Design Strategy for Ag(I)-Based Thermally Activated Delayed Fluorescence Reaching an Efficiency Breakthrough
A design strategy for the development of Ag(I)-based materials for thermally activated delayed fluorescence (TADF) is presented. Although Ag(I) complexes usually do not show TADF, the designed material, Ag(dbp)(P2-nCB) [dbp = 2,9-di-n-butyl-1,10-phenanthroline, and P2-nCB = nido-carborane-bis(d...
Saved in:
Published in | Chemistry of materials Vol. 29; no. 4; pp. 1708 - 1715 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
28.02.2017
|
Online Access | Get full text |
Cover
Loading…
Abstract | A design strategy for the development of Ag(I)-based materials for thermally activated delayed fluorescence (TADF) is presented. Although Ag(I) complexes usually do not show TADF, the designed material, Ag(dbp)(P2-nCB) [dbp = 2,9-di-n-butyl-1,10-phenanthroline, and P2-nCB = nido-carborane-bis(diphenylphosphine)], shows a TADF efficiency breakthrough exhibiting an emission decay time of τ(TADF) = 1.4 μs at a quantum yield of ΦPL = 100%. This is a consequence of three optimized parameters. (i) The strongly electron-donating negatively charged P2-nCB ligand destabilizes the 4d orbitals and leads to low-lying charge (CT) states of MLL′CT character, with L and L′ being the two different ligands, thus giving a small energy separation between the lowest singlet S1 and triplet T1 state of ΔE(S1–T1) = 650 cm–1 (80 meV). (ii) The allowedness of the S1 → S0 transition is more than 1 order of magnitude higher than those found for other TADF metal complexes, as shown experimentally and by time-dependent density functional theory calculations. Both parameters favor a short TADF decay time. (iii) The high quantum efficiency is dominantly related to the rigid molecular structure of Ag(dbp)(P2-nCB), resulting from the design strategy of introducing n-butyl substitutions at positions 2 and 9 of phenanthroline that sterically interact with the phenyl groups of the P2-nCB ligand. In particular, the shortest TADF decay time of τ(TADF) = 1.4 μs at a ΦPL value of 100%, reported so far, suggests the use of this outstanding material for organic light-emitting diodes (OLEDs). Importantly, the emission of Ag(dbp)(P2-nCB) is not subject to concentration quenching. Therefore, it may be applied even as a 100% emission layer. |
---|---|
AbstractList | A design strategy for the development of Ag(I)-based materials for thermally activated delayed fluorescence (TADF) is presented. Although Ag(I) complexes usually do not show TADF, the designed material, Ag(dbp)(P2-nCB) [dbp = 2,9-di-n-butyl-1,10-phenanthroline, and P2-nCB = nido-carborane-bis(diphenylphosphine)], shows a TADF efficiency breakthrough exhibiting an emission decay time of τ(TADF) = 1.4 μs at a quantum yield of ΦPL = 100%. This is a consequence of three optimized parameters. (i) The strongly electron-donating negatively charged P2-nCB ligand destabilizes the 4d orbitals and leads to low-lying charge (CT) states of MLL′CT character, with L and L′ being the two different ligands, thus giving a small energy separation between the lowest singlet S1 and triplet T1 state of ΔE(S1–T1) = 650 cm–1 (80 meV). (ii) The allowedness of the S1 → S0 transition is more than 1 order of magnitude higher than those found for other TADF metal complexes, as shown experimentally and by time-dependent density functional theory calculations. Both parameters favor a short TADF decay time. (iii) The high quantum efficiency is dominantly related to the rigid molecular structure of Ag(dbp)(P2-nCB), resulting from the design strategy of introducing n-butyl substitutions at positions 2 and 9 of phenanthroline that sterically interact with the phenyl groups of the P2-nCB ligand. In particular, the shortest TADF decay time of τ(TADF) = 1.4 μs at a ΦPL value of 100%, reported so far, suggests the use of this outstanding material for organic light-emitting diodes (OLEDs). Importantly, the emission of Ag(dbp)(P2-nCB) is not subject to concentration quenching. Therefore, it may be applied even as a 100% emission layer. |
Author | Shafikov, Marsel Z Suleymanova, Alfiya F Czerwieniec, Rafał Yersin, Hartmut |
AuthorAffiliation | Universität Regensburg Institut für Physikalische und Theoretische Chemie I. Postovsky Institute of Organic Synthesis |
AuthorAffiliation_xml | – name: Institut für Physikalische und Theoretische Chemie – name: I. Postovsky Institute of Organic Synthesis – name: Universität Regensburg |
Author_xml | – sequence: 1 givenname: Marsel Z orcidid: 0000-0003-0495-0364 surname: Shafikov fullname: Shafikov, Marsel Z organization: Universität Regensburg – sequence: 2 givenname: Alfiya F surname: Suleymanova fullname: Suleymanova, Alfiya F organization: I. Postovsky Institute of Organic Synthesis – sequence: 3 givenname: Rafał surname: Czerwieniec fullname: Czerwieniec, Rafał email: hartmut.yersin@ur.de organization: Universität Regensburg – sequence: 4 givenname: Hartmut surname: Yersin fullname: Yersin, Hartmut email: rafal.czerwieniec@ur.de organization: Universität Regensburg |
BookMark | eNqFkF1LwzAUhoNMcJv-BCGXetGZtE3b4NU-dTAQdF6XNDltM7tUkk7ovzdjwwtvdvXCOec58D4jNDCtAYTuKZlQEtInId1E1rDfiw7sJCkIoym7QkPKQhIwQsIBGpKMp0GcsuQGjZzbEUI9mg1RswCnK4M_Ouvpqsdla_G0elg_BjPhQOFtDXYvmqbHU9npH3-k8AIa0ftcNYfWgpNgJOB3ELLWpsLC4GVZaqn9uMczC-Krq217qOpbdF2KxsHdOcfoc7Xczl-DzdvLej7dBCImWRfwlMcqTSmnKs5iyCQVVIYqYSJSspSJVJyyNC54RBOuGCck4iCh4FCImKskGqPn019pW-cslLnUneh0a3xL3eSU5EdxuReX_4nLz-I8zf7R31bvhe0vcvTEHde79mCN73iB-QVyU4v5 |
CitedBy_id | crossref_primary_10_1016_j_ccr_2022_214975 crossref_primary_10_1021_acsomega_2c00036 crossref_primary_10_1039_C7DT02460F crossref_primary_10_3390_molecules26113415 crossref_primary_10_1007_s11426_024_2026_2 crossref_primary_10_1002_ange_201707193 crossref_primary_10_1039_C9NJ05887G crossref_primary_10_1016_j_poly_2017_11_032 crossref_primary_10_1021_acs_jpclett_8b00957 crossref_primary_10_1002_anie_201806922 crossref_primary_10_1021_acs_jpclett_8b01511 crossref_primary_10_1021_acs_inorgchem_4c00751 crossref_primary_10_1039_C8DT03771J crossref_primary_10_1021_acs_inorgchem_7b02002 crossref_primary_10_1002_anie_202410414 crossref_primary_10_3390_inorganics11020072 crossref_primary_10_1021_acs_orglett_9b00562 crossref_primary_10_1002_cphc_201700872 crossref_primary_10_1039_D2RA05643G crossref_primary_10_1021_acs_jpclett_9b03002 crossref_primary_10_1021_acsaom_4c00041 crossref_primary_10_1039_D0DT03144E crossref_primary_10_1021_acs_inorgchem_0c03664 crossref_primary_10_1002_adom_202000260 crossref_primary_10_1039_D4DT02855D crossref_primary_10_1002_ange_201806922 crossref_primary_10_1002_adom_202100516 crossref_primary_10_1039_D3SC00686G crossref_primary_10_1039_D3CE00764B crossref_primary_10_1039_C8DT04093A crossref_primary_10_1002_adom_202100081 crossref_primary_10_1002_anie_201708876 crossref_primary_10_1021_acs_jpclett_7b03160 crossref_primary_10_1021_acs_inorgchem_0c00980 crossref_primary_10_1021_acs_chemmater_2c01938 crossref_primary_10_1039_C8CP01101J crossref_primary_10_1039_D1SC00791B crossref_primary_10_3390_cryst15020115 crossref_primary_10_1016_j_ccr_2022_214700 crossref_primary_10_1016_j_ccr_2021_213795 crossref_primary_10_1039_C7DT03923A crossref_primary_10_1039_C8DT04078H crossref_primary_10_1021_acs_inorgchem_0c02238 crossref_primary_10_1002_adpr_202400111 crossref_primary_10_1002_ange_201708876 crossref_primary_10_1039_D3CS00871A crossref_primary_10_1002_ange_202410414 crossref_primary_10_1039_C9QI01069F crossref_primary_10_1039_D4DT02473G crossref_primary_10_3390_reactions3010013 crossref_primary_10_1039_D2SC03037C crossref_primary_10_1021_acs_chemrev_3c00629 crossref_primary_10_1126_sciadv_aay0107 crossref_primary_10_1039_C8CP03657H crossref_primary_10_1016_j_orgel_2019_02_022 crossref_primary_10_1021_jacs_7b01924 crossref_primary_10_1021_acs_chemmater_1c01531 crossref_primary_10_1021_acs_inorgchem_0c01054 crossref_primary_10_1016_j_chemphys_2018_07_016 crossref_primary_10_1039_C8DT03452D crossref_primary_10_1021_acs_inorgchem_6b03100 crossref_primary_10_1021_acs_chemrev_3c00755 crossref_primary_10_1039_D4DT01056F crossref_primary_10_1039_D4TC02888K crossref_primary_10_1039_D4SC04607B crossref_primary_10_1002_bkcs_12149 crossref_primary_10_1002_anie_201906698 crossref_primary_10_1039_c7pp00432j crossref_primary_10_3389_fchem_2020_00653 crossref_primary_10_1002_ejic_201700677 crossref_primary_10_1021_jacs_1c04413 crossref_primary_10_1039_D3CS01102J crossref_primary_10_1002_adom_202303053 crossref_primary_10_1039_D1DT02990H crossref_primary_10_1002_anie_201707193 crossref_primary_10_1002_adfm_201908641 crossref_primary_10_1021_acs_inorgchem_9b03064 crossref_primary_10_1039_D0QI00254B crossref_primary_10_1002_advs_202404866 crossref_primary_10_1002_ange_202014941 crossref_primary_10_1039_C7NJ03521G crossref_primary_10_1021_acs_chemrev_3c00761 crossref_primary_10_1016_j_ccr_2021_214315 crossref_primary_10_1021_acs_chemmater_9b00671 crossref_primary_10_1002_ange_201906698 crossref_primary_10_1063_1_5032185 crossref_primary_10_1002_chem_201704642 crossref_primary_10_1039_C8CS00075A crossref_primary_10_1002_tcr_202000013 crossref_primary_10_3390_reactions5040046 crossref_primary_10_1016_j_cclet_2019_08_006 crossref_primary_10_1039_C8DT03377C crossref_primary_10_1039_D2CC02930H crossref_primary_10_1002_adom_202203145 crossref_primary_10_1016_j_poly_2019_114178 crossref_primary_10_1002_anie_202014941 crossref_primary_10_1039_D2NJ00774F crossref_primary_10_1039_D0QI01377C crossref_primary_10_1021_acs_inorgchem_9b01617 crossref_primary_10_1021_jacs_9b13755 crossref_primary_10_1039_C8DT00837J crossref_primary_10_1088_1361_6633_ace06a crossref_primary_10_1021_acs_chemmater_0c02683 crossref_primary_10_3390_inorganics8090046 crossref_primary_10_1002_zaac_202100114 crossref_primary_10_1039_D4NJ04193C crossref_primary_10_1039_D0QI00535E crossref_primary_10_1039_D1SC00160D |
Cites_doi | 10.1039/c3tc30524d 10.1007/s41061-016-0019-1 10.1021/ja2107788 10.1021/ja003693s 10.1039/b813844c 10.1016/j.orgel.2016.02.016 10.1038/nature04645 10.1021/acs.inorgchem.6b00068 10.1021/acs.chemmater.5b03245 10.1021/ja2026568 10.1021/ic1009253 10.1016/0022-328X(95)05809-4 10.1039/C4DT02709D 10.1021/ic300979c 10.1021/acs.inorgchem.6b01602 10.1021/ja017214g 10.1021/ic900203x 10.1021/ic700475z 10.1002/ejic.201301349 10.1016/j.poly.2007.11.019 10.1021/ic034527z 10.1021/cm5006086 10.1038/nature11687 10.1002/adfm.201300104 10.1021/acs.inorgchem.5b02444 10.1021/ic500889s 10.1002/9783527654949.ch13 10.1007/s41061-016-0036-0 10.1016/S1566-1199(01)00007-6 10.1021/jp503437b 10.1021/ja202965y 10.1021/ja508155x 10.1039/C4SC03161J 10.1002/ejoc.201600247 10.1063/1.1727152 10.1016/0022-328X(95)05558-7 10.1039/C5NJ03529E 10.1063/1.1409582 10.1016/j.ccr.2016.06.016 10.1093/oso/9780198555735.001.0001 10.1126/sciadv.1500889 10.1021/ja012247h 10.1016/j.ccr.2008.03.013 10.1021/ja5109672 10.1016/j.ccr.2011.01.042 10.1021/ic401213p 10.1039/C3CP53806K 10.1021/ic100872w 10.1021/ic503072u 10.1039/c3cc42280a 10.1016/j.ica.2008.02.037 10.1002/chem.201405356 10.1002/chem.201504392 10.1039/C6CC00809G 10.1038/ncomms9476 10.1021/acs.inorgchem.5b00907 10.1063/1.1728019 10.1021/jp402975d 10.1007/128_2007_128 10.1007/b96858 10.1039/C5DT01292A 10.1021/ic50010a006 10.1021/ja108645x 10.1021/ic300333c 10.1038/nphoton.2014.12 10.1039/b508541a 10.1007/s00214-007-0310-x 10.1021/ja1004575 10.1002/adma.201405897 10.1021/ic0608086 10.1016/j.ica.2005.06.083 10.1002/adma.200502365 10.1039/tf9615701894 10.1016/j.jlumin.2016.08.004 10.1021/ic801250g 10.1021/ic200811a 10.1002/9783527654949 10.1107/S0021889808042726 10.1021/ja0294663 10.1063/1.3558906 10.1021/acs.inorgchem.5b02546 10.1063/1.4891680 10.1021/acs.inorgchem.6b00763 10.1039/dt9960004583 10.1007/3418_2009_6 10.1021/ar500353h 10.1021/acs.jpca.5b00901 |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Chemical Society |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society |
DBID | AAYXX CITATION |
DOI | 10.1021/acs.chemmater.6b05175 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-5002 |
EndPage | 1715 |
ExternalDocumentID | 10_1021_acs_chemmater_6b05175 c165880698 |
GroupedDBID | 29B 53G 55A 5GY 7~N AABXI ABFLS ABMVS ABPTK ABUCX ACGFS ACJ ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 JG JG~ LG6 P2P ROL TN5 TWZ UI2 UPT VF5 VG9 W1F X YZZ -~X .K2 4.4 5VS AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AGXLV AHGAQ BAANH CITATION CUPRZ GGK |
ID | FETCH-LOGICAL-a408t-9794d77191d484e8c1a1c2d65a3dcfc6cd91574b93169d590039eceb9eba49d63 |
IEDL.DBID | ACS |
ISSN | 0897-4756 |
IngestDate | Tue Jul 01 01:13:25 EDT 2025 Thu Apr 24 23:05:41 EDT 2025 Thu Aug 27 13:42:10 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a408t-9794d77191d484e8c1a1c2d65a3dcfc6cd91574b93169d590039eceb9eba49d63 |
ORCID | 0000-0003-0495-0364 |
OpenAccessLink | https://zenodo.org/record/2616362/files/Working%20Paper%20-%202017.Design%20Strategy%20for%20Ag%28I%29-Based%20Thermally%20Activated%20Delayed%20Fluorescence.pdf |
PageCount | 8 |
ParticipantIDs | crossref_citationtrail_10_1021_acs_chemmater_6b05175 crossref_primary_10_1021_acs_chemmater_6b05175 acs_journals_10_1021_acs_chemmater_6b05175 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-02-28 |
PublicationDateYYYYMMDD | 2017-02-28 |
PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-28 day: 28 |
PublicationDecade | 2010 |
PublicationTitle | Chemistry of materials |
PublicationTitleAlternate | Chem. Mater |
PublicationYear | 2017 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref45/cit45 Rausch A. F. (ref77/cit77) 2007; 6655 ref3/cit3 ref27/cit27 ref81/cit81 ref63/cit63 ref56/cit56 ref16/cit16 ref92/cit92 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 Yersin H. (ref9/cit9) 2012 ref34/cit34 ref71/cit71 ref37/cit37 Armaroli N. (ref67/cit67) 2007 Brütting W. (ref2/cit2) 2012 ref20/cit20 ref48/cit48 ref60/cit60 ref74/cit74 ref88/cit88 ref17/cit17 ref82/cit82 Yersin H. (ref1/cit1) 2008 ref10/cit10 Turro N. J. (ref85/cit85) 1991 ref35/cit35 ref89/cit89 ref53/cit53 ref19/cit19 ref93/cit93 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref75/cit75 ref24/cit24 ref38/cit38 ref90/cit90 ref50/cit50 ref64/cit64 ref78/cit78 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref83/cit83 ref65/cit65 ref79/cit79 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 ref76/cit76 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref43/cit43 ref80/cit80 ref28/cit28 ref40/cit40 ref68/cit68 ref94/cit94 ref91/cit91 ref26/cit26 ref55/cit55 ref73/cit73 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref87/cit87 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref44/cit44 ref70/cit70 ref7/cit7 Yersin H. (ref51/cit51) 2014; 9183 |
References_xml | – ident: ref37/cit37 doi: 10.1039/c3tc30524d – ident: ref33/cit33 doi: 10.1007/s41061-016-0019-1 – ident: ref55/cit55 doi: 10.1021/ja2107788 – ident: ref12/cit12 doi: 10.1021/ja003693s – ident: ref75/cit75 doi: 10.1039/b813844c – ident: ref5/cit5 doi: 10.1016/j.orgel.2016.02.016 – ident: ref10/cit10 doi: 10.1038/nature04645 – ident: ref50/cit50 doi: 10.1021/acs.inorgchem.6b00068 – ident: ref7/cit7 doi: 10.1021/acs.chemmater.5b03245 – ident: ref53/cit53 doi: 10.1021/ja2026568 – ident: ref16/cit16 doi: 10.1021/ic1009253 – ident: ref59/cit59 doi: 10.1016/0022-328X(95)05809-4 – ident: ref36/cit36 doi: 10.1039/C4DT02709D – volume-title: Highly Efficient OLEDs with Phosphorescent Materials year: 2008 ident: ref1/cit1 – ident: ref43/cit43 doi: 10.1021/ic300979c – ident: ref18/cit18 doi: 10.1021/acs.inorgchem.6b01602 – ident: ref64/cit64 doi: 10.1021/ja017214g – ident: ref74/cit74 doi: 10.1021/ic900203x – ident: ref90/cit90 doi: 10.1021/ic700475z – ident: ref52/cit52 doi: 10.1002/ejic.201301349 – ident: ref61/cit61 doi: 10.1016/j.poly.2007.11.019 – ident: ref91/cit91 doi: 10.1021/ic034527z – ident: ref4/cit4 doi: 10.1021/cm5006086 – ident: ref26/cit26 doi: 10.1038/nature11687 – ident: ref13/cit13 doi: 10.1002/adfm.201300104 – ident: ref3/cit3 doi: 10.1021/acs.inorgchem.5b02444 – volume-title: Modern Molecular Photochemistry year: 1991 ident: ref85/cit85 – volume: 6655 volume-title: Proceedings of SPIE-The International Society for Optical Engineering year: 2007 ident: ref77/cit77 – ident: ref31/cit31 doi: 10.1021/ic500889s – start-page: 371 volume-title: Physics of Organic Semiconductors year: 2012 ident: ref9/cit9 doi: 10.1002/9783527654949.ch13 – ident: ref17/cit17 doi: 10.1007/s41061-016-0036-0 – ident: ref22/cit22 doi: 10.1016/S1566-1199(01)00007-6 – ident: ref27/cit27 – ident: ref15/cit15 doi: 10.1021/jp503437b – ident: ref92/cit92 doi: 10.1021/ja202965y – ident: ref30/cit30 doi: 10.1021/ja508155x – ident: ref63/cit63 doi: 10.1039/C4SC03161J – ident: ref19/cit19 doi: 10.1002/ejoc.201600247 – ident: ref20/cit20 doi: 10.1063/1.1727152 – ident: ref60/cit60 doi: 10.1016/0022-328X(95)05558-7 – ident: ref79/cit79 doi: 10.1039/C5NJ03529E – ident: ref11/cit11 doi: 10.1063/1.1409582 – ident: ref34/cit34 doi: 10.1016/j.ccr.2016.06.016 – ident: ref47/cit47 doi: 10.1093/oso/9780198555735.001.0001 – ident: ref87/cit87 doi: 10.1126/sciadv.1500889 – ident: ref41/cit41 doi: 10.1021/ja012247h – ident: ref68/cit68 doi: 10.1016/j.ccr.2008.03.013 – ident: ref32/cit32 doi: 10.1021/ja5109672 – ident: ref48/cit48 – ident: ref78/cit78 doi: 10.1016/j.ccr.2011.01.042 – ident: ref82/cit82 doi: 10.1021/ic401213p – ident: ref8/cit8 doi: 10.1039/C3CP53806K – volume: 9183 volume-title: Proceedings of SPIE-The International Society for Optical Engineering year: 2014 ident: ref51/cit51 – ident: ref94/cit94 doi: 10.1021/ic100872w – ident: ref49/cit49 doi: 10.1021/ic503072u – ident: ref38/cit38 doi: 10.1039/c3cc42280a – ident: ref62/cit62 doi: 10.1016/j.ica.2008.02.037 – ident: ref83/cit83 doi: 10.1002/chem.201405356 – ident: ref6/cit6 doi: 10.1002/chem.201504392 – ident: ref35/cit35 doi: 10.1039/C6CC00809G – ident: ref46/cit46 doi: 10.1038/ncomms9476 – ident: ref80/cit80 doi: 10.1021/acs.inorgchem.5b00907 – ident: ref88/cit88 doi: 10.1063/1.1728019 – ident: ref29/cit29 doi: 10.1021/jp402975d – start-page: 69 volume-title: Photochemistry and Photophysics of Coordination Compounds year: 2007 ident: ref67/cit67 doi: 10.1007/128_2007_128 – ident: ref23/cit23 doi: 10.1007/b96858 – ident: ref42/cit42 doi: 10.1039/C5DT01292A – ident: ref58/cit58 doi: 10.1021/ic50010a006 – ident: ref66/cit66 doi: 10.1021/ja108645x – ident: ref54/cit54 doi: 10.1021/ic300333c – ident: ref45/cit45 doi: 10.1038/nphoton.2014.12 – ident: ref73/cit73 doi: 10.1039/b508541a – ident: ref72/cit72 doi: 10.1007/s00214-007-0310-x – ident: ref25/cit25 doi: 10.1021/ja1004575 – ident: ref44/cit44 doi: 10.1002/adma.201405897 – ident: ref40/cit40 doi: 10.1021/ic0608086 – ident: ref56/cit56 doi: 10.1016/j.ica.2005.06.083 – ident: ref39/cit39 doi: 10.1002/adma.200502365 – ident: ref89/cit89 doi: 10.1039/tf9615701894 – ident: ref28/cit28 doi: 10.1016/j.jlumin.2016.08.004 – ident: ref21/cit21 doi: 10.1021/ic801250g – ident: ref24/cit24 doi: 10.1021/ic200811a – volume-title: Physics of Organic Semiconductors year: 2012 ident: ref2/cit2 doi: 10.1002/9783527654949 – ident: ref71/cit71 doi: 10.1107/S0021889808042726 – ident: ref65/cit65 doi: 10.1021/ja0294663 – ident: ref93/cit93 doi: 10.1063/1.3558906 – ident: ref84/cit84 doi: 10.1021/acs.inorgchem.5b02546 – ident: ref14/cit14 doi: 10.1063/1.4891680 – ident: ref81/cit81 doi: 10.1021/acs.inorgchem.6b00763 – ident: ref57/cit57 doi: 10.1039/dt9960004583 – ident: ref76/cit76 doi: 10.1007/3418_2009_6 – ident: ref69/cit69 doi: 10.1021/ar500353h – ident: ref70/cit70 doi: 10.1021/acs.jpca.5b00901 |
SSID | ssj0011028 |
Score | 2.534296 |
Snippet | A design strategy for the development of Ag(I)-based materials for thermally activated delayed fluorescence (TADF) is presented. Although Ag(I) complexes... |
SourceID | crossref acs |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1708 |
Title | Design Strategy for Ag(I)-Based Thermally Activated Delayed Fluorescence Reaching an Efficiency Breakthrough |
URI | http://dx.doi.org/10.1021/acs.chemmater.6b05175 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6qHtSDb_FNDh5U2LrZTdLmWKulCor4AG9LXqvgWqW2h_rrnaTbUhBfp4VAljCZ2e9bkvk-gP0aY9wKESNzoyZiOleRxh-hSMU8x4RyJg8uCpdXon3PLh74QwWOvznBT-ixMhj8J_eCBM51q0J7USk-BTOJwEL2XKh5Oz428GgZaKOsRazGxahl57vXeEgy7xOQNIEtrUW4HnXoDK-UPFf7PV01H18FG_-67CVYKHkmaQwTYxkqrrMCs82RvdsKzE8oEa5CcRpucpBSrHZAkMuSxuPB-WF0gjhnCaYTfsKLYkAaJjii4dipK9QAn62i_9oNslDGkZvyeiZRHXIW9Cl8cyc5QXL6XJoCrcF96-yu2Y5KI4ZIsbjeiyQWrcXNlNSyOnN1QxU1iRVcpdbkRhgrKa8xLVMqpPU-pKl0xmnptGLSinQdpjuvHbcBxMSxliJPEiU1q3OpEESZVtqlkic6pptwhJHLykJ6z8IZeUIzPzgOZ1aGcxPYaOMyU0qae2eN4rdp1fG0t6Gmx88Ttv6zqG2YSzz0h7b3HZjudftuF4lLT--FZP0ELWLrxg |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB6l9EB7gDYtIuXlQw9tpQ3rXduJj0lIFCjk0ILKbeXXcsg2qfI4hF_P2GxCVAlQTitZsjU7Hu98q_F8H8DXBmPcChEjcqMmYjpXkcYfoUjFPMeAciYPKgpXA9G_YRe3_LYCYtkLg0ZMcaVpKOI_sQvQUz-Gr_EXcZyb1IX23FL8DbxFQJL4yG51fq-qBz5pBvQoGxFrcLHs3HluGZ-ZzHQtM62lmN4u_FkZF26WDOvzma6b-_94Gze3_gPslKiTtB7D5CNU3KgK252l2FsV3q_xEn6C4izc6yAlde2CILIlrbtv59-jNmY9SzC48INeFAvSMkEfDcfOXKEW-OwV8_EkkEQZR36VlzWJGpFuYKvwrZ6kjVB1WEoEfYabXve6049KWYZIsbg5iyQeYYtbK6llTeaahipqEiu4Sq3JjTBWUt5gWqZUSOtVSVPpjNPSacWkFekebI3GI7cPxMSxliJPEiU1a3KpMKUyrbRLJU90TGvwAz2XlcdqmoWKeUIzP7hyZ1a6swZsuX-ZKQnOvc5G8dq0-mrav0eGj5cnfNnEqBPY7l9fXWaX54OfB_Au8aAgNMQfwtZsMndHCGlm-jjE7wO9Z_Qn |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB7xkAocgPIQlFJ86KFF2rDetZ34GBIi3qpKkZA4rPxaDiwB5XEIv75j40RRJUD0tJIlW36MPd9qZr4P4HudMW6FSBG5UZMwXapE449QolJeokE5UwYVhYtLcXzNTm_4Tcyq9LUwOIk-jtQPQXx_q59sGRkG6IFvx6U8IJZzvZrQnl-Kz8K8D9156262riYRBO84A4KU9YTVuRhX77w2jPdOpj_lnabcTGcFbicTDNkl97XhQNfM8z_cjf-3glVYjuiTNF_M5TPMuO4aLLTGom9rsDTFT7gOVTvkd5BIYTsiiHBJ8-7Hyc_kEL2fJWhk-LBX1Yg0TdBJw7a2q9QIv51q-NgLZFHGkd8xaZOoLjkKrBW-5JMcImS9j1JBG3DdOfrTOk6iPEOiWNoYJBKvssUjltSyBnMNQxU1mRVc5daURhgrKa8zLXMqpPXqpLl0xmnptGLSinwT5rqPXbcFxKSplqLMMiU1a3Cp0LUyrbTLJc90SrdhH3euiNerX4TIeUYL3zjZziJu5zaw8RkWJhKde72N6r1utUm3pxemj7c7fPnIpPbg0692pzg_uTzbgcXMY4NQF_8V5ga9odtFZDPQ34IJ_wWYGfaq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+Strategy+for+Ag%28I%29-Based+Thermally+Activated+Delayed+Fluorescence+Reaching+an+Efficiency+Breakthrough&rft.jtitle=Chemistry+of+materials&rft.au=Shafikov%2C+Marsel+Z&rft.au=Suleymanova%2C+Alfiya+F&rft.au=Czerwieniec%2C+Rafa%C5%82&rft.au=Yersin%2C+Hartmut&rft.date=2017-02-28&rft.pub=American+Chemical+Society&rft.issn=0897-4756&rft.eissn=1520-5002&rft.volume=29&rft.issue=4&rft.spage=1708&rft.epage=1715&rft_id=info:doi/10.1021%2Facs.chemmater.6b05175&rft.externalDocID=c165880698 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0897-4756&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0897-4756&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0897-4756&client=summon |