Impact of Nonideal Nanoparticles on X‑ray Photoelectron Spectroscopic Quantitation: An Investigation Using Simulation and Modeling of Gold Nanoparticles
Quantitative X-ray photoelectron spectroscopic (XPS) analysis combined with spectral modeling of photoelectrons can be valuable while investigating the surface chemistry of nanoparticles (NPs) with different morphologies. Herein, with the use of NIST Simulation of Electron Spectra for Surface Analys...
Saved in:
Published in | Analytical chemistry (Washington) Vol. 90; no. 3; pp. 1621 - 1627 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
06.02.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Quantitative X-ray photoelectron spectroscopic (XPS) analysis combined with spectral modeling of photoelectrons can be valuable while investigating the surface chemistry of nanoparticles (NPs) with different morphologies. Herein, with the use of NIST Simulation of Electron Spectra for Surface Analysis (SESSA), a comparative analysis of experimental and simulated photoelectron peak intensities in gold nanoparticles (AuNPs) of different morphologies is presented. Three sets of supported AuNPs with different morphologies were selected from a series of as synthesized Au-TiO2 catalyst samples. Using transmission electron microscopy (TEM) analyzed morphological information on the AuNPs as input model parameters in SESSA, XPS spectra were generated from the respective input NP morphologies. A degree of greater mismatch between SESSA simulated and experimental XPS spectra was observed while using the TEM obtained average diameter of the nanoparticles. The degree of mismatch lowered when the true nonspherical shape of the nanoparticles as obtained from TEM images was taken into account for the simulation. This demonstrates the impact of surface morphology on the XPS peak intensities which needs to be incorporated to obtain precise quantified information from the supported nanoparticles. This work demonstrates the applicability of SESSA in combination with experimental XPS and TEM measurements for precise quantification of XPS spectra from complex, nonideal shaped nanoparticles. This study can be extended to include a broad range of nanoparticles with ideal or nonideal geometries, thus providing a simple method to utilize quantitative XPS analysis to a wide range of nanomaterials. |
---|---|
AbstractList | Quantitative X-ray photoelectron spectroscopic (XPS) analysis combined with spectral modeling of photoelectrons can be valuable while investigating the surface chemistry of nanoparticles (NPs) with different morphologies. Herein, with the use of NIST Simulation of Electron Spectra for Surface Analysis (SESSA), a comparative analysis of experimental and simulated photoelectron peak intensities in gold nanoparticles (AuNPs) of different morphologies is presented. Three sets of supported AuNPs with different morphologies were selected from a series of as synthesized Au-TiO2 catalyst samples. Using transmission electron microscopy (TEM) analyzed morphological information on the AuNPs as input model parameters in SESSA, XPS spectra were generated from the respective input NP morphologies. A degree of greater mismatch between SESSA simulated and experimental XPS spectra was observed while using the TEM obtained average diameter of the nanoparticles. The degree of mismatch lowered when the true nonspherical shape of the nanoparticles as obtained from TEM images was taken into account for the simulation. This demonstrates the impact of surface morphology on the XPS peak intensities which needs to be incorporated to obtain precise quantified information from the supported nanoparticles. This work demonstrates the applicability of SESSA in combination with experimental XPS and TEM measurements for precise quantification of XPS spectra from complex, nonideal shaped nanoparticles. This study can be extended to include a broad range of nanoparticles with ideal or nonideal geometries, thus providing a simple method to utilize quantitative XPS analysis to a wide range of nanomaterials. Quantitative X-ray photoelectron spectroscopic (XPS) analysis combined with spectral modeling of photoelectrons can be valuable while investigating the surface chemistry of nanoparticles (NPs) with different morphologies. Herein, with the use of NIST Simulation of Electron Spectra for Surface Analysis (SESSA), a comparative analysis of experimental and simulated photoelectron peak intensities in gold nanoparticles (AuNPs) of different morphologies is presented. Three sets of supported AuNPs with different morphologies were selected from a series of as synthesized Au-TiO catalyst samples. Using transmission electron microscopy (TEM) analyzed morphological information on the AuNPs as input model parameters in SESSA, XPS spectra were generated from the respective input NP morphologies. A degree of greater mismatch between SESSA simulated and experimental XPS spectra was observed while using the TEM obtained average diameter of the nanoparticles. The degree of mismatch lowered when the true nonspherical shape of the nanoparticles as obtained from TEM images was taken into account for the simulation. This demonstrates the impact of surface morphology on the XPS peak intensities which needs to be incorporated to obtain precise quantified information from the supported nanoparticles. This work demonstrates the applicability of SESSA in combination with experimental XPS and TEM measurements for precise quantification of XPS spectra from complex, nonideal shaped nanoparticles. This study can be extended to include a broad range of nanoparticles with ideal or nonideal geometries, thus providing a simple method to utilize quantitative XPS analysis to a wide range of nanomaterials. Quantitative X-ray photoelectron spectroscopic (XPS) analysis combined with spectral modeling of photoelectrons can be valuable while investigating the surface chemistry of nanoparticles (NPs) with different morphologies. Herein, with the use of NIST Simulation of Electron Spectra for Surface Analysis (SESSA), a comparative analysis of experimental and simulated photoelectron peak intensities in gold nanoparticles (AuNPs) of different morphologies is presented. Three sets of supported AuNPs with different morphologies were selected from a series of as synthesized Au-TiO2 catalyst samples. Using transmission electron microscopy (TEM) analyzed morphological information on the AuNPs as input model parameters in SESSA, XPS spectra were generated from the respective input NP morphologies. A degree of greater mismatch between SESSA simulated and experimental XPS spectra was observed while using the TEM obtained average diameter of the nanoparticles. The degree of mismatch lowered when the true nonspherical shape of the nanoparticles as obtained from TEM images was taken into account for the simulation. This demonstrates the impact of surface morphology on the XPS peak intensities which needs to be incorporated to obtain precise quantified information from the supported nanoparticles. This work demonstrates the applicability of SESSA in combination with experimental XPS and TEM measurements for precise quantification of XPS spectra from complex, nonideal shaped nanoparticles. This study can be extended to include a broad range of nanoparticles with ideal or nonideal geometries, thus providing a simple method to utilize quantitative XPS analysis to a wide range of nanomaterials.Quantitative X-ray photoelectron spectroscopic (XPS) analysis combined with spectral modeling of photoelectrons can be valuable while investigating the surface chemistry of nanoparticles (NPs) with different morphologies. Herein, with the use of NIST Simulation of Electron Spectra for Surface Analysis (SESSA), a comparative analysis of experimental and simulated photoelectron peak intensities in gold nanoparticles (AuNPs) of different morphologies is presented. Three sets of supported AuNPs with different morphologies were selected from a series of as synthesized Au-TiO2 catalyst samples. Using transmission electron microscopy (TEM) analyzed morphological information on the AuNPs as input model parameters in SESSA, XPS spectra were generated from the respective input NP morphologies. A degree of greater mismatch between SESSA simulated and experimental XPS spectra was observed while using the TEM obtained average diameter of the nanoparticles. The degree of mismatch lowered when the true nonspherical shape of the nanoparticles as obtained from TEM images was taken into account for the simulation. This demonstrates the impact of surface morphology on the XPS peak intensities which needs to be incorporated to obtain precise quantified information from the supported nanoparticles. This work demonstrates the applicability of SESSA in combination with experimental XPS and TEM measurements for precise quantification of XPS spectra from complex, nonideal shaped nanoparticles. This study can be extended to include a broad range of nanoparticles with ideal or nonideal geometries, thus providing a simple method to utilize quantitative XPS analysis to a wide range of nanomaterials. Quantitative X-ray photoelectron spectroscopic (XPS) analysis combined with spectral modeling of photoelectrons can be valuable while investigating the surface chemistry of nanoparticles (NPs) with different morphologies. Herein, with the use of NIST Simulation of Electron Spectra for Surface Analysis (SESSA), a comparative analysis of experimental and simulated photoelectron peak intensities in gold nanoparticles (AuNPs) of different morphologies is presented. Three sets of supported AuNPs with different morphologies were selected from a series of as synthesized Au-TiO₂ catalyst samples. Using transmission electron microscopy (TEM) analyzed morphological information on the AuNPs as input model parameters in SESSA, XPS spectra were generated from the respective input NP morphologies. A degree of greater mismatch between SESSA simulated and experimental XPS spectra was observed while using the TEM obtained average diameter of the nanoparticles. The degree of mismatch lowered when the true nonspherical shape of the nanoparticles as obtained from TEM images was taken into account for the simulation. This demonstrates the impact of surface morphology on the XPS peak intensities which needs to be incorporated to obtain precise quantified information from the supported nanoparticles. This work demonstrates the applicability of SESSA in combination with experimental XPS and TEM measurements for precise quantification of XPS spectra from complex, nonideal shaped nanoparticles. This study can be extended to include a broad range of nanoparticles with ideal or nonideal geometries, thus providing a simple method to utilize quantitative XPS analysis to a wide range of nanomaterials. |
Author | Ramacharyulu, P. V. R. K Ke, Shyue-Chu Sahoo, Smruti R |
AuthorAffiliation | Department of Physics |
AuthorAffiliation_xml | – name: Department of Physics |
Author_xml | – sequence: 1 givenname: Smruti R orcidid: 0000-0001-7749-588X surname: Sahoo fullname: Sahoo, Smruti R – sequence: 2 givenname: P. V. R. K surname: Ramacharyulu fullname: Ramacharyulu, P. V. R. K – sequence: 3 givenname: Shyue-Chu surname: Ke fullname: Ke, Shyue-Chu email: ke@mail.ndhu.edu.tw |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29332393$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks9u1DAQxi1URLeFN0DIEhcuWcZ2_ji9VRUtK5UCKpW4RRPHaV05dogdpN76Clx5PJ4Eb3dbiR7oydbn3-cZzXx7ZMd5pwl5zWDJgLP3qMISHVp1pYdl1QKXonpGFqzgkJVS8h2yAACR8Qpgl-yFcA3AGLDyBdnltRBc1GJBfq-GEVWkvqdn3plOo6Vn6PyIUzTK6kC9o9__3P6a8IZ-ufLRa6tVnJJ6Pt5dgvKjUfTrjC6aiNF4d0APHV25nzpEc3mn0Itg3CU9N8NsNwK6jn7ynbZrPVU_8bb7t_JL8rxHG_Sr7blPLo4_fDv6mJ1-PlkdHZ5mmEMdMw66FKrlvKjbGoUUhVQt5L3AVnFdImsrziQwJZXoKix0JXIlBSsL3ea9qsQ-ebf5d5z8jzn13AwmKG0tOu3n0PA0NMGqsmRPoqyWdSErkDKhbx-h136e0r7Sh5CAumRsTb3ZUnM76K4ZJzPgdNPcLygB-QZQadJh0v0DwqBZ56BJOWjuc9Bsc5BsB49sarubOKGxT5lhY16_PnT9X8tf8_nP-Q |
CitedBy_id | crossref_primary_10_1016_j_apsusc_2018_09_236 crossref_primary_10_3390_nano11020554 crossref_primary_10_1039_D0NJ03621H crossref_primary_10_1016_j_saa_2021_120665 crossref_primary_10_1021_acs_jpcc_2c07832 crossref_primary_10_1021_acsomega_8b00109 crossref_primary_10_1116_1_5141419 crossref_primary_10_1007_s11244_019_01191_0 crossref_primary_10_1021_acs_chemmater_1c03186 |
Cites_doi | 10.1039/c3cp54411g 10.7567/JJAP.53.05FP03 10.1016/j.surfrep.2007.07.001 10.1016/j.apcata.2010.05.039 10.1103/PhysRevB.27.3160 10.1098/rsta.2009.0273 10.1063/1.4884065 10.1103/PhysRevB.38.8465 10.1103/PhysRevB.22.1663 10.1021/ac00139a005 10.1016/j.elspec.2010.01.008 10.1021/ar7002804 10.1021/ja907069u 10.1021/jp054790g 10.1016/S0368-2048(98)00300-4 10.1016/S0039-6028(02)02124-6 10.1016/S0039-6028(99)01014-6 10.1021/jp973255g 10.1016/j.apcatb.2014.05.025 10.1039/C6CP03362H 10.1103/PhysRevLett.94.016804 10.1103/PhysRevLett.41.1425 10.1002/sia.2347 10.1021/acs.analchem.6b00100 10.1016/j.nimb.2006.07.003 10.1021/acs.jpclett.6b01301 10.1016/j.molcata.2010.11.029 10.1039/b207290d 10.1021/acs.jpcc.6b07588 10.1021/am507300x 10.1021/jp106956w 10.1021/ja307589n 10.1021/j100475a011 10.1016/S0920-5861(02)00380-2 10.1021/jp014723w 10.1016/S0968-4328(99)00011-6 10.1002/sia.2097 10.1038/nmat3697 10.1016/0039-6028(95)00605-2 10.1021/ac50026a010 10.1021/cr00024a003 10.1002/sia.5549 10.1021/ac201175a 10.1016/S0039-6028(00)00919-5 10.1103/PhysRevB.49.1647 10.1016/0368-2048(76)80015-1 10.1002/adma.200701760 10.1021/cr030067f 10.1039/C5CS00350D 10.1002/cctc.201100213 10.1016/j.apsusc.2016.02.189 10.1103/PhysRevB.95.245402 10.1021/ja036352y |
ContentType | Journal Article |
Copyright | Copyright © 2018 American Chemical Society Copyright American Chemical Society Feb 6, 2018 |
Copyright_xml | – notice: Copyright © 2018 American Chemical Society – notice: Copyright American Chemical Society Feb 6, 2018 |
DBID | AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7S9 L.6 |
DOI | 10.1021/acs.analchem.7b02837 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Toxicology Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Toxicology Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-6882 |
EndPage | 1627 |
ExternalDocumentID | 29332393 10_1021_acs_analchem_7b02837 c925309663 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 1AW 23M 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABOCM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACNCT ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 D0L DZ EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 P2P PQEST PQQKQ ROL RXW TAE TN5 UHB UI2 UKR VF5 VG9 VQA W1F WH7 X X6Y XFK YZZ --- -DZ -~X .DC 4.4 6J9 AAHBH AAYXX ABBLG ABHFT ABHMW ABJNI ABLBI ABQRX ACBEA ACGFO ACKOT ADHLV AGXLV AHGAQ CITATION CUPRZ GGK KZ1 LMP XSW ZCA ~02 NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a409t-20e63cb2259b9a38358cb04f3abc2e6a1b721801c8c3d7a5e734c83165eb4fc73 |
IEDL.DBID | ACS |
ISSN | 0003-2700 1520-6882 |
IngestDate | Fri Jul 11 07:24:18 EDT 2025 Thu Jul 10 21:54:07 EDT 2025 Mon Jun 30 10:27:41 EDT 2025 Thu Apr 03 07:03:57 EDT 2025 Thu Apr 24 22:56:25 EDT 2025 Tue Jul 01 04:15:05 EDT 2025 Fri Feb 05 20:53:47 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a409t-20e63cb2259b9a38358cb04f3abc2e6a1b721801c8c3d7a5e734c83165eb4fc73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7749-588X |
PMID | 29332393 |
PQID | 2008896118 |
PQPubID | 45400 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2101317661 proquest_miscellaneous_1989587088 proquest_journals_2008896118 pubmed_primary_29332393 crossref_primary_10_1021_acs_analchem_7b02837 crossref_citationtrail_10_1021_acs_analchem_7b02837 acs_journals_10_1021_acs_analchem_7b02837 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180206 2018-02-06 |
PublicationDateYYYYMMDD | 2018-02-06 |
PublicationDate_xml | – month: 02 year: 2018 text: 20180206 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Analytical chemistry (Washington) |
PublicationTitleAlternate | Anal. Chem |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 29533598 - Anal Chem. 2018 Apr 3;90(7):4933 |
References_xml | – ident: ref9/cit9 doi: 10.1039/c3cp54411g – ident: ref21/cit21 doi: 10.7567/JJAP.53.05FP03 – ident: ref53/cit53 doi: 10.1016/j.surfrep.2007.07.001 – ident: ref36/cit36 doi: 10.1016/j.apcata.2010.05.039 – ident: ref39/cit39 doi: 10.1103/PhysRevB.27.3160 – ident: ref5/cit5 doi: 10.1098/rsta.2009.0273 – ident: ref16/cit16 doi: 10.1063/1.4884065 – ident: ref43/cit43 doi: 10.1103/PhysRevB.38.8465 – ident: ref47/cit47 doi: 10.1103/PhysRevB.22.1663 – ident: ref13/cit13 doi: 10.1021/ac00139a005 – ident: ref40/cit40 doi: 10.1016/j.elspec.2010.01.008 – ident: ref3/cit3 doi: 10.1021/ar7002804 – ident: ref4/cit4 doi: 10.1021/ja907069u – ident: ref29/cit29 doi: 10.1021/jp054790g – ident: ref49/cit49 doi: 10.1016/S0368-2048(98)00300-4 – ident: ref41/cit41 doi: 10.1016/S0039-6028(02)02124-6 – ident: ref42/cit42 doi: 10.1016/S0039-6028(99)01014-6 – ident: ref51/cit51 doi: 10.1021/jp973255g – ident: ref18/cit18 doi: 10.1016/j.apcatb.2014.05.025 – ident: ref38/cit38 doi: 10.1039/C6CP03362H – ident: ref44/cit44 doi: 10.1103/PhysRevLett.94.016804 – ident: ref34/cit34 doi: 10.1103/PhysRevLett.41.1425 – ident: ref35/cit35 doi: 10.1002/sia.2347 – ident: ref27/cit27 doi: 10.1021/acs.analchem.6b00100 – ident: ref7/cit7 doi: 10.1016/j.nimb.2006.07.003 – ident: ref24/cit24 doi: 10.1021/acs.jpclett.6b01301 – ident: ref31/cit31 doi: 10.1016/j.molcata.2010.11.029 – ident: ref37/cit37 doi: 10.1039/b207290d – ident: ref26/cit26 doi: 10.1021/acs.jpcc.6b07588 – ident: ref23/cit23 doi: 10.1021/am507300x – ident: ref17/cit17 doi: 10.1021/jp106956w – ident: ref1/cit1 doi: 10.1021/ja307589n – ident: ref50/cit50 doi: 10.1021/j100475a011 – ident: ref12/cit12 doi: 10.1016/S0920-5861(02)00380-2 – ident: ref33/cit33 doi: 10.1021/jp014723w – ident: ref8/cit8 doi: 10.1016/S0968-4328(99)00011-6 – ident: ref25/cit25 doi: 10.1002/sia.2097 – ident: ref20/cit20 doi: 10.1038/nmat3697 – ident: ref52/cit52 doi: 10.1016/0039-6028(95)00605-2 – ident: ref14/cit14 doi: 10.1021/ac50026a010 – ident: ref15/cit15 doi: 10.1021/cr00024a003 – ident: ref19/cit19 doi: 10.1002/sia.5549 – ident: ref28/cit28 doi: 10.1021/ac201175a – ident: ref45/cit45 doi: 10.1016/S0039-6028(00)00919-5 – ident: ref46/cit46 doi: 10.1103/PhysRevB.49.1647 – ident: ref48/cit48 doi: 10.1016/0368-2048(76)80015-1 – ident: ref6/cit6 doi: 10.1002/adma.200701760 – ident: ref2/cit2 doi: 10.1021/cr030067f – ident: ref11/cit11 doi: 10.1039/C5CS00350D – ident: ref10/cit10 doi: 10.1002/cctc.201100213 – ident: ref22/cit22 doi: 10.1016/j.apsusc.2016.02.189 – ident: ref32/cit32 doi: 10.1103/PhysRevB.95.245402 – ident: ref30/cit30 doi: 10.1021/ja036352y – reference: 29533598 - Anal Chem. 2018 Apr 3;90(7):4933 |
SSID | ssj0011016 |
Score | 2.3048322 |
Snippet | Quantitative X-ray photoelectron spectroscopic (XPS) analysis combined with spectral modeling of photoelectrons can be valuable while investigating the surface... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1621 |
SubjectTerms | catalysts Chemical synthesis Chemistry Comparative analysis Computer simulation Electrons Gold Impact analysis Modelling Morphology nanogold Nanomaterials Nanoparticles Nanotechnology Photoelectrons Quantitation Simulation Spectra Spectrum analysis Surface analysis (chemical) Surface chemistry Titanium dioxide Transmission electron microscopy X ray photoelectron spectroscopy X-radiation |
Title | Impact of Nonideal Nanoparticles on X‑ray Photoelectron Spectroscopic Quantitation: An Investigation Using Simulation and Modeling of Gold Nanoparticles |
URI | http://dx.doi.org/10.1021/acs.analchem.7b02837 https://www.ncbi.nlm.nih.gov/pubmed/29332393 https://www.proquest.com/docview/2008896118 https://www.proquest.com/docview/1989587088 https://www.proquest.com/docview/2101317661 |
Volume | 90 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xOBQOlAKFLQ8ZqZcesuA4cRxuq1V5VCpQUaS9RbbjCFRIEJs9wIm_wLU_j1_CTDZZXqLQa2I79vgx82XG3wB8DTOZuU2degG31gvC2HiGS-Oh7e9weQXCt_S_4-e-3D0OfvTC3gNQfO7B9_mGtv22RqHiGM7bkSF9GI3DpC9VRGCr0z0aeQ0IiTYZ8sih2lyVe6UVUki2_1QhvWJlVtpm-yMcNHd2hkEmf9qD0rTt9UsKx3cOZBZmasOTdYYr5ROMuXwOPnSbfG9zMP2ImnAe_u5V1ydZkbF93PYp2pMMT2KE2HUkHSty1ru7ub3UV-zwpCiLJqEOo5T2JZFkFhenlv0a6LysicC3WCdnj5g9sHAVssCOTs_rNGJM5ymjBG10TZ6-vlOcpU-_vADH299_d3e9Oo-DpxE9lrgRnRTW4MkRm1gjJA6VNZtBJrSxvpOaG4ShqCmtsiKNdOgiEVgluAydCTIbic8wkRe5WwImFVogATn7NDEVSoP4DlsKdcq5xfOnBd9QzEm9D_tJ5WL3eUIPG9kntexbIJqJT2wtB8rLcfZGLW9U62JICPJG-ZVmTT10i4JOVCwR3LVgffQa55u8NTp3xQC7Hqs4xNNU_aMM4nUuiOKTt2BxuF5HnUI7ThC_3Zf_EMkyTKFBqKqodLkCE-XlwK2i0VWatWqn3QOnnyr1 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtNAEB6Vcigc-Cl_gQKLBAcODl2vvbaROESBktA2AqWVcnN312u1amtHtSNUTrwCV-68Cg_CkzDj2G6LVCoOlbhZ9no9mZnd-SYzOwPw3E9laldV4njcGMfzI-1oLrWD2N-iennCNfR_x-ZIDra9DxN_sgA_mrMwSESBMxVVEP-kugB_RfcU8hZ_ymE30GQWgzqXct0ef0ZPrXgzfItifeG6a--2-gOnbibgKHRhStQGK4XRqL6RjhT6ZX5o9KqXCqWNa6XiGn0h3K5NaEQSKN8GwjOh4NK32ktNIHDeK3AV8Y9LPl6vP26DFeQAN435KI7bnNA7h2qyg6Y4awfPAbeVkVu7CT9b9lS5LfvdWam75ssflSP_e_7dghs1zGa9-bq4DQs2W4alftPdbhmunyrEeAe-D6vDoixP2Qg3uQTRM0O7k0-bvEGWZ2zy6-u3I3XMPu7mZd60D2LjaXVBp3v2DPs0U1lZlz1_zXoZO1XHBAdXCRpsvHdYN01jKksYtaOjogD09ff5QXL2y3dh-1IYdQ8WszyzD4DJEPGWR6FNRXUZpUZvFmfyVcK5wd22Ay9RrHG96xRxlVDg8phuNrKOa1l3QDT6FpuaD9SF5OCCt5z2rem8_MkF41caVT4hi1JswkiiK9uBZ-1jlDfFplRm8xmSHoWRj7Yj_MsYl1NxqAARZQfuz5dJSxSiVkHV_B7-A0uewtJga3Mj3hiO1h_BNYTCYZWPL1dgsTya2ccIN0v9pFrsDHYue3X8BqfrjQE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VIvFzKFD-UgosEhw4OHS99tpG4hClhIZCVBQq5eburteiorWj2hEqJ16h174Br8Jj8CTMOLZpkUrFoQdulr1eT2Zmd2Yys98APPVTmdo1lTgeN8bx_Eg7mkvtoO9vUb084Rr6v-P9SG5se28n_mQBvjdnYZCIAmcqqiQ-reppktYIA_wF3VfIX_w5-91Ak2kM6nrKTXv4BaO14tVwHUX7zHUHrz_2N5y6oYCjMIwpUSOsFEajCkc6Uhib-aHRa14qlDaulYprjIdwyzahEUmgfBsIz4SCS99qLzWBwHkvwWXKFFKc1-uP24QFBcFNcz7K5Tan9M6gmmyhKU7bwjMc3MrQDW7Aj5ZFVX3L5-6s1F3z9Q_0yP-ChzdhqXa3WW--Pm7Bgs2W4Wq_6XK3DNdPADLehuNhdWiU5Skb4WaXoBfN0P7k06Z-kOUZm_z8dnSgDtnWp7zMmzZCbDytLuiUz65hH2YqK2v485esl7ETeCY4uCrUYOPd_bp5GlNZwqgtHYED0Nff5HvJ6S_fge0LYdRdWMzyzN4HJkP0uzxKcSrCZ5Qao1qcyVcJ5wZ33Q48R7HG9e5TxFVhgctjutnIOq5l3QHR6Fxsaj5QN5K9c95y2remcxiUc8avNur8mywqtQkjiSFtB560j1HelKNSmc1nSHoURj7akPAvY1xOIFEBepYduDdfKi1R6L0KQvVb-QeWPIYrW-uD-N1wtPkArqFHHFZl-XIVFsuDmX2IXmepH1XrncHORS-OX3hrj4Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+Nonideal+Nanoparticles+on+X%E2%80%91ray+Photoelectron+Spectroscopic+Quantitation%3A+An+Investigation+Using+Simulation+and+Modeling+of+Gold+Nanoparticles&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Sahoo%2C+Smruti+R&rft.au=Ramacharyulu%2C+P.+V.+R.+K&rft.au=Ke%2C+Shyue-Chu&rft.date=2018-02-06&rft.pub=American+Chemical+Society&rft.issn=0003-2700&rft.eissn=1520-6882&rft.volume=90&rft.issue=3&rft.spage=1621&rft.epage=1627&rft_id=info:doi/10.1021%2Facs.analchem.7b02837&rft.externalDocID=c925309663 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon |