Semiautomated Experiments to Accelerate the Design of Advanced Battery Materials: Combining Speed, Low Cost, and Adaptability

A number of methodologies are currently being exploited in order to dramatically increase the composition space explored in the design of new battery materials. This is proving necessary as commercial Li-ion battery materials have become increasingly high-performing and complex. For example, commerc...

Full description

Saved in:
Bibliographic Details
Published inACS Engineering Au Vol. 3; no. 6; pp. 391 - 402
Main Author McCalla, Eric
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 20.12.2023
Subjects
Online AccessGet full text
ISSN2694-2488
2694-2488
DOI10.1021/acsengineeringau.3c00037

Cover

Loading…
Abstract A number of methodologies are currently being exploited in order to dramatically increase the composition space explored in the design of new battery materials. This is proving necessary as commercial Li-ion battery materials have become increasingly high-performing and complex. For example, commercial cathode materials have quinary compositions with a sixth element in the coating, while a very large number of contenders are still being considered for solid electrolytes, with most of the periodic table being at play. Furthermore, the promise of accelerated design by computation and machine learning (ML) are encouraging, but they both ultimately require large amounts of quality experimental data either to fill in holes left by the computations or to be used to improve the ML models. All of this leads researchers to increase experimental throughputs. This perspective focuses on semiautomated experimental approaches where automation is only utilized in key steps where absolutely necessary in order to overcome bottlenecks while minimizing costs. Such workflows are more widely accessible to research groups as compared to fully automated systems, such that the current perspective may be useful to a wide community. The most essential steps in automation are related to characterization, with X-ray diffraction being a key bottleneck. By analyzing published workflows of both semi- and fully automated workflows, it is found herein that steps handled by researchers during the synthesis are not prohibitive in terms of overall throughput and may lead to greater flexibility, making more synthesis routes possible. Examples will be provided in this perspective of workflows that have been optimized for anodes, cathodes, and electrolytes in Li batteries, the vast majority of which are also suitable for battery technologies beyond Li.
AbstractList A number of methodologies are currently being exploited in order to dramatically increase the composition space explored in the design of new battery materials. This is proving necessary as commercial Li-ion battery materials have become increasingly high-performing and complex. For example, commercial cathode materials have quinary compositions with a sixth element in the coating, while a very large number of contenders are still being considered for solid electrolytes, with most of the periodic table being at play. Furthermore, the promise of accelerated design by computation and machine learning (ML) are encouraging, but they both ultimately require large amounts of quality experimental data either to fill in holes left by the computations or to be used to improve the ML models. All of this leads researchers to increase experimental throughputs. This perspective focuses on semiautomated experimental approaches where automation is only utilized in key steps where absolutely necessary in order to overcome bottlenecks while minimizing costs. Such workflows are more widely accessible to research groups as compared to fully automated systems, such that the current perspective may be useful to a wide community. The most essential steps in automation are related to characterization, with X-ray diffraction being a key bottleneck. By analyzing published workflows of both semi- and fully automated workflows, it is found herein that steps handled by researchers during the synthesis are not prohibitive in terms of overall throughput and may lead to greater flexibility, making more synthesis routes possible. Examples will be provided in this perspective of workflows that have been optimized for anodes, cathodes, and electrolytes in Li batteries, the vast majority of which are also suitable for battery technologies beyond Li.
A number of methodologies are currently being exploited in order to dramatically increase the composition space explored in the design of new battery materials. This is proving necessary as commercial Li-ion battery materials have become increasingly high-performing and complex. For example, commercial cathode materials have quinary compositions with a sixth element in the coating, while a very large number of contenders are still being considered for solid electrolytes, with most of the periodic table being at play. Furthermore, the promise of accelerated design by computation and machine learning (ML) are encouraging, but they both ultimately require large amounts of quality experimental data either to fill in holes left by the computations or to be used to improve the ML models. All of this leads researchers to increase experimental throughputs. This perspective focuses on semiautomated experimental approaches where automation is only utilized in key steps where absolutely necessary in order to overcome bottlenecks while minimizing costs. Such workflows are more widely accessible to research groups as compared to fully automated systems, such that the current perspective may be useful to a wide community. The most essential steps in automation are related to characterization, with X-ray diffraction being a key bottleneck. By analyzing published workflows of both semi- and fully automated workflows, it is found herein that steps handled by researchers during the synthesis are not prohibitive in terms of overall throughput and may lead to greater flexibility, making more synthesis routes possible. Examples will be provided in this perspective of workflows that have been optimized for anodes, cathodes, and electrolytes in Li batteries, the vast majority of which are also suitable for battery technologies beyond Li.A number of methodologies are currently being exploited in order to dramatically increase the composition space explored in the design of new battery materials. This is proving necessary as commercial Li-ion battery materials have become increasingly high-performing and complex. For example, commercial cathode materials have quinary compositions with a sixth element in the coating, while a very large number of contenders are still being considered for solid electrolytes, with most of the periodic table being at play. Furthermore, the promise of accelerated design by computation and machine learning (ML) are encouraging, but they both ultimately require large amounts of quality experimental data either to fill in holes left by the computations or to be used to improve the ML models. All of this leads researchers to increase experimental throughputs. This perspective focuses on semiautomated experimental approaches where automation is only utilized in key steps where absolutely necessary in order to overcome bottlenecks while minimizing costs. Such workflows are more widely accessible to research groups as compared to fully automated systems, such that the current perspective may be useful to a wide community. The most essential steps in automation are related to characterization, with X-ray diffraction being a key bottleneck. By analyzing published workflows of both semi- and fully automated workflows, it is found herein that steps handled by researchers during the synthesis are not prohibitive in terms of overall throughput and may lead to greater flexibility, making more synthesis routes possible. Examples will be provided in this perspective of workflows that have been optimized for anodes, cathodes, and electrolytes in Li batteries, the vast majority of which are also suitable for battery technologies beyond Li.
Author McCalla, Eric
AuthorAffiliation Department of Chemistry
AuthorAffiliation_xml – name: Department of Chemistry
Author_xml – sequence: 1
  givenname: Eric
  orcidid: 0000-0002-0557-608X
  surname: McCalla
  fullname: McCalla, Eric
  email: eric.mccalla@mcgill.ca
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38144679$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAUhSNUREvpX0BesugUv-LELJCGoUClQSwKa-s6uRk8SuzBdoBZ8N8xzBShbmBly_7OuY_zuDrxwWNVEUavGOXsOXQJ_cZ5xOj8BuYr0VFKRfOgOuNKywWXbXvy1_20ukhpWxBeM8EVfVSdipZJqRp9Vv24xcnBnMMEGXty_X1XXCf0OZEcyLLrcMRYvkj-jOQ1JrfxJAxk2X8F3xXBK8gZ4568L0x0MKYXZBUm63xpjdzuEPtLsg7fymPKlwR8X6Swy2Dd6PL-SfVwKBq8OJ7n1ac31x9X7xbrD29vVsv1AiRVeTHUqKxUXNNmGKTgrGUD0EbZplXaljmG1nZK60HWQpaWOSiqlG6orfsBeiHOq5uDbx9ga3ZlQoh7E8CZ3w8hbgzE7LoRjUKqOVjR9pxLxqxtOiuAC4tayZ42xevZwWsXw5cZUzaTS2VNI3gMczKly7ppWaN1QZ8e0dlO2P8pfLf-Arw8AF0MKUUcTOcyZBd8juBGw6j5Fbm5H7k5Rl4M2nsGdzX-QyoP0kKYbZijLwn8W_YT3wDJ7Q
CitedBy_id crossref_primary_10_1021_acssuschemeng_4c02177
crossref_primary_10_1002_adsu_202400296
crossref_primary_10_1039_D3SC05688K
crossref_primary_10_1016_j_electacta_2025_146077
crossref_primary_10_1039_D4DD00381K
crossref_primary_10_1021_acs_chemrev_4c00055
crossref_primary_10_1038_s43588_025_00769_x
crossref_primary_10_1021_acs_jpcc_4c04870
crossref_primary_10_1021_acsnano_4c05368
Cites_doi 10.1038/nmat3309
10.1016/j.jmat.2017.07.004
10.1038/s41578-023-00588-4
10.1063/1.4812323
10.1126/science.1212741
10.1017/S0885715614000840
10.1039/D1EE00505G
10.1021/co4000166
10.1149/2.0981913jes
10.1139/cjc-2021-0111
10.1149/1945-7111/ace4fa
10.1002/adts.202300081
10.1039/D1MA00081K
10.1038/s41563-023-01530-3
10.1038/s41467-018-06123-2
10.1002/aenm.202201704
10.1038/s41560-023-01194-y
10.1002/aenm.201200593
10.3389/fenrg.2022.862551
10.1021/acsami.0c01448
10.1016/j.md.2015.10.002
10.1021/acsaem.2c03994
10.1038/s41598-019-42766-x
10.1021/acs.chemmater.3c00505
10.1021/acscombsci.9b00181
10.1038/s41560-018-0312-z
10.1016/j.coelec.2022.101053
10.1021/acsaem.9b01887
10.1016/j.jpowsour.2016.08.115
10.1021/co1000597
10.48550/arXiv.2304.00743
10.1155/2021/5102014
10.48419/IMIST.PRSM/rhazes-v10.23807
10.1149/1.1505633
10.1038/s41565-021-00947-8
10.1002/aenm.202204337
10.1038/s41565-022-01162-9
10.1149/2.0541409jes
10.1149/1945-7111/acd41d
10.1021/cm4001619
10.1016/j.electacta.2011.09.003
10.1149/1.1570031
10.1039/c1jm11077b
10.1021/acs.chemmater.2c03110
10.1016/j.ssi.2007.03.001
10.1021/acs.chemmater.1c01490
10.1002/anie.202207184
10.1149/2.1171902jes
10.1016/j.ssi.2012.05.007
10.1039/C6EE02697D
10.1149/1.1850395
10.1021/acs.chemrev.1c00637
10.1016/B978-0-12-819726-4.00146-0
10.1016/j.electacta.2022.141665
10.1039/D1MH00495F
10.1039/D1MA00082A
10.1149/2.0661504jes
10.1039/D3DD00058C
10.1016/j.eml.2016.03.019
10.1088/0256-307X/40/4/048201
10.1021/cm304002b
10.1149/1945-7111/ac6a15
ContentType Journal Article
Copyright 2023 The Author. Published by American Chemical Society
2023 The Author. Published by American Chemical Society.
Copyright_xml – notice: 2023 The Author. Published by American Chemical Society
– notice: 2023 The Author. Published by American Chemical Society.
DBID AAYXX
CITATION
NPM
7X8
DOA
DOI 10.1021/acsengineeringau.3c00037
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2694-2488
EndPage 402
ExternalDocumentID oai_doaj_org_article_6e092ab38d22411bb7cb3a23be964d07
38144679
10_1021_acsengineeringau_3c00037
d142026986
Genre Journal Article
Review
GroupedDBID ACS
AELXD
ALMA_UNASSIGNED_HOLDINGS
EBS
GROUPED_DOAJ
M~E
N~.
OK1
AAYXX
ABBLG
ADUCK
CITATION
NPM
7X8
ID FETCH-LOGICAL-a406t-f5e6b462907ff432181fa076b7869b679f8bc699f4534cce2a6066970b5dfad33
IEDL.DBID DOA
ISSN 2694-2488
IngestDate Wed Aug 27 01:29:39 EDT 2025
Fri Jul 11 04:57:29 EDT 2025
Wed Feb 19 02:05:53 EST 2025
Tue Jul 01 00:23:11 EDT 2025
Thu Apr 24 23:03:52 EDT 2025
Fri Dec 22 03:18:21 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords automated characterization
automated synthesis
accelerated testing
combinatorial synthesis
high-throughput experimentation
Advanced battery materials
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
2023 The Author. Published by American Chemical Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a406t-f5e6b462907ff432181fa076b7869b679f8bc699f4534cce2a6066970b5dfad33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-0557-608X
OpenAccessLink https://doaj.org/article/6e092ab38d22411bb7cb3a23be964d07
PMID 38144679
PQID 2905781799
PQPubID 23479
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_6e092ab38d22411bb7cb3a23be964d07
proquest_miscellaneous_2905781799
pubmed_primary_38144679
crossref_citationtrail_10_1021_acsengineeringau_3c00037
crossref_primary_10_1021_acsengineeringau_3c00037
acs_journals_10_1021_acsengineeringau_3c00037
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-Dec-20
PublicationDateYYYYMMDD 2023-12-20
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-Dec-20
  day: 20
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS Engineering Au
PublicationTitleAlternate ACS Eng. Au
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
Doble M. (ref26/cit26) 2007
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref7/cit7
  doi: 10.1038/nmat3309
– ident: ref25/cit25
  doi: 10.1016/j.jmat.2017.07.004
– ident: ref20/cit20
– ident: ref66/cit66
  doi: 10.1038/s41578-023-00588-4
– ident: ref65/cit65
  doi: 10.1063/1.4812323
– ident: ref6/cit6
  doi: 10.1126/science.1212741
– ident: ref64/cit64
  doi: 10.1017/S0885715614000840
– ident: ref12/cit12
  doi: 10.1039/D1EE00505G
– ident: ref37/cit37
  doi: 10.1021/co4000166
– ident: ref5/cit5
  doi: 10.1149/2.0981913jes
– ident: ref46/cit46
  doi: 10.1139/cjc-2021-0111
– ident: ref9/cit9
  doi: 10.1149/1945-7111/ace4fa
– ident: ref15/cit15
  doi: 10.1002/adts.202300081
– ident: ref3/cit3
  doi: 10.1039/D1MA00081K
– ident: ref14/cit14
  doi: 10.1038/s41563-023-01530-3
– ident: ref59/cit59
  doi: 10.1038/s41467-018-06123-2
– ident: ref18/cit18
  doi: 10.1002/aenm.202201704
– ident: ref55/cit55
  doi: 10.1038/s41560-023-01194-y
– ident: ref17/cit17
  doi: 10.1002/aenm.201200593
– ident: ref11/cit11
  doi: 10.3389/fenrg.2022.862551
– ident: ref42/cit42
  doi: 10.1021/acsami.0c01448
– ident: ref33/cit33
  doi: 10.1016/j.md.2015.10.002
– ident: ref45/cit45
  doi: 10.1021/acsaem.2c03994
– ident: ref54/cit54
  doi: 10.1038/s41598-019-42766-x
– ident: ref48/cit48
  doi: 10.1021/acs.chemmater.3c00505
– ident: ref47/cit47
  doi: 10.1021/acscombsci.9b00181
– ident: ref58/cit58
  doi: 10.1038/s41560-018-0312-z
– ident: ref32/cit32
  doi: 10.1016/j.coelec.2022.101053
– ident: ref44/cit44
  doi: 10.1021/acsaem.9b01887
– ident: ref57/cit57
  doi: 10.1016/j.jpowsour.2016.08.115
– ident: ref43/cit43
  doi: 10.1021/co1000597
– ident: ref22/cit22
  doi: 10.48550/arXiv.2304.00743
– ident: ref49/cit49
  doi: 10.1155/2021/5102014
– ident: ref63/cit63
  doi: 10.48419/IMIST.PRSM/rhazes-v10.23807
– ident: ref2/cit2
  doi: 10.1149/1.1505633
– ident: ref31/cit31
  doi: 10.1038/s41598-019-42766-x
– ident: ref36/cit36
  doi: 10.1038/s41565-021-00947-8
– ident: ref13/cit13
  doi: 10.1002/aenm.202204337
– ident: ref56/cit56
  doi: 10.1038/s41565-022-01162-9
– ident: ref21/cit21
– ident: ref4/cit4
  doi: 10.1149/2.0541409jes
– ident: ref23/cit23
  doi: 10.1149/1945-7111/acd41d
– ident: ref39/cit39
  doi: 10.1021/cm4001619
– ident: ref34/cit34
  doi: 10.1016/j.electacta.2011.09.003
– ident: ref52/cit52
  doi: 10.1149/1.1570031
– ident: ref67/cit67
– ident: ref41/cit41
  doi: 10.1039/c1jm11077b
– ident: ref8/cit8
  doi: 10.1021/acs.chemmater.2c03110
– ident: ref62/cit62
  doi: 10.1016/j.ssi.2007.03.001
– ident: ref50/cit50
  doi: 10.1021/acs.chemmater.1c01490
– ident: ref27/cit27
  doi: 10.1002/anie.202207184
– ident: ref51/cit51
  doi: 10.1149/2.1171902jes
– ident: ref61/cit61
  doi: 10.1016/j.ssi.2012.05.007
– ident: ref16/cit16
  doi: 10.1039/C6EE02697D
– ident: ref35/cit35
  doi: 10.1149/1.1850395
– ident: ref40/cit40
  doi: 10.1021/acs.chemrev.1c00637
– ident: ref24/cit24
  doi: 10.1016/B978-0-12-819726-4.00146-0
– ident: ref28/cit28
  doi: 10.1016/j.electacta.2022.141665
– ident: ref19/cit19
  doi: 10.1039/D1MH00495F
– ident: ref10/cit10
  doi: 10.1039/D1MA00082A
– volume-title: Green Chemistry and Engineering
  year: 2007
  ident: ref26/cit26
– ident: ref60/cit60
  doi: 10.1149/2.0661504jes
– ident: ref53/cit53
  doi: 10.1039/D3DD00058C
– ident: ref29/cit29
  doi: 10.1016/j.eml.2016.03.019
– ident: ref1/cit1
  doi: 10.1088/0256-307X/40/4/048201
– ident: ref38/cit38
  doi: 10.1021/cm304002b
– ident: ref30/cit30
  doi: 10.1149/1945-7111/ac6a15
SSID ssj0002513260
Score 2.3217793
SecondaryResourceType review_article
Snippet A number of methodologies are currently being exploited in order to dramatically increase the composition space explored in the design of new battery...
SourceID doaj
proquest
pubmed
crossref
acs
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 391
SummonAdditionalLinks – databaseName: American Chemical Society (ACS) Open Access
  dbid: N~.
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9UwFG8QXvTB8KFyFU1NfKS4dVu78nYRCCHiC5Lw1vQzMYHtxu3G8KB_u-d0Y4oJBl6XnS47H_2dtqe_Q8iHXBnwGlOw3HLDSmUtM5AlsxovVYFHRZfavZ19EScX5elldblC-D0n-Dz_aFwX_lDzmeVe4RJryhOyxgV4Hza7_LU37asAXkNGglsreEeTcXDQsYDnf4MhNrnuDjYlCv_7886EP8fr5PmYONL5YOkNshKaTfLsLzrBLfLzPFx_M8u-hSw0eHo0kfd3tG_p3DmAGGSGoJD00cNUukHbSOdjGQAduDZv6JnpB7_cpzBd2NRCgp4vAOd26ef2Bzzs-l1qGg-iZtEPTN83L8jF8dHXTydsbK_ADKB4z2IVhC0Fh-VxjGWBWB9NJoWVtVBWSBVr64RSsayK0mHjMFzsKJnZykfji-IlWW3aJmwTWsvaSwvgX7m8jF7Unuc-VNaoUAnF6xlhoF49hken08k3z_W_5tCjOWZE3hpCu5GrHFtmXD1AMp8kFwNfxwNkDtDW0_vIuJ0egBvqMYC1CJniBv7RY9KTWyudLQwvbFCi9BkM8v7WUzREKB67mCa0y06DgmFaROa9GXk1uND0KVAZrMelev1IBb0hT7HvPdbV8GyHrPbfl-EtZEe9fZfC4Tf-AA4C
  priority: 102
  providerName: American Chemical Society
Title Semiautomated Experiments to Accelerate the Design of Advanced Battery Materials: Combining Speed, Low Cost, and Adaptability
URI http://dx.doi.org/10.1021/acsengineeringau.3c00037
https://www.ncbi.nlm.nih.gov/pubmed/38144679
https://www.proquest.com/docview/2905781799
https://doaj.org/article/6e092ab38d22411bb7cb3a23be964d07
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhp-YQ-s72EVToMU5sy5as3rbphlC6uWwCuYnRCwKpvcReSg7Nb-9IcrabQmkOveggPFjMjPTNoNE3hHwsJKDXAMsKXUJWSa0zwCg5a8KjKvQob2K7t_kZP72ovl7WlxutvkJNWKIHToo74i6XJWjW2AA2hdbCaAYl007yyqZ35Ih5G8lUOIMRtTEuycfSHcSxIzC9-83wB6tDZiL5SkAl0z9ApUje__eIMyLPyVOyO4aMdJqW-oxsufY52dkgEnxBfi7c9ytYDR3Gn87S2Zq2v6dDR6fGILgETgiK4R79Eos2aOfpdCwAoIll85bOYUge-YniQaFj8wi6WCLCHdBv3Q-c7IcDCq1FUVgOieP79iW5OJmdH59mY2OFDBC_h8zXjuuKl5gYe1-xgPIecsG1aLjUXEjfaMOl9FXNKhNahoU0R4pc19aDZewV2W671u0R2ojGCrROUZui8pajmQrrag3S1VyWzYRkqF41boxexTvvslB_mkON5pgQcW8IZUaW8tAs4_oRksVacpmYOh4h8znYev194NqOE-iBavRA9S8PnJAP956icG-GCxdoXbfqFSoYD8TAuTchr5MLrX-FKsNMXMg3_2MJb8mTEoOvUGZT5u_I9nCzcu8xWBr0PiYLx4v9uDtwnN_NcDy7O_wFGW0Xag
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagHIBDecPyNBLHekmcxI65LaXVAru9bCtVXCw_paqQrEiiqkj8d8ZOmpZKoMLVip148tnz2R5_g9CbVChAjcpIqqkiudCaKGDJpAyXqgBR3sR0b8s9Nj_IPx0WhxdSfcFHNNBSEw_xz9UF0rdQ5s4V-lQ3zUwUT7mObgAnoQHcs-3VuL0CbhuISdhhCVc1CQWcDnE8f2ssuCjT_OaiopL_n-lndEO7d9CXsQMx-uR42rV6an5c0nb8rx7eRZsDOcWzHk330DVX3Ue3L0gWPkA_V-7bkeraGpius3hnTBDQ4LbGM2PAjQX1CQzEEn-I4SG49ng2hBrgXs_zFC9V22P_HYYpScc0FXi1Bl-6hRf1CRQ27RZWlYWqat32auKnD9HB7s7-9pwMKRyIAqbQEl84pnNGYQnufZ4FPuFVwpnmJROaceFLbZgQPi-y3ITkZGFBJXiiC-uVzbJHaKOqK_cE4ZKXlmsgGIVJc29ZaWlqXaGVcAUTtJwgAhaUwxBsZDxdp6m8bFY5mHWC-NlflmbQQw9pOb5eoWY61lz3miBXqPM-AGl8Pqh6xwJAgRwmCclcIqiCPtpArFKtudGZopl2guU2gUZen8FQwiwQjnZU5equkWBgmHqDut8EPe7xOb4KTAZrfi6e_qOBXqGb8_3lQi4-7n1-hm5RYHchjocmz9FG-71zL4CNtfplHHe_AE2EMuE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSAgOFc-yPI3EsS6Jkzgxt4V2VaBdIZVKvVl-SpVKsiJZoR7Kb2fGccNDApWrFTvJPDyf7fE3hLzKpQar0QXLDdeslMYwDSiZNXipCiwq2Fju7XAp9o_LDyfVScrNwbsw8BE9jNTHQ3z06pULiWEgfw3t_idLn17vFDYSqFwnNwCVZFi5Yfl9Z9pigdAN4AR3WfC6JuNgqymX51-DYZiy_W9hKrL5_x2CxlC0uEM2E4ak81Hpd8k1394jt39hFrxPLo78l1O9HjoApN7RvYnHv6dDR-fWQrRBkggK-I_uxiwO2gU6TxkBdKTdPKeHehhN9A2FmcPEahL0aAUhb5sedN-gsR-2qW4ddNWrYST9Pn9Ajhd7n9_ts1RpgWkI6AMLlRemFBxWyiGUBYb9oLNamLoR0ohahsZYIWUoq6K0WEMM1z2yzkzlgnZF8ZBstF3rHxHa1I2rDeCAyuZlcKJxPHe-Mlr6SkjezAgD8arkKb2Kh-A8V3-qQyV1zEh9qQhlE205Vs84u0LPfOq5Gqk7rtDnLep6eh7Jt2MDmKNKvqyEzyTX8I8O8U9uTG1NoXlhvBSly2CQl5eWosBZ8QRGt75b9woEDDMkkvDNyNZoQtOrQGSwNK_l4_8U0Aty89PuQh28X358Qm5xwGCYbcOzp2Rj-Lr2zwAzDeZ59IwfL5YUtA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semiautomated+Experiments+to+Accelerate+the+Design+of+Advanced+Battery+Materials%3A+Combining+Speed%2C+Low+Cost%2C+and+Adaptability&rft.jtitle=ACS+Engineering+Au&rft.au=McCalla%2C+Eric&rft.date=2023-12-20&rft.eissn=2694-2488&rft.volume=3&rft.issue=6&rft.spage=391&rft_id=info:doi/10.1021%2Facsengineeringau.3c00037&rft_id=info%3Apmid%2F38144679&rft.externalDocID=38144679
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2694-2488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2694-2488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2694-2488&client=summon