Microstructure observations in compacted clays subjected to thermal loading

The response of clayey materials to thermal variation has been the subject of extensive studies, given the wide range of engineering applications which involve subjecting soils to substantial temperature fluctuations. A number of hypotheses have been proposed to explain the volumetric changes induce...

Full description

Saved in:
Bibliographic Details
Published inEngineering geology Vol. 287; p. 105928
Main Authors Houhou, Roba, Sutman, Melis, Sadek, Salah, Laloui, Lyesse
Format Journal Article
LanguageEnglish
Published Elsevier B.V 20.06.2021
Subjects
Online AccessGet full text
ISSN0013-7952
1872-6917
DOI10.1016/j.enggeo.2020.105928

Cover

Loading…
Abstract The response of clayey materials to thermal variation has been the subject of extensive studies, given the wide range of engineering applications which involve subjecting soils to substantial temperature fluctuations. A number of hypotheses have been proposed to explain the volumetric changes induced in the clays as a result of temperature variations. Most associate the observed volumetric changes to re-orientation as well as changes in the clay microstructure, with no microstructural experimental evidences to date. The work presented in this note is a first attempt at studying the evolution of the internal structure of two types of clays, an Illite and a Kaolin, compacted dry of optimum, submerged until saturation, reconsolidated to various vertical effective stresses and then subjected to thermal loading. A series of thermal oedometer, mercury intrusion porosimetry (MIP) and tomography tests were conducted in order to induce, detect, and quantify microstructural alterations within the clay as a consequence of temperature changes. Results of heating and cooling tests on Illite showed a thermal contraction which could be attributed to the deformation/collapse of macro-pores in its dual-porosity structure assemblage. The magnitude of the observed contraction varied with the level of pre-imposed effective vertical stresses. Higher effective vertical stresses resulted in larger shear stresses at the contacts of clay-assemblages, and thus in easier deformation of the macro-pores. The Kaolin samples which presented a unimodal pore size distribution, with a relatively small dominant pore size (0.25 μm), did not exhibit changes in the microstructure which could be captured by the MIP. •The thermal volumetric response of clays depends on the pore size distribution, the stress state and the clay composition•Illite with bimodal distribution are more susceptible to thermal contraction than the Kaolin with unimodal distribution•The macropores of Illite gradually deform upon temperature variation but the micropores remain intact•High normal stresses facilitate the macropores deformation during thermal loading
AbstractList The response of clayey materials to thermal variation has been the subject of extensive studies, given the wide range of engineering applications which involve subjecting soils to substantial temperature fluctuations. A number of hypotheses have been proposed to explain the volumetric changes induced in the clays as a result of temperature variations. Most associate the observed volumetric changes to re-orientation as well as changes in the clay microstructure, with no microstructural experimental evidences to date. The work presented in this note is a first attempt at studying the evolution of the internal structure of two types of clays, an Illite and a Kaolin, compacted dry of optimum, submerged until saturation, reconsolidated to various vertical effective stresses and then subjected to thermal loading. A series of thermal oedometer, mercury intrusion porosimetry (MIP) and tomography tests were conducted in order to induce, detect, and quantify microstructural alterations within the clay as a consequence of temperature changes. Results of heating and cooling tests on Illite showed a thermal contraction which could be attributed to the deformation/collapse of macro-pores in its dual-porosity structure assemblage. The magnitude of the observed contraction varied with the level of pre-imposed effective vertical stresses. Higher effective vertical stresses resulted in larger shear stresses at the contacts of clay-assemblages, and thus in easier deformation of the macro-pores. The Kaolin samples which presented a unimodal pore size distribution, with a relatively small dominant pore size (0.25 μm), did not exhibit changes in the microstructure which could be captured by the MIP. •The thermal volumetric response of clays depends on the pore size distribution, the stress state and the clay composition•Illite with bimodal distribution are more susceptible to thermal contraction than the Kaolin with unimodal distribution•The macropores of Illite gradually deform upon temperature variation but the micropores remain intact•High normal stresses facilitate the macropores deformation during thermal loading
The response of clayey materials to thermal variation has been the subject of extensive studies, given the wide range of engineering applications which involve subjecting soils to substantial temperature fluctuations. A number of hypotheses have been proposed to explain the volumetric changes induced in the clays as a result of temperature variations. Most associate the observed volumetric changes to re-orientation as well as changes in the clay microstructure, with no microstructural experimental evidences to date. The work presented in this note is a first attempt at studying the evolution of the internal structure of two types of clays, an Illite and a Kaolin, compacted dry of optimum, submerged until saturation, reconsolidated to various vertical effective stresses and then subjected to thermal loading. A series of thermal oedometer, mercury intrusion porosimetry (MIP) and tomography tests were conducted in order to induce, detect, and quantify microstructural alterations within the clay as a consequence of temperature changes. Results of heating and cooling tests on Illite showed a thermal contraction which could be attributed to the deformation/collapse of macro-pores in its dual-porosity structure assemblage. The magnitude of the observed contraction varied with the level of pre-imposed effective vertical stresses. Higher effective vertical stresses resulted in larger shear stresses at the contacts of clay-assemblages, and thus in easier deformation of the macro-pores. The Kaolin samples which presented a unimodal pore size distribution, with a relatively small dominant pore size (0.25 μm), did not exhibit changes in the microstructure which could be captured by the MIP.
ArticleNumber 105928
Author Houhou, Roba
Sutman, Melis
Laloui, Lyesse
Sadek, Salah
Author_xml – sequence: 1
  givenname: Roba
  surname: Houhou
  fullname: Houhou, Roba
  email: rdh03@mail.aub.edu
  organization: Laboratory of Soil Mechanics (LMS), Swiss Federal Institute of Technology in Lausanne (EPFL), Station 18, CH-1015 Lausanne, Switzerland
– sequence: 2
  givenname: Melis
  surname: Sutman
  fullname: Sutman, Melis
  organization: Laboratory of Soil Mechanics (LMS), Swiss Federal Institute of Technology in Lausanne (EPFL), Station 18, CH-1015 Lausanne, Switzerland
– sequence: 3
  givenname: Salah
  surname: Sadek
  fullname: Sadek, Salah
  organization: Department of Civil and Environmental Engineering, American University of Beirut (AUB), Riad ElSolh, Beirut 1107-2020, Lebanon
– sequence: 4
  givenname: Lyesse
  surname: Laloui
  fullname: Laloui, Lyesse
  organization: Laboratory of Soil Mechanics (LMS), Swiss Federal Institute of Technology in Lausanne (EPFL), Station 18, CH-1015 Lausanne, Switzerland
BookMark eNqFkEtPwzAQhC1UJNrCP-CQI5cUP-LE4YCEKl6iiAucLdvZFkdpXGynUv89ScOJA5xWs5oZ7X4zNGldCwhdErwgmOTX9QLazQbcgmI6rHhJxQmaElHQNC9JMUFTjAlLi5LTMzQLoR4kxsUUvbxa412IvjOx85A4HcDvVbSuDYltE-O2O2UiVIlp1CEkodM1HHV0SfwEv1VN0jhV2XZzjk7Xqglw8TPn6OPh_n35lK7eHp-Xd6tUZVjElBFuyjVRnLEcF6XIsTK65KzKMFOi7O_CXPOMQs6F1kQVWlccsNAlEzlnmM3R1di78-6rgxDl1gYDTaNacF2QlHPal2BKeuvNaB2eDB7W0th4_C56ZRtJsBwIylqOBOVAUI4E-3D2K7zzdqv84b_Y7RiDnsHegpfBWGgNVNb36GTl7N8F37xsjmM
CitedBy_id crossref_primary_10_1007_s11440_024_02355_3
crossref_primary_10_1007_s11368_023_03554_3
crossref_primary_10_1016_j_gete_2024_100565
crossref_primary_10_1007_s00603_023_03687_4
crossref_primary_10_1061__ASCE_GM_1943_5622_0002228
crossref_primary_10_1016_j_gete_2024_100556
crossref_primary_10_1016_j_gete_2022_100345
crossref_primary_10_1016_j_rineng_2022_100728
crossref_primary_10_1016_j_geothermics_2025_103329
crossref_primary_10_1007_s11440_023_01920_6
crossref_primary_10_1016_j_conbuildmat_2024_135168
crossref_primary_10_1016_j_enggeo_2023_107101
crossref_primary_10_1016_j_enggeo_2023_107351
crossref_primary_10_1016_j_jrmge_2024_03_013
crossref_primary_10_1016_j_trgeo_2024_101257
crossref_primary_10_3390_app12136325
crossref_primary_10_1016_j_gete_2024_100549
crossref_primary_10_1016_j_enggeo_2023_107248
crossref_primary_10_1016_j_enggeo_2023_107005
crossref_primary_10_1139_cgj_2024_0471
crossref_primary_10_1016_j_engfracmech_2022_108933
crossref_primary_10_1680_jgele_22_00009
Cites_doi 10.1016/j.enggeo.2003.11.006
10.1061/JSFEAQ.0000982
10.3208/sandf1972.33.4_170
10.1139/T09-089
10.1061/JSFEAQ.0001136
10.1002/nag.332
10.1016/j.enggeo.2015.03.003
10.1680/geot.1974.24.2.223
10.1139/t99-105
10.1061/(ASCE)0733-9410(1990)116:12(1778)
10.1016/j.enggeo.2006.10.002
10.1680/geot.1983.33.4.461
10.1346/CCMN.1970.0180103
10.1016/S0013-7952(01)00143-0
10.1179/1937525514Y.0000000010
10.1139/t84-003
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.enggeo.2020.105928
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-6917
ExternalDocumentID 10_1016_j_enggeo_2020_105928
S0013795220318251
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
H~9
IHE
IMUCA
J1W
KOM
LY3
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSZ
T5K
TN5
~02
~G-
29G
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HMA
HVGLF
HZ~
K-O
R2-
RIG
SEP
SET
SEW
SSH
VH1
WUQ
XOL
XPP
ZCG
ZMT
ZY4
7S9
L.6
ID FETCH-LOGICAL-a408t-315c9f1a5336079860acb953d403a8930005b542e658bb1a7bbd5e08b93865303
IEDL.DBID .~1
ISSN 0013-7952
IngestDate Fri Sep 05 07:20:09 EDT 2025
Mon Jul 14 08:40:25 EDT 2025
Thu Apr 24 22:56:29 EDT 2025
Fri Feb 23 02:46:28 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Clays
Deformation
Microstructure
Temperature effects
Structure of soils
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a408t-315c9f1a5336079860acb953d403a8930005b542e658bb1a7bbd5e08b93865303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://infoscience.epfl.ch/record/286495
PQID 2552000021
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2552000021
crossref_citationtrail_10_1016_j_enggeo_2020_105928
crossref_primary_10_1016_j_enggeo_2020_105928
elsevier_sciencedirect_doi_10_1016_j_enggeo_2020_105928
PublicationCentury 2000
PublicationDate 2021-06-20
PublicationDateYYYYMMDD 2021-06-20
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-20
  day: 20
PublicationDecade 2020
PublicationTitle Engineering geology
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Diamond (bb1000) 1970; 181
Campanella, Mitchell (bb0005) 1968; 94
Cetin (bb0015) 2004; 73
Delage, Lefebvre, Sridharan (bb0030) 1983; 33
Sultan, Delage, Cui (bb0080) 2002; 64
Mitchell, Soga (bb0060) 2005
Delage, Sultan, Cui (bb0035) 2000; 37
Cekerevac, Laloui (bb0010) 2004; 28
Laloui, Olgun, Sutman, McCartney, Coccia, Abuel-Naga, Bowers (bb0055) 2014 Oct 1; 8
Plum, Esrig (bb0070) 1969; 103
Abuel-Naga, Bergado, Bouazza (bb2000) 2007; 891
Hueckel, Baldi (bb0045) 1990; 116
Koliji, Vulliet, Laloui (bb0050) 2010; 47
Delage, Lefebvre (bb0025) 1984; 21
Paaswell (bb0065) 1967; 93
Di Donna, Laloui (bb0040) 2015; 190
Skempton (bb0075) 1953; 1
Collins, McGown (bb0020) 1974; 24
Towhata, Kuntiwattanaku, Seko (bb0085) 1993; 33
Diamond (10.1016/j.enggeo.2020.105928_bb1000) 1970; 181
Mitchell (10.1016/j.enggeo.2020.105928_bb0060) 2005
Plum (10.1016/j.enggeo.2020.105928_bb0070) 1969; 103
Laloui (10.1016/j.enggeo.2020.105928_bb0055) 2014; 8
Delage (10.1016/j.enggeo.2020.105928_bb0035) 2000; 37
Skempton (10.1016/j.enggeo.2020.105928_bb0075) 1953; 1
Delage (10.1016/j.enggeo.2020.105928_bb0025) 1984; 21
Di Donna (10.1016/j.enggeo.2020.105928_bb0040) 2015; 190
Sultan (10.1016/j.enggeo.2020.105928_bb0080) 2002; 64
Cetin (10.1016/j.enggeo.2020.105928_bb0015) 2004; 73
Koliji (10.1016/j.enggeo.2020.105928_bb0050) 2010; 47
Campanella (10.1016/j.enggeo.2020.105928_bb0005) 1968; 94
Paaswell (10.1016/j.enggeo.2020.105928_bb0065) 1967; 93
Towhata (10.1016/j.enggeo.2020.105928_bb0085) 1993; 33
Cekerevac (10.1016/j.enggeo.2020.105928_bb0010) 2004; 28
Abuel-Naga (10.1016/j.enggeo.2020.105928_bb2000) 2007; 891
Collins (10.1016/j.enggeo.2020.105928_bb0020) 1974; 24
Delage (10.1016/j.enggeo.2020.105928_bb0030) 1983; 33
Hueckel (10.1016/j.enggeo.2020.105928_bb0045) 1990; 116
References_xml – volume: 24
  start-page: 223
  year: 1974
  end-page: 254
  ident: bb0020
  article-title: The form and function of microfabric features in a variety of natural soils
  publication-title: Geotechnique
– start-page: 558
  year: 2005
  ident: bb0060
  article-title: Fundamentals of Soil Behavior
– volume: 1
  start-page: 57
  year: 1953
  end-page: 61
  ident: bb0075
  article-title: The colloidal activity of clays
  publication-title: Proceedings of 3rd International Conference on Soil Mechanics and Foundation Engineering. Zurich
– volume: 93
  start-page: 9
  year: 1967
  end-page: 22
  ident: bb0065
  article-title: Temperature effects on clay soil consolidation
  publication-title: J. Soil Mech. Found. Eng. Div.
– volume: 33
  start-page: 461
  year: 1983
  end-page: 462
  ident: bb0030
  article-title: Double-layer theory and compressibility of clays-discussion
  publication-title: Geotechnique
– volume: 116
  start-page: 1778
  year: 1990
  end-page: 1796
  ident: bb0045
  article-title: Thermoplasticity of saturated clays: Experimental constitutive study
  publication-title: J. Geotech. Eng.
– volume: 8
  start-page: 108
  year: 2014 Oct 1
  end-page: 120
  ident: bb0055
  article-title: Issues involved with thermoactive geotechnical systems: Characterization of thermomechanical soil behavior and soil-structure interface behavior
  publication-title: DFI J.
– volume: 891
  start-page: 144
  year: 2007
  end-page: 154
  ident: bb2000
  article-title: Thermally Induced Volume Change and Excess Pore Water Pressure of Soft Bangkok Clay
  publication-title: Eng. Geol.
– volume: 28
  start-page: 209
  year: 2004
  end-page: 228
  ident: bb0010
  article-title: Experimental Study of thermal Effects on the Mechanical Behaviour of a Clay
  publication-title: Int. J. Numer. Anal. Methods Geomech.
– volume: 21
  start-page: 21
  year: 1984
  end-page: 35
  ident: bb0025
  article-title: Study of the structure of a sensitive champlain clay and of its evolution during consolidation
  publication-title: Can. Geotech. J.
– volume: 103
  start-page: 231
  year: 1969
  end-page: 242
  ident: bb0070
  article-title: Some temperature effects on soil compressibility and pore water pressure. Eff Temp Heat Eng Behav Soils
  publication-title: Highway Res. Board.
– volume: 73
  start-page: 1
  year: 2004
  end-page: 11
  ident: bb0015
  article-title: Soil-particle and pore orientations during consolidation of cohesive soils
  publication-title: Eng. Geol.
– volume: 37
  start-page: 343
  year: 2000
  end-page: 354
  ident: bb0035
  article-title: On the thermal consolidation of boom clay
  publication-title: Can. Geotech. J.
– volume: 190
  start-page: 65
  year: 2015
  end-page: 76
  ident: bb0040
  article-title: Response of Soil Subjected to thermal Cyclic Loading: Experimental and Constitutive Study
  publication-title: Eng. Geol.
– volume: 64
  start-page: 135
  year: 2002
  end-page: 145
  ident: bb0080
  article-title: Temperature Effects on the volume Change Behaviour of Boom Clay
  publication-title: Eng. Geol.
– volume: 181
  start-page: 7
  year: 1970
  end-page: 23
  ident: bb1000
  article-title: Pore Size Distributions in Clays
  publication-title: Clays Clay Miner.
– volume: 47
  start-page: 297
  year: 2010
  end-page: 311
  ident: bb0050
  article-title: Structural Characterization of Unsaturated Aggregated Soil
  publication-title: Can. Geotech. J.
– volume: 94
  start-page: 609
  year: 1968
  end-page: 734
  ident: bb0005
  article-title: Influence of temperature variations on soil behavior
  publication-title: J. Soil Mech. Found. Div.
– volume: 33
  start-page: 170
  year: 1993
  end-page: 183
  ident: bb0085
  article-title: Volume Change of Clays Induced by heating as Observed in consolidation Tests
  publication-title: Soils Found.
– volume: 73
  start-page: 1
  issue: 1
  year: 2004
  ident: 10.1016/j.enggeo.2020.105928_bb0015
  article-title: Soil-particle and pore orientations during consolidation of cohesive soils
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2003.11.006
– volume: 93
  start-page: 9
  issue: SM3
  year: 1967
  ident: 10.1016/j.enggeo.2020.105928_bb0065
  article-title: Temperature effects on clay soil consolidation
  publication-title: J. Soil Mech. Found. Eng. Div.
  doi: 10.1061/JSFEAQ.0000982
– volume: 103
  start-page: 231
  year: 1969
  ident: 10.1016/j.enggeo.2020.105928_bb0070
  article-title: Some temperature effects on soil compressibility and pore water pressure. Eff Temp Heat Eng Behav Soils
  publication-title: Highway Res. Board.
– volume: 33
  start-page: 170
  issue: 4
  year: 1993
  ident: 10.1016/j.enggeo.2020.105928_bb0085
  article-title: Volume Change of Clays Induced by heating as Observed in consolidation Tests
  publication-title: Soils Found.
  doi: 10.3208/sandf1972.33.4_170
– volume: 47
  start-page: 297
  issue: 3
  year: 2010
  ident: 10.1016/j.enggeo.2020.105928_bb0050
  article-title: Structural Characterization of Unsaturated Aggregated Soil
  publication-title: Can. Geotech. J.
  doi: 10.1139/T09-089
– volume: 94
  start-page: 609
  year: 1968
  ident: 10.1016/j.enggeo.2020.105928_bb0005
  article-title: Influence of temperature variations on soil behavior
  publication-title: J. Soil Mech. Found. Div.
  doi: 10.1061/JSFEAQ.0001136
– volume: 28
  start-page: 209
  issue: 3
  year: 2004
  ident: 10.1016/j.enggeo.2020.105928_bb0010
  article-title: Experimental Study of thermal Effects on the Mechanical Behaviour of a Clay
  publication-title: Int. J. Numer. Anal. Methods Geomech.
  doi: 10.1002/nag.332
– volume: 190
  start-page: 65
  year: 2015
  ident: 10.1016/j.enggeo.2020.105928_bb0040
  article-title: Response of Soil Subjected to thermal Cyclic Loading: Experimental and Constitutive Study
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2015.03.003
– volume: 24
  start-page: 223
  issue: 2
  year: 1974
  ident: 10.1016/j.enggeo.2020.105928_bb0020
  article-title: The form and function of microfabric features in a variety of natural soils
  publication-title: Geotechnique
  doi: 10.1680/geot.1974.24.2.223
– volume: 37
  start-page: 343
  year: 2000
  ident: 10.1016/j.enggeo.2020.105928_bb0035
  article-title: On the thermal consolidation of boom clay
  publication-title: Can. Geotech. J.
  doi: 10.1139/t99-105
– volume: 116
  start-page: 1778
  issue: 2
  year: 1990
  ident: 10.1016/j.enggeo.2020.105928_bb0045
  article-title: Thermoplasticity of saturated clays: Experimental constitutive study
  publication-title: J. Geotech. Eng.
  doi: 10.1061/(ASCE)0733-9410(1990)116:12(1778)
– volume: 891
  start-page: 144
  year: 2007
  ident: 10.1016/j.enggeo.2020.105928_bb2000
  article-title: Thermally Induced Volume Change and Excess Pore Water Pressure of Soft Bangkok Clay
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2006.10.002
– volume: 33
  start-page: 461
  issue: 4
  year: 1983
  ident: 10.1016/j.enggeo.2020.105928_bb0030
  article-title: Double-layer theory and compressibility of clays-discussion
  publication-title: Geotechnique
  doi: 10.1680/geot.1983.33.4.461
– volume: 181
  start-page: 7
  year: 1970
  ident: 10.1016/j.enggeo.2020.105928_bb1000
  article-title: Pore Size Distributions in Clays
  publication-title: Clays Clay Miner.
  doi: 10.1346/CCMN.1970.0180103
– volume: 64
  start-page: 135
  issue: 2–3
  year: 2002
  ident: 10.1016/j.enggeo.2020.105928_bb0080
  article-title: Temperature Effects on the volume Change Behaviour of Boom Clay
  publication-title: Eng. Geol.
  doi: 10.1016/S0013-7952(01)00143-0
– volume: 8
  start-page: 108
  issue: 2
  year: 2014
  ident: 10.1016/j.enggeo.2020.105928_bb0055
  article-title: Issues involved with thermoactive geotechnical systems: Characterization of thermomechanical soil behavior and soil-structure interface behavior
  publication-title: DFI J.
  doi: 10.1179/1937525514Y.0000000010
– volume: 1
  start-page: 57
  year: 1953
  ident: 10.1016/j.enggeo.2020.105928_bb0075
  article-title: The colloidal activity of clays
– volume: 21
  start-page: 21
  issue: 1
  year: 1984
  ident: 10.1016/j.enggeo.2020.105928_bb0025
  article-title: Study of the structure of a sensitive champlain clay and of its evolution during consolidation
  publication-title: Can. Geotech. J.
  doi: 10.1139/t84-003
– start-page: 558
  year: 2005
  ident: 10.1016/j.enggeo.2020.105928_bb0060
SSID ssj0013007
Score 2.4581263
Snippet The response of clayey materials to thermal variation has been the subject of extensive studies, given the wide range of engineering applications which involve...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105928
SubjectTerms clay
Clays
Deformation
illite
kaolin
mercury
Microstructure
porosimetry
porosity
Structure of soils
temperature
Temperature effects
tomography
Title Microstructure observations in compacted clays subjected to thermal loading
URI https://dx.doi.org/10.1016/j.enggeo.2020.105928
https://www.proquest.com/docview/2552000021
Volume 287
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JasMwEBUhvbSH0pWmS3ChVzfeJFvHEBrShuTUQG5CsqWQktqhSQ699Ns7I9vpQiHQo41lm5E8epbem0fIHRZ8yYzdZKWBG1EVugmn0o0Z0xkPWKqtW8NozAaT6GlKpw3Sq7UwSKuscn-Z0222rs50qmh2lvM5anz9MOaAH3BcBlZGHUUx1s-___C_dhK8UjKNLgZ4dS2fsxwvnc9mVgIYWMNbjp7sf09PvxK1nX36R-Swgo1Ot3yzY9LQ-Qk5-FZM8JQMR8itK-vBbt60U6jtguvKmeeOZZunADCddCHfV85qo3ANBo7XhYMw8BUesCgsp_6MTPoPz72BW1kluDLykjVkUppy40sAb8yLecI8mSpOwyzyQgmQBKGZolGgAXAo5ctYqYxqL1EcPT9hGjsnzbzI9QVxAgABsZf5xrAkMtpIkyo_MNRwnsUZky0S1hESaVVHHO0sFqImjL2IMq4C4yrKuLaIu221LOto7Lg-roMvfowHAal-R8vbuq8EfCq4_yFzXWxWAv6eUJgEqOby33e_IvsBslo8BvnlmjShU_UNwJK1attx1yZ73cfhYPwJg_bg5Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWqcgAOiFWUNUhcQ7PZiY-ooip0OYHUm2UndlVUkoq2By58OzNOUhYhIXGMZSfReDJ-sd_MI-QaC75kxh6y0sCNqArdhFPpxozpjAcs1VatYThivafoYUzHDdKpc2GQVlnF_jKm22hdtbQra7bn0ynm-PphzAE_oF8GmEa9EVFoAae-efc_jxK8MmcaZQywe50_Z0leOp9MbA5gYBVvOYqy_74-_YjUdvnp7pKdCjc6t-Wr7ZGGzvfJ9pdqggekP0RyXVkQdvWqnUKtd1wXzjR3LN08BYTppDP5tnAWK4WbMHC9LBzEgS_wgFlhSfWH5Kl799jpuZVWgisjL1lCKKUpN74E9Ma8mCfMk6niNMwiL5SASRCbKRoFGhCHUr6Mlcqo9hLFUfQT1rEj0syLXB8TJwAUEHuZbwxLIqONNKnyA0MN51mcMdkiYW0hkVaFxFHPYiZqxtizKO0q0K6itGuLuOtR87KQxh_949r44ptDCIj1f4y8qudKwLeCByAy18VqIeD3CTOTANac_Pvul2Sz9zgciMH9qH9KtgKkuHgMgs0ZacIE63PAKEt1YX3wA9QG4ns
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microstructure+observations+in+compacted+clays+subjected+to+thermal+loading&rft.jtitle=Engineering+geology&rft.au=Houhou%2C+Roba&rft.au=Sutman%2C+Melis&rft.au=Sadek%2C+Salah&rft.au=Laloui%2C+Lyesse&rft.date=2021-06-20&rft.issn=0013-7952&rft.volume=287+p.105928-&rft_id=info:doi/10.1016%2Fj.enggeo.2020.105928&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-7952&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-7952&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-7952&client=summon