Design Strategy for Ag(I)-Based Thermally Activated Delayed Fluorescence Reaching an Efficiency Breakthrough

A design strategy for the development of Ag­(I)-based materials for thermally activated delayed fluorescence (TADF) is presented. Although Ag­(I) complexes usually do not show TADF, the designed material, Ag­(dbp)­(P2-nCB) [dbp = 2,9-di-n-butyl-1,10-phenanthroline, and P2-nCB = nido-carborane-bis­(d...

Full description

Saved in:
Bibliographic Details
Published inChemistry of materials Vol. 29; no. 4; pp. 1708 - 1715
Main Authors Shafikov, Marsel Z, Suleymanova, Alfiya F, Czerwieniec, Rafał, Yersin, Hartmut
Format Journal Article
LanguageEnglish
Published American Chemical Society 28.02.2017
Online AccessGet full text

Cover

Loading…
Abstract A design strategy for the development of Ag­(I)-based materials for thermally activated delayed fluorescence (TADF) is presented. Although Ag­(I) complexes usually do not show TADF, the designed material, Ag­(dbp)­(P2-nCB) [dbp = 2,9-di-n-butyl-1,10-phenanthroline, and P2-nCB = nido-carborane-bis­(diphenylphosphine)], shows a TADF efficiency breakthrough exhibiting an emission decay time of τ­(TADF) = 1.4 μs at a quantum yield of ΦPL = 100%. This is a consequence of three optimized parameters. (i) The strongly electron-donating negatively charged P2-nCB ligand destabilizes the 4d orbitals and leads to low-lying charge (CT) states of MLL′CT character, with L and L′ being the two different ligands, thus giving a small energy separation between the lowest singlet S1 and triplet T1 state of ΔE(S1–T1) = 650 cm–1 (80 meV). (ii) The allowedness of the S1 → S0 transition is more than 1 order of magnitude higher than those found for other TADF metal complexes, as shown experimentally and by time-dependent density functional theory calculations. Both parameters favor a short TADF decay time. (iii) The high quantum efficiency is dominantly related to the rigid molecular structure of Ag­(dbp)­(P2-nCB), resulting from the design strategy of introducing n-butyl substitutions at positions 2 and 9 of phenanthroline that sterically interact with the phenyl groups of the P2-nCB ligand. In particular, the shortest TADF decay time of τ­(TADF) = 1.4 μs at a ΦPL value of 100%, reported so far, suggests the use of this outstanding material for organic light-emitting diodes (OLEDs). Importantly, the emission of Ag­(dbp)­(P2-nCB) is not subject to concentration quenching. Therefore, it may be applied even as a 100% emission layer.
AbstractList A design strategy for the development of Ag­(I)-based materials for thermally activated delayed fluorescence (TADF) is presented. Although Ag­(I) complexes usually do not show TADF, the designed material, Ag­(dbp)­(P2-nCB) [dbp = 2,9-di-n-butyl-1,10-phenanthroline, and P2-nCB = nido-carborane-bis­(diphenylphosphine)], shows a TADF efficiency breakthrough exhibiting an emission decay time of τ­(TADF) = 1.4 μs at a quantum yield of ΦPL = 100%. This is a consequence of three optimized parameters. (i) The strongly electron-donating negatively charged P2-nCB ligand destabilizes the 4d orbitals and leads to low-lying charge (CT) states of MLL′CT character, with L and L′ being the two different ligands, thus giving a small energy separation between the lowest singlet S1 and triplet T1 state of ΔE(S1–T1) = 650 cm–1 (80 meV). (ii) The allowedness of the S1 → S0 transition is more than 1 order of magnitude higher than those found for other TADF metal complexes, as shown experimentally and by time-dependent density functional theory calculations. Both parameters favor a short TADF decay time. (iii) The high quantum efficiency is dominantly related to the rigid molecular structure of Ag­(dbp)­(P2-nCB), resulting from the design strategy of introducing n-butyl substitutions at positions 2 and 9 of phenanthroline that sterically interact with the phenyl groups of the P2-nCB ligand. In particular, the shortest TADF decay time of τ­(TADF) = 1.4 μs at a ΦPL value of 100%, reported so far, suggests the use of this outstanding material for organic light-emitting diodes (OLEDs). Importantly, the emission of Ag­(dbp)­(P2-nCB) is not subject to concentration quenching. Therefore, it may be applied even as a 100% emission layer.
Author Shafikov, Marsel Z
Suleymanova, Alfiya F
Czerwieniec, Rafał
Yersin, Hartmut
AuthorAffiliation Universität Regensburg
Institut für Physikalische und Theoretische Chemie
I. Postovsky Institute of Organic Synthesis
AuthorAffiliation_xml – name: Institut für Physikalische und Theoretische Chemie
– name: I. Postovsky Institute of Organic Synthesis
– name: Universität Regensburg
Author_xml – sequence: 1
  givenname: Marsel Z
  orcidid: 0000-0003-0495-0364
  surname: Shafikov
  fullname: Shafikov, Marsel Z
  organization: Universität Regensburg
– sequence: 2
  givenname: Alfiya F
  surname: Suleymanova
  fullname: Suleymanova, Alfiya F
  organization: I. Postovsky Institute of Organic Synthesis
– sequence: 3
  givenname: Rafał
  surname: Czerwieniec
  fullname: Czerwieniec, Rafał
  email: hartmut.yersin@ur.de
  organization: Universität Regensburg
– sequence: 4
  givenname: Hartmut
  surname: Yersin
  fullname: Yersin, Hartmut
  email: rafal.czerwieniec@ur.de
  organization: Universität Regensburg
BookMark eNqFkF1LwzAUhoNMcJv-BCGXetGZtE3b4NU-dTAQdF6XNDltM7tUkk7ovzdjwwtvdvXCOec58D4jNDCtAYTuKZlQEtInId1E1rDfiw7sJCkIoym7QkPKQhIwQsIBGpKMp0GcsuQGjZzbEUI9mg1RswCnK4M_Ouvpqsdla_G0elg_BjPhQOFtDXYvmqbHU9npH3-k8AIa0ftcNYfWgpNgJOB3ELLWpsLC4GVZaqn9uMczC-Krq217qOpbdF2KxsHdOcfoc7Xczl-DzdvLej7dBCImWRfwlMcqTSmnKs5iyCQVVIYqYSJSspSJVJyyNC54RBOuGCck4iCh4FCImKskGqPn019pW-cslLnUneh0a3xL3eSU5EdxuReX_4nLz-I8zf7R31bvhe0vcvTEHde79mCN73iB-QVyU4v5
CitedBy_id crossref_primary_10_1016_j_ccr_2022_214975
crossref_primary_10_1021_acsomega_2c00036
crossref_primary_10_1039_C7DT02460F
crossref_primary_10_3390_molecules26113415
crossref_primary_10_1007_s11426_024_2026_2
crossref_primary_10_1002_ange_201707193
crossref_primary_10_1039_C9NJ05887G
crossref_primary_10_1016_j_poly_2017_11_032
crossref_primary_10_1021_acs_jpclett_8b00957
crossref_primary_10_1002_anie_201806922
crossref_primary_10_1021_acs_jpclett_8b01511
crossref_primary_10_1021_acs_inorgchem_4c00751
crossref_primary_10_1039_C8DT03771J
crossref_primary_10_1021_acs_inorgchem_7b02002
crossref_primary_10_1002_anie_202410414
crossref_primary_10_3390_inorganics11020072
crossref_primary_10_1021_acs_orglett_9b00562
crossref_primary_10_1002_cphc_201700872
crossref_primary_10_1039_D2RA05643G
crossref_primary_10_1021_acs_jpclett_9b03002
crossref_primary_10_1021_acsaom_4c00041
crossref_primary_10_1039_D0DT03144E
crossref_primary_10_1021_acs_inorgchem_0c03664
crossref_primary_10_1002_adom_202000260
crossref_primary_10_1039_D4DT02855D
crossref_primary_10_1002_ange_201806922
crossref_primary_10_1002_adom_202100516
crossref_primary_10_1039_D3SC00686G
crossref_primary_10_1039_D3CE00764B
crossref_primary_10_1039_C8DT04093A
crossref_primary_10_1002_adom_202100081
crossref_primary_10_1002_anie_201708876
crossref_primary_10_1021_acs_jpclett_7b03160
crossref_primary_10_1021_acs_inorgchem_0c00980
crossref_primary_10_1021_acs_chemmater_2c01938
crossref_primary_10_1039_C8CP01101J
crossref_primary_10_1039_D1SC00791B
crossref_primary_10_3390_cryst15020115
crossref_primary_10_1016_j_ccr_2022_214700
crossref_primary_10_1016_j_ccr_2021_213795
crossref_primary_10_1039_C7DT03923A
crossref_primary_10_1039_C8DT04078H
crossref_primary_10_1021_acs_inorgchem_0c02238
crossref_primary_10_1002_adpr_202400111
crossref_primary_10_1002_ange_201708876
crossref_primary_10_1039_D3CS00871A
crossref_primary_10_1002_ange_202410414
crossref_primary_10_1039_C9QI01069F
crossref_primary_10_1039_D4DT02473G
crossref_primary_10_3390_reactions3010013
crossref_primary_10_1039_D2SC03037C
crossref_primary_10_1021_acs_chemrev_3c00629
crossref_primary_10_1126_sciadv_aay0107
crossref_primary_10_1039_C8CP03657H
crossref_primary_10_1016_j_orgel_2019_02_022
crossref_primary_10_1021_jacs_7b01924
crossref_primary_10_1021_acs_chemmater_1c01531
crossref_primary_10_1021_acs_inorgchem_0c01054
crossref_primary_10_1016_j_chemphys_2018_07_016
crossref_primary_10_1039_C8DT03452D
crossref_primary_10_1021_acs_inorgchem_6b03100
crossref_primary_10_1021_acs_chemrev_3c00755
crossref_primary_10_1039_D4DT01056F
crossref_primary_10_1039_D4TC02888K
crossref_primary_10_1039_D4SC04607B
crossref_primary_10_1002_bkcs_12149
crossref_primary_10_1002_anie_201906698
crossref_primary_10_1039_c7pp00432j
crossref_primary_10_3389_fchem_2020_00653
crossref_primary_10_1002_ejic_201700677
crossref_primary_10_1021_jacs_1c04413
crossref_primary_10_1039_D3CS01102J
crossref_primary_10_1002_adom_202303053
crossref_primary_10_1039_D1DT02990H
crossref_primary_10_1002_anie_201707193
crossref_primary_10_1002_adfm_201908641
crossref_primary_10_1021_acs_inorgchem_9b03064
crossref_primary_10_1039_D0QI00254B
crossref_primary_10_1002_advs_202404866
crossref_primary_10_1002_ange_202014941
crossref_primary_10_1039_C7NJ03521G
crossref_primary_10_1021_acs_chemrev_3c00761
crossref_primary_10_1016_j_ccr_2021_214315
crossref_primary_10_1021_acs_chemmater_9b00671
crossref_primary_10_1002_ange_201906698
crossref_primary_10_1063_1_5032185
crossref_primary_10_1002_chem_201704642
crossref_primary_10_1039_C8CS00075A
crossref_primary_10_1002_tcr_202000013
crossref_primary_10_3390_reactions5040046
crossref_primary_10_1016_j_cclet_2019_08_006
crossref_primary_10_1039_C8DT03377C
crossref_primary_10_1039_D2CC02930H
crossref_primary_10_1002_adom_202203145
crossref_primary_10_1016_j_poly_2019_114178
crossref_primary_10_1002_anie_202014941
crossref_primary_10_1039_D2NJ00774F
crossref_primary_10_1039_D0QI01377C
crossref_primary_10_1021_acs_inorgchem_9b01617
crossref_primary_10_1021_jacs_9b13755
crossref_primary_10_1039_C8DT00837J
crossref_primary_10_1088_1361_6633_ace06a
crossref_primary_10_1021_acs_chemmater_0c02683
crossref_primary_10_3390_inorganics8090046
crossref_primary_10_1002_zaac_202100114
crossref_primary_10_1039_D4NJ04193C
crossref_primary_10_1039_D0QI00535E
crossref_primary_10_1039_D1SC00160D
Cites_doi 10.1039/c3tc30524d
10.1007/s41061-016-0019-1
10.1021/ja2107788
10.1021/ja003693s
10.1039/b813844c
10.1016/j.orgel.2016.02.016
10.1038/nature04645
10.1021/acs.inorgchem.6b00068
10.1021/acs.chemmater.5b03245
10.1021/ja2026568
10.1021/ic1009253
10.1016/0022-328X(95)05809-4
10.1039/C4DT02709D
10.1021/ic300979c
10.1021/acs.inorgchem.6b01602
10.1021/ja017214g
10.1021/ic900203x
10.1021/ic700475z
10.1002/ejic.201301349
10.1016/j.poly.2007.11.019
10.1021/ic034527z
10.1021/cm5006086
10.1038/nature11687
10.1002/adfm.201300104
10.1021/acs.inorgchem.5b02444
10.1021/ic500889s
10.1002/9783527654949.ch13
10.1007/s41061-016-0036-0
10.1016/S1566-1199(01)00007-6
10.1021/jp503437b
10.1021/ja202965y
10.1021/ja508155x
10.1039/C4SC03161J
10.1002/ejoc.201600247
10.1063/1.1727152
10.1016/0022-328X(95)05558-7
10.1039/C5NJ03529E
10.1063/1.1409582
10.1016/j.ccr.2016.06.016
10.1093/oso/9780198555735.001.0001
10.1126/sciadv.1500889
10.1021/ja012247h
10.1016/j.ccr.2008.03.013
10.1021/ja5109672
10.1016/j.ccr.2011.01.042
10.1021/ic401213p
10.1039/C3CP53806K
10.1021/ic100872w
10.1021/ic503072u
10.1039/c3cc42280a
10.1016/j.ica.2008.02.037
10.1002/chem.201405356
10.1002/chem.201504392
10.1039/C6CC00809G
10.1038/ncomms9476
10.1021/acs.inorgchem.5b00907
10.1063/1.1728019
10.1021/jp402975d
10.1007/128_2007_128
10.1007/b96858
10.1039/C5DT01292A
10.1021/ic50010a006
10.1021/ja108645x
10.1021/ic300333c
10.1038/nphoton.2014.12
10.1039/b508541a
10.1007/s00214-007-0310-x
10.1021/ja1004575
10.1002/adma.201405897
10.1021/ic0608086
10.1016/j.ica.2005.06.083
10.1002/adma.200502365
10.1039/tf9615701894
10.1016/j.jlumin.2016.08.004
10.1021/ic801250g
10.1021/ic200811a
10.1002/9783527654949
10.1107/S0021889808042726
10.1021/ja0294663
10.1063/1.3558906
10.1021/acs.inorgchem.5b02546
10.1063/1.4891680
10.1021/acs.inorgchem.6b00763
10.1039/dt9960004583
10.1007/3418_2009_6
10.1021/ar500353h
10.1021/acs.jpca.5b00901
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/acs.chemmater.6b05175
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-5002
EndPage 1715
ExternalDocumentID 10_1021_acs_chemmater_6b05175
c165880698
GroupedDBID 29B
53G
55A
5GY
7~N
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACGFS
ACJ
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
LG6
P2P
ROL
TN5
TWZ
UI2
UPT
VF5
VG9
W1F
X
YZZ
-~X
.K2
4.4
5VS
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AGXLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
ID FETCH-LOGICAL-a408t-9794d77191d484e8c1a1c2d65a3dcfc6cd91574b93169d590039eceb9eba49d63
IEDL.DBID ACS
ISSN 0897-4756
IngestDate Tue Jul 01 01:13:25 EDT 2025
Thu Apr 24 23:05:41 EDT 2025
Thu Aug 27 13:42:10 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a408t-9794d77191d484e8c1a1c2d65a3dcfc6cd91574b93169d590039eceb9eba49d63
ORCID 0000-0003-0495-0364
OpenAccessLink https://zenodo.org/record/2616362/files/Working%20Paper%20-%202017.Design%20Strategy%20for%20Ag%28I%29-Based%20Thermally%20Activated%20Delayed%20Fluorescence.pdf
PageCount 8
ParticipantIDs crossref_citationtrail_10_1021_acs_chemmater_6b05175
crossref_primary_10_1021_acs_chemmater_6b05175
acs_journals_10_1021_acs_chemmater_6b05175
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-02-28
PublicationDateYYYYMMDD 2017-02-28
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-02-28
  day: 28
PublicationDecade 2010
PublicationTitle Chemistry of materials
PublicationTitleAlternate Chem. Mater
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
Rausch A. F. (ref77/cit77) 2007; 6655
ref3/cit3
ref27/cit27
ref81/cit81
ref63/cit63
ref56/cit56
ref16/cit16
ref92/cit92
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
Yersin H. (ref9/cit9) 2012
ref34/cit34
ref71/cit71
ref37/cit37
Armaroli N. (ref67/cit67) 2007
Brütting W. (ref2/cit2) 2012
ref20/cit20
ref48/cit48
ref60/cit60
ref74/cit74
ref88/cit88
ref17/cit17
ref82/cit82
Yersin H. (ref1/cit1) 2008
ref10/cit10
Turro N. J. (ref85/cit85) 1991
ref35/cit35
ref89/cit89
ref53/cit53
ref19/cit19
ref93/cit93
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref75/cit75
ref24/cit24
ref38/cit38
ref90/cit90
ref50/cit50
ref64/cit64
ref78/cit78
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref83/cit83
ref65/cit65
ref79/cit79
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref76/cit76
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref43/cit43
ref80/cit80
ref28/cit28
ref40/cit40
ref68/cit68
ref94/cit94
ref91/cit91
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref87/cit87
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref44/cit44
ref70/cit70
ref7/cit7
Yersin H. (ref51/cit51) 2014; 9183
References_xml – ident: ref37/cit37
  doi: 10.1039/c3tc30524d
– ident: ref33/cit33
  doi: 10.1007/s41061-016-0019-1
– ident: ref55/cit55
  doi: 10.1021/ja2107788
– ident: ref12/cit12
  doi: 10.1021/ja003693s
– ident: ref75/cit75
  doi: 10.1039/b813844c
– ident: ref5/cit5
  doi: 10.1016/j.orgel.2016.02.016
– ident: ref10/cit10
  doi: 10.1038/nature04645
– ident: ref50/cit50
  doi: 10.1021/acs.inorgchem.6b00068
– ident: ref7/cit7
  doi: 10.1021/acs.chemmater.5b03245
– ident: ref53/cit53
  doi: 10.1021/ja2026568
– ident: ref16/cit16
  doi: 10.1021/ic1009253
– ident: ref59/cit59
  doi: 10.1016/0022-328X(95)05809-4
– ident: ref36/cit36
  doi: 10.1039/C4DT02709D
– volume-title: Highly Efficient OLEDs with Phosphorescent Materials
  year: 2008
  ident: ref1/cit1
– ident: ref43/cit43
  doi: 10.1021/ic300979c
– ident: ref18/cit18
  doi: 10.1021/acs.inorgchem.6b01602
– ident: ref64/cit64
  doi: 10.1021/ja017214g
– ident: ref74/cit74
  doi: 10.1021/ic900203x
– ident: ref90/cit90
  doi: 10.1021/ic700475z
– ident: ref52/cit52
  doi: 10.1002/ejic.201301349
– ident: ref61/cit61
  doi: 10.1016/j.poly.2007.11.019
– ident: ref91/cit91
  doi: 10.1021/ic034527z
– ident: ref4/cit4
  doi: 10.1021/cm5006086
– ident: ref26/cit26
  doi: 10.1038/nature11687
– ident: ref13/cit13
  doi: 10.1002/adfm.201300104
– ident: ref3/cit3
  doi: 10.1021/acs.inorgchem.5b02444
– volume-title: Modern Molecular Photochemistry
  year: 1991
  ident: ref85/cit85
– volume: 6655
  volume-title: Proceedings of SPIE-The International Society for Optical Engineering
  year: 2007
  ident: ref77/cit77
– ident: ref31/cit31
  doi: 10.1021/ic500889s
– start-page: 371
  volume-title: Physics of Organic Semiconductors
  year: 2012
  ident: ref9/cit9
  doi: 10.1002/9783527654949.ch13
– ident: ref17/cit17
  doi: 10.1007/s41061-016-0036-0
– ident: ref22/cit22
  doi: 10.1016/S1566-1199(01)00007-6
– ident: ref27/cit27
– ident: ref15/cit15
  doi: 10.1021/jp503437b
– ident: ref92/cit92
  doi: 10.1021/ja202965y
– ident: ref30/cit30
  doi: 10.1021/ja508155x
– ident: ref63/cit63
  doi: 10.1039/C4SC03161J
– ident: ref19/cit19
  doi: 10.1002/ejoc.201600247
– ident: ref20/cit20
  doi: 10.1063/1.1727152
– ident: ref60/cit60
  doi: 10.1016/0022-328X(95)05558-7
– ident: ref79/cit79
  doi: 10.1039/C5NJ03529E
– ident: ref11/cit11
  doi: 10.1063/1.1409582
– ident: ref34/cit34
  doi: 10.1016/j.ccr.2016.06.016
– ident: ref47/cit47
  doi: 10.1093/oso/9780198555735.001.0001
– ident: ref87/cit87
  doi: 10.1126/sciadv.1500889
– ident: ref41/cit41
  doi: 10.1021/ja012247h
– ident: ref68/cit68
  doi: 10.1016/j.ccr.2008.03.013
– ident: ref32/cit32
  doi: 10.1021/ja5109672
– ident: ref48/cit48
– ident: ref78/cit78
  doi: 10.1016/j.ccr.2011.01.042
– ident: ref82/cit82
  doi: 10.1021/ic401213p
– ident: ref8/cit8
  doi: 10.1039/C3CP53806K
– volume: 9183
  volume-title: Proceedings of SPIE-The International Society for Optical Engineering
  year: 2014
  ident: ref51/cit51
– ident: ref94/cit94
  doi: 10.1021/ic100872w
– ident: ref49/cit49
  doi: 10.1021/ic503072u
– ident: ref38/cit38
  doi: 10.1039/c3cc42280a
– ident: ref62/cit62
  doi: 10.1016/j.ica.2008.02.037
– ident: ref83/cit83
  doi: 10.1002/chem.201405356
– ident: ref6/cit6
  doi: 10.1002/chem.201504392
– ident: ref35/cit35
  doi: 10.1039/C6CC00809G
– ident: ref46/cit46
  doi: 10.1038/ncomms9476
– ident: ref80/cit80
  doi: 10.1021/acs.inorgchem.5b00907
– ident: ref88/cit88
  doi: 10.1063/1.1728019
– ident: ref29/cit29
  doi: 10.1021/jp402975d
– start-page: 69
  volume-title: Photochemistry and Photophysics of Coordination Compounds
  year: 2007
  ident: ref67/cit67
  doi: 10.1007/128_2007_128
– ident: ref23/cit23
  doi: 10.1007/b96858
– ident: ref42/cit42
  doi: 10.1039/C5DT01292A
– ident: ref58/cit58
  doi: 10.1021/ic50010a006
– ident: ref66/cit66
  doi: 10.1021/ja108645x
– ident: ref54/cit54
  doi: 10.1021/ic300333c
– ident: ref45/cit45
  doi: 10.1038/nphoton.2014.12
– ident: ref73/cit73
  doi: 10.1039/b508541a
– ident: ref72/cit72
  doi: 10.1007/s00214-007-0310-x
– ident: ref25/cit25
  doi: 10.1021/ja1004575
– ident: ref44/cit44
  doi: 10.1002/adma.201405897
– ident: ref40/cit40
  doi: 10.1021/ic0608086
– ident: ref56/cit56
  doi: 10.1016/j.ica.2005.06.083
– ident: ref39/cit39
  doi: 10.1002/adma.200502365
– ident: ref89/cit89
  doi: 10.1039/tf9615701894
– ident: ref28/cit28
  doi: 10.1016/j.jlumin.2016.08.004
– ident: ref21/cit21
  doi: 10.1021/ic801250g
– ident: ref24/cit24
  doi: 10.1021/ic200811a
– volume-title: Physics of Organic Semiconductors
  year: 2012
  ident: ref2/cit2
  doi: 10.1002/9783527654949
– ident: ref71/cit71
  doi: 10.1107/S0021889808042726
– ident: ref65/cit65
  doi: 10.1021/ja0294663
– ident: ref93/cit93
  doi: 10.1063/1.3558906
– ident: ref84/cit84
  doi: 10.1021/acs.inorgchem.5b02546
– ident: ref14/cit14
  doi: 10.1063/1.4891680
– ident: ref81/cit81
  doi: 10.1021/acs.inorgchem.6b00763
– ident: ref57/cit57
  doi: 10.1039/dt9960004583
– ident: ref76/cit76
  doi: 10.1007/3418_2009_6
– ident: ref69/cit69
  doi: 10.1021/ar500353h
– ident: ref70/cit70
  doi: 10.1021/acs.jpca.5b00901
SSID ssj0011028
Score 2.534296
Snippet A design strategy for the development of Ag­(I)-based materials for thermally activated delayed fluorescence (TADF) is presented. Although Ag­(I) complexes...
SourceID crossref
acs
SourceType Enrichment Source
Index Database
Publisher
StartPage 1708
Title Design Strategy for Ag(I)-Based Thermally Activated Delayed Fluorescence Reaching an Efficiency Breakthrough
URI http://dx.doi.org/10.1021/acs.chemmater.6b05175
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6qHtSDb_FNDh5U2LrZTdLmWKulCor4AG9LXqvgWqW2h_rrnaTbUhBfp4VAljCZ2e9bkvk-gP0aY9wKESNzoyZiOleRxh-hSMU8x4RyJg8uCpdXon3PLh74QwWOvznBT-ixMhj8J_eCBM51q0J7USk-BTOJwEL2XKh5Oz428GgZaKOsRazGxahl57vXeEgy7xOQNIEtrUW4HnXoDK-UPFf7PV01H18FG_-67CVYKHkmaQwTYxkqrrMCs82RvdsKzE8oEa5CcRpucpBSrHZAkMuSxuPB-WF0gjhnCaYTfsKLYkAaJjii4dipK9QAn62i_9oNslDGkZvyeiZRHXIW9Cl8cyc5QXL6XJoCrcF96-yu2Y5KI4ZIsbjeiyQWrcXNlNSyOnN1QxU1iRVcpdbkRhgrKa8xLVMqpPU-pKl0xmnptGLSinQdpjuvHbcBxMSxliJPEiU1q3OpEESZVtqlkic6pptwhJHLykJ6z8IZeUIzPzgOZ1aGcxPYaOMyU0qae2eN4rdp1fG0t6Gmx88Ttv6zqG2YSzz0h7b3HZjudftuF4lLT--FZP0ELWLrxg
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB6l9EB7gDYtIuXlQw9tpQ3rXduJj0lIFCjk0ILKbeXXcsg2qfI4hF_P2GxCVAlQTitZsjU7Hu98q_F8H8DXBmPcChEjcqMmYjpXkcYfoUjFPMeAciYPKgpXA9G_YRe3_LYCYtkLg0ZMcaVpKOI_sQvQUz-Gr_EXcZyb1IX23FL8DbxFQJL4yG51fq-qBz5pBvQoGxFrcLHs3HluGZ-ZzHQtM62lmN4u_FkZF26WDOvzma6b-_94Gze3_gPslKiTtB7D5CNU3KgK252l2FsV3q_xEn6C4izc6yAlde2CILIlrbtv59-jNmY9SzC48INeFAvSMkEfDcfOXKEW-OwV8_EkkEQZR36VlzWJGpFuYKvwrZ6kjVB1WEoEfYabXve6049KWYZIsbg5iyQeYYtbK6llTeaahipqEiu4Sq3JjTBWUt5gWqZUSOtVSVPpjNPSacWkFekebI3GI7cPxMSxliJPEiU1a3KpMKUyrbRLJU90TGvwAz2XlcdqmoWKeUIzP7hyZ1a6swZsuX-ZKQnOvc5G8dq0-mrav0eGj5cnfNnEqBPY7l9fXWaX54OfB_Au8aAgNMQfwtZsMndHCGlm-jjE7wO9Z_Qn
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB7xkAocgPIQlFJ86KFF2rDetZ34GBIi3qpKkZA4rPxaDiwB5XEIv75j40RRJUD0tJIlW36MPd9qZr4P4HudMW6FSBG5UZMwXapE449QolJeokE5UwYVhYtLcXzNTm_4Tcyq9LUwOIk-jtQPQXx_q59sGRkG6IFvx6U8IJZzvZrQnl-Kz8K8D9156262riYRBO84A4KU9YTVuRhX77w2jPdOpj_lnabcTGcFbicTDNkl97XhQNfM8z_cjf-3glVYjuiTNF_M5TPMuO4aLLTGom9rsDTFT7gOVTvkd5BIYTsiiHBJ8-7Hyc_kEL2fJWhk-LBX1Yg0TdBJw7a2q9QIv51q-NgLZFHGkd8xaZOoLjkKrBW-5JMcImS9j1JBG3DdOfrTOk6iPEOiWNoYJBKvssUjltSyBnMNQxU1mRVc5daURhgrKa8zLXMqpPXqpLl0xmnptGLSinwT5rqPXbcFxKSplqLMMiU1a3Cp0LUyrbTLJc90SrdhH3euiNerX4TIeUYL3zjZziJu5zaw8RkWJhKde72N6r1utUm3pxemj7c7fPnIpPbg0692pzg_uTzbgcXMY4NQF_8V5ga9odtFZDPQ34IJ_wWYGfaq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+Strategy+for+Ag%28I%29-Based+Thermally+Activated+Delayed+Fluorescence+Reaching+an+Efficiency+Breakthrough&rft.jtitle=Chemistry+of+materials&rft.au=Shafikov%2C+Marsel+Z&rft.au=Suleymanova%2C+Alfiya+F&rft.au=Czerwieniec%2C+Rafa%C5%82&rft.au=Yersin%2C+Hartmut&rft.date=2017-02-28&rft.pub=American+Chemical+Society&rft.issn=0897-4756&rft.eissn=1520-5002&rft.volume=29&rft.issue=4&rft.spage=1708&rft.epage=1715&rft_id=info:doi/10.1021%2Facs.chemmater.6b05175&rft.externalDocID=c165880698
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0897-4756&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0897-4756&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0897-4756&client=summon