Autonomous, Real-Time Monitoring Electrochemical Aptasensor for Circadian Tracking of Cortisol Hormone in Sub-microliter Volumes of Passively Eluted Human Sweat

The proposed work involves the development of an autonomous, label-free electrochemical sensor for real-time monitoring of cortisol levels expressed naturally in sub-microliter sweat volumes, for prolonged sensing periods of ∼8 h. Highly specific single-stranded DNA (ssDNA) aptamer is used for affin...

Full description

Saved in:
Bibliographic Details
Published inACS sensors Vol. 6; no. 1; pp. 63 - 72
Main Authors Ganguly, Antra, Lin, Kai Chun, Muthukumar, Sriram, Prasad, Shalini
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 22.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The proposed work involves the development of an autonomous, label-free electrochemical sensor for real-time monitoring of cortisol levels expressed naturally in sub-microliter sweat volumes, for prolonged sensing periods of ∼8 h. Highly specific single-stranded DNA (ssDNA) aptamer is used for affinity capture of cortisol hormone eluted in sweat dynamically. The cortisol present in sweat binds to the aptamer capture probe that changes conformation and modulates electrochemical properties at the electrode–buffer interface, which was studied using dynamic light scattering studies for the entire physiological sweat pH. Attenuated total reflectance-Fourier transform infrared spectroscopy and UV–vis spectroscopy were used to optimize the binding chemistry of the elements of the sensor stack. Nonfaradaic electrochemical impedance spectroscopy was used to calibrate the sensor for a dynamic range of 1–256 ng/mL. An R 2 of 0.97 with an output signal range of 20–50% was obtained. Dynamic cortisol level variation tracking was studied using continuous dosing experiments to calibrate the sensor for temporal variation. The sensor did not show significant susceptibility to noise due to cross-reactive interferents and nonspecific buffer constituents. The performance of the developed aptasensor was compared with the previously established cortisol immunosensor in terms of surface charge behavior and nonfaradaic biosensing. The aptamer sensor shows a higher signal-to-noise ratio, better resolution, and has a larger output range for the same input range as the cortisol immunosensor. The feasibility of deploying the developed aptasensing scheme as continuous lifestyle and performance monitors was validated through human subject studies.
AbstractList The proposed work involves the development of an autonomous, label-free electrochemical sensor for real-time monitoring of cortisol levels expressed naturally in sub-microliter sweat volumes, for prolonged sensing periods of ∼8 h. Highly specific single-stranded DNA (ssDNA) aptamer is used for affinity capture of cortisol hormone eluted in sweat dynamically. The cortisol present in sweat binds to the aptamer capture probe that changes conformation and modulates electrochemical properties at the electrode–buffer interface, which was studied using dynamic light scattering studies for the entire physiological sweat pH. Attenuated total reflectance-Fourier transform infrared spectroscopy and UV–vis spectroscopy were used to optimize the binding chemistry of the elements of the sensor stack. Nonfaradaic electrochemical impedance spectroscopy was used to calibrate the sensor for a dynamic range of 1–256 ng/mL. An R 2 of 0.97 with an output signal range of 20–50% was obtained. Dynamic cortisol level variation tracking was studied using continuous dosing experiments to calibrate the sensor for temporal variation. The sensor did not show significant susceptibility to noise due to cross-reactive interferents and nonspecific buffer constituents. The performance of the developed aptasensor was compared with the previously established cortisol immunosensor in terms of surface charge behavior and nonfaradaic biosensing. The aptamer sensor shows a higher signal-to-noise ratio, better resolution, and has a larger output range for the same input range as the cortisol immunosensor. The feasibility of deploying the developed aptasensing scheme as continuous lifestyle and performance monitors was validated through human subject studies.
The proposed work involves the development of an autonomous, label-free electrochemical sensor for real-time monitoring of cortisol levels expressed naturally in sub-microliter sweat volumes, for prolonged sensing periods of ∼8 h. Highly specific single-stranded DNA (ssDNA) aptamer is used for affinity capture of cortisol hormone eluted in sweat dynamically. The cortisol present in sweat binds to the aptamer capture probe that changes conformation and modulates electrochemical properties at the electrode-buffer interface, which was studied using dynamic light scattering studies for the entire physiological sweat pH. Attenuated total reflectance-Fourier transform infrared spectroscopy and UV-vis spectroscopy were used to optimize the binding chemistry of the elements of the sensor stack. Nonfaradaic electrochemical impedance spectroscopy was used to calibrate the sensor for a dynamic range of 1-256 ng/mL. An of 0.97 with an output signal range of 20-50% was obtained. Dynamic cortisol level variation tracking was studied using continuous dosing experiments to calibrate the sensor for temporal variation. The sensor did not show significant susceptibility to noise due to cross-reactive interferents and nonspecific buffer constituents. The performance of the developed aptasensor was compared with the previously established cortisol immunosensor in terms of surface charge behavior and nonfaradaic biosensing. The aptamer sensor shows a higher signal-to-noise ratio, better resolution, and has a larger output range for the same input range as the cortisol immunosensor. The feasibility of deploying the developed aptasensing scheme as continuous lifestyle and performance monitors was validated through human subject studies.
The proposed work involves the development of an autonomous, label-free electrochemical sensor for real-time monitoring of cortisol levels expressed naturally in sub-microliter sweat volumes, for prolonged sensing periods of ∼8 h. Highly specific single-stranded DNA (ssDNA) aptamer is used for affinity capture of cortisol hormone eluted in sweat dynamically. The cortisol present in sweat binds to the aptamer capture probe that changes conformation and modulates electrochemical properties at the electrode-buffer interface, which was studied using dynamic light scattering studies for the entire physiological sweat pH. Attenuated total reflectance-Fourier transform infrared spectroscopy and UV-vis spectroscopy were used to optimize the binding chemistry of the elements of the sensor stack. Nonfaradaic electrochemical impedance spectroscopy was used to calibrate the sensor for a dynamic range of 1-256 ng/mL. An R2 of 0.97 with an output signal range of 20-50% was obtained. Dynamic cortisol level variation tracking was studied using continuous dosing experiments to calibrate the sensor for temporal variation. The sensor did not show significant susceptibility to noise due to cross-reactive interferents and nonspecific buffer constituents. The performance of the developed aptasensor was compared with the previously established cortisol immunosensor in terms of surface charge behavior and nonfaradaic biosensing. The aptamer sensor shows a higher signal-to-noise ratio, better resolution, and has a larger output range for the same input range as the cortisol immunosensor. The feasibility of deploying the developed aptasensing scheme as continuous lifestyle and performance monitors was validated through human subject studies.The proposed work involves the development of an autonomous, label-free electrochemical sensor for real-time monitoring of cortisol levels expressed naturally in sub-microliter sweat volumes, for prolonged sensing periods of ∼8 h. Highly specific single-stranded DNA (ssDNA) aptamer is used for affinity capture of cortisol hormone eluted in sweat dynamically. The cortisol present in sweat binds to the aptamer capture probe that changes conformation and modulates electrochemical properties at the electrode-buffer interface, which was studied using dynamic light scattering studies for the entire physiological sweat pH. Attenuated total reflectance-Fourier transform infrared spectroscopy and UV-vis spectroscopy were used to optimize the binding chemistry of the elements of the sensor stack. Nonfaradaic electrochemical impedance spectroscopy was used to calibrate the sensor for a dynamic range of 1-256 ng/mL. An R2 of 0.97 with an output signal range of 20-50% was obtained. Dynamic cortisol level variation tracking was studied using continuous dosing experiments to calibrate the sensor for temporal variation. The sensor did not show significant susceptibility to noise due to cross-reactive interferents and nonspecific buffer constituents. The performance of the developed aptasensor was compared with the previously established cortisol immunosensor in terms of surface charge behavior and nonfaradaic biosensing. The aptamer sensor shows a higher signal-to-noise ratio, better resolution, and has a larger output range for the same input range as the cortisol immunosensor. The feasibility of deploying the developed aptasensing scheme as continuous lifestyle and performance monitors was validated through human subject studies.
Author Muthukumar, Sriram
Lin, Kai Chun
Prasad, Shalini
Ganguly, Antra
AuthorAffiliation Enlisense LLC
Department of Bioengineering
University of Texas at Dallas
AuthorAffiliation_xml – name: Department of Bioengineering
– name: Enlisense LLC
– name: University of Texas at Dallas
Author_xml – sequence: 1
  givenname: Antra
  surname: Ganguly
  fullname: Ganguly, Antra
  organization: University of Texas at Dallas
– sequence: 2
  givenname: Kai Chun
  surname: Lin
  fullname: Lin, Kai Chun
  organization: University of Texas at Dallas
– sequence: 3
  givenname: Sriram
  surname: Muthukumar
  fullname: Muthukumar, Sriram
  organization: Enlisense LLC
– sequence: 4
  givenname: Shalini
  orcidid: 0000-0002-2404-3801
  surname: Prasad
  fullname: Prasad, Shalini
  email: Shalini.Prasad@utdallas.edu
  organization: University of Texas at Dallas
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33382251$$D View this record in MEDLINE/PubMed
BookMark eNp9kctuEzEYhS1UREvpC7BAXrJggi9z8SyjqDRIRSAa2I4c-ze4eOzgC6hv00fFUcJFLLqwbMnfOb99zlN04oMHhJ5TsqCE0ddSpQQ-hZgWRBE6dO0jdMb4MDa8H9uTf86n6CKlW0II7XrWCfIEnXLOBWMdPUP3y5KDD3Mo6RX-CNI1GzsDfhe8zSFa_wVfOlA5BvUVZqukw8tdlofJ2NS1slFJbaXHmyjVt70iGLwKMdsUHF6HONeHY-vxTdk21SIGZzNE_Dm4MkPa0x9kSvYHuLs6rGTQeF3manjzE2R-hh4b6RJcHPdz9OnN5Wa1bq7fX71dLa8b2RKRGzH2nWYUoB87zlvNeqO0GbqxNVoIZsigjCZKDltBDeOm7wcBnRjpliktu5afo5cH310M3wukPM02KXBOeqjhTKwd2rbviSAVfXFEy3YGPe2inWW8m36nWgF2AOpnU4pg_iCUTPv2pr_tTcf2qkj8J1I2y2yDz1Fa97B0cZDWu-k2lOhrUg8JfgHPxrYy
CitedBy_id crossref_primary_10_3390_bios14040165
crossref_primary_10_3390_chemosensors9090271
crossref_primary_10_1002_advs_202411339
crossref_primary_10_1021_acs_analchem_4c05004
crossref_primary_10_1016_j_bios_2024_116407
crossref_primary_10_1111_nbu_12590
crossref_primary_10_3390_chemosensors11110557
crossref_primary_10_1149_1945_7111_acd1bc
crossref_primary_10_1002_chem_202301704
crossref_primary_10_1039_D1QM00793A
crossref_primary_10_1002_advs_202306023
crossref_primary_10_3390_chemosensors11040244
crossref_primary_10_1021_acssensors_3c00112
crossref_primary_10_3390_bios12110986
crossref_primary_10_1039_D2NR05444B
crossref_primary_10_1016_j_bios_2023_115600
crossref_primary_10_3390_molecules28052353
crossref_primary_10_1039_D2SD00042C
crossref_primary_10_1021_acs_analchem_3c01715
crossref_primary_10_1126_sciadv_abk0967
crossref_primary_10_1109_JSEN_2024_3404399
crossref_primary_10_1002_wnan_1912
crossref_primary_10_1021_acssensors_3c00437
crossref_primary_10_1007_s00216_023_05066_y
crossref_primary_10_1021_acsami_4c10033
crossref_primary_10_3390_bios13030313
crossref_primary_10_1016_j_snb_2022_133258
crossref_primary_10_1016_j_snb_2024_136680
crossref_primary_10_1039_D3RA03440B
crossref_primary_10_3390_chemosensors11090470
crossref_primary_10_1016_j_biosx_2022_100199
crossref_primary_10_3390_bios13020285
crossref_primary_10_1016_j_electacta_2021_138834
crossref_primary_10_3390_bios13040470
crossref_primary_10_1002_adfm_202210136
crossref_primary_10_3390_chemosensors11090488
crossref_primary_10_1016_j_talanta_2022_123892
crossref_primary_10_1016_j_bios_2022_114842
crossref_primary_10_1007_s00604_022_05228_2
crossref_primary_10_3390_chemosensors11020090
crossref_primary_10_1080_14737159_2023_2184260
crossref_primary_10_1021_acsnano_4c10344
crossref_primary_10_1021_acssensors_1c01951
crossref_primary_10_1002_adma_202211595
crossref_primary_10_1016_j_bios_2022_115020
crossref_primary_10_1021_acssensors_3c02555
crossref_primary_10_1021_acssensors_3c02110
crossref_primary_10_1109_JSEN_2023_3349293
crossref_primary_10_3390_chemosensors10050169
crossref_primary_10_1016_j_bioelechem_2022_108098
crossref_primary_10_1016_j_trac_2024_117965
crossref_primary_10_1002_cpz1_150
crossref_primary_10_1007_s00216_023_05047_1
crossref_primary_10_1007_s42242_021_00171_2
crossref_primary_10_1016_j_ijleo_2023_170933
crossref_primary_10_1002_adhm_202404454
crossref_primary_10_1016_j_trac_2024_117561
crossref_primary_10_2174_0929867329666220520111715
crossref_primary_10_1016_j_talanta_2023_125010
crossref_primary_10_1016_j_bioelechem_2025_108908
crossref_primary_10_3390_bios12100816
crossref_primary_10_3390_s22030994
Cites_doi 10.1021/acssensors.6b00250
10.1039/c5an02387d
10.1111/j.1365-2265.2005.02349.x
10.1117/12.2518425
10.1021/ac052015r
10.1039/d0lc00134a
10.1016/j.artmed.2012.09.003
10.1016/j.tibtech.2010.10.005
10.2144/fsoa-2020-0097
10.1016/j.snb.2016.07.088
10.1016/j.future.2017.12.059
10.1016/B978-0-08-097037-0.00042-7
10.1097/FTD.0b013e31829daa0a
10.1016/j.bios.2015.11.044
10.1038/srep14586
10.1053/j.nainr.2005.09.002
10.1111/j.1365-2265.2009.03552.x
10.1016/j.matt.2020.01.021
10.1039/c9an01968e
10.1016/j.alcohol.2018.10.006
10.1021/acsnano.7b04898
10.1016/s0091-6749(95)70025-0
10.1016/j.sbsr.2016.10.004
10.1016/j.snb.2018.11.161
10.1016/j.sbsr.2018.100249
10.2217/nnm-2016-0048
10.1039/c3ay26476a
10.1007/978-1-4939-2895-8_5
10.1016/S0021-9797(03)00142-5
10.1039/c7lc00914c
10.1007/s00216-007-1346-4
10.1007/s00216-014-7883-8
10.1111/j.1365-3083.1982.tb00618.x
10.4155/fsoa-2017-0006
10.1016/j.jbusres.2016.08.002
10.1016/j.clinbiochem.2009.04.011
10.1021/acs.analchem.7b00766
10.1016/j.cca.2011.03.002
10.1016/j.bios.2013.09.060
10.1021/nn403132x
10.1021/acssensors.8b00726
10.1016/j.triboint.2007.11.011
10.1016/j.aca.2018.02.013
10.1016/j.beem.2013.10.008
10.1038/s41598-017-13684-7
10.1021/ja901315w
10.1186/2047-2501-2-3
10.1177/2472630319882003
10.1093/ibd/izaa191
10.1007/10_2007_081
10.1007/s00216-001-1189-3
10.3390/s17051180
10.1002/adhm.201400546
10.1039/d0ra03729j
10.1016/j.apcbee.2014.01.003
10.1002/adhm.201700024
10.1002/elan.200603855
ContentType Journal Article
Copyright 2020 American Chemical Society
Copyright_xml – notice: 2020 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acssensors.0c01754
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2379-3694
EndPage 72
ExternalDocumentID 33382251
10_1021_acssensors_0c01754
d194423952
Genre Journal Article
GroupedDBID 53G
ABUCX
ACGFS
ACS
AFEFF
ALMA_UNASSIGNED_HOLDINGS
EBS
VF5
VG9
W1F
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a408t-8965d21ee695334d26fcdf7594fd882f07cfd0ca7b81f23f6678e5891b2cda543
IEDL.DBID ACS
ISSN 2379-3694
IngestDate Thu Jul 10 23:15:08 EDT 2025
Thu Jan 02 22:56:31 EST 2025
Thu Apr 24 23:01:47 EDT 2025
Tue Jul 01 04:07:25 EDT 2025
Sun Jan 24 03:13:17 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords electrochemical impedance spectroscopy (EIS)
real-time sensing
cortisol aptasensing
prolonged sensing
autonomous circadian biomarker tracking
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a408t-8965d21ee695334d26fcdf7594fd882f07cfd0ca7b81f23f6678e5891b2cda543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2404-3801
PMID 33382251
PQID 2474466080
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2474466080
pubmed_primary_33382251
crossref_primary_10_1021_acssensors_0c01754
crossref_citationtrail_10_1021_acssensors_0c01754
acs_journals_10_1021_acssensors_0c01754
ProviderPackageCode ACS
VG9
ABUCX
AFEFF
VF5
W1F
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-22
PublicationDateYYYYMMDD 2021-01-22
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-22
  day: 22
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS sensors
PublicationTitleAlternate ACS Sens
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
(ref46/cit46) 2011
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref49/cit49
Robertson D. W. (ref53/cit53) 2012
ref24/cit24
ref38/cit38
Quinn F. A. (ref66/cit66) 2013
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
Bard A. J. (ref61/cit61) 2001
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
Scholz F. (ref58/cit58) 2010
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
Thau L. (ref13/cit13) 2019
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref6/cit6
  doi: 10.1021/acssensors.6b00250
– ident: ref64/cit64
  doi: 10.1039/c5an02387d
– ident: ref27/cit27
  doi: 10.1111/j.1365-2265.2005.02349.x
– ident: ref26/cit26
  doi: 10.1117/12.2518425
– ident: ref30/cit30
  doi: 10.1021/ac052015r
– ident: ref25/cit25
  doi: 10.1039/d0lc00134a
– ident: ref7/cit7
  doi: 10.1016/j.artmed.2012.09.003
– ident: ref32/cit32
  doi: 10.1016/j.tibtech.2010.10.005
– ident: ref38/cit38
  doi: 10.2144/fsoa-2020-0097
– ident: ref52/cit52
  doi: 10.1016/j.snb.2016.07.088
– ident: ref10/cit10
  doi: 10.1016/j.future.2017.12.059
– start-page: 561
  volume-title: The Immunoassay Handbook
  year: 2013
  ident: ref66/cit66
  doi: 10.1016/B978-0-08-097037-0.00042-7
– ident: ref16/cit16
  doi: 10.1097/FTD.0b013e31829daa0a
– ident: ref41/cit41
  doi: 10.1016/j.bios.2015.11.044
– volume-title: Primer on the Autonomic Nervous System
  year: 2012
  ident: ref53/cit53
– ident: ref36/cit36
  doi: 10.1038/srep14586
– ident: ref65/cit65
  doi: 10.1053/j.nainr.2005.09.002
– ident: ref17/cit17
  doi: 10.1111/j.1365-2265.2009.03552.x
– ident: ref23/cit23
  doi: 10.1016/j.matt.2020.01.021
– ident: ref24/cit24
  doi: 10.1039/c9an01968e
– volume-title: Electroanalytical Methods Guide to Experiments and Applications
  year: 2010
  ident: ref58/cit58
– ident: ref49/cit49
  doi: 10.1016/j.alcohol.2018.10.006
– ident: ref3/cit3
  doi: 10.1021/acsnano.7b04898
– ident: ref56/cit56
  doi: 10.1016/s0091-6749(95)70025-0
– ident: ref8/cit8
  doi: 10.1016/j.sbsr.2016.10.004
– ident: ref43/cit43
  doi: 10.1016/j.snb.2018.11.161
– ident: ref20/cit20
  doi: 10.1016/j.sbsr.2018.100249
– ident: ref37/cit37
  doi: 10.2217/nnm-2016-0048
– ident: ref59/cit59
  doi: 10.1039/c3ay26476a
– ident: ref18/cit18
  doi: 10.1007/978-1-4939-2895-8_5
– ident: ref54/cit54
  doi: 10.1016/S0021-9797(03)00142-5
– ident: ref5/cit5
  doi: 10.1039/c7lc00914c
– ident: ref29/cit29
  doi: 10.1007/s00216-007-1346-4
– ident: ref42/cit42
  doi: 10.1007/s00216-014-7883-8
– ident: ref19/cit19
  doi: 10.1111/j.1365-3083.1982.tb00618.x
– ident: ref40/cit40
  doi: 10.4155/fsoa-2017-0006
– ident: ref48/cit48
  doi: 10.1038/srep14586
– ident: ref2/cit2
– volume-title: Zeta Potential: An Introduction in 30 Minutes
  year: 2011
  ident: ref46/cit46
– ident: ref12/cit12
  doi: 10.1016/j.jbusres.2016.08.002
– ident: ref14/cit14
  doi: 10.1016/j.clinbiochem.2009.04.011
– ident: ref50/cit50
  doi: 10.1016/j.snb.2016.07.088
– ident: ref39/cit39
  doi: 10.1021/acs.analchem.7b00766
– ident: ref63/cit63
  doi: 10.1016/j.cca.2011.03.002
– ident: ref22/cit22
  doi: 10.1016/j.bios.2013.09.060
– ident: ref35/cit35
  doi: 10.1021/nn403132x
– ident: ref44/cit44
  doi: 10.1021/acssensors.8b00726
– ident: ref45/cit45
  doi: 10.1016/j.triboint.2007.11.011
– ident: ref47/cit47
  doi: 10.1016/j.aca.2018.02.013
– ident: ref15/cit15
  doi: 10.1016/j.beem.2013.10.008
– ident: ref21/cit21
  doi: 10.1038/s41598-017-13684-7
– ident: ref31/cit31
  doi: 10.1021/ja901315w
– ident: ref11/cit11
  doi: 10.1186/2047-2501-2-3
– volume-title: Electrochemical Methods Fundamentals and Applications
  year: 2001
  ident: ref61/cit61
– ident: ref62/cit62
  doi: 10.1177/2472630319882003
– ident: ref34/cit34
– ident: ref9/cit9
  doi: 10.1093/ibd/izaa191
– volume-title: Physiology, Cortisol
  year: 2019
  ident: ref13/cit13
– ident: ref57/cit57
  doi: 10.1007/10_2007_081
– ident: ref28/cit28
  doi: 10.1007/s00216-001-1189-3
– ident: ref33/cit33
  doi: 10.3390/s17051180
– ident: ref4/cit4
  doi: 10.1002/adhm.201400546
– ident: ref51/cit51
  doi: 10.1039/d0ra03729j
– ident: ref55/cit55
  doi: 10.1016/j.apcbee.2014.01.003
– ident: ref1/cit1
  doi: 10.1002/adhm.201700024
– ident: ref60/cit60
  doi: 10.1002/elan.200603855
SSID ssj0001562580
Score 2.423013
Snippet The proposed work involves the development of an autonomous, label-free electrochemical sensor for real-time monitoring of cortisol levels expressed naturally...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 63
SubjectTerms Biosensing Techniques
Dielectric Spectroscopy
Humans
Hydrocortisone
Immunoassay
Sweat
Title Autonomous, Real-Time Monitoring Electrochemical Aptasensor for Circadian Tracking of Cortisol Hormone in Sub-microliter Volumes of Passively Eluted Human Sweat
URI http://dx.doi.org/10.1021/acssensors.0c01754
https://www.ncbi.nlm.nih.gov/pubmed/33382251
https://www.proquest.com/docview/2474466080
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT9RAFJ4gvugDKCquIDkmJj7ILJ1LL_O42UA2JBADYnhrpnNJCGtLtm2I_hp_KmfaLmgEwvtcOjPnzPdNz42Qz9LF2hfMUuEMp1JFlmbao-LF1hYSIZCzEJx8dJzMzuTheXy-QnYfsOBztqdNXeOLrlrU48ig_MTyGXnOE9TiQISmp3d_VAKX70qlcZEqKhIlhyiZ-4cJeGTqf_HoAZLZgc3BOjlahuz0PiaX47Ypxub3_xkcn7SOV2RtYJ0w6cXkNVlx5QZ5-Vcuwjfkz6RtQoBD1da7cIL0kYboEOh1PjSB_b5ijhlSDMDkqtH9XIDMF6YXC9MlOgDEPxP-wEPlYVqFcs_VHGZIjqvSwUUJeFnRn8ERsIt_hh_dBVmH1t-QyuP1O_-Fk7XIhaGzMcDpNSLGW3J2sP99OqND-QaqZZQ1NFNJbDlzLgkurNLyxBvr01hJb5HX-yg13kZGp0XGPBc-Qdx0ochhwY3VsRTvyGqJH_aegOQm9VxFmimPA2mdKJ16g4-vTBVayBH5gtubD-pX551lnbP8bs_zYc9HhC2POzdDFvRQjGP-aJ-vt32u-hwgj7b-tJSiHFU12F906fDwci7TYD1Hjj4im7143Y4nhECqFrMPT17JFnnBg39NxCjn22S1WbTuIxKkptjp9OIGWWkRAg
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELagPEAfKDdLOYyExAN4iR3n8ONq1WqBtkJ0i_oWOT6kim1SbRJV5dfwU5lx0l1AUMFr5IyvOT57PDOEvJIu0b7klsXOCCZVZFmuPQheYm0pwQQKjsHJ-wfp7Eh-OE6OhzhujIWBQTRAqQlO_HV2Af4OvjVwsKuXzTgywEaJvE5uABoRyNaT6eH6YgUhfaiYJuJMsThVcgiW-TMZNEum-dUs_QVrBpuzu0Xmq9GGpyZfx11bjs233xI5_ud07pDbAwalk55p7pJrrrpHNn_KTHiffJ90LYY71F3zln4GMMkwVoT2GgCb0J2-fo4ZEg7QyVmr-74o4GA6PVmakPaAgjU0eB9Pa0-nNRZ_rhd0BlC5rhw9qSioLnaKzwJDNDT9EtRlg60_AbAHZby4gM46QMY0eBzo4TnYjwfkaHdnPp2xoZgD0zLKW5arNLGCO5fig1ZpReqN9VmipLeA8n2UGW8jo7My517EPgUr6rDkYSmM1YmMH5KNCgb2mFApTOaFijRXHghpnSqdeQNHsVyVOpYj8hqWtxiEsSmCn13wYr3mxbDmI8Ivd70wQ050LM2xuPKfN6t_zvqMIFe2fnnJTAUILnpjdOVg8wohM_SlA2IfkUc9l63oxXEMwC3hT_55Ji_Izdl8f6_Ye3_wcZvcEvjyJuJMiKdko1127hlAp7Z8HkTlB9xqGWM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELagSAgeuAtLKRgJiQfwEh-5HlfbrparqihF-xY5PqSKJVltEiH4NfzUzjjpFhBUiNfIGV8zns-ei5BnysXal9wy6YxgKo8sy7QHwYutLRWoQMExOPn9QTI_Vm8W8WJ4usBYGBhEA5SaYMRHqV5ZP2QY4K_gewOXu3rdjCMDrBSry-QK2u2QtSfTo_PHFYT1oWqakGnOZJKrIWDmz2RQNZnmV9X0F7wZ9M7sJllsRhzcTT6Pu7Ycm--_JXP8jyndIjcGLEonPfPcJpdcdYdc_ylD4V3yY9K1GPZQd81L-gFAJcOYEdqfBNiE7vd1dMyQeIBOVq3u-6KAh-n0ZG1C-gMKWtHguzytPZ3WWAS6XtI5QOa6cvSkonCEsS_oHhiioumncGw22PoQAD4cystv0FkHCJkGywM9-gp65B45nu1_nM7ZUNSBaRVlLcvyJLaCO5egY6uyIvHG-jTOlbeA9n2UGm8jo9My415In4A2dVj6sBTG6ljJbbJVwcAeEKqESb3II81zD4S0TnKdegNXsiwvtVQj8hyWtxiEsimCvV3w4nzNi2HNR4Sf7XxhhtzoWKJjeeE_Lzb_rPrMIBe2fnrGUAUIMFpldOVg8wqhUrSpA3Ifkfs9p23oSSkBwMX84T_P5Am5erg3K969Pni7Q64JdMCJOBPiEdlq153bBQTVlo-DtJwCvJgb5g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autonomous%2C+Real-Time+Monitoring+Electrochemical+Aptasensor+for+Circadian+Tracking+of+Cortisol+Hormone+in+Sub-microliter+Volumes+of+Passively+Eluted+Human+Sweat&rft.jtitle=ACS+sensors&rft.au=Ganguly%2C+Antra&rft.au=Lin%2C+Kai+Chun&rft.au=Muthukumar%2C+Sriram&rft.au=Prasad%2C+Shalini&rft.date=2021-01-22&rft.issn=2379-3694&rft.eissn=2379-3694&rft.volume=6&rft.issue=1&rft.spage=63&rft.epage=72&rft_id=info:doi/10.1021%2Facssensors.0c01754&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acssensors_0c01754
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-3694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-3694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-3694&client=summon