Real-Time Visualization and Quantification of PAH Photodegradation on and within Plant Leaves
Vegetation plays a key role in the environmental cycling and fate of many organic chemicals. A compound's location on or within leaves will affect its persistence and significance; retention in surface compartments (i.e., the epicuticular wax and cuticle) renders the compound more susceptible t...
Saved in:
Published in | Environmental science & technology Vol. 39; no. 1; pp. 268 - 273 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
01.01.2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Vegetation plays a key role in the environmental cycling and fate of many organic chemicals. A compound's location on or within leaves will affect its persistence and significance; retention in surface compartments (i.e., the epicuticular wax and cuticle) renders the compound more susceptible to photodegradation and volatilization, while penetration into the epidermal cell walls or cytoplasm will enhance susceptibility to metabolism. Here, for the first time, methodologies which combine plant and PAH autofluorescence with two-photon excitation microscopy (TPEM) are used to visualize and quantify compound photodegradation on and within living plant leaves. Anthracene, fluoranthene, and phenanthrene were introduced to living leaves of Zea mays and monitored in real time, in control treatments, and when subject to UV-A radiation. Compound photodegradation was observed directly; different degradation rates occurred for different compounds (anthracene > fluoranthene > phenanthrene) and in different locations (at the leaf surface > within the epidermal cells). Results suggest that photodegradation on vegetation may be a more important loss mechanism for PAHs than previously thought. Compound fate in vegetation is potentially highly complex, influenced by diffusion into and location within leaf structures, the rates of supply/loss with the atmosphere, exposure to sunlight, and other environmental conditions. The techniques described here provide a real-time tool to advance insight into these issues. |
---|---|
AbstractList | Vegetation plays a key role in the environmental cycling and fate of many organic chemicals. A compound's location on or within leaves will affect its persistence and significance; retention in surface compartments (i.e., the epicuticular wax and cuticle) renders the compound more susceptible to photodegradation and volatilization, while penetration into the epidermal cell walls or cytoplasm will enhance susceptibility to metabolism. Here, for the first time, methodologies which combine plant and PAH autofluorescence with two-photon excitation microscopy (TPEM) are used to visualize and quantify compound photodegradation on and within living plant leaves. Anthracene, fluoranthene, and phenanthrene were introduced to living leaves of Zea mays and monitored in real time, in control treatments, and when subject to UV-A radiation. Compound photodegradation was observed directly; different degradation rates occurred for different compounds (anthracene > fluoranthene > phenanthrene) and in different locations (at the leaf surface > within the epidermal cells). Results suggest that photodegradation on vegetation may be a more important loss mechanism for PAHs than previously thought. Compound fate in vegetation is potentially highly complex, influenced by diffusion into and location within leaf structures, the rates of supply/loss with the atmosphere, exposure to sunlight, and other environmental conditions. The techniques described here provide a real-time tool to advance insight into these issues. Vegetation plays a key role in the environmental cycling and fate of many organic chemicals. A compound's location on or within leaves will affect its persistence and significance; retention in surface compartments (i.e., the epicuticular wax and cuticle) renders the compound more susceptible to photodegradation and volatilization, while penetration into the epidermal cell walls or cytoplasm will enhance susceptibility to metabolism. Here, for the first time, methodologies which combine plant and PAH autofluorescence with two-photon excitation microscopy (TPEM) are used to visualize and quantify compound photodegradation on and within living plant leaves. Anthracene, fluoranthene, and phenanthrene were introduced to living leaves of Zea mays and monitored in real time, in control treatments, and when subject to UV-A radiation. Compound photodegradation was observed directly; different degradation rates occurred for different compounds (anthracene > fluoranthene > phenanthrene) and in different locations (at the leaf surface > within the epidermal cells). Results suggest that photodegradation on vegetation may be a more important loss mechanism for PAHs than previously thought. Compound fate in vegetation is potentially highly complex, influenced by diffusion into and location within leaf structures, the rates of supply/loss with the atmosphere, exposure to sunlight, and other environmental conditions. The techniques described here provide a real-time too[ to advance insight into these issues. [PERIODICAL ABSTRACT] Vegetation plays a key role in the environmental cycling and fate of many organic chemicals. A compound's location on or within leaves will affect its persistence and significance; retention in surface compartments (i.e., the epicuticular wax and cuticle) renders the compound more susceptible to photodegradation and volatilization, while penetration into the epidermal cell walls or cytoplasm will enhance susceptibility to metabolism. Here, for the first time, methodologies which combine plant and PAH autofluorescence with two-photon excitation microscopy (TPEM) are used to visualize and quantify compound photodegradation on and within living plant leaves. Anthracene,fluoranthene, and phenanthrene were introduced to living leaves of Zea mays and monitored in real time, in control treatments, and when subject to UV-A radiation. Compound photodegradation was observed directly; different degradation rates occurred for different compounds (anthracene > fluoranthene > phenanthrene) and in different locations (at the leaf surface > within the epidermal cells). Results suggest that photodegradation on vegetation may be a more important loss mechanism for PAHs than previously thought. Compound fate in vegetation is potentially highly complex, influenced by diffusion into and location within leaf structures, the rates of supply/loss with the atmosphere, exposure to sunlight, and other environmental conditions. The techniques described here provide a real-time tool to advance insight into these issues.Vegetation plays a key role in the environmental cycling and fate of many organic chemicals. A compound's location on or within leaves will affect its persistence and significance; retention in surface compartments (i.e., the epicuticular wax and cuticle) renders the compound more susceptible to photodegradation and volatilization, while penetration into the epidermal cell walls or cytoplasm will enhance susceptibility to metabolism. Here, for the first time, methodologies which combine plant and PAH autofluorescence with two-photon excitation microscopy (TPEM) are used to visualize and quantify compound photodegradation on and within living plant leaves. Anthracene,fluoranthene, and phenanthrene were introduced to living leaves of Zea mays and monitored in real time, in control treatments, and when subject to UV-A radiation. Compound photodegradation was observed directly; different degradation rates occurred for different compounds (anthracene > fluoranthene > phenanthrene) and in different locations (at the leaf surface > within the epidermal cells). Results suggest that photodegradation on vegetation may be a more important loss mechanism for PAHs than previously thought. Compound fate in vegetation is potentially highly complex, influenced by diffusion into and location within leaf structures, the rates of supply/loss with the atmosphere, exposure to sunlight, and other environmental conditions. The techniques described here provide a real-time tool to advance insight into these issues. |
Author | Thomas, Gareth O Wild, Edward Jones, Kevin C Dent, John |
Author_xml | – sequence: 1 givenname: Edward surname: Wild fullname: Wild, Edward – sequence: 2 givenname: John surname: Dent fullname: Dent, John – sequence: 3 givenname: Gareth O surname: Thomas fullname: Thomas, Gareth O – sequence: 4 givenname: Kevin C surname: Jones fullname: Jones, Kevin C |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16444017$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/15667104$$D View this record in MEDLINE/PubMed |
BookMark | eNptkV9rFDEUxYNU7Lb64BeQQbDgw9ibSTKZfayldpUFV11FBAl3kxubOjtTkxn_fXqnnXUXqk8XLr9zOPfcA7bXtA0x9pDDMw4FP6YEcir5tLzDJlwVkKtK8T02AeAin4ry4z47SOkSAAoB1T22z1VZag5ywj6_JazzZVhT9iGkHuvwG7vQNhk2LnvTY9MFH-y4an22OJlli4u2ax19ieg2-5H-EbqL0GSLehBlc8LvlO6zux7rRA8285C9f3G2PJ3l89fnL09P5jlKqLq8ErTSQyDnpXBal2JFlrxF0oWzUlmhwE0dVMRLVWhpHaLXOCXtFfhCVOKQHY2-V7H91lPqzDokS_UQhdo-mVILzQWIAXx8C7xs-9gM2cxQDZeiVNdujzZQv1qTM1cxrDH-Mn9bG4AnGwCTxdpHbGxIO66UUgLXA3c8cja2KUXyxobuprMuYqgNB3P9P7P936B4ekuxNf0Pm49sSB393IIYv97cq8xy8c7MXsnn-vyTMLBLjTbtzv7X9w80jbPV |
CODEN | ESTHAG |
CitedBy_id | crossref_primary_10_1016_j_ecolind_2022_109681 crossref_primary_10_1039_b823016a crossref_primary_10_1007_s11356_018_2167_z crossref_primary_10_1897_06_147R_1 crossref_primary_10_1021_es900305c crossref_primary_10_1016_j_chemosphere_2016_03_071 crossref_primary_10_1016_j_apr_2023_101694 crossref_primary_10_1016_j_envpol_2024_124216 crossref_primary_10_1071_EN08073 crossref_primary_10_1007_s11738_021_03351_w crossref_primary_10_1016_j_tiv_2019_104645 crossref_primary_10_1021_jf8026759 crossref_primary_10_1016_j_envpol_2023_121814 crossref_primary_10_2139_ssrn_4053165 crossref_primary_10_1021_es7023725 crossref_primary_10_1016_j_talanta_2013_07_018 crossref_primary_10_1016_j_envexpbot_2010_11_009 crossref_primary_10_1016_j_scitotenv_2024_174205 crossref_primary_10_1002_jsfa_10553 crossref_primary_10_1007_s11367_014_0810_6 crossref_primary_10_1007_s10895_010_0769_z crossref_primary_10_1371_journal_pone_0050467 crossref_primary_10_2116_bunsekikagaku_59_645 crossref_primary_10_1016_j_atmosenv_2015_04_067 crossref_primary_10_1007_s10661_012_2614_0 crossref_primary_10_1021_es404976c crossref_primary_10_1186_s13007_017_0201_7 crossref_primary_10_1016_j_soilbio_2018_10_017 crossref_primary_10_1021_acsearthspacechem_8b00087 crossref_primary_10_1029_2005JD006923 crossref_primary_10_1016_j_chemosphere_2006_12_070 crossref_primary_10_1016_j_micron_2017_01_004 crossref_primary_10_1016_j_atmosenv_2013_05_056 crossref_primary_10_12677_HJFNS_2018_73029 crossref_primary_10_1016_j_chemosphere_2020_126807 crossref_primary_10_1016_j_envpol_2007_10_039 crossref_primary_10_1016_j_ecoenv_2017_11_065 crossref_primary_10_1016_j_scitotenv_2021_150163 crossref_primary_10_1897_06_279_1 crossref_primary_10_1016_j_atmosenv_2013_04_013 crossref_primary_10_1021_acs_chemrev_3c00763 crossref_primary_10_1016_j_scitotenv_2018_06_077 crossref_primary_10_1016_j_envpol_2009_03_004 crossref_primary_10_1080_10406638_2014_892887 crossref_primary_10_1080_10406638_2020_1720748 crossref_primary_10_1016_j_scitotenv_2020_139893 crossref_primary_10_1016_j_envint_2013_12_021 crossref_primary_10_1080_10406638_2020_1739084 crossref_primary_10_1016_j_atmosenv_2005_05_048 crossref_primary_10_1021_es048136a crossref_primary_10_1016_j_chemosphere_2008_03_022 crossref_primary_10_1007_s10874_006_9037_7 crossref_primary_10_1111_j_1462_2920_2006_01149_x crossref_primary_10_1021_jp804751f crossref_primary_10_1007_s11270_019_4118_9 crossref_primary_10_1080_10962247_2013_874380 crossref_primary_10_28948_ngumuh_443178 crossref_primary_10_1016_j_envint_2020_105947 crossref_primary_10_1016_j_envpol_2017_12_080 crossref_primary_10_1021_jf803282f crossref_primary_10_2112_08_1148_1 crossref_primary_10_1016_j_chemosphere_2009_11_030 crossref_primary_10_1016_j_atmosenv_2016_11_046 |
Cites_doi | 10.1016/j.envpol.2003.08.033 10.1021/es962399q 10.1021/es00140a020 10.1093/jxb/42.4.547 10.1021/es980831t 10.1021/es049915u 10.1016/S0045-6535(00)00268-X 10.1021/es0011919 10.1016/j.envpol.2003.08.024 10.1038/370049a0 10.1021/es00054a028 10.1002/(SICI)1096-9063(199901)55:1<69::AID-PS860>3.0.CO;2-H 10.1016/j.agrformet.2003.08.015 10.1021/es60169a019 10.1126/science.7352284 10.1111/j.1399-3054.1988.tb06368.x |
ContentType | Journal Article |
Copyright | Copyright © 2005 American Chemical Society 2005 INIST-CNRS Copyright American Chemical Society Jan 1, 2005 |
Copyright_xml | – notice: Copyright © 2005 American Chemical Society – notice: 2005 INIST-CNRS – notice: Copyright American Chemical Society Jan 1, 2005 |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 |
DOI | 10.1021/es0494196 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Biotechnology Research Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1520-5851 |
EndPage | 273 |
ExternalDocumentID | 779135111 15667104 16444017 10_1021_es0494196 ark_67375_TPS_HJ4B7GZ3_0 b986834245 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | - .K2 186 1AW 3R3 4.4 42X 4R4 53G 55A 5GY 5VS 63O 7~N 85S A AABXI ABDEX ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFMIJ AFRAH ALMA_UNASSIGNED_HOLDINGS ANTXH AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 K78 LG6 MS NHB PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UNC UPT UQL VF5 VG9 VOH VQA W1F WH7 X XFK XZL YZZ ZCG --- -DZ -~X ..I .DC 6TJ AAHBH AAYOK ABJNI ABQRX ADHLV ADMHC ADUKH AGXLV AHGAQ BSCLL CUPRZ GGK MS~ MW2 XSW YV5 ZCA ~A~ AAYXX ABBLG ABLBI ACRPL ADNMO AEYZD AGQPQ ANPPW CITATION .HR 1WB 8WZ A6W ABHMW ACKIV AETEA IQODW MVM OHT RNS TAE UBC UBX UBY VJK ZY4 CGR CUY CVF ECM EIF NPM YIN 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 |
ID | FETCH-LOGICAL-a408t-83eb7671df43d7763becefcae72dc45c350d9d08e165274cdaaf7a9e7f50f2383 |
IEDL.DBID | ACS |
ISSN | 0013-936X |
IngestDate | Mon Jul 21 10:07:33 EDT 2025 Fri Jul 25 07:36:29 EDT 2025 Wed Feb 19 01:43:05 EST 2025 Mon Jul 21 09:10:49 EDT 2025 Thu Apr 24 23:07:07 EDT 2025 Tue Jul 01 04:04:51 EDT 2025 Wed Oct 30 09:31:09 EDT 2024 Thu Aug 27 13:42:22 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Plant leaf Hydrocarbon Polycyclic aromatic compound Pollutant behavior Organic compounds Photochemical degradation |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a408t-83eb7671df43d7763becefcae72dc45c350d9d08e165274cdaaf7a9e7f50f2383 |
Notes | ark:/67375/TPS-HJ4B7GZ3-0 istex:6921D8E49EDE3851726AA365CBACCFC671E7B2DA SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 15667104 |
PQID | 230143658 |
PQPubID | 45412 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_67371303 proquest_journals_230143658 pubmed_primary_15667104 pascalfrancis_primary_16444017 crossref_citationtrail_10_1021_es0494196 crossref_primary_10_1021_es0494196 istex_primary_ark_67375_TPS_HJ4B7GZ3_0 acs_journals_10_1021_es0494196 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ANTXH ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20050101 2005-01-01 2005 2005-Jan-01 |
PublicationDateYYYYMMDD | 2005-01-01 |
PublicationDate_xml | – month: 01 year: 2005 text: 20050101 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2005 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Kakani V. G. (es0494196b00018/es0494196b00018_1) 2003; 120 Simonich S. L. (es0494196b00001/es0494196b00001_1) 1994; 28 Smith K. E. C. (es0494196b00006/es0494196b00006_1) 2000; 246 Hellstrom A. (es0494196b00027/es0494196b00027_1) 2004; 128 Bornman F. J. (es0494196b00016/es0494196b00016_1) 1991; 42 Mackay D. (es0494196b00021/es0494196b00021_1) 2000 McLachlan M. S (es0494196b00025/es0494196b00025_1) 1999; 33 Wild E. (es0494196b00019/es0494196b00019_1) 2004; 38 Kerstiens G. (es0494196b00002/es0494196b00002_1) 1996 Bornman F. J. (es0494196b00017/es0494196b00017_1) 1988; 72 Barber J. L. (es0494196b00026/es0494196b00026_1) 2004; 128 Korfmacher W. A. (es0494196b00013/es0494196b00013_1) 1980; 207 Korfmacher W. A. (es0494196b00014/es0494196b00014_1) 1980; 14 Niu J. (es0494196b00007/es0494196b00007_1) 2003; 123 Smith K. E. C. (es0494196b00028/es0494196b00028_1) 2001; 35 Simonich S. L. (es0494196b00003/es0494196b00003_1) 1994; 370 Lehto K.-M. (es0494196b00023/es0494196b00023_1) 2000 Kirkwood R. C (es0494196b00011/es0494196b00011_1) 1999; 55 Diaspro A. (es0494196b00020/es0494196b00020_1) 2002 Kirkwood R. (es0494196b00005/es0494196b00005_1) 1987 Seckmeyer G. (es0494196b00022/es0494196b00022_1) 1995; 21 Wania F. (es0494196b00010/es0494196b00010_1) 1996; 30 Yan-Ping C. (es0494196b00015/es0494196b00015_1) 1993; 87 Thomas G. (es0494196b00029/es0494196b00029_1) 1998; 32 Wania F. (es0494196b00009/es0494196b00009_1) 2001; 35 Behymer T. D. (es0494196b00012/es0494196b00012_1) 1985; 19 Wania F. (es0494196b00004/es0494196b00004_1) 1996; 30 Niu J. (es0494196b00008/es0494196b00008_1) 2004; 322 Howsam M. (es0494196b00024/es0494196b00024_1) 2001; 44 |
References_xml | – volume: 128 start-page: 48 year: 2004 ident: es0494196b00027/es0494196b00027_1 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2003.08.033 – volume-title: Confocal and Two Photon Microscopy Foundations, Applications, and Advances year: 2002 ident: es0494196b00020/es0494196b00020_1 – volume: 30 start-page: 396A year: 1996 ident: es0494196b00010/es0494196b00010_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es962399q – volume: 19 start-page: 1006 year: 1985 ident: es0494196b00012/es0494196b00012_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es00140a020 – volume: 42 start-page: 554 year: 1991 ident: es0494196b00016/es0494196b00016_1 publication-title: J. Exp. Bot. doi: 10.1093/jxb/42.4.547 – volume: 33 start-page: 1804 year: 1999 ident: es0494196b00025/es0494196b00025_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es980831t – start-page: 25 volume-title: Pesticides on Plant Surfaces year: 1987 ident: es0494196b00005/es0494196b00005_1 – volume: 246 start-page: 236 year: 2000 ident: es0494196b00006/es0494196b00006_1 publication-title: Sci. Total Environ. – volume: 38 start-page: 4199 year: 2004 ident: es0494196b00019/es0494196b00019_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es049915u – volume: 35 start-page: 2165 year: 2001 ident: es0494196b00028/es0494196b00028_1 publication-title: Environ. Sci. Technol. – volume: 44 start-page: 164 year: 2001 ident: es0494196b00024/es0494196b00024_1 publication-title: Chemosphere doi: 10.1016/S0045-6535(00)00268-X – volume: 35 start-page: 590 year: 2001 ident: es0494196b00009/es0494196b00009_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es0011919 – volume: 322 start-page: 241 year: 2004 ident: es0494196b00008/es0494196b00008_1 publication-title: Sci. Total Environ. – volume: 128 start-page: 138 year: 2004 ident: es0494196b00026/es0494196b00026_1 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2003.08.024 – volume: 370 start-page: 51 year: 1994 ident: es0494196b00003/es0494196b00003_1 publication-title: Nature doi: 10.1038/370049a0 – volume: 30 start-page: 396A year: 1996 ident: es0494196b00004/es0494196b00004_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es962399q – volume-title: Physical Chemical Properties and Environmental Fate Handbook year: 2000 ident: es0494196b00021/es0494196b00021_1 – volume-title: The Plant Cuticle: An Integrated Functional Approach year: 1996 ident: es0494196b00002/es0494196b00002_1 – volume: 28 start-page: 943 year: 1994 ident: es0494196b00001/es0494196b00001_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es00054a028 – volume: 32 start-page: 942 year: 1998 ident: es0494196b00029/es0494196b00029_1 publication-title: Environ. Sci. Technol. – volume: 55 start-page: 77 year: 1999 ident: es0494196b00011/es0494196b00011_1 publication-title: Pestic. Sci. doi: 10.1002/(SICI)1096-9063(199901)55:1<69::AID-PS860>3.0.CO;2-H – volume: 120 start-page: 218 year: 2003 ident: es0494196b00018/es0494196b00018_1 publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2003.08.015 – volume: 14 start-page: 1099 year: 1980 ident: es0494196b00014/es0494196b00014_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es60169a019 – volume: 21 start-page: 580 year: 1995 ident: es0494196b00022/es0494196b00022_1 publication-title: Geophys. Res. Lett. – volume: 123 start-page: 45 year: 2003 ident: es0494196b00007/es0494196b00007_1 publication-title: Environ. Pollut. – volume-title: A: Chem. year: 2000 ident: es0494196b00023/es0494196b00023_1 – volume: 207 start-page: 765 year: 1980 ident: es0494196b00013/es0494196b00013_1 publication-title: Science doi: 10.1126/science.7352284 – volume: 87 start-page: 255 year: 1993 ident: es0494196b00015/es0494196b00015_1 publication-title: Physiol. Plant. – volume: 72 start-page: 705 year: 1988 ident: es0494196b00017/es0494196b00017_1 publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.1988.tb06368.x |
SSID | ssj0002308 |
Score | 2.072857 |
Snippet | Vegetation plays a key role in the environmental cycling and fate of many organic chemicals. A compound's location on or within leaves will affect its... |
SourceID | proquest pubmed pascalfrancis crossref istex acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 268 |
SubjectTerms | Animal, plant and microbial ecology Applied ecology Biodegradation Biological and medical sciences Ecotoxicology, biological effects of pollution Effects of pollution and side effects of pesticides on plants and fungi Environmental Monitoring - methods Flowers & plants Fluorescence Fundamental and applied biological sciences. Psychology Leaves Life cycles Microscopy Organic chemicals Organic contaminants Photochemistry Photodegradation Plant Leaves - chemistry Polycyclic Aromatic Hydrocarbons - analysis Polycyclic Aromatic Hydrocarbons - chemistry Time Factors Vegetation |
Title | Real-Time Visualization and Quantification of PAH Photodegradation on and within Plant Leaves |
URI | http://dx.doi.org/10.1021/es0494196 https://api.istex.fr/ark:/67375/TPS-HJ4B7GZ3-0/fulltext.pdf https://www.ncbi.nlm.nih.gov/pubmed/15667104 https://www.proquest.com/docview/230143658 https://www.proquest.com/docview/67371303 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6V9lIOQAuFUFosqBCXlGycxMmx9MGqArR9oRUSihw_RFWUoCaLEL-emTjJtmoLV2fsJOMZ-_NjvgHYShNjtS0k-ndQ-FGmQl-mBQ6GiZZChcZmhqKRP31OxmfR4TSeLsDrO07ww9E7UxOFCRrKPVgKE3Rewj-7J8Nwixg67dMUZDyZ9vRBV6vS1KPqa1PPEmnxN12FlDVqw7o0FnfjzHa-OXgIe33UjrtmcrE9a4pt9ecmieO_fuURPOjwJttxBrICC6ZchftXWAhXYW1_HuyGop2314_h2zGiSJ-CRNiX85qiL13MJpOlZkcz6e4ZuaLKssnOmE2-V02liYBCd-VOmrZ7z0tGKZIa9tHIX6Z-AmcH-6e7Y79Lx-DLKEgbP-WmEIkYaRtxLXBcwu43VkkjQq2iWPE40JkOUjNKYlzrKi2lFTIzwsaBRWTA12CxrErzDFiQWsVDaaMMaxI9OJ3OITBTXGFZrD3YxP7KO3eq8_akPBzlgwI9eNt3Za46MnPKqfHjNtFXg-hPx-Bxm9Cb1h4GCXl5QVfeRJyfTk7y8WH0Xnz4yvMAv-yawcybRGCJa1XhwXpvQfPvD2nhyhHsefByeIp-TIczsjTVrG5fRnjCg6fO7OYtI-JGHBg9_59S1mG5JZZtN4hewGJzOTMbCJmaYrN1mb98YQ8W |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9RAEJ8oPKgPfqBIRaExxvhS7PVr28eTgBUPcsphLiSm2e5HIJjWsD1j_Oud2fZaMBh93c5ut9OZ3d9-zG8AXqWJ0lKXHP3bL70oE4HH0xIHw0RyJgKlM0XRyIdHSX4SHczjeUeTQ7Ew2AmDLRl7iD-wC4zeKkNMJmgvt2EVQUhA1jzePe5HXYTS6TJbQRYm8yWL0NWqNAMJc20GWiVl_qQbkdygUnSbzeLvcNNOO_sP2vxFtsP2tsnFzqIpd8SvP7gc_--LHsL9Dn2649ZcHsEtVa3BvSuchGuwvjeEvqFo5_vmMXz9jJjSo5AR98u5oVjMNoLT5ZV0Py14e-uoLaq1Ox3n7vSsbmpJdBSyK2-lafP3vHIpYVLjThT_ocwTONnfm-3mXpecweORnzZeGqqSJWwkdRRKhqMUGoPSgisWSBHFIox9mUk_VSP8WSwSknPNeKaYjn2NOCFch5WqrtQGuH6qRRhwHWVYk8jC6awOYZoIBZbF0oEt1F_ROZcp7Ll5MCp6BTrwZvlHC9FRm1OGjW83ib7sRb-3fB43Cb22ZtFL8MsLugDH4mI2PS7yg-gde38aFj727JrdDE0izMSVK3Ngc2lIQ_8DWsaGCP0c2O6folfTUQ2vVL0w9mWELhx42lrf0DLib0SF0bN_KWUb7uSzw0kx-XD0cRPuWspZu3X0HFaay4V6gWCqKbesF_0GR8cXdw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db5RAEJ9omxh98KPaitWWGGN8oXIssPB41p5nrfW0H7mYNGTZj9jUQNPljPGvd2bhuNbU6OsyLMsws_tbZuc3AC-yVBtlSoH-HZZBnMsoEFmJk2GqBJeRNrmmbOSP--n4KN6dJtNuo0i5MDgIiz1ZF8Qnrz5XpmMYGLzWlthM0GZuwjKF68iih9sH_cyLcDqbVyzIWTqdMwldvpVWIWmvrELLpNCfdCpSWFSMaSta_B1yuqVndA8-9YN2J07OtmZNuSV__cHn-P9vdR_udijUH7Zm8wBu6GoF7lziJlyB1Z1FChyKdnOAfQgnXxBbBpQ64h-fWsrJbDM5fVEp__NMtKeP2qba-JPh2J98q5taES2F6tpbafoJfFr5VDip8fe0-KHtIzga7Rxuj4OuSEMg4jBrgozpkqd8oEzMFMfZCo1CGyk0j5SME8mSUOUqzPQgTXAHLJUQhotcc5OEBvECW4Wlqq70Y_DDzEgWCRPneCeRhlPMDuGaZBLbEuXBBuqw6JzMFi5-Hg2KXoEevJp_1UJ2FOdUaeP7daLPe9HzltfjOqGXzjR6CXFxRgfheFIcTg6K8W78hr_7yooQR3bFdhZdItzEHSz3YH1uTIvxR7SdZQgBPdjsr6J3U8hGVLqeWfcwQhkerLUWuOgZcTiiw_jJv5SyCbcmb0fF3vv9D-tw2zHPuj9IT2GpuZjpZ4ipmnLDOdJvXIgZ-g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+visualization+and+quantification+of+PAH+photodegradation+on+and+within+plant+leaves&rft.jtitle=Environmental+science+%26+technology&rft.au=WILD%2C+Edward&rft.au=DENT%2C+John&rft.au=THOMAS%2C+Gareth+O&rft.au=JONES%2C+Kevin+C&rft.date=2005&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.volume=39&rft.issue=1&rft.spage=268&rft.epage=273&rft_id=info:doi/10.1021%2Fes0494196&rft.externalDBID=n%2Fa&rft.externalDocID=16444017 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |