Autonomous, Real-Time Monitoring Electrochemical Aptasensor for Circadian Tracking of Cortisol Hormone in Sub-microliter Volumes of Passively Eluted Human Sweat
The proposed work involves the development of an autonomous, label-free electrochemical sensor for real-time monitoring of cortisol levels expressed naturally in sub-microliter sweat volumes, for prolonged sensing periods of ∼8 h. Highly specific single-stranded DNA (ssDNA) aptamer is used for affin...
Saved in:
Published in | ACS sensors Vol. 6; no. 1; pp. 63 - 72 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
22.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The proposed work involves the development of an autonomous, label-free electrochemical sensor for real-time monitoring of cortisol levels expressed naturally in sub-microliter sweat volumes, for prolonged sensing periods of ∼8 h. Highly specific single-stranded DNA (ssDNA) aptamer is used for affinity capture of cortisol hormone eluted in sweat dynamically. The cortisol present in sweat binds to the aptamer capture probe that changes conformation and modulates electrochemical properties at the electrode–buffer interface, which was studied using dynamic light scattering studies for the entire physiological sweat pH. Attenuated total reflectance-Fourier transform infrared spectroscopy and UV–vis spectroscopy were used to optimize the binding chemistry of the elements of the sensor stack. Nonfaradaic electrochemical impedance spectroscopy was used to calibrate the sensor for a dynamic range of 1–256 ng/mL. An R 2 of 0.97 with an output signal range of 20–50% was obtained. Dynamic cortisol level variation tracking was studied using continuous dosing experiments to calibrate the sensor for temporal variation. The sensor did not show significant susceptibility to noise due to cross-reactive interferents and nonspecific buffer constituents. The performance of the developed aptasensor was compared with the previously established cortisol immunosensor in terms of surface charge behavior and nonfaradaic biosensing. The aptamer sensor shows a higher signal-to-noise ratio, better resolution, and has a larger output range for the same input range as the cortisol immunosensor. The feasibility of deploying the developed aptasensing scheme as continuous lifestyle and performance monitors was validated through human subject studies. |
---|---|
AbstractList | The proposed work involves the development of an autonomous, label-free electrochemical sensor for real-time monitoring of cortisol levels expressed naturally in sub-microliter sweat volumes, for prolonged sensing periods of ∼8 h. Highly specific single-stranded DNA (ssDNA) aptamer is used for affinity capture of cortisol hormone eluted in sweat dynamically. The cortisol present in sweat binds to the aptamer capture probe that changes conformation and modulates electrochemical properties at the electrode–buffer interface, which was studied using dynamic light scattering studies for the entire physiological sweat pH. Attenuated total reflectance-Fourier transform infrared spectroscopy and UV–vis spectroscopy were used to optimize the binding chemistry of the elements of the sensor stack. Nonfaradaic electrochemical impedance spectroscopy was used to calibrate the sensor for a dynamic range of 1–256 ng/mL. An R 2 of 0.97 with an output signal range of 20–50% was obtained. Dynamic cortisol level variation tracking was studied using continuous dosing experiments to calibrate the sensor for temporal variation. The sensor did not show significant susceptibility to noise due to cross-reactive interferents and nonspecific buffer constituents. The performance of the developed aptasensor was compared with the previously established cortisol immunosensor in terms of surface charge behavior and nonfaradaic biosensing. The aptamer sensor shows a higher signal-to-noise ratio, better resolution, and has a larger output range for the same input range as the cortisol immunosensor. The feasibility of deploying the developed aptasensing scheme as continuous lifestyle and performance monitors was validated through human subject studies. The proposed work involves the development of an autonomous, label-free electrochemical sensor for real-time monitoring of cortisol levels expressed naturally in sub-microliter sweat volumes, for prolonged sensing periods of ∼8 h. Highly specific single-stranded DNA (ssDNA) aptamer is used for affinity capture of cortisol hormone eluted in sweat dynamically. The cortisol present in sweat binds to the aptamer capture probe that changes conformation and modulates electrochemical properties at the electrode-buffer interface, which was studied using dynamic light scattering studies for the entire physiological sweat pH. Attenuated total reflectance-Fourier transform infrared spectroscopy and UV-vis spectroscopy were used to optimize the binding chemistry of the elements of the sensor stack. Nonfaradaic electrochemical impedance spectroscopy was used to calibrate the sensor for a dynamic range of 1-256 ng/mL. An of 0.97 with an output signal range of 20-50% was obtained. Dynamic cortisol level variation tracking was studied using continuous dosing experiments to calibrate the sensor for temporal variation. The sensor did not show significant susceptibility to noise due to cross-reactive interferents and nonspecific buffer constituents. The performance of the developed aptasensor was compared with the previously established cortisol immunosensor in terms of surface charge behavior and nonfaradaic biosensing. The aptamer sensor shows a higher signal-to-noise ratio, better resolution, and has a larger output range for the same input range as the cortisol immunosensor. The feasibility of deploying the developed aptasensing scheme as continuous lifestyle and performance monitors was validated through human subject studies. The proposed work involves the development of an autonomous, label-free electrochemical sensor for real-time monitoring of cortisol levels expressed naturally in sub-microliter sweat volumes, for prolonged sensing periods of ∼8 h. Highly specific single-stranded DNA (ssDNA) aptamer is used for affinity capture of cortisol hormone eluted in sweat dynamically. The cortisol present in sweat binds to the aptamer capture probe that changes conformation and modulates electrochemical properties at the electrode-buffer interface, which was studied using dynamic light scattering studies for the entire physiological sweat pH. Attenuated total reflectance-Fourier transform infrared spectroscopy and UV-vis spectroscopy were used to optimize the binding chemistry of the elements of the sensor stack. Nonfaradaic electrochemical impedance spectroscopy was used to calibrate the sensor for a dynamic range of 1-256 ng/mL. An R2 of 0.97 with an output signal range of 20-50% was obtained. Dynamic cortisol level variation tracking was studied using continuous dosing experiments to calibrate the sensor for temporal variation. The sensor did not show significant susceptibility to noise due to cross-reactive interferents and nonspecific buffer constituents. The performance of the developed aptasensor was compared with the previously established cortisol immunosensor in terms of surface charge behavior and nonfaradaic biosensing. The aptamer sensor shows a higher signal-to-noise ratio, better resolution, and has a larger output range for the same input range as the cortisol immunosensor. The feasibility of deploying the developed aptasensing scheme as continuous lifestyle and performance monitors was validated through human subject studies.The proposed work involves the development of an autonomous, label-free electrochemical sensor for real-time monitoring of cortisol levels expressed naturally in sub-microliter sweat volumes, for prolonged sensing periods of ∼8 h. Highly specific single-stranded DNA (ssDNA) aptamer is used for affinity capture of cortisol hormone eluted in sweat dynamically. The cortisol present in sweat binds to the aptamer capture probe that changes conformation and modulates electrochemical properties at the electrode-buffer interface, which was studied using dynamic light scattering studies for the entire physiological sweat pH. Attenuated total reflectance-Fourier transform infrared spectroscopy and UV-vis spectroscopy were used to optimize the binding chemistry of the elements of the sensor stack. Nonfaradaic electrochemical impedance spectroscopy was used to calibrate the sensor for a dynamic range of 1-256 ng/mL. An R2 of 0.97 with an output signal range of 20-50% was obtained. Dynamic cortisol level variation tracking was studied using continuous dosing experiments to calibrate the sensor for temporal variation. The sensor did not show significant susceptibility to noise due to cross-reactive interferents and nonspecific buffer constituents. The performance of the developed aptasensor was compared with the previously established cortisol immunosensor in terms of surface charge behavior and nonfaradaic biosensing. The aptamer sensor shows a higher signal-to-noise ratio, better resolution, and has a larger output range for the same input range as the cortisol immunosensor. The feasibility of deploying the developed aptasensing scheme as continuous lifestyle and performance monitors was validated through human subject studies. |
Author | Muthukumar, Sriram Lin, Kai Chun Prasad, Shalini Ganguly, Antra |
AuthorAffiliation | Enlisense LLC Department of Bioengineering University of Texas at Dallas |
AuthorAffiliation_xml | – name: Department of Bioengineering – name: Enlisense LLC – name: University of Texas at Dallas |
Author_xml | – sequence: 1 givenname: Antra surname: Ganguly fullname: Ganguly, Antra organization: University of Texas at Dallas – sequence: 2 givenname: Kai Chun surname: Lin fullname: Lin, Kai Chun organization: University of Texas at Dallas – sequence: 3 givenname: Sriram surname: Muthukumar fullname: Muthukumar, Sriram organization: Enlisense LLC – sequence: 4 givenname: Shalini orcidid: 0000-0002-2404-3801 surname: Prasad fullname: Prasad, Shalini email: Shalini.Prasad@utdallas.edu organization: University of Texas at Dallas |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33382251$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctuEzEYhS1UREvpC7BAXrJggi9z8SyjqDRIRSAa2I4c-ze4eOzgC6hv00fFUcJFLLqwbMnfOb99zlN04oMHhJ5TsqCE0ddSpQQ-hZgWRBE6dO0jdMb4MDa8H9uTf86n6CKlW0II7XrWCfIEnXLOBWMdPUP3y5KDD3Mo6RX-CNI1GzsDfhe8zSFa_wVfOlA5BvUVZqukw8tdlofJ2NS1slFJbaXHmyjVt70iGLwKMdsUHF6HONeHY-vxTdk21SIGZzNE_Dm4MkPa0x9kSvYHuLs6rGTQeF3manjzE2R-hh4b6RJcHPdz9OnN5Wa1bq7fX71dLa8b2RKRGzH2nWYUoB87zlvNeqO0GbqxNVoIZsigjCZKDltBDeOm7wcBnRjpliktu5afo5cH310M3wukPM02KXBOeqjhTKwd2rbviSAVfXFEy3YGPe2inWW8m36nWgF2AOpnU4pg_iCUTPv2pr_tTcf2qkj8J1I2y2yDz1Fa97B0cZDWu-k2lOhrUg8JfgHPxrYy |
CitedBy_id | crossref_primary_10_3390_bios14040165 crossref_primary_10_3390_chemosensors9090271 crossref_primary_10_1002_advs_202411339 crossref_primary_10_1021_acs_analchem_4c05004 crossref_primary_10_1016_j_bios_2024_116407 crossref_primary_10_1111_nbu_12590 crossref_primary_10_3390_chemosensors11110557 crossref_primary_10_1149_1945_7111_acd1bc crossref_primary_10_1002_chem_202301704 crossref_primary_10_1039_D1QM00793A crossref_primary_10_1002_advs_202306023 crossref_primary_10_3390_chemosensors11040244 crossref_primary_10_1021_acssensors_3c00112 crossref_primary_10_3390_bios12110986 crossref_primary_10_1039_D2NR05444B crossref_primary_10_1016_j_bios_2023_115600 crossref_primary_10_3390_molecules28052353 crossref_primary_10_1039_D2SD00042C crossref_primary_10_1021_acs_analchem_3c01715 crossref_primary_10_1126_sciadv_abk0967 crossref_primary_10_1109_JSEN_2024_3404399 crossref_primary_10_1002_wnan_1912 crossref_primary_10_1021_acssensors_3c00437 crossref_primary_10_1007_s00216_023_05066_y crossref_primary_10_1021_acsami_4c10033 crossref_primary_10_3390_bios13030313 crossref_primary_10_1016_j_snb_2022_133258 crossref_primary_10_1016_j_snb_2024_136680 crossref_primary_10_1039_D3RA03440B crossref_primary_10_3390_chemosensors11090470 crossref_primary_10_1016_j_biosx_2022_100199 crossref_primary_10_3390_bios13020285 crossref_primary_10_1016_j_electacta_2021_138834 crossref_primary_10_3390_bios13040470 crossref_primary_10_1002_adfm_202210136 crossref_primary_10_3390_chemosensors11090488 crossref_primary_10_1016_j_talanta_2022_123892 crossref_primary_10_1016_j_bios_2022_114842 crossref_primary_10_1007_s00604_022_05228_2 crossref_primary_10_3390_chemosensors11020090 crossref_primary_10_1080_14737159_2023_2184260 crossref_primary_10_1021_acsnano_4c10344 crossref_primary_10_1021_acssensors_1c01951 crossref_primary_10_1002_adma_202211595 crossref_primary_10_1016_j_bios_2022_115020 crossref_primary_10_1021_acssensors_3c02555 crossref_primary_10_1021_acssensors_3c02110 crossref_primary_10_1109_JSEN_2023_3349293 crossref_primary_10_3390_chemosensors10050169 crossref_primary_10_1016_j_bioelechem_2022_108098 crossref_primary_10_1016_j_trac_2024_117965 crossref_primary_10_1002_cpz1_150 crossref_primary_10_1007_s00216_023_05047_1 crossref_primary_10_1007_s42242_021_00171_2 crossref_primary_10_1016_j_ijleo_2023_170933 crossref_primary_10_1002_adhm_202404454 crossref_primary_10_1016_j_trac_2024_117561 crossref_primary_10_2174_0929867329666220520111715 crossref_primary_10_1016_j_talanta_2023_125010 crossref_primary_10_1016_j_bioelechem_2025_108908 crossref_primary_10_3390_bios12100816 crossref_primary_10_3390_s22030994 |
Cites_doi | 10.1021/acssensors.6b00250 10.1039/c5an02387d 10.1111/j.1365-2265.2005.02349.x 10.1117/12.2518425 10.1021/ac052015r 10.1039/d0lc00134a 10.1016/j.artmed.2012.09.003 10.1016/j.tibtech.2010.10.005 10.2144/fsoa-2020-0097 10.1016/j.snb.2016.07.088 10.1016/j.future.2017.12.059 10.1016/B978-0-08-097037-0.00042-7 10.1097/FTD.0b013e31829daa0a 10.1016/j.bios.2015.11.044 10.1038/srep14586 10.1053/j.nainr.2005.09.002 10.1111/j.1365-2265.2009.03552.x 10.1016/j.matt.2020.01.021 10.1039/c9an01968e 10.1016/j.alcohol.2018.10.006 10.1021/acsnano.7b04898 10.1016/s0091-6749(95)70025-0 10.1016/j.sbsr.2016.10.004 10.1016/j.snb.2018.11.161 10.1016/j.sbsr.2018.100249 10.2217/nnm-2016-0048 10.1039/c3ay26476a 10.1007/978-1-4939-2895-8_5 10.1016/S0021-9797(03)00142-5 10.1039/c7lc00914c 10.1007/s00216-007-1346-4 10.1007/s00216-014-7883-8 10.1111/j.1365-3083.1982.tb00618.x 10.4155/fsoa-2017-0006 10.1016/j.jbusres.2016.08.002 10.1016/j.clinbiochem.2009.04.011 10.1021/acs.analchem.7b00766 10.1016/j.cca.2011.03.002 10.1016/j.bios.2013.09.060 10.1021/nn403132x 10.1021/acssensors.8b00726 10.1016/j.triboint.2007.11.011 10.1016/j.aca.2018.02.013 10.1016/j.beem.2013.10.008 10.1038/s41598-017-13684-7 10.1021/ja901315w 10.1186/2047-2501-2-3 10.1177/2472630319882003 10.1093/ibd/izaa191 10.1007/10_2007_081 10.1007/s00216-001-1189-3 10.3390/s17051180 10.1002/adhm.201400546 10.1039/d0ra03729j 10.1016/j.apcbee.2014.01.003 10.1002/adhm.201700024 10.1002/elan.200603855 |
ContentType | Journal Article |
Copyright | 2020 American Chemical
Society |
Copyright_xml | – notice: 2020 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/acssensors.0c01754 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2379-3694 |
EndPage | 72 |
ExternalDocumentID | 33382251 10_1021_acssensors_0c01754 d194423952 |
Genre | Journal Article |
GroupedDBID | 53G ABUCX ACGFS ACS AFEFF ALMA_UNASSIGNED_HOLDINGS EBS VF5 VG9 W1F AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-a408t-8965d21ee695334d26fcdf7594fd882f07cfd0ca7b81f23f6678e5891b2cda543 |
IEDL.DBID | ACS |
ISSN | 2379-3694 |
IngestDate | Thu Jul 10 23:15:08 EDT 2025 Thu Jan 02 22:56:31 EST 2025 Thu Apr 24 23:01:47 EDT 2025 Tue Jul 01 04:07:25 EDT 2025 Sun Jan 24 03:13:17 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | electrochemical impedance spectroscopy (EIS) real-time sensing cortisol aptasensing prolonged sensing autonomous circadian biomarker tracking |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a408t-8965d21ee695334d26fcdf7594fd882f07cfd0ca7b81f23f6678e5891b2cda543 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2404-3801 |
PMID | 33382251 |
PQID | 2474466080 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2474466080 pubmed_primary_33382251 crossref_primary_10_1021_acssensors_0c01754 crossref_citationtrail_10_1021_acssensors_0c01754 acs_journals_10_1021_acssensors_0c01754 |
ProviderPackageCode | ACS VG9 ABUCX AFEFF VF5 W1F CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-22 |
PublicationDateYYYYMMDD | 2021-01-22 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS sensors |
PublicationTitleAlternate | ACS Sens |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 (ref46/cit46) 2011 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref49/cit49 Robertson D. W. (ref53/cit53) 2012 ref24/cit24 ref38/cit38 Quinn F. A. (ref66/cit66) 2013 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 Bard A. J. (ref61/cit61) 2001 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 Scholz F. (ref58/cit58) 2010 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref62/cit62 Thau L. (ref13/cit13) 2019 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref6/cit6 doi: 10.1021/acssensors.6b00250 – ident: ref64/cit64 doi: 10.1039/c5an02387d – ident: ref27/cit27 doi: 10.1111/j.1365-2265.2005.02349.x – ident: ref26/cit26 doi: 10.1117/12.2518425 – ident: ref30/cit30 doi: 10.1021/ac052015r – ident: ref25/cit25 doi: 10.1039/d0lc00134a – ident: ref7/cit7 doi: 10.1016/j.artmed.2012.09.003 – ident: ref32/cit32 doi: 10.1016/j.tibtech.2010.10.005 – ident: ref38/cit38 doi: 10.2144/fsoa-2020-0097 – ident: ref52/cit52 doi: 10.1016/j.snb.2016.07.088 – ident: ref10/cit10 doi: 10.1016/j.future.2017.12.059 – start-page: 561 volume-title: The Immunoassay Handbook year: 2013 ident: ref66/cit66 doi: 10.1016/B978-0-08-097037-0.00042-7 – ident: ref16/cit16 doi: 10.1097/FTD.0b013e31829daa0a – ident: ref41/cit41 doi: 10.1016/j.bios.2015.11.044 – volume-title: Primer on the Autonomic Nervous System year: 2012 ident: ref53/cit53 – ident: ref36/cit36 doi: 10.1038/srep14586 – ident: ref65/cit65 doi: 10.1053/j.nainr.2005.09.002 – ident: ref17/cit17 doi: 10.1111/j.1365-2265.2009.03552.x – ident: ref23/cit23 doi: 10.1016/j.matt.2020.01.021 – ident: ref24/cit24 doi: 10.1039/c9an01968e – volume-title: Electroanalytical Methods Guide to Experiments and Applications year: 2010 ident: ref58/cit58 – ident: ref49/cit49 doi: 10.1016/j.alcohol.2018.10.006 – ident: ref3/cit3 doi: 10.1021/acsnano.7b04898 – ident: ref56/cit56 doi: 10.1016/s0091-6749(95)70025-0 – ident: ref8/cit8 doi: 10.1016/j.sbsr.2016.10.004 – ident: ref43/cit43 doi: 10.1016/j.snb.2018.11.161 – ident: ref20/cit20 doi: 10.1016/j.sbsr.2018.100249 – ident: ref37/cit37 doi: 10.2217/nnm-2016-0048 – ident: ref59/cit59 doi: 10.1039/c3ay26476a – ident: ref18/cit18 doi: 10.1007/978-1-4939-2895-8_5 – ident: ref54/cit54 doi: 10.1016/S0021-9797(03)00142-5 – ident: ref5/cit5 doi: 10.1039/c7lc00914c – ident: ref29/cit29 doi: 10.1007/s00216-007-1346-4 – ident: ref42/cit42 doi: 10.1007/s00216-014-7883-8 – ident: ref19/cit19 doi: 10.1111/j.1365-3083.1982.tb00618.x – ident: ref40/cit40 doi: 10.4155/fsoa-2017-0006 – ident: ref48/cit48 doi: 10.1038/srep14586 – ident: ref2/cit2 – volume-title: Zeta Potential: An Introduction in 30 Minutes year: 2011 ident: ref46/cit46 – ident: ref12/cit12 doi: 10.1016/j.jbusres.2016.08.002 – ident: ref14/cit14 doi: 10.1016/j.clinbiochem.2009.04.011 – ident: ref50/cit50 doi: 10.1016/j.snb.2016.07.088 – ident: ref39/cit39 doi: 10.1021/acs.analchem.7b00766 – ident: ref63/cit63 doi: 10.1016/j.cca.2011.03.002 – ident: ref22/cit22 doi: 10.1016/j.bios.2013.09.060 – ident: ref35/cit35 doi: 10.1021/nn403132x – ident: ref44/cit44 doi: 10.1021/acssensors.8b00726 – ident: ref45/cit45 doi: 10.1016/j.triboint.2007.11.011 – ident: ref47/cit47 doi: 10.1016/j.aca.2018.02.013 – ident: ref15/cit15 doi: 10.1016/j.beem.2013.10.008 – ident: ref21/cit21 doi: 10.1038/s41598-017-13684-7 – ident: ref31/cit31 doi: 10.1021/ja901315w – ident: ref11/cit11 doi: 10.1186/2047-2501-2-3 – volume-title: Electrochemical Methods Fundamentals and Applications year: 2001 ident: ref61/cit61 – ident: ref62/cit62 doi: 10.1177/2472630319882003 – ident: ref34/cit34 – ident: ref9/cit9 doi: 10.1093/ibd/izaa191 – volume-title: Physiology, Cortisol year: 2019 ident: ref13/cit13 – ident: ref57/cit57 doi: 10.1007/10_2007_081 – ident: ref28/cit28 doi: 10.1007/s00216-001-1189-3 – ident: ref33/cit33 doi: 10.3390/s17051180 – ident: ref4/cit4 doi: 10.1002/adhm.201400546 – ident: ref51/cit51 doi: 10.1039/d0ra03729j – ident: ref55/cit55 doi: 10.1016/j.apcbee.2014.01.003 – ident: ref1/cit1 doi: 10.1002/adhm.201700024 – ident: ref60/cit60 doi: 10.1002/elan.200603855 |
SSID | ssj0001562580 |
Score | 2.423013 |
Snippet | The proposed work involves the development of an autonomous, label-free electrochemical sensor for real-time monitoring of cortisol levels expressed naturally... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 63 |
SubjectTerms | Biosensing Techniques Dielectric Spectroscopy Humans Hydrocortisone Immunoassay Sweat |
Title | Autonomous, Real-Time Monitoring Electrochemical Aptasensor for Circadian Tracking of Cortisol Hormone in Sub-microliter Volumes of Passively Eluted Human Sweat |
URI | http://dx.doi.org/10.1021/acssensors.0c01754 https://www.ncbi.nlm.nih.gov/pubmed/33382251 https://www.proquest.com/docview/2474466080 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT9RAFJ4gvugDKCquIDkmJj7ILJ1LL_O42UA2JBADYnhrpnNJCGtLtm2I_hp_KmfaLmgEwvtcOjPnzPdNz42Qz9LF2hfMUuEMp1JFlmbao-LF1hYSIZCzEJx8dJzMzuTheXy-QnYfsOBztqdNXeOLrlrU48ig_MTyGXnOE9TiQISmp3d_VAKX70qlcZEqKhIlhyiZ-4cJeGTqf_HoAZLZgc3BOjlahuz0PiaX47Ypxub3_xkcn7SOV2RtYJ0w6cXkNVlx5QZ5-Vcuwjfkz6RtQoBD1da7cIL0kYboEOh1PjSB_b5ijhlSDMDkqtH9XIDMF6YXC9MlOgDEPxP-wEPlYVqFcs_VHGZIjqvSwUUJeFnRn8ERsIt_hh_dBVmH1t-QyuP1O_-Fk7XIhaGzMcDpNSLGW3J2sP99OqND-QaqZZQ1NFNJbDlzLgkurNLyxBvr01hJb5HX-yg13kZGp0XGPBc-Qdx0ochhwY3VsRTvyGqJH_aegOQm9VxFmimPA2mdKJ16g4-vTBVayBH5gtubD-pX551lnbP8bs_zYc9HhC2POzdDFvRQjGP-aJ-vt32u-hwgj7b-tJSiHFU12F906fDwci7TYD1Hjj4im7143Y4nhECqFrMPT17JFnnBg39NxCjn22S1WbTuIxKkptjp9OIGWWkRAg |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELagPEAfKDdLOYyExAN4iR3n8ONq1WqBtkJ0i_oWOT6kim1SbRJV5dfwU5lx0l1AUMFr5IyvOT57PDOEvJIu0b7klsXOCCZVZFmuPQheYm0pwQQKjsHJ-wfp7Eh-OE6OhzhujIWBQTRAqQlO_HV2Af4OvjVwsKuXzTgywEaJvE5uABoRyNaT6eH6YgUhfaiYJuJMsThVcgiW-TMZNEum-dUs_QVrBpuzu0Xmq9GGpyZfx11bjs233xI5_ud07pDbAwalk55p7pJrrrpHNn_KTHiffJ90LYY71F3zln4GMMkwVoT2GgCb0J2-fo4ZEg7QyVmr-74o4GA6PVmakPaAgjU0eB9Pa0-nNRZ_rhd0BlC5rhw9qSioLnaKzwJDNDT9EtRlg60_AbAHZby4gM46QMY0eBzo4TnYjwfkaHdnPp2xoZgD0zLKW5arNLGCO5fig1ZpReqN9VmipLeA8n2UGW8jo7My517EPgUr6rDkYSmM1YmMH5KNCgb2mFApTOaFijRXHghpnSqdeQNHsVyVOpYj8hqWtxiEsSmCn13wYr3mxbDmI8Ivd70wQ050LM2xuPKfN6t_zvqMIFe2fnnJTAUILnpjdOVg8wohM_SlA2IfkUc9l63oxXEMwC3hT_55Ji_Izdl8f6_Ye3_wcZvcEvjyJuJMiKdko1127hlAp7Z8HkTlB9xqGWM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELagSAgeuAtLKRgJiQfwEh-5HlfbrparqihF-xY5PqSKJVltEiH4NfzUzjjpFhBUiNfIGV8zns-ei5BnysXal9wy6YxgKo8sy7QHwYutLRWoQMExOPn9QTI_Vm8W8WJ4usBYGBhEA5SaYMRHqV5ZP2QY4K_gewOXu3rdjCMDrBSry-QK2u2QtSfTo_PHFYT1oWqakGnOZJKrIWDmz2RQNZnmV9X0F7wZ9M7sJllsRhzcTT6Pu7Ycm--_JXP8jyndIjcGLEonPfPcJpdcdYdc_ylD4V3yY9K1GPZQd81L-gFAJcOYEdqfBNiE7vd1dMyQeIBOVq3u-6KAh-n0ZG1C-gMKWtHguzytPZ3WWAS6XtI5QOa6cvSkonCEsS_oHhiioumncGw22PoQAD4cystv0FkHCJkGywM9-gp65B45nu1_nM7ZUNSBaRVlLcvyJLaCO5egY6uyIvHG-jTOlbeA9n2UGm8jo9My415In4A2dVj6sBTG6ljJbbJVwcAeEKqESb3II81zD4S0TnKdegNXsiwvtVQj8hyWtxiEsimCvV3w4nzNi2HNR4Sf7XxhhtzoWKJjeeE_Lzb_rPrMIBe2fnrGUAUIMFpldOVg8wqhUrSpA3Ifkfs9p23oSSkBwMX84T_P5Am5erg3K969Pni7Q64JdMCJOBPiEdlq153bBQTVlo-DtJwCvJgb5g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autonomous%2C+Real-Time+Monitoring+Electrochemical+Aptasensor+for+Circadian+Tracking+of+Cortisol+Hormone+in+Sub-microliter+Volumes+of+Passively+Eluted+Human+Sweat&rft.jtitle=ACS+sensors&rft.au=Ganguly%2C+Antra&rft.au=Lin%2C+Kai+Chun&rft.au=Muthukumar%2C+Sriram&rft.au=Prasad%2C+Shalini&rft.date=2021-01-22&rft.issn=2379-3694&rft.eissn=2379-3694&rft.volume=6&rft.issue=1&rft.spage=63&rft.epage=72&rft_id=info:doi/10.1021%2Facssensors.0c01754&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acssensors_0c01754 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-3694&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-3694&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-3694&client=summon |