Transmission electron microscopy
X ray photoelectron spectroscopy
X-radiation
Title Impact of Nonideal Nanoparticles on X‑ray Photoelectron Spectroscopic Quantitation: An Investigation Using Simulation and Modeling of Gold Nanoparticles
URI http://dx.doi.org/10.1021/acs.analchem.7b02837
https://www.ncbi.nlm.nih.gov/pubmed/29332393
https://www.proquest.com/docview/2008896118
https://www.proquest.com/docview/1989587088
https://www.proquest.com/docview/2101317661
Volume 90
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xOBQOlAKFLQ8ZqZcesuA4cRxuq1V5VCpQUaS9RbbjCFRIEJs9wIm_wLU_j1_CTDZZXqLQa2I79vgx82XG3wB8DTOZuU2degG31gvC2HiGS-Oh7e9weQXCt_S_4-e-3D0OfvTC3gNQfO7B9_mGtv22RqHiGM7bkSF9GI3DpC9VRGCr0z0aeQ0IiTYZ8sih2lyVe6UVUki2_1QhvWJlVtpm-yMcNHd2hkEmf9qD0rTt9UsKx3cOZBZmasOTdYYr5ROMuXwOPnSbfG9zMP2ImnAe_u5V1ydZkbF93PYp2pMMT2KE2HUkHSty1ru7ub3UV-zwpCiLJqEOo5T2JZFkFhenlv0a6LysicC3WCdnj5g9sHAVssCOTs_rNGJM5ymjBG10TZ6-vlOcpU-_vADH299_d3e9Oo-DpxE9lrgRnRTW4MkRm1gjJA6VNZtBJrSxvpOaG4ShqCmtsiKNdOgiEVgluAydCTIbic8wkRe5WwImFVogATn7NDEVSoP4DlsKdcq5xfOnBd9QzEm9D_tJ5WL3eUIPG9kntexbIJqJT2wtB8rLcfZGLW9U62JICPJG-ZVmTT10i4JOVCwR3LVgffQa55u8NTp3xQC7Hqs4xNNU_aMM4nUuiOKTt2BxuF5HnUI7ThC_3Zf_EMkyTKFBqKqodLkCE-XlwK2i0VWatWqn3QOnnyr1
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtNAEB6Vcigc-Cl_gQKLBAcODl2vvbaROESBktA2AqWVcnN312u1amtHtSNUTrwCV-68Cg_CkzDj2G6LVCoOlbhZ9no9mZnd-SYzOwPw3E9laldV4njcGMfzI-1oLrWD2N-iennCNfR_x-ZIDra9DxN_sgA_mrMwSESBMxVVEP-kugB_RfcU8hZ_ymE30GQWgzqXct0ef0ZPrXgzfItifeG6a--2-gOnbibgKHRhStQGK4XRqL6RjhT6ZX5o9KqXCqWNa6XiGn0h3K5NaEQSKN8GwjOh4NK32ktNIHDeK3AV8Y9LPl6vP26DFeQAN435KI7bnNA7h2qyg6Y4awfPAbeVkVu7CT9b9lS5LfvdWam75ssflSP_e_7dghs1zGa9-bq4DQs2W4alftPdbhmunyrEeAe-D6vDoixP2Qg3uQTRM0O7k0-bvEGWZ2zy6-u3I3XMPu7mZd60D2LjaXVBp3v2DPs0U1lZlz1_zXoZO1XHBAdXCRpsvHdYN01jKksYtaOjogD09ff5QXL2y3dh-1IYdQ8WszyzD4DJEPGWR6FNRXUZpUZvFmfyVcK5wd22Ay9RrHG96xRxlVDg8phuNrKOa1l3QDT6FpuaD9SF5OCCt5z2rem8_MkF41caVT4hi1JswkiiK9uBZ-1jlDfFplRm8xmSHoWRj7Yj_MsYl1NxqAARZQfuz5dJSxSiVkHV_B7-A0uewtJga3Mj3hiO1h_BNYTCYZWPL1dgsTya2ccIN0v9pFrsDHYue3X8BqfrjQE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VIvFzKFD-UgosEhw4OHS99tpG4hClhIZCVBQq5eburteiorWj2hEqJ16h174Br8Jj8CTMOLZpkUrFoQdulr1eT2Zmd2Yys98APPVTmdo1lTgeN8bx_Eg7mkvtoO9vUb084Rr6v-P9SG5se28n_mQBvjdnYZCIAmcqqiQ-reppktYIA_wF3VfIX_w5-91Ak2kM6nrKTXv4BaO14tVwHUX7zHUHrz_2N5y6oYCjMIwpUSOsFEajCkc6Uhib-aHRa14qlDaulYprjIdwyzahEUmgfBsIz4SCS99qLzWBwHkvwWXKFFKc1-uP24QFBcFNcz7K5Tan9M6gmmyhKU7bwjMc3MrQDW7Aj5ZFVX3L5-6s1F3z9Q_0yP-ChzdhqXa3WW--Pm7Bgs2W4Wq_6XK3DNdPADLehuNhdWiU5Skb4WaXoBfN0P7k06Z-kOUZm_z8dnSgDtnWp7zMmzZCbDytLuiUz65hH2YqK2v485esl7ETeCY4uCrUYOPd_bp5GlNZwqgtHYED0Nff5HvJ6S_fge0LYdRdWMzyzN4HJkP0uzxKcSrCZ5Qao1qcyVcJ5wZ33Q48R7HG9e5TxFVhgctjutnIOq5l3QHR6Fxsaj5QN5K9c95y2remcxiUc8avNur8mywqtQkjiSFtB560j1HelKNSmc1nSHoURj7akPAvY1xOIFEBepYduDdfKi1R6L0KQvVb-QeWPIYrW-uD-N1wtPkArqFHHFZl-XIVFsuDmX2IXmepH1XrncHORS-OX3hrj4Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+Nonideal+Nanoparticles+on+X%E2%80%91ray+Photoelectron+Spectroscopic+Quantitation%3A+An+Investigation+Using+Simulation+and+Modeling+of+Gold+Nanoparticles&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Sahoo%2C+Smruti+R&rft.au=Ramacharyulu%2C+P.+V.+R.+K&rft.au=Ke%2C+Shyue-Chu&rft.date=2018-02-06&rft.pub=American+Chemical+Society&rft.issn=0003-2700&rft.eissn=1520-6882&rft.volume=90&rft.issue=3&rft.spage=1621&rft.epage=1627&rft_id=info:doi/10.1021%2Facs.analchem.7b02837&rft.externalDocID=c925309663
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon