Structures and Stabilities of (MgO) n Nanoclusters

Global minima for (MgO) n structures were optimized using a tree growth–hybrid genetic algorithm in conjunction with MNDO/MNDO/d semiempirical molecular orbital calculations followed by density functional theory geometry optimizations with the B3LYP functional. New lowest energy isomers were found f...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Vol. 118; no. 17; pp. 3136 - 3146
Main Authors Chen, Mingyang, Felmy, Andrew R, Dixon, David A
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 01.05.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Global minima for (MgO) n structures were optimized using a tree growth–hybrid genetic algorithm in conjunction with MNDO/MNDO/d semiempirical molecular orbital calculations followed by density functional theory geometry optimizations with the B3LYP functional. New lowest energy isomers were found for a number of (MgO) n clusters. The most stable isomers for (MgO) n (n > 3) are 3-dimensional. For n < 20, hexagonal tubular (MgO) n structures are more favored in energy than the cubic structures. The cubic structures and their variations dominate after n = 20. For the cubic isomers, increasing the size of the cluster in any dimension improves the stability. The effectiveness of increasing the size of the cluster in a specific dimension to improve stability diminishes as the size in that dimension increases. For cubic structures of the same size, the most compact cubic structure is expected to be the more stable cubic structure. The average Mg–O bond distance and coordination number both increase as n increases. The calculated average Mg–O bond distance is 2.055 Å at n = 40, slightly smaller than the bulk value of 2.104 Å. The average coordination number is predicted to be 4.6 for the lowest energy (MgO)40 as compared to the bulk value of 6. As n increases, the normalized clustering energy ΔE(n) for the (MgO) n increases and the slope of the ΔE(n) vs n curve decreases. The value of ΔE(40) is predicted to be 150 kcal/mol, as compared to the bulk value ΔE(∞) = 176 kcal/mol. The electronic properties of the clusters are presented and the reactive sites are predicted to be at the corners.
AbstractList Global minima for (MgO)n structures were optimized using a tree growth-hybrid genetic algorithm in conjunction with MNDO/MNDO/d semiempirical molecular orbital calculations followed by density functional theory geometry optimizations with the B3LYP functional. New lowest energy isomers were found for a number of (MgO)n clusters. The most stable isomers for (MgO)n (n > 3) are 3-dimensional. For n < 20, hexagonal tubular (MgO)n structures are more favored in energy than the cubic structures. The cubic structures and their variations dominate after n = 20. For the cubic isomers, increasing the size of the cluster in any dimension improves the stability. The effectiveness of increasing the size of the cluster in a specific dimension to improve stability diminishes as the size in that dimension increases. For cubic structures of the same size, the most compact cubic structure is expected to be the more stable cubic structure. The average Mg-O bond distance and coordination number both increase as n increases. The calculated average Mg-O bond distance is 2.055 Å at n = 40, slightly smaller than the bulk value of 2.104 Å. The average coordination number is predicted to be 4.6 for the lowest energy (MgO)40 as compared to the bulk value of 6. As n increases, the normalized clustering energy ΔE(n) for the (MgO)n increases and the slope of the ΔE(n) vs n curve decreases. The value of ΔE(40) is predicted to be 150 kcal/mol, as compared to the bulk value ΔE(∞) = 176 kcal/mol. The electronic properties of the clusters are presented and the reactive sites are predicted to be at the corners.Global minima for (MgO)n structures were optimized using a tree growth-hybrid genetic algorithm in conjunction with MNDO/MNDO/d semiempirical molecular orbital calculations followed by density functional theory geometry optimizations with the B3LYP functional. New lowest energy isomers were found for a number of (MgO)n clusters. The most stable isomers for (MgO)n (n > 3) are 3-dimensional. For n < 20, hexagonal tubular (MgO)n structures are more favored in energy than the cubic structures. The cubic structures and their variations dominate after n = 20. For the cubic isomers, increasing the size of the cluster in any dimension improves the stability. The effectiveness of increasing the size of the cluster in a specific dimension to improve stability diminishes as the size in that dimension increases. For cubic structures of the same size, the most compact cubic structure is expected to be the more stable cubic structure. The average Mg-O bond distance and coordination number both increase as n increases. The calculated average Mg-O bond distance is 2.055 Å at n = 40, slightly smaller than the bulk value of 2.104 Å. The average coordination number is predicted to be 4.6 for the lowest energy (MgO)40 as compared to the bulk value of 6. As n increases, the normalized clustering energy ΔE(n) for the (MgO)n increases and the slope of the ΔE(n) vs n curve decreases. The value of ΔE(40) is predicted to be 150 kcal/mol, as compared to the bulk value ΔE(∞) = 176 kcal/mol. The electronic properties of the clusters are presented and the reactive sites are predicted to be at the corners.
Global minima for (MgO)n structures were optimized using a tree growth–hybrid genetic algorithm in conjunction with MNDO/MNDO/d semiempirical molecular orbital calculations followed by density functional theory geometry optimizations with the B3LYP functional. New lowest energy isomers were found for a number of (MgO)n clusters. The most stable isomers for (MgO)n (n > 3) are 3-dimensional. For n < 20, hexagonal tubular (MgO)n structures are more favored in energy than the cubic structures. The cubic structures and their variations dominate after n = 20. For the cubic isomers, increasing the size of the cluster in any dimension improves the stability. The effectiveness of increasing the size of the cluster in a specific dimension to improve stability diminishes as the size in that dimension increases. For cubic structures of the same size, the most compact cubic structure is expected to be the more stable cubic structure. The average Mg–O bond distance and coordination number both increase as n increases. The calculated average Mg–O bond distance is 2.055 Å at n = 40, slightly smaller than the bulk value of 2.104 Å. The average coordination number is predicted to be 4.6 for the lowest energy (MgO)40 as compared to the bulk value of 6. As n increases, the normalized clustering energy ΔE(n) for the (MgO)n increases and the slope of the ΔE(n) vs n curve decreases. The value of ΔE(40) is predicted to be 150 kcal/mol, as compared to the bulk value ΔE(∞) = 176 kcal/mol. Finally, the electronic properties of the clusters are presented and the reactive sites are predicted to be at the corners.
Global minima for (MgO) n structures were optimized using a tree growth–hybrid genetic algorithm in conjunction with MNDO/MNDO/d semiempirical molecular orbital calculations followed by density functional theory geometry optimizations with the B3LYP functional. New lowest energy isomers were found for a number of (MgO) n clusters. The most stable isomers for (MgO) n (n > 3) are 3-dimensional. For n < 20, hexagonal tubular (MgO) n structures are more favored in energy than the cubic structures. The cubic structures and their variations dominate after n = 20. For the cubic isomers, increasing the size of the cluster in any dimension improves the stability. The effectiveness of increasing the size of the cluster in a specific dimension to improve stability diminishes as the size in that dimension increases. For cubic structures of the same size, the most compact cubic structure is expected to be the more stable cubic structure. The average Mg–O bond distance and coordination number both increase as n increases. The calculated average Mg–O bond distance is 2.055 Å at n = 40, slightly smaller than the bulk value of 2.104 Å. The average coordination number is predicted to be 4.6 for the lowest energy (MgO)40 as compared to the bulk value of 6. As n increases, the normalized clustering energy ΔE(n) for the (MgO) n increases and the slope of the ΔE(n) vs n curve decreases. The value of ΔE(40) is predicted to be 150 kcal/mol, as compared to the bulk value ΔE(∞) = 176 kcal/mol. The electronic properties of the clusters are presented and the reactive sites are predicted to be at the corners.
Author Dixon, David A
Chen, Mingyang
Felmy, Andrew R
AuthorAffiliation Department of Chemistry
The University of Alabama
Pacific Northwest National Laboratory
AuthorAffiliation_xml – name: Pacific Northwest National Laboratory
– name: Department of Chemistry
– name: The University of Alabama
Author_xml – sequence: 1
  givenname: Mingyang
  surname: Chen
  fullname: Chen, Mingyang
– sequence: 2
  givenname: Andrew R
  surname: Felmy
  fullname: Felmy, Andrew R
– sequence: 3
  givenname: David A
  surname: Dixon
  fullname: Dixon, David A
  email: dadixon@bama.ua.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24716776$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1158958$$D View this record in Osti.gov
BookMark eNptkE1LxDAQhoMo7oce_ANSBEEP1SRNN-lRxC9Y3cPqOUzTVLN0kzVJD_rrjXT1IJ5mBp6Z4X0maNc6qxE6IviCYEouVxtGqKD4cweNSUlxXlJS7qYeiyovZ0U1QpMQVhhjUlC2j0aUcTLjfDZGdBl9r2LvdcjANtkyQm06E02aXZudPb4uzjObPYF1qutD1D4coL0WuqAPt3WKXm5vnq_v8_ni7uH6ap4DwyLmTSMqqBhoXlRF2QoAqnmNFWcNBo0rUjDMZqpgXLUCl5qJomaMgxCKAMd1MUUnw10XopFBmajVm3LWahUlIaWoSpGgswHaePfe6xDl2gSluw6sdn2QSUfKnNJ-o8dbtK_XupEbb9bgP-SPjARcDoDyLgSvW5l-QjTORg-mkwTLb93yV3faOP-z8XP0P_Z0YEEFuXK9t0neP9wXIeyIog
CitedBy_id crossref_primary_10_1039_C9CP06947J
crossref_primary_10_1016_j_ijhydene_2018_07_026
crossref_primary_10_1016_j_cplett_2018_09_030
crossref_primary_10_1017_S1743921319009384
crossref_primary_10_1063_5_0047521
crossref_primary_10_1039_D1EN00481F
crossref_primary_10_1146_annurev_astro_090120_033712
crossref_primary_10_1016_j_molap_2019_100062
crossref_primary_10_1039_D1CP02683F
crossref_primary_10_1103_PhysRevMaterials_5_083806
crossref_primary_10_1016_j_jtemb_2018_07_016
crossref_primary_10_1021_acs_jpcc_9b08608
crossref_primary_10_1021_acsomega_1c01473
crossref_primary_10_1007_s11224_017_1049_1
crossref_primary_10_1016_j_ijms_2017_09_003
crossref_primary_10_1134_S0036023623601265
crossref_primary_10_1093_mnras_stz2358
crossref_primary_10_1021_acsearthspacechem_0c00029
crossref_primary_10_1039_C7NR01749A
crossref_primary_10_1039_D0CP06477G
crossref_primary_10_1021_acs_jpcc_5b00333
crossref_primary_10_1093_mnras_stx2912
crossref_primary_10_31857_S0044457X22601729
crossref_primary_10_1007_s00894_022_05332_3
crossref_primary_10_1016_j_jmmm_2015_02_058
crossref_primary_10_1021_acs_jpcc_8b07184
crossref_primary_10_1016_j_jia_2023_02_034
crossref_primary_10_1039_D2CP01342H
crossref_primary_10_1016_j_apsusc_2018_11_079
crossref_primary_10_1021_acssuschemeng_8b01330
crossref_primary_10_1039_C6RA11281A
crossref_primary_10_1007_s10904_014_0095_z
crossref_primary_10_1021_acs_jpca_7b09056
crossref_primary_10_1002_cctc_201402602
crossref_primary_10_1021_acs_jpca_9b08930
crossref_primary_10_1142_S2047684121500226
crossref_primary_10_1021_acs_jpca_9b11741
crossref_primary_10_1021_acsomega_1c00850
crossref_primary_10_1021_acs_jpcc_7b07507
crossref_primary_10_1039_C6CP08123A
crossref_primary_10_1039_D2CP00043A
crossref_primary_10_1016_j_apsusc_2017_05_182
crossref_primary_10_3390_ma16052100
crossref_primary_10_1016_j_comptc_2021_113507
crossref_primary_10_1016_j_comptc_2018_06_003
crossref_primary_10_1051_0004_6361_202347693
crossref_primary_10_1021_acs_jpcc_7b09062
crossref_primary_10_1021_acs_jcim_0c01128
crossref_primary_10_1093_rasti_rzae039
crossref_primary_10_1002_qua_26642
crossref_primary_10_1021_acs_jpcc_6b06730
crossref_primary_10_1063_1_4979910
crossref_primary_10_1039_C6NR08586E
crossref_primary_10_1007_s12648_020_01724_4
crossref_primary_10_1039_D1TC04135E
crossref_primary_10_3390_universe7070243
crossref_primary_10_1021_acs_jpcc_8b01667
crossref_primary_10_1016_j_chphi_2023_100382
crossref_primary_10_1021_acs_jpcc_3c04051
crossref_primary_10_1021_jp511823k
crossref_primary_10_1016_j_matchemphys_2017_06_035
crossref_primary_10_1016_j_physe_2017_11_021
crossref_primary_10_1039_C8RA07728B
crossref_primary_10_1021_acscatal_8b00143
crossref_primary_10_1007_s00894_016_3044_7
crossref_primary_10_1021_acsearthspacechem_9b00139
crossref_primary_10_1039_D2RA05116H
crossref_primary_10_1017_S1743921318006014
crossref_primary_10_1021_acs_jpcc_9b00314
crossref_primary_10_1021_acs_jpcc_9b10506
crossref_primary_10_3390_met9020174
crossref_primary_10_3390_inorganics6010029
crossref_primary_10_1039_C5RA03611A
crossref_primary_10_1021_acsanm_0c01237
crossref_primary_10_1021_acsearthspacechem_2c00191
Cites_doi 10.1021/ja00457a004
10.1103/PhysRevB.37.785
10.1103/PhysRevB.56.7607
10.1002/anie.201004617
10.1063/1.466884
10.1021/ja00457a005
10.1103/PhysRevB.70.045407
10.1063/1.464913
10.1107/S0021889868005418
10.1139/v92-079
10.1103/PhysRevLett.99.235502
10.1021/ic0351489
10.1063/1.460340
10.1039/c2cp23432g
10.1021/j100100a028
10.1021/jp011049+
10.1016/j.molcata.2010.02.012
10.4028/www.scientific.net/AMR.545.157
10.1021/jp405459g
10.1063/1.464982
10.1021/cr3002017
10.1016/j.gca.2011.09.029
10.1021/ct400105c
10.1002/anie.201300238
10.1557/JMR.1997.0393
10.1016/j.commatsci.2005.06.007
10.1039/c3cp53624f
10.1016/j.jcat.2005.09.004
10.1111/j.1365-2966.2007.12358.x
10.1007/s00214-011-1079-5
10.1016/0920-5861(90)85004-8
10.1002/anie.201005105
10.1021/jp909354p
10.1016/j.jcat.2009.11.017
10.1021/jp072857p
10.1016/j.theochem.2008.05.020
10.1063/1.2956508
10.1021/jp2070826
10.1007/BF01543947
10.1103/PhysRevB.67.161403
10.1002/anie.198811271
10.1111/j.1151-2916.1987.tb04949.x
10.1021/jp952148o
10.1016/j.susc.2008.03.046
10.1088/0957-4484/15/8/025
10.1063/1.3425844
10.1016/j.jcat.2013.07.005
10.1021/jp1050657
10.1063/1.456153
10.1016/j.chemgeo.2011.03.005
10.1021/jp404493w
10.1016/j.cattod.2007.12.087
10.1080/00268976.2012.684897
10.1063/1.1709313
10.1063/1.474110
10.1016/j.susc.2005.08.009
10.1103/PhysRev.159.733
10.1002/qua.21762
10.1039/b106507f
10.1016/j.jpcs.2008.06.143
10.1021/j100385a018
10.1021/jp970712k
ContentType Journal Article
Copyright Copyright © 2014 American Chemical Society
Copyright_xml – notice: Copyright © 2014 American Chemical Society
CorporateAuthor Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
CorporateAuthor_xml – name: Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
DBID AAYXX
CITATION
NPM
7X8
OTOTI
DOI 10.1021/jp412820z
DatabaseName CrossRef
PubMed
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5215
EndPage 3146
ExternalDocumentID 1158958
24716776
10_1021_jp412820z
d194894529
Genre Journal Article
GroupedDBID -
.K2
02
123
29L
4.4
53G
55A
5VS
7~N
85S
8RP
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ACGFS
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CJ0
CS3
D0L
DU5
EBS
ED
ED~
EJD
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
PZZ
RNS
ROL
TAE
TN5
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
YZZ
ZHY
---
-~X
.DC
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
XSW
YQT
~02
NPM
7X8
ABFRP
OTOTI
ID FETCH-LOGICAL-a408t-dd89a94ae73935f8aa2e7b0c74d0ae09134046c347cf805e483b447a88c1a70b3
IEDL.DBID ACS
ISSN 1089-5639
1520-5215
IngestDate Thu May 18 22:36:51 EDT 2023
Fri Jul 11 03:43:52 EDT 2025
Thu Apr 03 07:01:46 EDT 2025
Tue Jul 01 01:27:14 EDT 2025
Thu Apr 24 22:58:18 EDT 2025
Thu Aug 27 13:41:57 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a408t-dd89a94ae73935f8aa2e7b0c74d0ae09134046c347cf805e483b447a88c1a70b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE
AC05-76RL01830
PNNL-SA-104141
PMID 24716776
PQID 1521327168
PQPubID 23479
PageCount 11
ParticipantIDs osti_scitechconnect_1158958
proquest_miscellaneous_1521327168
pubmed_primary_24716776
crossref_citationtrail_10_1021_jp412820z
crossref_primary_10_1021_jp412820z
acs_journals_10_1021_jp412820z
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-05-01
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
PublicationTitleAlternate J. Phys. Chem. A
PublicationYear 2014
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References de la Puente E. (ref41/cit41) 1997; 56
Chen M. (ref53/cit53) 2013; 9
Florez E. (ref19/cit19) 2008; 133
Recio J. M. (ref35/cit35) 1993; 98
Zhan J. (ref27/cit27) 2004; 43
Knowles P. J. (ref63/cit63)
Kirlin P. S. (ref6/cit6) 1990; 94
Peterson K. A. (ref50/cit50) 2012; 131
Serna P. (ref10/cit10) 2013; 308
Hacquart R. (ref13/cit13) 2005; 595
Dunning T. H. (ref60/cit60) 1989; 90
Godbout N. (ref59/cit59) 1992; 70
Krauskopt K. B. (ref2/cit2) 1979
Dewar M. J. S. (ref55/cit55) 1977; 99
Kim M. G. (ref29/cit29) 1987; 70
Kwapien K. (ref33/cit33) 2011; 50
Uzun A. (ref8/cit8) 2010; 269
Badar N. (ref69/cit69) 2012; 545
Kulkarni A. (ref9/cit9) 2010; 49
Vasiliu M. (ref49/cit49) 2010; 114
Chen L. (ref36/cit36) 2009; 109
Frisch M. J. (ref62/cit62) 2009
Chayed N. F. (ref70/cit70) 2011; 1400
Yang P. D. (ref26/cit26) 1997; 12
Chen L. (ref39/cit39) 2008; 863
Carrasco J. (ref46/cit46) 2007; 99
Zhang Y. (ref48/cit48) 2010; 132
Cornu D. (ref22/cit22) 2013; 15
Xiong Y. L. (ref4/cit4) 2011; 284
Aydin C. (ref11/cit11) 2013; 52
Peterson K. A. (ref61/cit61) 1994; 100
Piskorz W. (ref25/cit25) 2011; 115
Jain A. (ref38/cit38) 2006; 36
Livraghi S. (ref20/cit20) 2010; 322
Kumar A. (ref71/cit71) 2008; 69
Bhatt J. S. (ref44/cit44) 2007; 382
Calvo F. (ref43/cit43) 2003; 67
Schaef H. T. (ref3/cit3) 2011; 75
Köhler T. M. (ref40/cit40) 1997; 320
Petitjean H. (ref21/cit21) 2010; 114
Haertelt M. (ref32/cit32) 2012; 14
Williams M. W. (ref68/cit68) 1967; 386
Chase M. W. (ref65/cit65) 1998; 9
Roberts C. (ref45/cit45) 2001; 3
Piskorz W. (ref24/cit24) 2013; 117
Thiel W. (ref56/cit56) 1996; 100
Lunsford J. H. (ref12/cit12) 1990; 6
Roessler D. M. (ref67/cit67) 1967; 159
Ziemann P. J. (ref31/cit31) 1991; 94
Chen M. (ref66/cit66) 2013; 117
Wilson M. (ref42/cit42) 1997; 101
Smith D. K. (ref64/cit64) 1968; 1
Lamb H. H. (ref5/cit5) 1988; 27
Kawi S. (ref7/cit7) 1994; 98
Diwald O. (ref17/cit17) 2002; 106
Becke A. D. (ref57/cit57) 1993; 98
Bailly M.-L. (ref23/cit23) 2005; 235
Trevethan T. (ref14/cit14) 2007; 111
Yang Q. (ref28/cit28) 2004; 15
Bilalbegovic G. (ref37/cit37) 2004; 70
Shluger A. L. (ref15/cit15) 1991; 3
Dixon D. A. (ref52/cit52) 2012; 8
Lee C. T. (ref58/cit58) 1988; 37
Edmonds J. A. (ref1/cit1) 2001
Ziemann P. J. (ref30/cit30) 1991; 20
Beck K. M. (ref16/cit16) 2008; 602
Pacchioni G. (ref18/cit18) 2013; 113
Dewar M. J. S. (ref54/cit54) 1977; 99
Malliavin M.-J. (ref34/cit34) 1997; 106
Feller D. (ref51/cit51) 2012; 110
Dong R. B. (ref47/cit47) 2008; 129
References_xml – volume: 99
  start-page: 4899
  year: 1977
  ident: ref54/cit54
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00457a004
– volume: 37
  start-page: 785
  year: 1988
  ident: ref58/cit58
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.37.785
– volume: 56
  start-page: 7607
  year: 1997
  ident: ref41/cit41
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.56.7607
– volume: 50
  start-page: 1716
  year: 2011
  ident: ref33/cit33
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201004617
– volume: 100
  start-page: 7410
  year: 1994
  ident: ref61/cit61
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.466884
– volume: 99
  start-page: 4907
  year: 1977
  ident: ref55/cit55
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00457a005
– volume: 70
  start-page: 045407
  year: 2004
  ident: ref37/cit37
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.70.045407
– volume: 3
  start-page: 8027
  year: 1991
  ident: ref15/cit15
  publication-title: J. Phys.: Condens. Matter
– volume: 98
  start-page: 5648
  year: 1993
  ident: ref57/cit57
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464913
– volume: 1
  start-page: 246
  year: 1968
  ident: ref64/cit64
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889868005418
– volume: 70
  start-page: 560
  year: 1992
  ident: ref59/cit59
  publication-title: Can. J. Chem.
  doi: 10.1139/v92-079
– volume: 99
  start-page: 235502
  year: 2007
  ident: ref46/cit46
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.235502
– volume: 43
  start-page: 2462
  year: 2004
  ident: ref27/cit27
  publication-title: Inorg. Chem.
  doi: 10.1021/ic0351489
– volume: 94
  start-page: 718
  year: 1991
  ident: ref31/cit31
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.460340
– volume: 320
  start-page: 553
  year: 1997
  ident: ref40/cit40
  publication-title: Astron. Astrophys.
– volume: 14
  start-page: 2849
  year: 2012
  ident: ref32/cit32
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp23432g
– volume-title: MOLPRO
  ident: ref63/cit63
– volume: 98
  start-page: 12978
  year: 1994
  ident: ref7/cit7
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100100a028
– volume: 106
  start-page: 3495
  year: 2002
  ident: ref17/cit17
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp011049+
– volume: 322
  start-page: 39
  year: 2010
  ident: ref20/cit20
  publication-title: J. Mol. Catal. A: Chem.
  doi: 10.1016/j.molcata.2010.02.012
– volume: 545
  start-page: 157
  year: 2012
  ident: ref69/cit69
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.545.157
– volume: 117
  start-page: 18488
  year: 2013
  ident: ref24/cit24
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp405459g
– volume: 98
  start-page: 4783
  year: 1993
  ident: ref35/cit35
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464982
– volume: 9
  start-page: 1
  year: 1998
  ident: ref65/cit65
  publication-title: J. Phys. Chem. Ref. Data, Monograph
– volume: 113
  start-page: 4035
  year: 2013
  ident: ref18/cit18
  publication-title: Chem. Rev.
  doi: 10.1021/cr3002017
– volume: 75
  start-page: 7458
  issue: 23
  year: 2011
  ident: ref3/cit3
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2011.09.029
– volume-title: Introduction to Geochemistry
  year: 1979
  ident: ref2/cit2
– volume: 9
  start-page: 3189
  year: 2013
  ident: ref53/cit53
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct400105c
– volume: 1400
  start-page: 328
  year: 2011
  ident: ref70/cit70
  publication-title: International Congress on Advances in Applied Physics and Materials Science AIP Conf. Proc.
– volume: 52
  start-page: 5262
  year: 2013
  ident: ref11/cit11
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201300238
– volume: 12
  start-page: 2981
  year: 1997
  ident: ref26/cit26
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.1997.0393
– volume: 36
  start-page: 171
  year: 2006
  ident: ref38/cit38
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2005.06.007
– volume: 15
  start-page: 19870
  year: 2013
  ident: ref22/cit22
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp53624f
– volume: 235
  start-page: 413
  year: 2005
  ident: ref23/cit23
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2005.09.004
– volume: 382
  start-page: 291
  year: 2007
  ident: ref44/cit44
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1111/j.1365-2966.2007.12358.x
– volume: 131
  start-page: 1079
  issue: 1
  year: 2012
  ident: ref50/cit50
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-011-1079-5
– volume: 6
  start-page: 235
  year: 1990
  ident: ref12/cit12
  publication-title: Catal. Today
  doi: 10.1016/0920-5861(90)85004-8
– volume: 49
  start-page: 10089
  year: 2010
  ident: ref9/cit9
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201005105
– volume: 114
  start-page: 3008
  year: 2010
  ident: ref21/cit21
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp909354p
– start-page: 46
  year: 2001
  ident: ref1/cit1
  publication-title: Greenhouse Gas Control Technologies
– volume: 269
  start-page: 318
  year: 2010
  ident: ref8/cit8
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2009.11.017
– volume: 111
  start-page: 15375
  year: 2007
  ident: ref14/cit14
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp072857p
– volume: 863
  start-page: 55
  year: 2008
  ident: ref39/cit39
  publication-title: J. Mol. Struct. (THEOCHEM)
  doi: 10.1016/j.theochem.2008.05.020
– volume: 129
  start-page: 044705
  year: 2008
  ident: ref47/cit47
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2956508
– volume: 8
  start-page: 1
  volume-title: Annual Reports in Computational Chemistry
  year: 2012
  ident: ref52/cit52
– volume-title: Gaussian 09
  year: 2009
  ident: ref62/cit62
– volume: 115
  start-page: 22451
  year: 2011
  ident: ref25/cit25
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp2070826
– volume: 20
  start-page: 97
  year: 1991
  ident: ref30/cit30
  publication-title: Z. Phys. D
  doi: 10.1007/BF01543947
– volume: 67
  start-page: 161403
  year: 2003
  ident: ref43/cit43
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.67.161403
– volume: 27
  start-page: 1127
  year: 1988
  ident: ref5/cit5
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.198811271
– volume: 70
  start-page: 146
  year: 1987
  ident: ref29/cit29
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1987.tb04949.x
– volume: 100
  start-page: 616
  year: 1996
  ident: ref56/cit56
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp952148o
– volume: 602
  start-page: 1968
  year: 2008
  ident: ref16/cit16
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2008.03.046
– volume: 15
  start-page: 1004
  year: 2004
  ident: ref28/cit28
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/15/8/025
– volume: 132
  start-page: 194304
  year: 2010
  ident: ref48/cit48
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3425844
– volume: 308
  start-page: 201
  year: 2013
  ident: ref10/cit10
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2013.07.005
– volume: 114
  start-page: 9349
  year: 2010
  ident: ref49/cit49
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp1050657
– volume: 90
  start-page: 1007
  year: 1989
  ident: ref60/cit60
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.456153
– volume: 284
  start-page: 262
  issue: 3
  year: 2011
  ident: ref4/cit4
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2011.03.005
– volume: 117
  start-page: 8298
  year: 2013
  ident: ref66/cit66
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp404493w
– volume: 133
  start-page: 216
  year: 2008
  ident: ref19/cit19
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2007.12.087
– volume: 110
  start-page: 2381
  year: 2012
  ident: ref51/cit51
  publication-title: Mol. Phys.
  doi: 10.1080/00268976.2012.684897
– volume: 386
  start-page: 5272
  year: 1967
  ident: ref68/cit68
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1709313
– volume: 106
  start-page: 2323
  year: 1997
  ident: ref34/cit34
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.474110
– volume: 595
  start-page: 172
  year: 2005
  ident: ref13/cit13
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2005.08.009
– volume: 159
  start-page: 733
  year: 1967
  ident: ref67/cit67
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.159.733
– volume: 109
  start-page: 349
  year: 2009
  ident: ref36/cit36
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.21762
– volume: 3
  start-page: 5024
  year: 2001
  ident: ref45/cit45
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b106507f
– volume: 69
  start-page: 2764
  year: 2008
  ident: ref71/cit71
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/j.jpcs.2008.06.143
– volume: 94
  start-page: 8451
  year: 1990
  ident: ref6/cit6
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100385a018
– volume: 101
  start-page: 4917
  year: 1997
  ident: ref42/cit42
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp970712k
SSID ssj0001324
Score 2.4325473
Snippet Global minima for (MgO) n structures were optimized using a tree growth–hybrid genetic algorithm in conjunction with MNDO/MNDO/d semiempirical molecular...
Global minima for (MgO)n structures were optimized using a tree growth-hybrid genetic algorithm in conjunction with MNDO/MNDO/d semiempirical molecular orbital...
Global minima for (MgO)n structures were optimized using a tree growth–hybrid genetic algorithm in conjunction with MNDO/MNDO/d semiempirical molecular orbital...
SourceID osti
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3136
SubjectTerms Environmental Molecular Sciences Laboratory
Title Structures and Stabilities of (MgO) n Nanoclusters
URI http://dx.doi.org/10.1021/jp412820z
https://www.ncbi.nlm.nih.gov/pubmed/24716776
https://www.proquest.com/docview/1521327168
https://www.osti.gov/biblio/1158958
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV07T8MwED5BGWDh_SgFFB5DGVJcx3bsERUQQioMpVK3yHEcJKiSSm2X_nrOSVOBKLBfFNt3vvs--fwZ4MplQ5ukqa8VYT6TXPjaxG1fBUkqhbCKpO6icPdZPPbZ04APVuDylxN82r55HzHMoZTMVmGNCty8Dv90eot0i3SKlV30yudYbyv5oK-futJjxt9KTy3HLfQ7rCzKy8MW3FWXdMquko_WdBK3zOynZuNfI9-GzTm89G7LeNiBFZvtwnqnetVtD2ivEIydIsv2dJZ4CDaL9lgkzF6ees3u28u1l3mYdHMznDoVhfE-9B_uXzuP_vzdBF8zIid-kkilFdPWqd3xVGpNbRgTE7KEaOuEQBmyYhOw0KSScMtkEDMWailNW4ckDg6gluWZPQIv5CkNGDWI0pBICqEU5-4uK06MGMp4Hc5wYaN53I-j4kibIqWopl6HZrXmkZmrjrvHL4bLTC8WpqNSamOZUcM5LkJ84ERujesGMhPkMVwqLutwXvkzwnV1Zx86s_kUB4YwJaBIDtHmsHT04icUC7QIQ3H832QasIF4iZX9jidQQ4fZU8Qkk_isiMlPtGjWMQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgHODCvpSyBMQBDimuYyf2saqoCrTlQCtxixzHQYIqqZT00q9nnKUsKoK7k3gy9sx78vgNQlcmGuowimwpMLUpZ64tVdCyhRNG3HW1wJG5KDwYur0xfXhhL6VMjrkLA5NI4U1pfoj_qS7Qun2bUgilBM9X0RqAEGJWc7vzvIi6wKpoUUwvbAZpt1IR-vqoyUAq_ZaBagnspN_RZZ5lultFu6J8fnlxyXtzlgVNNf8h3fg_A7bRZgk2rXaxOnbQio530Xqn6vG2h8hzLh87A85tyTi0AHrmxbJAn60ksq4Hr083VmxBCE7UZGY0FdJ9NO7ejTo9u-yiYEuKeWaHIRdSUKmN9h2LuJREewFWHg2x1EYWlAJHVg71VMQx05Q7AaWe5Fy1pIcD5wDV4iTWR8jyWEQcShRgNqCVrisEY-ZmKxiGFaGsjs7Acr_cBamfH3ATIBiV6XV0Xf16X5Ua5KYVxmTZ0MvF0GkhvLFsUMP4zwe0YCRvlakNUhmwGsYF43V0UbnVh_9qTkJkrJMZTAxAi0OAKsKYw8Lfi48QSNeu57nHfxlzjtZ7o0Hf798PHxtoA5AULSohT1ANnKdPAa1kwVm-TD8Abgbekg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB50BfXi-7E-q3jQQzWbJm1ylNXFt4IK3kqaJoJKu9Ddi7_eSR-LiqL3tM10kpnvYyZfAPZcNDSptb6ShPlM8NBXOun4MkitCEMjiXUHha9vwrNHdvHEn2qi6M7C4CQKfFNRFvHdru6ntlYY6By99BmGU0rex2HClevcij7u3o8iLzIrVjXUS59j6m2UhD4_6rKQLr5koVaOu-l3hFlmmt4s3I7mWDaYvB4OB8mhfv8m3_h_I-Zgpgad3nG1SuZhzGQLMNVt7npbBHpfysgOkXt7Kks9hKBl0yzSaC-33v718-2Bl3kYinP9NnTaCsUSPPZOH7pnfn2bgq8YEQM_TYVUkinjNPC4FUpREyVERywlyjh5UIZcWQcs0lYQbpgIEsYiJYTuqIgkwTK0sjwzq-BF3NKAUY3YDellGErJuTvhioYRTRlvwxZaH9e7oYjLQjdFotGY3ob95vfHutYid1divP00dHc0tF8JcPw0aN35MEbU4KRvtesR0gNkN1xILtqw07g2xv_qKiIqM_kQJ4bgJaBIGXHMSuXz0Ucopu0wisK1v4zZhsm7k158dX5zuQ7TCKhY1RC5AS30ndlE0DJItsqV-gHvS-EV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structures+and+stabilities+of+%28MgO%29n+nanoclusters&rft.jtitle=The+journal+of+physical+chemistry.+A%2C+Molecules%2C+spectroscopy%2C+kinetics%2C+environment%2C+%26+general+theory&rft.au=Chen%2C+Mingyang&rft.au=Felmy%2C+Andrew+R&rft.au=Dixon%2C+David+A&rft.date=2014-05-01&rft.issn=1520-5215&rft.eissn=1520-5215&rft.volume=118&rft.issue=17&rft.spage=3136&rft_id=info:doi/10.1021%2Fjp412820z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-5639&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-5639&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-5639&client=summon