Testing Copper-Speciation Predictions in Freshwaters over a Wide Range of Metal–Organic Matter Ratios
The harsh chemical conditions involved in the isolation of fulvic acids (FA) and humic acids (HA) have been identified as a possible contributing factor to the significant mismatch between in situ measurements and model predictions of trace metal speciation in freshwaters, resulting from the use of...
Saved in:
Published in | Environmental science & technology Vol. 47; no. 3; pp. 1487 - 1495 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
05.02.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The harsh chemical conditions involved in the isolation of fulvic acids (FA) and humic acids (HA) have been identified as a possible contributing factor to the significant mismatch between in situ measurements and model predictions of trace metal speciation in freshwaters, resulting from the use of isolated FA and HA in model calibration. A set of experimental assays were developed to enable Cu binding to DOM to be measured over the full range of [Cu]/[DOC] ratios (∼1–460 μmol g–1) observed in surface freshwaters. They were applied to the widely used and traditionally isolated Suwannee River HA and FA and to DOM isolated from headwater streams by a mild procedure using minimal chemical treatment. Good agreement was observed between measured free ion activities and those predicted using both WHAM/Model VII and NICA–Donnan speciation models for both traditionally and mildly isolated DOM. Agreement to within a factor of 2 for WHAM/Model VII contrasts with 100-fold differences previously reported between in situ Cu2+ measurements and model predictions for a wide range of conditions. The results demonstrate that (a) existing speciation models are capable of accurately predicting Cu-humic binding in natural waters at environmentally realistic [Cu]/[DOC] ratios, under equilibrium conditions, and (b) that the isolation procedures traditionally used for HA and FA do not appreciably affect their binding characteristics. |
---|---|
AbstractList | The harsh chemical conditions involved in the isolation of fulvic acids (FA) and humic acids (HA) have been identified as a possible contributing factor to the significant mismatch between in situ measurements and model predictions of trace metal speciation in freshwaters, resulting from the use of isolated FA and HA in model calibration. A set of experimental assays were developed to enable Cu binding to DOM to be measured over the full range of [Cu]/[DOC] ratios (1-460 ...mol g...) observed in surface freshwaters. They were applied to the widely used and traditionally isolated Suwannee River HA and FA and to DOM isolated from headwater streams by a mild procedure using minimal chemical treatment. Good agreement was observed between measured free ion activities and those predicted using both WHAM/Model VII and NICA-Donnan speciation models for both traditionally and mildly isolated DOM. Agreement to within a factor of 2 for WHAM/Model VII contrasts with 100-fold differences previously reported between in situ ... measurements and model predictions for a wide range of conditions. The results demonstrate that (a) existing speciation models are capable of accurately predicting Cu-humic binding in natural waters at environmentally realistic [Cu]/[DOC] ratios, under equilibrium conditions, and (b) that the isolation procedures traditionally used for HA and FA do not appreciably affect their binding characteristics. (ProQuest: ... denotes formulae/symbols omitted.) The harsh chemical conditions involved in the isolation of fulvic acids (FA) and humic acids (HA) have been identified as a possible contributing factor to the significant mismatch between in situ measurements and model predictions of trace metal speciation in freshwaters, resulting from the use of isolated FA and HA in model calibration. A set of experimental assays were developed to enable Cu binding to DOM to be measured over the full range of [Cu]/[DOC] ratios (∼1-460 μmol g(-1)) observed in surface freshwaters. They were applied to the widely used and traditionally isolated Suwannee River HA and FA and to DOM isolated from headwater streams by a mild procedure using minimal chemical treatment. Good agreement was observed between measured free ion activities and those predicted using both WHAM/Model VII and NICA-Donnan speciation models for both traditionally and mildly isolated DOM. Agreement to within a factor of 2 for WHAM/Model VII contrasts with 100-fold differences previously reported between in situ Cu(2+) measurements and model predictions for a wide range of conditions. The results demonstrate that (a) existing speciation models are capable of accurately predicting Cu-humic binding in natural waters at environmentally realistic [Cu]/[DOC] ratios, under equilibrium conditions, and (b) that the isolation procedures traditionally used for HA and FA do not appreciably affect their binding characteristics. The harsh chemical conditions involved in the isolation of fulvic acids (FA) and humic acids (HA) have been identified as a possible contributing factor to the significant mismatch between in situ measurements and model predictions of trace metal speciation in freshwaters, resulting from the use of isolated FA and HA in model calibration. A set of experimental assays were developed to enable Cu binding to DOM to be measured over the full range of [Cu]/[DOC] ratios (∼1-460 μmol g(-1)) observed in surface freshwaters. They were applied to the widely used and traditionally isolated Suwannee River HA and FA and to DOM isolated from headwater streams by a mild procedure using minimal chemical treatment. Good agreement was observed between measured free ion activities and those predicted using both WHAM/Model VII and NICA-Donnan speciation models for both traditionally and mildly isolated DOM. Agreement to within a factor of 2 for WHAM/Model VII contrasts with 100-fold differences previously reported between in situ Cu(2+) measurements and model predictions for a wide range of conditions. The results demonstrate that (a) existing speciation models are capable of accurately predicting Cu-humic binding in natural waters at environmentally realistic [Cu]/[DOC] ratios, under equilibrium conditions, and (b) that the isolation procedures traditionally used for HA and FA do not appreciably affect their binding characteristics.The harsh chemical conditions involved in the isolation of fulvic acids (FA) and humic acids (HA) have been identified as a possible contributing factor to the significant mismatch between in situ measurements and model predictions of trace metal speciation in freshwaters, resulting from the use of isolated FA and HA in model calibration. A set of experimental assays were developed to enable Cu binding to DOM to be measured over the full range of [Cu]/[DOC] ratios (∼1-460 μmol g(-1)) observed in surface freshwaters. They were applied to the widely used and traditionally isolated Suwannee River HA and FA and to DOM isolated from headwater streams by a mild procedure using minimal chemical treatment. Good agreement was observed between measured free ion activities and those predicted using both WHAM/Model VII and NICA-Donnan speciation models for both traditionally and mildly isolated DOM. Agreement to within a factor of 2 for WHAM/Model VII contrasts with 100-fold differences previously reported between in situ Cu(2+) measurements and model predictions for a wide range of conditions. The results demonstrate that (a) existing speciation models are capable of accurately predicting Cu-humic binding in natural waters at environmentally realistic [Cu]/[DOC] ratios, under equilibrium conditions, and (b) that the isolation procedures traditionally used for HA and FA do not appreciably affect their binding characteristics. The harsh chemical conditions involved in the isolation of fulvic acids (FA) and humic acids (HA) have been identified as a possible contributing factor to the significant mismatch between in situ measurements and model predictions of trace metal speciation in freshwaters, resulting from the use of isolated FA and HA in model calibration. A set of experimental assays were developed to enable Cu binding to DOM to be measured over the full range of [Cu]/[DOC] ratios (∼1–460 μmol g–¹) observed in surface freshwaters. They were applied to the widely used and traditionally isolated Suwannee River HA and FA and to DOM isolated from headwater streams by a mild procedure using minimal chemical treatment. Good agreement was observed between measured free ion activities and those predicted using both WHAM/Model VII and NICA–Donnan speciation models for both traditionally and mildly isolated DOM. Agreement to within a factor of 2 for WHAM/Model VII contrasts with 100-fold differences previously reported between in situ Cu²⁺ measurements and model predictions for a wide range of conditions. The results demonstrate that (a) existing speciation models are capable of accurately predicting Cu-humic binding in natural waters at environmentally realistic [Cu]/[DOC] ratios, under equilibrium conditions, and (b) that the isolation procedures traditionally used for HA and FA do not appreciably affect their binding characteristics. The harsh chemical conditions involved in the isolation of fulvic acids (FA) and humic acids (HA) have been identified as a possible contributing factor to the significant mismatch between in situ measurements and model predictions of trace metal speciation in freshwaters, resulting from the use of isolated FA and HA in model calibration. A set of experimental assays were developed to enable Cu binding to DOM to be measured over the full range of [Cu]/[DOC] ratios (∼1–460 μmol g–1) observed in surface freshwaters. They were applied to the widely used and traditionally isolated Suwannee River HA and FA and to DOM isolated from headwater streams by a mild procedure using minimal chemical treatment. Good agreement was observed between measured free ion activities and those predicted using both WHAM/Model VII and NICA–Donnan speciation models for both traditionally and mildly isolated DOM. Agreement to within a factor of 2 for WHAM/Model VII contrasts with 100-fold differences previously reported between in situ Cu2+ measurements and model predictions for a wide range of conditions. The results demonstrate that (a) existing speciation models are capable of accurately predicting Cu-humic binding in natural waters at environmentally realistic [Cu]/[DOC] ratios, under equilibrium conditions, and (b) that the isolation procedures traditionally used for HA and FA do not appreciably affect their binding characteristics. |
Author | Hamilton−Taylor, John Lin, Chun Meeussen, Johannes C. L Davison, William Ahmed, Imad A.M Zhang, Hao Lofts, Stephen |
AuthorAffiliation | The University of Lancaster Lancaster Environment Centre Wageningen University |
AuthorAffiliation_xml | – name: Wageningen University – name: The University of Lancaster – name: Lancaster Environment Centre |
