Semiautomated Experiments to Accelerate the Design of Advanced Battery Materials: Combining Speed, Low Cost, and Adaptability
A number of methodologies are currently being exploited in order to dramatically increase the composition space explored in the design of new battery materials. This is proving necessary as commercial Li-ion battery materials have become increasingly high-performing and complex. For example, commerc...
Saved in:
Published in | ACS Engineering Au Vol. 3; no. 6; pp. 391 - 402 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
20.12.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2694-2488 2694-2488 |
DOI | 10.1021/acsengineeringau.3c00037 |
Cover
Loading…
Abstract | A number of methodologies are currently being exploited in order to dramatically increase the composition space explored in the design of new battery materials. This is proving necessary as commercial Li-ion battery materials have become increasingly high-performing and complex. For example, commercial cathode materials have quinary compositions with a sixth element in the coating, while a very large number of contenders are still being considered for solid electrolytes, with most of the periodic table being at play. Furthermore, the promise of accelerated design by computation and machine learning (ML) are encouraging, but they both ultimately require large amounts of quality experimental data either to fill in holes left by the computations or to be used to improve the ML models. All of this leads researchers to increase experimental throughputs. This perspective focuses on semiautomated experimental approaches where automation is only utilized in key steps where absolutely necessary in order to overcome bottlenecks while minimizing costs. Such workflows are more widely accessible to research groups as compared to fully automated systems, such that the current perspective may be useful to a wide community. The most essential steps in automation are related to characterization, with X-ray diffraction being a key bottleneck. By analyzing published workflows of both semi- and fully automated workflows, it is found herein that steps handled by researchers during the synthesis are not prohibitive in terms of overall throughput and may lead to greater flexibility, making more synthesis routes possible. Examples will be provided in this perspective of workflows that have been optimized for anodes, cathodes, and electrolytes in Li batteries, the vast majority of which are also suitable for battery technologies beyond Li. |
---|---|
AbstractList | A number of methodologies are currently being exploited in order to dramatically increase the composition space explored in the design of new battery materials. This is proving necessary as commercial Li-ion battery materials have become increasingly high-performing and complex. For example, commercial cathode materials have quinary compositions with a sixth element in the coating, while a very large number of contenders are still being considered for solid electrolytes, with most of the periodic table being at play. Furthermore, the promise of accelerated design by computation and machine learning (ML) are encouraging, but they both ultimately require large amounts of quality experimental data either to fill in holes left by the computations or to be used to improve the ML models. All of this leads researchers to increase experimental throughputs. This perspective focuses on semiautomated experimental approaches where automation is only utilized in key steps where absolutely necessary in order to overcome bottlenecks while minimizing costs. Such workflows are more widely accessible to research groups as compared to fully automated systems, such that the current perspective may be useful to a wide community. The most essential steps in automation are related to characterization, with X-ray diffraction being a key bottleneck. By analyzing published workflows of both semi- and fully automated workflows, it is found herein that steps handled by researchers during the synthesis are not prohibitive in terms of overall throughput and may lead to greater flexibility, making more synthesis routes possible. Examples will be provided in this perspective of workflows that have been optimized for anodes, cathodes, and electrolytes in Li batteries, the vast majority of which are also suitable for battery technologies beyond Li. A number of methodologies are currently being exploited in order to dramatically increase the composition space explored in the design of new battery materials. This is proving necessary as commercial Li-ion battery materials have become increasingly high-performing and complex. For example, commercial cathode materials have quinary compositions with a sixth element in the coating, while a very large number of contenders are still being considered for solid electrolytes, with most of the periodic table being at play. Furthermore, the promise of accelerated design by computation and machine learning (ML) are encouraging, but they both ultimately require large amounts of quality experimental data either to fill in holes left by the computations or to be used to improve the ML models. All of this leads researchers to increase experimental throughputs. This perspective focuses on semiautomated experimental approaches where automation is only utilized in key steps where absolutely necessary in order to overcome bottlenecks while minimizing costs. Such workflows are more widely accessible to research groups as compared to fully automated systems, such that the current perspective may be useful to a wide community. The most essential steps in automation are related to characterization, with X-ray diffraction being a key bottleneck. By analyzing published workflows of both semi- and fully automated workflows, it is found herein that steps handled by researchers during the synthesis are not prohibitive in terms of overall throughput and may lead to greater flexibility, making more synthesis routes possible. Examples will be provided in this perspective of workflows that have been optimized for anodes, cathodes, and electrolytes in Li batteries, the vast majority of which are also suitable for battery technologies beyond Li.A number of methodologies are currently being exploited in order to dramatically increase the composition space explored in the design of new battery materials. This is proving necessary as commercial Li-ion battery materials have become increasingly high-performing and complex. For example, commercial cathode materials have quinary compositions with a sixth element in the coating, while a very large number of contenders are still being considered for solid electrolytes, with most of the periodic table being at play. Furthermore, the promise of accelerated design by computation and machine learning (ML) are encouraging, but they both ultimately require large amounts of quality experimental data either to fill in holes left by the computations or to be used to improve the ML models. All of this leads researchers to increase experimental throughputs. This perspective focuses on semiautomated experimental approaches where automation is only utilized in key steps where absolutely necessary in order to overcome bottlenecks while minimizing costs. Such workflows are more widely accessible to research groups as compared to fully automated systems, such that the current perspective may be useful to a wide community. The most essential steps in automation are related to characterization, with X-ray diffraction being a key bottleneck. By analyzing published workflows of both semi- and fully automated workflows, it is found herein that steps handled by researchers during the synthesis are not prohibitive in terms of overall throughput and may lead to greater flexibility, making more synthesis routes possible. Examples will be provided in this perspective of workflows that have been optimized for anodes, cathodes, and electrolytes in Li batteries, the vast majority of which are also suitable for battery technologies beyond Li. |
Author | McCalla, Eric |
AuthorAffiliation | Department of Chemistry |
AuthorAffiliation_xml | – name: Department of Chemistry |
Author_xml | – sequence: 1 givenname: Eric orcidid: 0000-0002-0557-608X surname: McCalla fullname: McCalla, Eric email: eric.mccalla@mcgill.ca |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38144679$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtv1DAUhSNUREvpX0BesugUv-LELJCGoUClQSwKa-s6uRk8SuzBdoBZ8N8xzBShbmBly_7OuY_zuDrxwWNVEUavGOXsOXQJ_cZ5xOj8BuYr0VFKRfOgOuNKywWXbXvy1_20ukhpWxBeM8EVfVSdipZJqRp9Vv24xcnBnMMEGXty_X1XXCf0OZEcyLLrcMRYvkj-jOQ1JrfxJAxk2X8F3xXBK8gZ4568L0x0MKYXZBUm63xpjdzuEPtLsg7fymPKlwR8X6Swy2Dd6PL-SfVwKBq8OJ7n1ac31x9X7xbrD29vVsv1AiRVeTHUqKxUXNNmGKTgrGUD0EbZplXaljmG1nZK60HWQpaWOSiqlG6orfsBeiHOq5uDbx9ga3ZlQoh7E8CZ3w8hbgzE7LoRjUKqOVjR9pxLxqxtOiuAC4tayZ42xevZwWsXw5cZUzaTS2VNI3gMczKly7ppWaN1QZ8e0dlO2P8pfLf-Arw8AF0MKUUcTOcyZBd8juBGw6j5Fbm5H7k5Rl4M2nsGdzX-QyoP0kKYbZijLwn8W_YT3wDJ7Q |
CitedBy_id | crossref_primary_10_1021_acssuschemeng_4c02177 crossref_primary_10_1002_adsu_202400296 crossref_primary_10_1039_D3SC05688K crossref_primary_10_1016_j_electacta_2025_146077 crossref_primary_10_1039_D4DD00381K crossref_primary_10_1021_acs_chemrev_4c00055 crossref_primary_10_1038_s43588_025_00769_x crossref_primary_10_1021_acs_jpcc_4c04870 crossref_primary_10_1021_acsnano_4c05368 |
Cites_doi | 10.1038/nmat3309 10.1016/j.jmat.2017.07.004 10.1038/s41578-023-00588-4 10.1063/1.4812323 10.1126/science.1212741 10.1017/S0885715614000840 10.1039/D1EE00505G 10.1021/co4000166 10.1149/2.0981913jes 10.1139/cjc-2021-0111 10.1149/1945-7111/ace4fa 10.1002/adts.202300081 10.1039/D1MA00081K 10.1038/s41563-023-01530-3 10.1038/s41467-018-06123-2 10.1002/aenm.202201704 10.1038/s41560-023-01194-y 10.1002/aenm.201200593 10.3389/fenrg.2022.862551 10.1021/acsami.0c01448 10.1016/j.md.2015.10.002 10.1021/acsaem.2c03994 10.1038/s41598-019-42766-x 10.1021/acs.chemmater.3c00505 10.1021/acscombsci.9b00181 10.1038/s41560-018-0312-z 10.1016/j.coelec.2022.101053 10.1021/acsaem.9b01887 10.1016/j.jpowsour.2016.08.115 10.1021/co1000597 10.48550/arXiv.2304.00743 10.1155/2021/5102014 10.48419/IMIST.PRSM/rhazes-v10.23807 10.1149/1.1505633 10.1038/s41565-021-00947-8 10.1002/aenm.202204337 10.1038/s41565-022-01162-9 10.1149/2.0541409jes 10.1149/1945-7111/acd41d 10.1021/cm4001619 10.1016/j.electacta.2011.09.003 10.1149/1.1570031 10.1039/c1jm11077b 10.1021/acs.chemmater.2c03110 10.1016/j.ssi.2007.03.001 10.1021/acs.chemmater.1c01490 10.1002/anie.202207184 10.1149/2.1171902jes 10.1016/j.ssi.2012.05.007 10.1039/C6EE02697D 10.1149/1.1850395 10.1021/acs.chemrev.1c00637 10.1016/B978-0-12-819726-4.00146-0 10.1016/j.electacta.2022.141665 10.1039/D1MH00495F 10.1039/D1MA00082A 10.1149/2.0661504jes 10.1039/D3DD00058C 10.1016/j.eml.2016.03.019 10.1088/0256-307X/40/4/048201 10.1021/cm304002b 10.1149/1945-7111/ac6a15 |
ContentType | Journal Article |
Copyright | 2023 The Author. Published by American Chemical Society 2023 The Author. Published by American Chemical Society. |
Copyright_xml | – notice: 2023 The Author. Published by American Chemical Society – notice: 2023 The Author. Published by American Chemical Society. |
DBID | AAYXX CITATION NPM 7X8 DOA |
DOI | 10.1021/acsengineeringau.3c00037 |
DatabaseName | CrossRef PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2694-2488 |
EndPage | 402 |
ExternalDocumentID | oai_doaj_org_article_6e092ab38d22411bb7cb3a23be964d07 38144679 10_1021_acsengineeringau_3c00037 d142026986 |
Genre | Journal Article Review |
GroupedDBID | ACS AELXD ALMA_UNASSIGNED_HOLDINGS EBS GROUPED_DOAJ M~E N~. OK1 AAYXX ABBLG ADUCK CITATION NPM 7X8 |
ID | FETCH-LOGICAL-a406t-f5e6b462907ff432181fa076b7869b679f8bc699f4534cce2a6066970b5dfad33 |
IEDL.DBID | DOA |
ISSN | 2694-2488 |
IngestDate | Wed Aug 27 01:29:39 EDT 2025 Fri Jul 11 04:57:29 EDT 2025 Wed Feb 19 02:05:53 EST 2025 Tue Jul 01 00:23:11 EDT 2025 Thu Apr 24 23:03:52 EDT 2025 Fri Dec 22 03:18:21 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | automated characterization automated synthesis accelerated testing combinatorial synthesis high-throughput experimentation Advanced battery materials |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 2023 The Author. Published by American Chemical Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a406t-f5e6b462907ff432181fa076b7869b679f8bc699f4534cce2a6066970b5dfad33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-0557-608X |
OpenAccessLink | https://doaj.org/article/6e092ab38d22411bb7cb3a23be964d07 |
PMID | 38144679 |
PQID | 2905781799 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6e092ab38d22411bb7cb3a23be964d07 proquest_miscellaneous_2905781799 pubmed_primary_38144679 crossref_citationtrail_10_1021_acsengineeringau_3c00037 crossref_primary_10_1021_acsengineeringau_3c00037 acs_journals_10_1021_acsengineeringau_3c00037 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-Dec-20 |
PublicationDateYYYYMMDD | 2023-12-20 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-Dec-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS Engineering Au |
PublicationTitleAlternate | ACS Eng. Au |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 Doble M. (ref26/cit26) 2007 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref55/cit55 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref7/cit7 doi: 10.1038/nmat3309 – ident: ref25/cit25 doi: 10.1016/j.jmat.2017.07.004 – ident: ref20/cit20 – ident: ref66/cit66 doi: 10.1038/s41578-023-00588-4 – ident: ref65/cit65 doi: 10.1063/1.4812323 – ident: ref6/cit6 doi: 10.1126/science.1212741 – ident: ref64/cit64 doi: 10.1017/S0885715614000840 – ident: ref12/cit12 doi: 10.1039/D1EE00505G – ident: ref37/cit37 doi: 10.1021/co4000166 – ident: ref5/cit5 doi: 10.1149/2.0981913jes – ident: ref46/cit46 doi: 10.1139/cjc-2021-0111 – ident: ref9/cit9 doi: 10.1149/1945-7111/ace4fa – ident: ref15/cit15 doi: 10.1002/adts.202300081 – ident: ref3/cit3 doi: 10.1039/D1MA00081K – ident: ref14/cit14 doi: 10.1038/s41563-023-01530-3 – ident: ref59/cit59 doi: 10.1038/s41467-018-06123-2 – ident: ref18/cit18 doi: 10.1002/aenm.202201704 – ident: ref55/cit55 doi: 10.1038/s41560-023-01194-y – ident: ref17/cit17 doi: 10.1002/aenm.201200593 – ident: ref11/cit11 doi: 10.3389/fenrg.2022.862551 – ident: ref42/cit42 doi: 10.1021/acsami.0c01448 – ident: ref33/cit33 doi: 10.1016/j.md.2015.10.002 – ident: ref45/cit45 doi: 10.1021/acsaem.2c03994 – ident: ref54/cit54 doi: 10.1038/s41598-019-42766-x – ident: ref48/cit48 doi: 10.1021/acs.chemmater.3c00505 – ident: ref47/cit47 doi: 10.1021/acscombsci.9b00181 – ident: ref58/cit58 doi: 10.1038/s41560-018-0312-z – ident: ref32/cit32 doi: 10.1016/j.coelec.2022.101053 – ident: ref44/cit44 doi: 10.1021/acsaem.9b01887 – ident: ref57/cit57 doi: 10.1016/j.jpowsour.2016.08.115 – ident: ref43/cit43 doi: 10.1021/co1000597 – ident: ref22/cit22 doi: 10.48550/arXiv.2304.00743 – ident: ref49/cit49 doi: 10.1155/2021/5102014 – ident: ref63/cit63 doi: 10.48419/IMIST.PRSM/rhazes-v10.23807 – ident: ref2/cit2 doi: 10.1149/1.1505633 – ident: ref31/cit31 doi: 10.1038/s41598-019-42766-x – ident: ref36/cit36 doi: 10.1038/s41565-021-00947-8 – ident: ref13/cit13 doi: 10.1002/aenm.202204337 – ident: ref56/cit56 doi: 10.1038/s41565-022-01162-9 – ident: ref21/cit21 – ident: ref4/cit4 doi: 10.1149/2.0541409jes – ident: ref23/cit23 doi: 10.1149/1945-7111/acd41d – ident: ref39/cit39 doi: 10.1021/cm4001619 – ident: ref34/cit34 doi: 10.1016/j.electacta.2011.09.003 – ident: ref52/cit52 doi: 10.1149/1.1570031 – ident: ref67/cit67 – ident: ref41/cit41 doi: 10.1039/c1jm11077b – ident: ref8/cit8 doi: 10.1021/acs.chemmater.2c03110 – ident: ref62/cit62 doi: 10.1016/j.ssi.2007.03.001 – ident: ref50/cit50 doi: 10.1021/acs.chemmater.1c01490 – ident: ref27/cit27 doi: 10.1002/anie.202207184 – ident: ref51/cit51 doi: 10.1149/2.1171902jes – ident: ref61/cit61 doi: 10.1016/j.ssi.2012.05.007 – ident: ref16/cit16 doi: 10.1039/C6EE02697D – ident: ref35/cit35 doi: 10.1149/1.1850395 – ident: ref40/cit40 doi: 10.1021/acs.chemrev.1c00637 – ident: ref24/cit24 doi: 10.1016/B978-0-12-819726-4.00146-0 – ident: ref28/cit28 doi: 10.1016/j.electacta.2022.141665 – ident: ref19/cit19 doi: 10.1039/D1MH00495F – ident: ref10/cit10 doi: 10.1039/D1MA00082A – volume-title: Green Chemistry and Engineering year: 2007 ident: ref26/cit26 – ident: ref60/cit60 doi: 10.1149/2.0661504jes – ident: ref53/cit53 doi: 10.1039/D3DD00058C – ident: ref29/cit29 doi: 10.1016/j.eml.2016.03.019 – ident: ref1/cit1 doi: 10.1088/0256-307X/40/4/048201 – ident: ref38/cit38 doi: 10.1021/cm304002b – ident: ref30/cit30 doi: 10.1149/1945-7111/ac6a15 |
SSID | ssj0002513260 |
Score | 2.3217793 |
SecondaryResourceType | review_article |
Snippet | A number of methodologies are currently being exploited in order to dramatically increase the composition space explored in the design of new battery... |
SourceID | doaj proquest pubmed crossref acs |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 391 |
SummonAdditionalLinks | – databaseName: American Chemical Society (ACS) Open Access dbid: N~. link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9UwFG8QXvTB8KFyFU1NfKS4dVu78nYRCCHiC5Lw1vQzMYHtxu3G8KB_u-d0Y4oJBl6XnS47H_2dtqe_Q8iHXBnwGlOw3HLDSmUtM5AlsxovVYFHRZfavZ19EScX5elldblC-D0n-Dz_aFwX_lDzmeVe4RJryhOyxgV4Hza7_LU37asAXkNGglsreEeTcXDQsYDnf4MhNrnuDjYlCv_7886EP8fr5PmYONL5YOkNshKaTfLsLzrBLfLzPFx_M8u-hSw0eHo0kfd3tG_p3DmAGGSGoJD00cNUukHbSOdjGQAduDZv6JnpB7_cpzBd2NRCgp4vAOd26ef2Bzzs-l1qGg-iZtEPTN83L8jF8dHXTydsbK_ADKB4z2IVhC0Fh-VxjGWBWB9NJoWVtVBWSBVr64RSsayK0mHjMFzsKJnZykfji-IlWW3aJmwTWsvaSwvgX7m8jF7Unuc-VNaoUAnF6xlhoF49hken08k3z_W_5tCjOWZE3hpCu5GrHFtmXD1AMp8kFwNfxwNkDtDW0_vIuJ0egBvqMYC1CJniBv7RY9KTWyudLQwvbFCi9BkM8v7WUzREKB67mCa0y06DgmFaROa9GXk1uND0KVAZrMelev1IBb0hT7HvPdbV8GyHrPbfl-EtZEe9fZfC4Tf-AA4C priority: 102 providerName: American Chemical Society |
Title | Semiautomated Experiments to Accelerate the Design of Advanced Battery Materials: Combining Speed, Low Cost, and Adaptability |
URI | http://dx.doi.org/10.1021/acsengineeringau.3c00037 https://www.ncbi.nlm.nih.gov/pubmed/38144679 https://www.proquest.com/docview/2905781799 https://doaj.org/article/6e092ab38d22411bb7cb3a23be964d07 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhp-YQ-s72EVToMU5sy5as3rbphlC6uWwCuYnRCwKpvcReSg7Nb-9IcrabQmkOveggPFjMjPTNoNE3hHwsJKDXAMsKXUJWSa0zwCg5a8KjKvQob2K7t_kZP72ovl7WlxutvkJNWKIHToo74i6XJWjW2AA2hdbCaAYl007yyqZ35Ih5G8lUOIMRtTEuycfSHcSxIzC9-83wB6tDZiL5SkAl0z9ApUje__eIMyLPyVOyO4aMdJqW-oxsufY52dkgEnxBfi7c9ytYDR3Gn87S2Zq2v6dDR6fGILgETgiK4R79Eos2aOfpdCwAoIll85bOYUge-YniQaFj8wi6WCLCHdBv3Q-c7IcDCq1FUVgOieP79iW5OJmdH59mY2OFDBC_h8zXjuuKl5gYe1-xgPIecsG1aLjUXEjfaMOl9FXNKhNahoU0R4pc19aDZewV2W671u0R2ojGCrROUZui8pajmQrrag3S1VyWzYRkqF41boxexTvvslB_mkON5pgQcW8IZUaW8tAs4_oRksVacpmYOh4h8znYev194NqOE-iBavRA9S8PnJAP956icG-GCxdoXbfqFSoYD8TAuTchr5MLrX-FKsNMXMg3_2MJb8mTEoOvUGZT5u_I9nCzcu8xWBr0PiYLx4v9uDtwnN_NcDy7O_wFGW0Xag |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagHIBDecPyNBLHekmcxI65LaXVAru9bCtVXCw_paqQrEiiqkj8d8ZOmpZKoMLVip148tnz2R5_g9CbVChAjcpIqqkiudCaKGDJpAyXqgBR3sR0b8s9Nj_IPx0WhxdSfcFHNNBSEw_xz9UF0rdQ5s4V-lQ3zUwUT7mObgAnoQHcs-3VuL0CbhuISdhhCVc1CQWcDnE8f2ssuCjT_OaiopL_n-lndEO7d9CXsQMx-uR42rV6an5c0nb8rx7eRZsDOcWzHk330DVX3Ue3L0gWPkA_V-7bkeraGpius3hnTBDQ4LbGM2PAjQX1CQzEEn-I4SG49ng2hBrgXs_zFC9V22P_HYYpScc0FXi1Bl-6hRf1CRQ27RZWlYWqat32auKnD9HB7s7-9pwMKRyIAqbQEl84pnNGYQnufZ4FPuFVwpnmJROaceFLbZgQPi-y3ITkZGFBJXiiC-uVzbJHaKOqK_cE4ZKXlmsgGIVJc29ZaWlqXaGVcAUTtJwgAhaUwxBsZDxdp6m8bFY5mHWC-NlflmbQQw9pOb5eoWY61lz3miBXqPM-AGl8Pqh6xwJAgRwmCclcIqiCPtpArFKtudGZopl2guU2gUZen8FQwiwQjnZU5equkWBgmHqDut8EPe7xOb4KTAZrfi6e_qOBXqGb8_3lQi4-7n1-hm5RYHchjocmz9FG-71zL4CNtfplHHe_AE2EMuE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSAgOFc-yPI3EsS6Jkzgxt4V2VaBdIZVKvVl-SpVKsiJZoR7Kb2fGccNDApWrFTvJPDyf7fE3hLzKpQar0QXLDdeslMYwDSiZNXipCiwq2Fju7XAp9o_LDyfVScrNwbsw8BE9jNTHQ3z06pULiWEgfw3t_idLn17vFDYSqFwnNwCVZFi5Yfl9Z9pigdAN4AR3WfC6JuNgqymX51-DYZiy_W9hKrL5_x2CxlC0uEM2E4ak81Hpd8k1394jt39hFrxPLo78l1O9HjoApN7RvYnHv6dDR-fWQrRBkggK-I_uxiwO2gU6TxkBdKTdPKeHehhN9A2FmcPEahL0aAUhb5sedN-gsR-2qW4ddNWrYST9Pn9Ajhd7n9_ts1RpgWkI6AMLlRemFBxWyiGUBYb9oLNamLoR0ohahsZYIWUoq6K0WEMM1z2yzkzlgnZF8ZBstF3rHxHa1I2rDeCAyuZlcKJxPHe-Mlr6SkjezAgD8arkKb2Kh-A8V3-qQyV1zEh9qQhlE205Vs84u0LPfOq5Gqk7rtDnLep6eh7Jt2MDmKNKvqyEzyTX8I8O8U9uTG1NoXlhvBSly2CQl5eWosBZ8QRGt75b9woEDDMkkvDNyNZoQtOrQGSwNK_l4_8U0Aty89PuQh28X358Qm5xwGCYbcOzp2Rj-Lr2zwAzDeZ59IwfL5YUtA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semiautomated+Experiments+to+Accelerate+the+Design+of+Advanced+Battery+Materials%3A+Combining+Speed%2C+Low+Cost%2C+and+Adaptability&rft.jtitle=ACS+Engineering+Au&rft.au=McCalla%2C+Eric&rft.date=2023-12-20&rft.eissn=2694-2488&rft.volume=3&rft.issue=6&rft.spage=391&rft_id=info:doi/10.1021%2Facsengineeringau.3c00037&rft_id=info%3Apmid%2F38144679&rft.externalDocID=38144679 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2694-2488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2694-2488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2694-2488&client=summon |