Structures and Stabilities of (MgO) n Nanoclusters
Global minima for (MgO) n structures were optimized using a tree growth–hybrid genetic algorithm in conjunction with MNDO/MNDO/d semiempirical molecular orbital calculations followed by density functional theory geometry optimizations with the B3LYP functional. New lowest energy isomers were found f...
Saved in:
Published in | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Vol. 118; no. 17; pp. 3136 - 3146 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
01.05.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Global minima for (MgO) n structures were optimized using a tree growth–hybrid genetic algorithm in conjunction with MNDO/MNDO/d semiempirical molecular orbital calculations followed by density functional theory geometry optimizations with the B3LYP functional. New lowest energy isomers were found for a number of (MgO) n clusters. The most stable isomers for (MgO) n (n > 3) are 3-dimensional. For n < 20, hexagonal tubular (MgO) n structures are more favored in energy than the cubic structures. The cubic structures and their variations dominate after n = 20. For the cubic isomers, increasing the size of the cluster in any dimension improves the stability. The effectiveness of increasing the size of the cluster in a specific dimension to improve stability diminishes as the size in that dimension increases. For cubic structures of the same size, the most compact cubic structure is expected to be the more stable cubic structure. The average Mg–O bond distance and coordination number both increase as n increases. The calculated average Mg–O bond distance is 2.055 Å at n = 40, slightly smaller than the bulk value of 2.104 Å. The average coordination number is predicted to be 4.6 for the lowest energy (MgO)40 as compared to the bulk value of 6. As n increases, the normalized clustering energy ΔE(n) for the (MgO) n increases and the slope of the ΔE(n) vs n curve decreases. The value of ΔE(40) is predicted to be 150 kcal/mol, as compared to the bulk value ΔE(∞) = 176 kcal/mol. The electronic properties of the clusters are presented and the reactive sites are predicted to be at the corners. |
---|---|
AbstractList | Global minima for (MgO)n structures were optimized using a tree growth-hybrid genetic algorithm in conjunction with MNDO/MNDO/d semiempirical molecular orbital calculations followed by density functional theory geometry optimizations with the B3LYP functional. New lowest energy isomers were found for a number of (MgO)n clusters. The most stable isomers for (MgO)n (n > 3) are 3-dimensional. For n < 20, hexagonal tubular (MgO)n structures are more favored in energy than the cubic structures. The cubic structures and their variations dominate after n = 20. For the cubic isomers, increasing the size of the cluster in any dimension improves the stability. The effectiveness of increasing the size of the cluster in a specific dimension to improve stability diminishes as the size in that dimension increases. For cubic structures of the same size, the most compact cubic structure is expected to be the more stable cubic structure. The average Mg-O bond distance and coordination number both increase as n increases. The calculated average Mg-O bond distance is 2.055 Å at n = 40, slightly smaller than the bulk value of 2.104 Å. The average coordination number is predicted to be 4.6 for the lowest energy (MgO)40 as compared to the bulk value of 6. As n increases, the normalized clustering energy ΔE(n) for the (MgO)n increases and the slope of the ΔE(n) vs n curve decreases. The value of ΔE(40) is predicted to be 150 kcal/mol, as compared to the bulk value ΔE(∞) = 176 kcal/mol. The electronic properties of the clusters are presented and the reactive sites are predicted to be at the corners.Global minima for (MgO)n structures were optimized using a tree growth-hybrid genetic algorithm in conjunction with MNDO/MNDO/d semiempirical molecular orbital calculations followed by density functional theory geometry optimizations with the B3LYP functional. New lowest energy isomers were found for a number of (MgO)n clusters. The most stable isomers for (MgO)n (n > 3) are 3-dimensional. For n < 20, hexagonal tubular (MgO)n structures are more favored in energy than the cubic structures. The cubic structures and their variations dominate after n = 20. For the cubic isomers, increasing the size of the cluster in any dimension improves the stability. The effectiveness of increasing the size of the cluster in a specific dimension to improve stability diminishes as the size in that dimension increases. For cubic structures of the same size, the most compact cubic structure is expected to be the more stable cubic structure. The average Mg-O bond distance and coordination number both increase as n increases. The calculated average Mg-O bond distance is 2.055 Å at n = 40, slightly smaller than the bulk value of 2.104 Å. The average coordination number is predicted to be 4.6 for the lowest energy (MgO)40 as compared to the bulk value of 6. As n increases, the normalized clustering energy ΔE(n) for the (MgO)n increases and the slope of the ΔE(n) vs n curve decreases. The value of ΔE(40) is predicted to be 150 kcal/mol, as compared to the bulk value ΔE(∞) = 176 kcal/mol. The electronic properties of the clusters are presented and the reactive sites are predicted to be at the corners. Global minima for (MgO)n structures were optimized using a tree growth–hybrid genetic algorithm in conjunction with MNDO/MNDO/d semiempirical molecular orbital calculations followed by density functional theory geometry optimizations with the B3LYP functional. New lowest energy isomers were found for a number of (MgO)n clusters. The most stable isomers for (MgO)n (n > 3) are 3-dimensional. For n < 20, hexagonal tubular (MgO)n structures are more favored in energy than the cubic structures. The cubic structures and their variations dominate after n = 20. For the cubic isomers, increasing the size of the cluster in any dimension improves the stability. The effectiveness of increasing the size of the cluster in a specific dimension to improve stability diminishes as the size in that dimension increases. For cubic structures of the same size, the most compact cubic structure is expected to be the more stable cubic structure. The average Mg–O bond distance and coordination number both increase as n increases. The calculated average Mg–O bond distance is 2.055 Å at n = 40, slightly smaller than the bulk value of 2.104 Å. The average coordination number is predicted to be 4.6 for the lowest energy (MgO)40 as compared to the bulk value of 6. As n increases, the normalized clustering energy ΔE(n) for the (MgO)n increases and the slope of the ΔE(n) vs n curve decreases. The value of ΔE(40) is predicted to be 150 kcal/mol, as compared to the bulk value ΔE(∞) = 176 kcal/mol. Finally, the electronic properties of the clusters are presented and the reactive sites are predicted to be at the corners. Global minima for (MgO) n structures were optimized using a tree growth–hybrid genetic algorithm in conjunction with MNDO/MNDO/d semiempirical molecular orbital calculations followed by density functional theory geometry optimizations with the B3LYP functional. New lowest energy isomers were found for a number of (MgO) n clusters. The most stable isomers for (MgO) n (n > 3) are 3-dimensional. For n < 20, hexagonal tubular (MgO) n structures are more favored in energy than the cubic structures. The cubic structures and their variations dominate after n = 20. For the cubic isomers, increasing the size of the cluster in any dimension improves the stability. The effectiveness of increasing the size of the cluster in a specific dimension to improve stability diminishes as the size in that dimension increases. For cubic structures of the same size, the most compact cubic structure is expected to be the more stable cubic structure. The average Mg–O bond distance and coordination number both increase as n increases. The calculated average Mg–O bond distance is 2.055 Å at n = 40, slightly smaller than the bulk value of 2.104 Å. The average coordination number is predicted to be 4.6 for the lowest energy (MgO)40 as compared to the bulk value of 6. As n increases, the normalized clustering energy ΔE(n) for the (MgO) n increases and the slope of the ΔE(n) vs n curve decreases. The value of ΔE(40) is predicted to be 150 kcal/mol, as compared to the bulk value ΔE(∞) = 176 kcal/mol. The electronic properties of the clusters are presented and the reactive sites are predicted to be at the corners. |
Author | Dixon, David A Chen, Mingyang Felmy, Andrew R |
AuthorAffiliation | Department of Chemistry The University of Alabama Pacific Northwest National Laboratory |
AuthorAffiliation_xml | – name: Pacific Northwest National Laboratory – name: Department of Chemistry – name: The University of Alabama |
Author_xml | – sequence: 1 givenname: Mingyang surname: Chen fullname: Chen, Mingyang – sequence: 2 givenname: Andrew R surname: Felmy fullname: Felmy, Andrew R – sequence: 3 givenname: David A surname: Dixon fullname: Dixon, David A email: dadixon@bama.ua.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24716776$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1158958$$D View this record in Osti.gov |
BookMark | eNptkE1LxDAQhoMo7oce_ANSBEEP1SRNN-lRxC9Y3cPqOUzTVLN0kzVJD_rrjXT1IJ5mBp6Z4X0maNc6qxE6IviCYEouVxtGqKD4cweNSUlxXlJS7qYeiyovZ0U1QpMQVhhjUlC2j0aUcTLjfDZGdBl9r2LvdcjANtkyQm06E02aXZudPb4uzjObPYF1qutD1D4coL0WuqAPt3WKXm5vnq_v8_ni7uH6ap4DwyLmTSMqqBhoXlRF2QoAqnmNFWcNBo0rUjDMZqpgXLUCl5qJomaMgxCKAMd1MUUnw10XopFBmajVm3LWahUlIaWoSpGgswHaePfe6xDl2gSluw6sdn2QSUfKnNJ-o8dbtK_XupEbb9bgP-SPjARcDoDyLgSvW5l-QjTORg-mkwTLb93yV3faOP-z8XP0P_Z0YEEFuXK9t0neP9wXIeyIog |
CitedBy_id | crossref_primary_10_1039_C9CP06947J crossref_primary_10_1016_j_ijhydene_2018_07_026 crossref_primary_10_1016_j_cplett_2018_09_030 crossref_primary_10_1017_S1743921319009384 crossref_primary_10_1063_5_0047521 crossref_primary_10_1039_D1EN00481F crossref_primary_10_1146_annurev_astro_090120_033712 crossref_primary_10_1016_j_molap_2019_100062 crossref_primary_10_1039_D1CP02683F crossref_primary_10_1103_PhysRevMaterials_5_083806 crossref_primary_10_1016_j_jtemb_2018_07_016 crossref_primary_10_1021_acs_jpcc_9b08608 crossref_primary_10_1021_acsomega_1c01473 crossref_primary_10_1007_s11224_017_1049_1 crossref_primary_10_1016_j_ijms_2017_09_003 crossref_primary_10_1134_S0036023623601265 crossref_primary_10_1093_mnras_stz2358 crossref_primary_10_1021_acsearthspacechem_0c00029 crossref_primary_10_1039_C7NR01749A crossref_primary_10_1039_D0CP06477G crossref_primary_10_1021_acs_jpcc_5b00333 crossref_primary_10_1093_mnras_stx2912 crossref_primary_10_31857_S0044457X22601729 crossref_primary_10_1007_s00894_022_05332_3 crossref_primary_10_1016_j_jmmm_2015_02_058 crossref_primary_10_1021_acs_jpcc_8b07184 crossref_primary_10_1016_j_jia_2023_02_034 crossref_primary_10_1039_D2CP01342H crossref_primary_10_1016_j_apsusc_2018_11_079 crossref_primary_10_1021_acssuschemeng_8b01330 crossref_primary_10_1039_C6RA11281A crossref_primary_10_1007_s10904_014_0095_z crossref_primary_10_1021_acs_jpca_7b09056 crossref_primary_10_1002_cctc_201402602 crossref_primary_10_1021_acs_jpca_9b08930 crossref_primary_10_1142_S2047684121500226 crossref_primary_10_1021_acs_jpca_9b11741 crossref_primary_10_1021_acsomega_1c00850 crossref_primary_10_1021_acs_jpcc_7b07507 crossref_primary_10_1039_C6CP08123A crossref_primary_10_1039_D2CP00043A crossref_primary_10_1016_j_apsusc_2017_05_182 crossref_primary_10_3390_ma16052100 crossref_primary_10_1016_j_comptc_2021_113507 crossref_primary_10_1016_j_comptc_2018_06_003 crossref_primary_10_1051_0004_6361_202347693 crossref_primary_10_1021_acs_jpcc_7b09062 crossref_primary_10_1021_acs_jcim_0c01128 crossref_primary_10_1093_rasti_rzae039 crossref_primary_10_1002_qua_26642 crossref_primary_10_1021_acs_jpcc_6b06730 crossref_primary_10_1063_1_4979910 crossref_primary_10_1039_C6NR08586E crossref_primary_10_1007_s12648_020_01724_4 crossref_primary_10_1039_D1TC04135E crossref_primary_10_3390_universe7070243 crossref_primary_10_1021_acs_jpcc_8b01667 crossref_primary_10_1016_j_chphi_2023_100382 crossref_primary_10_1021_acs_jpcc_3c04051 crossref_primary_10_1021_jp511823k crossref_primary_10_1016_j_matchemphys_2017_06_035 crossref_primary_10_1016_j_physe_2017_11_021 crossref_primary_10_1039_C8RA07728B crossref_primary_10_1021_acscatal_8b00143 crossref_primary_10_1007_s00894_016_3044_7 crossref_primary_10_1021_acsearthspacechem_9b00139 crossref_primary_10_1039_D2RA05116H crossref_primary_10_1017_S1743921318006014 crossref_primary_10_1021_acs_jpcc_9b00314 crossref_primary_10_1021_acs_jpcc_9b10506 crossref_primary_10_3390_met9020174 crossref_primary_10_3390_inorganics6010029 crossref_primary_10_1039_C5RA03611A crossref_primary_10_1021_acsanm_0c01237 crossref_primary_10_1021_acsearthspacechem_2c00191 |
Cites_doi | 10.1021/ja00457a004 10.1103/PhysRevB.37.785 10.1103/PhysRevB.56.7607 10.1002/anie.201004617 10.1063/1.466884 10.1021/ja00457a005 10.1103/PhysRevB.70.045407 10.1063/1.464913 10.1107/S0021889868005418 10.1139/v92-079 10.1103/PhysRevLett.99.235502 10.1021/ic0351489 10.1063/1.460340 10.1039/c2cp23432g 10.1021/j100100a028 10.1021/jp011049+ 10.1016/j.molcata.2010.02.012 10.4028/www.scientific.net/AMR.545.157 10.1021/jp405459g 10.1063/1.464982 10.1021/cr3002017 10.1016/j.gca.2011.09.029 10.1021/ct400105c 10.1002/anie.201300238 10.1557/JMR.1997.0393 10.1016/j.commatsci.2005.06.007 10.1039/c3cp53624f 10.1016/j.jcat.2005.09.004 10.1111/j.1365-2966.2007.12358.x 10.1007/s00214-011-1079-5 10.1016/0920-5861(90)85004-8 10.1002/anie.201005105 10.1021/jp909354p 10.1016/j.jcat.2009.11.017 10.1021/jp072857p 10.1016/j.theochem.2008.05.020 10.1063/1.2956508 10.1021/jp2070826 10.1007/BF01543947 10.1103/PhysRevB.67.161403 10.1002/anie.198811271 10.1111/j.1151-2916.1987.tb04949.x 10.1021/jp952148o 10.1016/j.susc.2008.03.046 10.1088/0957-4484/15/8/025 10.1063/1.3425844 10.1016/j.jcat.2013.07.005 10.1021/jp1050657 10.1063/1.456153 10.1016/j.chemgeo.2011.03.005 10.1021/jp404493w 10.1016/j.cattod.2007.12.087 10.1080/00268976.2012.684897 10.1063/1.1709313 10.1063/1.474110 10.1016/j.susc.2005.08.009 10.1103/PhysRev.159.733 10.1002/qua.21762 10.1039/b106507f 10.1016/j.jpcs.2008.06.143 10.1021/j100385a018 10.1021/jp970712k |
ContentType | Journal Article |
Copyright | Copyright © 2014 American Chemical
Society |
Copyright_xml | – notice: Copyright © 2014 American Chemical Society |
CorporateAuthor | Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL) |
CorporateAuthor_xml | – name: Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL) |
DBID | AAYXX CITATION NPM 7X8 OTOTI |
DOI | 10.1021/jp412820z |
DatabaseName | CrossRef PubMed MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5215 |
EndPage | 3146 |
ExternalDocumentID | 1158958 24716776 10_1021_jp412820z d194894529 |
Genre | Journal Article |
GroupedDBID | - .K2 02 123 29L 4.4 53G 55A 5VS 7~N 85S 8RP AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ACGFS ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CJ0 CS3 D0L DU5 EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 LG6 PZZ RNS ROL TAE TN5 UI2 UKR UPT VF5 VG9 VQA W1F WH7 X YZZ ZHY --- -~X .DC AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK XSW YQT ~02 NPM 7X8 ABFRP OTOTI |
ID | FETCH-LOGICAL-a408t-dd89a94ae73935f8aa2e7b0c74d0ae09134046c347cf805e483b447a88c1a70b3 |
IEDL.DBID | ACS |
ISSN | 1089-5639 1520-5215 |
IngestDate | Thu May 18 22:36:51 EDT 2023 Fri Jul 11 03:43:52 EDT 2025 Thu Apr 03 07:01:46 EDT 2025 Tue Jul 01 01:27:14 EDT 2025 Thu Apr 24 22:58:18 EDT 2025 Thu Aug 27 13:41:57 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a408t-dd89a94ae73935f8aa2e7b0c74d0ae09134046c347cf805e483b447a88c1a70b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE AC05-76RL01830 PNNL-SA-104141 |
PMID | 24716776 |
PQID | 1521327168 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | osti_scitechconnect_1158958 proquest_miscellaneous_1521327168 pubmed_primary_24716776 crossref_citationtrail_10_1021_jp412820z crossref_primary_10_1021_jp412820z acs_journals_10_1021_jp412820z |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-05-01 |
PublicationDateYYYYMMDD | 2014-05-01 |
PublicationDate_xml | – month: 05 year: 2014 text: 2014-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
PublicationTitleAlternate | J. Phys. Chem. A |
PublicationYear | 2014 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | de la Puente E. (ref41/cit41) 1997; 56 Chen M. (ref53/cit53) 2013; 9 Florez E. (ref19/cit19) 2008; 133 Recio J. M. (ref35/cit35) 1993; 98 Zhan J. (ref27/cit27) 2004; 43 Knowles P. J. (ref63/cit63) Kirlin P. S. (ref6/cit6) 1990; 94 Peterson K. A. (ref50/cit50) 2012; 131 Serna P. (ref10/cit10) 2013; 308 Hacquart R. (ref13/cit13) 2005; 595 Dunning T. H. (ref60/cit60) 1989; 90 Godbout N. (ref59/cit59) 1992; 70 Krauskopt K. B. (ref2/cit2) 1979 Dewar M. J. S. (ref55/cit55) 1977; 99 Kim M. G. (ref29/cit29) 1987; 70 Kwapien K. (ref33/cit33) 2011; 50 Uzun A. (ref8/cit8) 2010; 269 Badar N. (ref69/cit69) 2012; 545 Kulkarni A. (ref9/cit9) 2010; 49 Vasiliu M. (ref49/cit49) 2010; 114 Chen L. (ref36/cit36) 2009; 109 Frisch M. J. (ref62/cit62) 2009 Chayed N. F. (ref70/cit70) 2011; 1400 Yang P. D. (ref26/cit26) 1997; 12 Chen L. (ref39/cit39) 2008; 863 Carrasco J. (ref46/cit46) 2007; 99 Zhang Y. (ref48/cit48) 2010; 132 Cornu D. (ref22/cit22) 2013; 15 Xiong Y. L. (ref4/cit4) 2011; 284 Aydin C. (ref11/cit11) 2013; 52 Peterson K. A. (ref61/cit61) 1994; 100 Piskorz W. (ref25/cit25) 2011; 115 Jain A. (ref38/cit38) 2006; 36 Livraghi S. (ref20/cit20) 2010; 322 Kumar A. (ref71/cit71) 2008; 69 Bhatt J. S. (ref44/cit44) 2007; 382 Calvo F. (ref43/cit43) 2003; 67 Schaef H. T. (ref3/cit3) 2011; 75 Köhler T. M. (ref40/cit40) 1997; 320 Petitjean H. (ref21/cit21) 2010; 114 Haertelt M. (ref32/cit32) 2012; 14 Williams M. W. (ref68/cit68) 1967; 386 Chase M. W. (ref65/cit65) 1998; 9 Roberts C. (ref45/cit45) 2001; 3 Piskorz W. (ref24/cit24) 2013; 117 Thiel W. (ref56/cit56) 1996; 100 Lunsford J. H. (ref12/cit12) 1990; 6 Roessler D. M. (ref67/cit67) 1967; 159 Ziemann P. J. (ref31/cit31) 1991; 94 Chen M. (ref66/cit66) 2013; 117 Wilson M. (ref42/cit42) 1997; 101 Smith D. K. (ref64/cit64) 1968; 1 Lamb H. H. (ref5/cit5) 1988; 27 Kawi S. (ref7/cit7) 1994; 98 Diwald O. (ref17/cit17) 2002; 106 Becke A. D. (ref57/cit57) 1993; 98 Bailly M.-L. (ref23/cit23) 2005; 235 Trevethan T. (ref14/cit14) 2007; 111 Yang Q. (ref28/cit28) 2004; 15 Bilalbegovic G. (ref37/cit37) 2004; 70 Shluger A. L. (ref15/cit15) 1991; 3 Dixon D. A. (ref52/cit52) 2012; 8 Lee C. T. (ref58/cit58) 1988; 37 Edmonds J. A. (ref1/cit1) 2001 Ziemann P. J. (ref30/cit30) 1991; 20 Beck K. M. (ref16/cit16) 2008; 602 Pacchioni G. (ref18/cit18) 2013; 113 Dewar M. J. S. (ref54/cit54) 1977; 99 Malliavin M.-J. (ref34/cit34) 1997; 106 Feller D. (ref51/cit51) 2012; 110 Dong R. B. (ref47/cit47) 2008; 129 |
References_xml | – volume: 99 start-page: 4899 year: 1977 ident: ref54/cit54 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00457a004 – volume: 37 start-page: 785 year: 1988 ident: ref58/cit58 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.37.785 – volume: 56 start-page: 7607 year: 1997 ident: ref41/cit41 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.56.7607 – volume: 50 start-page: 1716 year: 2011 ident: ref33/cit33 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201004617 – volume: 100 start-page: 7410 year: 1994 ident: ref61/cit61 publication-title: J. Chem. Phys. doi: 10.1063/1.466884 – volume: 99 start-page: 4907 year: 1977 ident: ref55/cit55 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00457a005 – volume: 70 start-page: 045407 year: 2004 ident: ref37/cit37 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.70.045407 – volume: 3 start-page: 8027 year: 1991 ident: ref15/cit15 publication-title: J. Phys.: Condens. Matter – volume: 98 start-page: 5648 year: 1993 ident: ref57/cit57 publication-title: J. Chem. Phys. doi: 10.1063/1.464913 – volume: 1 start-page: 246 year: 1968 ident: ref64/cit64 publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889868005418 – volume: 70 start-page: 560 year: 1992 ident: ref59/cit59 publication-title: Can. J. Chem. doi: 10.1139/v92-079 – volume: 99 start-page: 235502 year: 2007 ident: ref46/cit46 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.235502 – volume: 43 start-page: 2462 year: 2004 ident: ref27/cit27 publication-title: Inorg. Chem. doi: 10.1021/ic0351489 – volume: 94 start-page: 718 year: 1991 ident: ref31/cit31 publication-title: J. Chem. Phys. doi: 10.1063/1.460340 – volume: 320 start-page: 553 year: 1997 ident: ref40/cit40 publication-title: Astron. Astrophys. – volume: 14 start-page: 2849 year: 2012 ident: ref32/cit32 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp23432g – volume-title: MOLPRO ident: ref63/cit63 – volume: 98 start-page: 12978 year: 1994 ident: ref7/cit7 publication-title: J. Phys. Chem. doi: 10.1021/j100100a028 – volume: 106 start-page: 3495 year: 2002 ident: ref17/cit17 publication-title: J. Phys. Chem. B doi: 10.1021/jp011049+ – volume: 322 start-page: 39 year: 2010 ident: ref20/cit20 publication-title: J. Mol. Catal. A: Chem. doi: 10.1016/j.molcata.2010.02.012 – volume: 545 start-page: 157 year: 2012 ident: ref69/cit69 publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.545.157 – volume: 117 start-page: 18488 year: 2013 ident: ref24/cit24 publication-title: J. Phys. Chem. C doi: 10.1021/jp405459g – volume: 98 start-page: 4783 year: 1993 ident: ref35/cit35 publication-title: J. Chem. Phys. doi: 10.1063/1.464982 – volume: 9 start-page: 1 year: 1998 ident: ref65/cit65 publication-title: J. Phys. Chem. Ref. Data, Monograph – volume: 113 start-page: 4035 year: 2013 ident: ref18/cit18 publication-title: Chem. Rev. doi: 10.1021/cr3002017 – volume: 75 start-page: 7458 issue: 23 year: 2011 ident: ref3/cit3 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2011.09.029 – volume-title: Introduction to Geochemistry year: 1979 ident: ref2/cit2 – volume: 9 start-page: 3189 year: 2013 ident: ref53/cit53 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct400105c – volume: 1400 start-page: 328 year: 2011 ident: ref70/cit70 publication-title: International Congress on Advances in Applied Physics and Materials Science AIP Conf. Proc. – volume: 52 start-page: 5262 year: 2013 ident: ref11/cit11 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201300238 – volume: 12 start-page: 2981 year: 1997 ident: ref26/cit26 publication-title: J. Mater. Res. doi: 10.1557/JMR.1997.0393 – volume: 36 start-page: 171 year: 2006 ident: ref38/cit38 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2005.06.007 – volume: 15 start-page: 19870 year: 2013 ident: ref22/cit22 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp53624f – volume: 235 start-page: 413 year: 2005 ident: ref23/cit23 publication-title: J. Catal. doi: 10.1016/j.jcat.2005.09.004 – volume: 382 start-page: 291 year: 2007 ident: ref44/cit44 publication-title: Mon. Not. R. Astron. Soc. doi: 10.1111/j.1365-2966.2007.12358.x – volume: 131 start-page: 1079 issue: 1 year: 2012 ident: ref50/cit50 publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-011-1079-5 – volume: 6 start-page: 235 year: 1990 ident: ref12/cit12 publication-title: Catal. Today doi: 10.1016/0920-5861(90)85004-8 – volume: 49 start-page: 10089 year: 2010 ident: ref9/cit9 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201005105 – volume: 114 start-page: 3008 year: 2010 ident: ref21/cit21 publication-title: J. Phys. Chem. C doi: 10.1021/jp909354p – start-page: 46 year: 2001 ident: ref1/cit1 publication-title: Greenhouse Gas Control Technologies – volume: 269 start-page: 318 year: 2010 ident: ref8/cit8 publication-title: J. Catal. doi: 10.1016/j.jcat.2009.11.017 – volume: 111 start-page: 15375 year: 2007 ident: ref14/cit14 publication-title: J. Phys. Chem. C doi: 10.1021/jp072857p – volume: 863 start-page: 55 year: 2008 ident: ref39/cit39 publication-title: J. Mol. Struct. (THEOCHEM) doi: 10.1016/j.theochem.2008.05.020 – volume: 129 start-page: 044705 year: 2008 ident: ref47/cit47 publication-title: J. Chem. Phys. doi: 10.1063/1.2956508 – volume: 8 start-page: 1 volume-title: Annual Reports in Computational Chemistry year: 2012 ident: ref52/cit52 – volume-title: Gaussian 09 year: 2009 ident: ref62/cit62 – volume: 115 start-page: 22451 year: 2011 ident: ref25/cit25 publication-title: J. Phys. Chem. C doi: 10.1021/jp2070826 – volume: 20 start-page: 97 year: 1991 ident: ref30/cit30 publication-title: Z. Phys. D doi: 10.1007/BF01543947 – volume: 67 start-page: 161403 year: 2003 ident: ref43/cit43 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.67.161403 – volume: 27 start-page: 1127 year: 1988 ident: ref5/cit5 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.198811271 – volume: 70 start-page: 146 year: 1987 ident: ref29/cit29 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1987.tb04949.x – volume: 100 start-page: 616 year: 1996 ident: ref56/cit56 publication-title: J. Phys. Chem. doi: 10.1021/jp952148o – volume: 602 start-page: 1968 year: 2008 ident: ref16/cit16 publication-title: Surf. Sci. doi: 10.1016/j.susc.2008.03.046 – volume: 15 start-page: 1004 year: 2004 ident: ref28/cit28 publication-title: Nanotechnology doi: 10.1088/0957-4484/15/8/025 – volume: 132 start-page: 194304 year: 2010 ident: ref48/cit48 publication-title: J. Chem. Phys. doi: 10.1063/1.3425844 – volume: 308 start-page: 201 year: 2013 ident: ref10/cit10 publication-title: J. Catal. doi: 10.1016/j.jcat.2013.07.005 – volume: 114 start-page: 9349 year: 2010 ident: ref49/cit49 publication-title: J. Phys. Chem. A doi: 10.1021/jp1050657 – volume: 90 start-page: 1007 year: 1989 ident: ref60/cit60 publication-title: J. Chem. Phys. doi: 10.1063/1.456153 – volume: 284 start-page: 262 issue: 3 year: 2011 ident: ref4/cit4 publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2011.03.005 – volume: 117 start-page: 8298 year: 2013 ident: ref66/cit66 publication-title: J. Phys. Chem. A doi: 10.1021/jp404493w – volume: 133 start-page: 216 year: 2008 ident: ref19/cit19 publication-title: Catal. Today doi: 10.1016/j.cattod.2007.12.087 – volume: 110 start-page: 2381 year: 2012 ident: ref51/cit51 publication-title: Mol. Phys. doi: 10.1080/00268976.2012.684897 – volume: 386 start-page: 5272 year: 1967 ident: ref68/cit68 publication-title: J. Appl. Phys. doi: 10.1063/1.1709313 – volume: 106 start-page: 2323 year: 1997 ident: ref34/cit34 publication-title: J. Chem. Phys. doi: 10.1063/1.474110 – volume: 595 start-page: 172 year: 2005 ident: ref13/cit13 publication-title: Surf. Sci. doi: 10.1016/j.susc.2005.08.009 – volume: 159 start-page: 733 year: 1967 ident: ref67/cit67 publication-title: Phys. Rev. doi: 10.1103/PhysRev.159.733 – volume: 109 start-page: 349 year: 2009 ident: ref36/cit36 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.21762 – volume: 3 start-page: 5024 year: 2001 ident: ref45/cit45 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b106507f – volume: 69 start-page: 2764 year: 2008 ident: ref71/cit71 publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2008.06.143 – volume: 94 start-page: 8451 year: 1990 ident: ref6/cit6 publication-title: J. Phys. Chem. doi: 10.1021/j100385a018 – volume: 101 start-page: 4917 year: 1997 ident: ref42/cit42 publication-title: J. Phys. Chem. B doi: 10.1021/jp970712k |
SSID | ssj0001324 |
Score | 2.4325473 |
Snippet | Global minima for (MgO) n structures were optimized using a tree growth–hybrid genetic algorithm in conjunction with MNDO/MNDO/d semiempirical molecular... Global minima for (MgO)n structures were optimized using a tree growth-hybrid genetic algorithm in conjunction with MNDO/MNDO/d semiempirical molecular orbital... Global minima for (MgO)n structures were optimized using a tree growth–hybrid genetic algorithm in conjunction with MNDO/MNDO/d semiempirical molecular orbital... |
SourceID | osti proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3136 |
SubjectTerms | Environmental Molecular Sciences Laboratory |
Title | Structures and Stabilities of (MgO) n Nanoclusters |
URI | http://dx.doi.org/10.1021/jp412820z https://www.ncbi.nlm.nih.gov/pubmed/24716776 https://www.proquest.com/docview/1521327168 https://www.osti.gov/biblio/1158958 |
Volume | 118 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV07T8MwED5BGWDh_SgFFB5DGVJcx3bsERUQQioMpVK3yHEcJKiSSm2X_nrOSVOBKLBfFNt3vvs--fwZ4MplQ5ukqa8VYT6TXPjaxG1fBUkqhbCKpO6icPdZPPbZ04APVuDylxN82r55HzHMoZTMVmGNCty8Dv90eot0i3SKlV30yudYbyv5oK-futJjxt9KTy3HLfQ7rCzKy8MW3FWXdMquko_WdBK3zOynZuNfI9-GzTm89G7LeNiBFZvtwnqnetVtD2ivEIydIsv2dJZ4CDaL9lgkzF6ees3u28u1l3mYdHMznDoVhfE-9B_uXzuP_vzdBF8zIid-kkilFdPWqd3xVGpNbRgTE7KEaOuEQBmyYhOw0KSScMtkEDMWailNW4ckDg6gluWZPQIv5CkNGDWI0pBICqEU5-4uK06MGMp4Hc5wYaN53I-j4kibIqWopl6HZrXmkZmrjrvHL4bLTC8WpqNSamOZUcM5LkJ84ERujesGMhPkMVwqLutwXvkzwnV1Zx86s_kUB4YwJaBIDtHmsHT04icUC7QIQ3H832QasIF4iZX9jidQQ4fZU8Qkk_isiMlPtGjWMQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgHODCvpSyBMQBDimuYyf2saqoCrTlQCtxixzHQYIqqZT00q9nnKUsKoK7k3gy9sx78vgNQlcmGuowimwpMLUpZ64tVdCyhRNG3HW1wJG5KDwYur0xfXhhL6VMjrkLA5NI4U1pfoj_qS7Qun2bUgilBM9X0RqAEGJWc7vzvIi6wKpoUUwvbAZpt1IR-vqoyUAq_ZaBagnspN_RZZ5lultFu6J8fnlxyXtzlgVNNf8h3fg_A7bRZgk2rXaxOnbQio530Xqn6vG2h8hzLh87A85tyTi0AHrmxbJAn60ksq4Hr083VmxBCE7UZGY0FdJ9NO7ejTo9u-yiYEuKeWaHIRdSUKmN9h2LuJREewFWHg2x1EYWlAJHVg71VMQx05Q7AaWe5Fy1pIcD5wDV4iTWR8jyWEQcShRgNqCVrisEY-ZmKxiGFaGsjs7Acr_cBamfH3ATIBiV6XV0Xf16X5Ua5KYVxmTZ0MvF0GkhvLFsUMP4zwe0YCRvlakNUhmwGsYF43V0UbnVh_9qTkJkrJMZTAxAi0OAKsKYw8Lfi48QSNeu57nHfxlzjtZ7o0Hf798PHxtoA5AULSohT1ANnKdPAa1kwVm-TD8Abgbekg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB50BfXi-7E-q3jQQzWbJm1ylNXFt4IK3kqaJoJKu9Ddi7_eSR-LiqL3tM10kpnvYyZfAPZcNDSptb6ShPlM8NBXOun4MkitCEMjiXUHha9vwrNHdvHEn2qi6M7C4CQKfFNRFvHdru6ntlYY6By99BmGU0rex2HClevcij7u3o8iLzIrVjXUS59j6m2UhD4_6rKQLr5koVaOu-l3hFlmmt4s3I7mWDaYvB4OB8mhfv8m3_h_I-Zgpgad3nG1SuZhzGQLMNVt7npbBHpfysgOkXt7Kks9hKBl0yzSaC-33v718-2Bl3kYinP9NnTaCsUSPPZOH7pnfn2bgq8YEQM_TYVUkinjNPC4FUpREyVERywlyjh5UIZcWQcs0lYQbpgIEsYiJYTuqIgkwTK0sjwzq-BF3NKAUY3YDellGErJuTvhioYRTRlvwxZaH9e7oYjLQjdFotGY3ob95vfHutYid1divP00dHc0tF8JcPw0aN35MEbU4KRvtesR0gNkN1xILtqw07g2xv_qKiIqM_kQJ4bgJaBIGXHMSuXz0Ucopu0wisK1v4zZhsm7k158dX5zuQ7TCKhY1RC5AS30ndlE0DJItsqV-gHvS-EV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structures+and+stabilities+of+%28MgO%29n+nanoclusters&rft.jtitle=The+journal+of+physical+chemistry.+A%2C+Molecules%2C+spectroscopy%2C+kinetics%2C+environment%2C+%26+general+theory&rft.au=Chen%2C+Mingyang&rft.au=Felmy%2C+Andrew+R&rft.au=Dixon%2C+David+A&rft.date=2014-05-01&rft.issn=1520-5215&rft.eissn=1520-5215&rft.volume=118&rft.issue=17&rft.spage=3136&rft_id=info:doi/10.1021%2Fjp412820z&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-5639&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-5639&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-5639&client=summon |