Author_xml | – sequence: 1 givenname: Imad A.M surname: Ahmed fullname: Ahmed, Imad A.M email: i.ahmed@lancaster.ac.uk – sequence: 2 givenname: John surname: Hamilton−Taylor fullname: Hamilton−Taylor, John – sequence: 3 givenname: Stephen surname: Lofts fullname: Lofts, Stephen – sequence: 4 givenname: Johannes C. L surname: Meeussen fullname: Meeussen, Johannes C. L – sequence: 5 givenname: Chun surname: Lin fullname: Lin, Chun – sequence: 6 givenname: Hao surname: Zhang fullname: Zhang, Hao – sequence: 7 givenname: William surname: Davison fullname: Davison, William |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27135466$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23286231$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0VFrFDEQB_AgFXutPvgFJCCCPqydJJts9lEOq0JLRSv6tsxmZ8-Uveya7Cm--R38hn4Sc-1ZpQo-JZBfhpn_HLC9MAZi7L6ApwKkOKKkoBQawi22EFpCoa0We2wBIFRRK_Nhnx2kdAEAUoG9w_alktZIJRZsdU5p9mHFl-M0USzeTuQ8zn4M_HWkzrvtNXEf-HGk9PELzhQTHz9T5Mjf-474Gwwr4mPPT2nG4ce372dxhcE7fopzxvk9l0h32e0eh0T3duche3f8_Hz5sjg5e_Fq-eykwBLMXDjs0XYgHFAHTnatkE5W1JpedS3aKjdOWlnR9lDb2kBrOle2ldKgAcnW6pA9vqo7xfHTJs_WrH1yNAwYaNykRm5DAC2q6r9USFvmkAyUmT68QS_GTQx5kEtlTS2kzurBTm3aNXXNFP0a49fmV9oZPNoBTA6HPmJwPv12lVC6NCa7J1fOxTGlSP01EdBsN95cbzzboxvW-flygXNEP_zzx64LdOmPOf5yPwHVCrgt |
CODEN | ESTHAG |
CitedBy_id | crossref_primary_10_4236_gep_2021_95009 crossref_primary_10_1021_acs_est_9b00624 crossref_primary_10_1016_j_scitotenv_2020_143648 |
Cites_doi | 10.1016/S0043-1354(00)00509-1 10.1016/j.envpol.2008.05.010 10.1017/CBO9780511535598 10.1071/EN11049 10.1021/es902615w 10.1023/A:1009627214459 10.1016/j.apgeochem.2012.02.026 10.1021/es051245k 10.1007/BF00877641 10.1021/es0000910 10.1007/s10498-008-9040-5 10.1016/S0269-7491(03)00058-7 10.1016/j.aquatox.2010.07.018 10.1016/S0016-7037(02)00930-4 10.1071/EN11031 10.1021/es0258879 10.1021/es0002520 10.1016/0098-3004(94)90038-8 10.1021/ac00253a027 10.1021/es00002a022 10.1016/0165-9936(90)87084-Y 10.1016/S0016-7037(03)00087-5 10.1016/0198-9715(92)90053-T 10.4319/lo.2005.50.3.0995 10.1021/es025597s 10.4319/lo.1993.38.6.1200 10.1021/es103532a 10.1021/es040041l 10.1016/j.aca.2004.10.003 10.1016/j.watres.2005.08.020 10.1016/j.watres.2007.07.006 10.1021/es960556f 10.1016/j.marchem.2006.03.008 10.1021/es030155h 10.1016/S0927-7757(98)00637-2 10.1021/es900112w 10.1016/j.gca.2007.04.020 10.1016/S0304-4203(02)00007-5 10.1021/es0019023 10.1071/EN11156 10.1021/es051246c 10.1016/j.aca.2003.12.052 10.1021/es00001a007 10.1071/EN11016 10.1007/s10533-010-9409-6 10.1023/A:1009679819002 10.1016/j.envpol.2009.12.026 |
ContentType | Journal Article |
Copyright | Copyright © 2013 American Chemical
Society 2014 INIST-CNRS Copyright American Chemical Society Feb 5, 2013 |
Copyright_xml | – notice: Copyright © 2013 American Chemical Society – notice: 2014 INIST-CNRS – notice: Copyright American Chemical Society Feb 5, 2013 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 |
DOI | 10.1021/es304150n |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Biotechnology Research Abstracts MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences Applied Sciences |
EISSN | 1520-5851 |
EndPage | 1495 |
ExternalDocumentID | 2885947381 23286231 27135466 10_1021_es304150n a811323157 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GeographicLocations | England Suwannee River |
GeographicLocations_xml | – name: England – name: Suwannee River |
GroupedDBID | - .K2 1AW 3R3 4.4 4R4 53G 55A 5GY 5VS 63O 7~N 85S AABXI ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 MS PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK XZL YZZ --- -DZ -~X ..I .DC 6TJ AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV ADUKH AGXLV AHGAQ CITATION CUPRZ GGK MS~ MW2 XSW ZCA .HR 186 1WB 42X 8WZ A6W ABHMW ACKIV ACRPL ADMHC ADNMO AETEA AEYZD AGQPQ ANPPW ANTXH IHE IQODW MVM NHB OHT RNS TAE UBC UBX UBY UQL VJK VOH YV5 ZCG ZY4 ~A~ CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a406t-cafa8d01c0ed0c2db12c27eb6f3dba87232e5381bf098960b6dc4b735050ae893 |
IEDL.DBID | ACS |
ISSN | 0013-936X 1520-5851 |
IngestDate | Fri Jul 11 09:08:06 EDT 2025 Thu Jul 10 17:58:05 EDT 2025 Mon Jun 30 06:02:18 EDT 2025 Mon Jul 21 06:06:06 EDT 2025 Mon Jul 21 09:13:25 EDT 2025 Tue Jul 01 04:28:33 EDT 2025 Thu Apr 24 23:08:54 EDT 2025 Thu Aug 27 13:42:53 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Pollutant behavior Fresh water Measurement result Heavy metal Trace element Binding capacity Dissolved organic matter Models Water pollution Fulvic acid Copper Humic acid Speciation |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a406t-cafa8d01c0ed0c2db12c27eb6f3dba87232e5381bf098960b6dc4b735050ae893 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 23286231 |
PQID | 1284869125 |
PQPubID | 45412 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2000205177 proquest_miscellaneous_1284623604 proquest_journals_1284869125 pubmed_primary_23286231 pascalfrancis_primary_27135466 crossref_primary_10_1021_es304150n crossref_citationtrail_10_1021_es304150n acs_journals_10_1021_es304150n |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-02-05 |
PublicationDateYYYYMMDD | 2013-02-05 |
PublicationDate_xml | – month: 02 year: 2013 text: 2013-02-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2013 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Lofts S. (ref14/cit14) 2001 Guthrie J. W. (ref58/cit58) 2005; 528 Tipping E. (ref5/cit5) 2010; 158 Vasyukova E. (ref28/cit28) 2012; 27 Tipping E. (ref6/cit6) 2008; 156 Davison W. (ref37/cit37) 1990; 9 Kinniburgh D. G. (ref11/cit11) 1999; 151 Baken S. (ref22/cit22) 2011; 45 Gondar D. (ref51/cit51) 2008; 42 Tipping E. (ref48/cit48) 2003; 125 ICMM; EuroMetaux.; Defra; EURAS (ref2/cit2) 2007 Bryan S. . (ref30/cit30) 2002; 133 Vulkan R. (ref49/cit49) 2000; 34 Peuravuori J. (ref33/cit33) 2004; 38 Xue H. (ref18/cit18) 1999; 5 Tipping E. (ref52/cit52) 2002; 66 Xue H. (ref20/cit20) 1995; 29 Xue H. (ref60/cit60) 1993; 38 Zhao L. Y. L. (ref50/cit50) 2007; 71 Hamilton-Taylor J. (ref15/cit15) 2011; 8 Benedetti M. F. (ref10/cit10) 1995; 29 Tang D. (ref23/cit23) 2002; 78 Avdeef A. (ref38/cit38) 1983; 55 (ref46/cit46) 1999 Hiemstra T. (ref53/cit53) 2006; 102 Martell A. E. (ref39/cit39) 1976; 4 Schecher W. D. (ref42/cit42) 1992; 16 Milne C. J. (ref47/cit47) 2003; 37 Tipping E. (ref12/cit12) 1994; 20 Plöger A. (ref57/cit57) 2005; 50 Unsworth E. R. (ref26/cit26) 2006; 40 Lofts S. (ref7/cit7) 2008; 14 Tipping E. (ref17/cit17) 2002 Christl I. (ref36/cit36) 2001; 35 Stockdale A. (ref3/cit3) 2010; 100 Lofts S. (ref4/cit4) 2004; 38 Groenenberg J. E. (ref25/cit25) 2010; 44 Wu F. (ref19/cit19) 2001; 35 Nowack B. (ref21/cit21) 1997; 31 Lyvén B. (ref29/cit29) 2003; 67 Mueller K. K. (ref55/cit55) 2012; 9 Lofts S. (ref24/cit24) 2011; 8 Xue H. (ref59/cit59) 1996; 58 Tipping E. (ref13/cit13) 1998; 4 Tipping E. (ref16/cit16) 2011; 8 Kitis M. (ref32/cit32) 2001; 35 Warnken K. W. (ref27/cit27) 2009; 43 Meylan S. (ref56/cit56) 2004; 510 USEPA (ref1/cit1) 2007 ISO 16588:2002 (ref35/cit35) 2002 Tipping E. (ref34/cit34) 2010; 100 Thacker S. A. (ref31/cit31) 2005; 39 Sigg L. (ref54/cit54) 2006; 40 Meeussen J. C. L. (ref43/cit43) 2003; 37 Kinniburgh D. G. (ref45/cit45) 1999; 151 Martell A. E. (ref40/cit40) 1975; 2 |
References_xml | – volume: 35 start-page: 2225 year: 2001 ident: ref32/cit32 publication-title: Water Res. doi: 10.1016/S0043-1354(00)00509-1 – volume: 156 start-page: 936 year: 2008 ident: ref6/cit6 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2008.05.010 – volume-title: Cation Binding by Humic Substances year: 2002 ident: ref17/cit17 doi: 10.1017/CBO9780511535598 – volume: 8 start-page: 501 year: 2011 ident: ref24/cit24 publication-title: Environ. Chem. doi: 10.1071/EN11049 – volume: 44 start-page: 1340 year: 2010 ident: ref25/cit25 publication-title: Environ. Sci. Technol. doi: 10.1021/es902615w – volume: 4 start-page: 3 year: 1998 ident: ref13/cit13 publication-title: Aquat. Geochem. doi: 10.1023/A:1009627214459 – volume: 27 start-page: 1226 year: 2012 ident: ref28/cit28 publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2012.02.026 – volume: 40 start-page: 1934 year: 2006 ident: ref54/cit54 publication-title: Environ. Sci. Technol. doi: 10.1021/es051245k – volume: 133 start-page: 37 year: 2002 ident: ref30/cit30 publication-title: Comp. Biochem. Phys. C – volume: 58 start-page: 69 year: 1996 ident: ref59/cit59 publication-title: Aquat. Sci.–Res. Across Boundaries doi: 10.1007/BF00877641 – volume: 34 start-page: 5115 year: 2000 ident: ref49/cit49 publication-title: Environ. Sci. Technol. doi: 10.1021/es0000910 – volume: 14 start-page: 337 year: 2008 ident: ref7/cit7 publication-title: Aquat. Geochem. doi: 10.1007/s10498-008-9040-5 – volume: 125 start-page: 213 year: 2003 ident: ref48/cit48 publication-title: Environ. Pollut. doi: 10.1016/S0269-7491(03)00058-7 – volume: 100 start-page: 112 year: 2010 ident: ref3/cit3 publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2010.07.018 – volume: 66 start-page: 3211 year: 2002 ident: ref52/cit52 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(02)00930-4 – volume: 8 start-page: 461 year: 2011 ident: ref15/cit15 publication-title: Environ. Chem. doi: 10.1071/EN11031 – volume: 37 start-page: 958 year: 2003 ident: ref47/cit47 publication-title: Environ. Sci. Technol. doi: 10.1021/es0258879 – volume-title: MERAG: Metals Environmental Risk Assessment Guidance year: 2007 ident: ref2/cit2 – volume: 35 start-page: 2512 year: 2001 ident: ref36/cit36 publication-title: Environ. Sci. Technol. doi: 10.1021/es0002520 – volume: 20 start-page: 973 year: 1994 ident: ref12/cit12 publication-title: Comput. Geosci. doi: 10.1016/0098-3004(94)90038-8 – volume: 55 start-page: 298 year: 1983 ident: ref38/cit38 publication-title: Anal. Chem. doi: 10.1021/ac00253a027 – volume-title: US-EPA MINTEQA2/PRODEFA2, A Geochemical Assessment Model for Environmental Systems: User Manual Supplement for Version 4.0 year: 1999 ident: ref46/cit46 – volume-title: Water quality—Determination of six complexing agents – gas chromatographic method year: 2002 ident: ref35/cit35 – volume: 29 start-page: 446 year: 1995 ident: ref10/cit10 publication-title: Environ. Sci. Technol. doi: 10.1021/es00002a022 – volume: 9 start-page: 80 year: 1990 ident: ref37/cit37 publication-title: TRAC-Trends Anal. Chem. doi: 10.1016/0165-9936(90)87084-Y – volume: 67 start-page: 3791 year: 2003 ident: ref29/cit29 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(03)00087-5 – volume-title: Equilibrium Chemical Speciation for Natural Waters year: 2001 ident: ref14/cit14 – volume: 16 start-page: 65 year: 1992 ident: ref42/cit42 publication-title: Comput. Environ. Urban Systems doi: 10.1016/0198-9715(92)90053-T – volume: 50 start-page: 995 year: 2005 ident: ref57/cit57 publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2005.50.3.0995 – volume: 37 start-page: 1175 year: 2003 ident: ref43/cit43 publication-title: Environ. Sci. Technol. doi: 10.1021/es025597s – volume: 38 start-page: 1200 year: 1993 ident: ref60/cit60 publication-title: Limnol. Oceanogr. doi: 10.4319/lo.1993.38.6.1200 – volume: 2 volume-title: Critical Stability Constants: Amines year: 1975 ident: ref40/cit40 – volume: 45 start-page: 2584 year: 2011 ident: ref22/cit22 publication-title: Environ. Sci. Technol. doi: 10.1021/es103532a – volume: 38 start-page: 5958 year: 2004 ident: ref33/cit33 publication-title: Environ. Sci. Technol. doi: 10.1021/es040041l – volume: 4 volume-title: Critical Stability Constants: Inorganic Complexes year: 1976 ident: ref39/cit39 – volume-title: Aquatic Life Ambient Freshwater Quality Criteria–Copper year: 2007 ident: ref1/cit1 – volume: 528 start-page: 205 year: 2005 ident: ref58/cit58 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2004.10.003 – volume: 39 start-page: 4559 year: 2005 ident: ref31/cit31 publication-title: Water Res. doi: 10.1016/j.watres.2005.08.020 – volume: 42 start-page: 81 year: 2008 ident: ref51/cit51 publication-title: Water Res. doi: 10.1016/j.watres.2007.07.006 – volume: 31 start-page: 866 year: 1997 ident: ref21/cit21 publication-title: Environ. Sci. Technol. doi: 10.1021/es960556f – volume: 102 start-page: 181 year: 2006 ident: ref53/cit53 publication-title: Marine Chemistry doi: 10.1016/j.marchem.2006.03.008 – volume: 38 start-page: 3623 year: 2004 ident: ref4/cit4 publication-title: Environ. Sci. Technol. doi: 10.1021/es030155h – volume: 151 start-page: 147 year: 1999 ident: ref11/cit11 publication-title: Colloids Surf. A. doi: 10.1016/S0927-7757(98)00637-2 – volume: 43 start-page: 7230 year: 2009 ident: ref27/cit27 publication-title: Environ. Sci. Technol. doi: 10.1021/es900112w – volume: 71 start-page: 3407 year: 2007 ident: ref50/cit50 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2007.04.020 – volume: 78 start-page: 29 year: 2002 ident: ref23/cit23 publication-title: Mar. Chem. doi: 10.1016/S0304-4203(02)00007-5 – volume: 35 start-page: 3646 year: 2001 ident: ref19/cit19 publication-title: Environ. Sci. Technol. doi: 10.1021/es0019023 – volume: 9 start-page: 356 year: 2012 ident: ref55/cit55 publication-title: Environ. Chem. doi: 10.1071/EN11156 – volume: 151 start-page: 147 year: 1999 ident: ref45/cit45 publication-title: Colloids Surf., A doi: 10.1016/S0927-7757(98)00637-2 – volume: 40 start-page: 1942 year: 2006 ident: ref26/cit26 publication-title: Environ. Sci. Technol. doi: 10.1021/es051246c – volume: 510 start-page: 91 year: 2004 ident: ref56/cit56 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2003.12.052 – volume: 29 start-page: 59 year: 1995 ident: ref20/cit20 publication-title: Environ. Sci. Technol. doi: 10.1021/es00001a007 – volume: 8 start-page: 225 year: 2011 ident: ref16/cit16 publication-title: Environ. Chem. doi: 10.1071/EN11016 – volume: 100 start-page: 121 year: 2010 ident: ref34/cit34 publication-title: Biogeochemistry doi: 10.1007/s10533-010-9409-6 – volume: 5 start-page: 313 year: 1999 ident: ref18/cit18 publication-title: Aquat. Geochem. doi: 10.1023/A:1009679819002 – volume: 158 start-page: 1521 year: 2010 ident: ref5/cit5 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2009.12.026 |
SSID | ssj0002308 |
Score | 2.2340481 |
Snippet | The harsh chemical conditions involved in the isolation of fulvic acids (FA) and humic acids (HA) have been identified as a possible contributing factor to the... |
SourceID | proquest pubmed pascalfrancis crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1487 |
SubjectTerms | Acids Applied sciences Benzopyrans - analysis binding properties Biological and physicochemical phenomena Calibration chemical treatment Copper Copper - analysis Earth sciences Earth, ocean, space Engineering and environment geology. Geothermics England Environment Exact sciences and technology Fresh Water - chemistry Freshwater ecology fulvic acids Heavy metals humic acids Humic Substances - analysis Natural water pollution Organic Chemicals - analysis Organic Chemicals - isolation & purification Pollution Pollution, environment geology prediction rivers Solubility Solutions streams Water Pollutants, Chemical - analysis Water Pollution - analysis Water treatment and pollution |
Title | Testing Copper-Speciation Predictions in Freshwaters over a Wide Range of Metal–Organic Matter Ratios |
URI | http://dx.doi.org/10.1021/es304150n https://www.ncbi.nlm.nih.gov/pubmed/23286231 https://www.proquest.com/docview/1284869125 https://www.proquest.com/docview/1284623604 https://www.proquest.com/docview/2000205177 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LbxMxEB6VcgFVPAqlW0pkHgcu2_oV7-6xShtVSEEIWpFb5NeWCrSJsomQOPEf-If8ko731VRt4LoeW1577PlG4_kG4J3RmcjRtQq3H42lznycslzGVsnMad831IVE4dFHdXouP4z74w14uyaCz9mhL0VII6fFPbjPVZoED-to8KW7bhFDp22ZgkyocUsftNo1mB5b3jA9WzNd4irkdfmK9fiysjPDx3DcZuvUz0u-HywX5sD-uk3e-K9feAKPGpxJjmrFeAobvtiGhyvsg9uwc3Kd5IaizSkvn8HFWaDeKC7IYDqb-Xlc16gPO0g-zUNgp9JVclmQITrr337qwNBJwltQosnXS-fJ55CyQKY5GXkc-u_vP3XKpyWjis4T23GI8jmcD0_OBqdxU5Ah1mj3F7HVuU4dZZZ6Ry13hnHLQ1GVXDij0wTRmccLlJmcZim6RkY5K00iEGVR7REZ7cBmMS38LhDpcqqxu3SZlcxo45yzQlgEkAq_sQh6uGOT5kCVkypWztmkW8oI3rebObENnXmoqvHjLtE3neis5vC4S6h3QyM6SR6KGEqlIthvVWRlWmjdU5UhSozgddeMJzSEXXThp8taBkGmonK9DK9Cwn2WJBG8qNXvegKCo9sp2N7_luQlPOBVsQ4e0_4-bC7mS_8KIdPC9KojcwUAFRFm |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbhMxEB5V5QAI8VMoXSjBIJC4bLG9zmb3wKEKjVLaVIimIrfFf9tWoE2UTVTBiXfgxqvwNjwJ4_1LilpxqsR1PWuNxuOZz7LnG4AXSsZBikcrF_2oL2Rs_YilwtehiI20bUWNKxQeHIT9I_Fu1B6twM-6FgaVyHGmvLjEX7ALsNc2D1w1Oc2qB5R79usZHs_yN7tvcS1fct7bGXb7ftVBwJeYqGa-lqmMDGWaWkM1N4pxzV0XkDQwSkYdhBMWdzxTKY0jxPIqNFqoToCwgEobOaIlDO_XEPRwd7Db7h42UR6he1R3R4iDcFSzFi2r6jKezs9lvFsTmaPx07JrxuWwtkhvvTvwqzFM8arl89Z8prb0t784I_9Py92F2xWqJtvlNrgHKzZbg5tLXItrsL6zKOlD0Sqm5ffheOiIRrJj0h1PJnbqH05s5a_k_dRdYxU7k5xmpDe1-cmZdHykxL18JZJ8PDWWfHAFGmSckoHFqX9__1EWuGoyKMhLcRynyB_A0ZWYYB1Ws3FmN4AIk1KJvwsTa8GUVMYYHQQa4XKI35gHLVy5pAofeVK8DOAsaZbOg1e1DyW6Im93PUS-XCT6vBGdlIwlFwm1zjliI8ldy0YRhh5s1p65pBZimSiMERN78KwZxnjkLplkZsfzUgYhdUjF5TK8uABvs07Hg4el1y8UCDgesgP26F8meQrX-8PBfrK_e7D3GG7wok0J92l7E1Zn07l9gmBxplrFriXw6aqd_Q-TZHUK |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB5VRapACEqhECiLQSBxSbGdbDY5cKi2XbWUrSrair2l_kupQNlovasKTrwDd16Fd-FJGOevW9SKUyWu8cSy7JnxZ83MNwAvpUiCDJ9WzvtRPxSJ8WOWhb6KwkQL05VUu0Lh4V60fRS-G3VHC_CzqYXBRVicyZZBfGfVhc5qhgH2xtjAVZTTvE6i3DVfz_CJZt_ubOJ5vuJ8sHXY3_brLgK-wMtq6iuRiVhTpqjRVHEtGVfcdQLJAi1F3ENIYdDqmcxoEiOel5FWoewFCA2oMLEjW0IXf8OFB93jbqN_0Hp6hO9x0yEhCaJRw1w0v1R36yl74da7XQiLB5BVnTOuhrblFTe4C7_azSkzWz6vz6ZyXX37izfy_929ZbhTo2uyUZnDPVgw-QrcmuNcXIHVrfPSPhStfZu9DyeHjnAkPyH9cVGYiX9QmFpvyf7EhbNKCyWnORlMjP10JhwvKXEZsESQj6fakA-uUIOMMzI0OPXv7z-qQldFhiWJKY7jFPYBHF3LFqzCYj7OzSMgoc6owN9DnaiQSSG11ioIFMLmCL8xDzp4emntRmxaZghwlrZH58HrRo9SVZO4u14iXy4TfdGKFhVzyWVCnQvK2Epy17oxjCIP1hrtnFsWYpo4ShAbe_C8HUa_5IJNIjfjWSWD0Dqi4dUyvAyEd1mv58HDSvPPFxBwfGwH7PG_tuQZLO1vDtL3O3u7T-AmL7uVcJ9212BxOpmZp4gZp7JTGi6B4-vW9T_CPXeN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Testing+Copper-Speciation+Predictions+in+Freshwaters+over+a+Wide+Range+of+Metal-Organic+Matter+Ratios&rft.jtitle=Environmental+science+%26+technology&rft.au=Ahmed%2C+Imad+A+M&rft.au=Hamilton-Taylor%2C+John&rft.au=Lofts%2C+Stephen&rft.au=Meeussen%2C+Johannes+C+L&rft.date=2013-02-05&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.volume=47&rft.issue=3&rft.spage=1487&rft_id=info:doi/10.1021%2Fes304150n&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2885947381 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |