Tailoring Multidimensional Traps for Rewritable Multilevel Optical Data Storage
In the current “big data” era, the state-of-the-art optical data storage (ODS) has become a front-runner in the competing data storage technologies. As one of the most promising methods for breaking the physical limitation suffered by traditional ones, the advance of optically stimulated luminescenc...
Saved in:
Published in | ACS applied materials & interfaces Vol. 11; no. 38; pp. 35023 - 35029 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
25.09.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the current “big data” era, the state-of-the-art optical data storage (ODS) has become a front-runner in the competing data storage technologies. As one of the most promising methods for breaking the physical limitation suffered by traditional ones, the advance of optically stimulated luminescence (OSL) based optical storage technique is now still limited by the simultaneous single-level write-in and readout in a same spot. In this work, to bridge the data-capacity gap, we report for the first time a novel and promising nonphysical multidimensional OSL-based ODS flexible medium for erasable multilevel optical data recording and reading. We tailor multidimensional traps with discrete, narrowly distributed energy levels through (multi-)codoping of selective trivalent rare-earth ions into Eu2+-activated barium orthosilicate (Ba2SiO4). Upon UV/blue light illumination, information can be sequentially recorded in different traps assisted by thermal cleaning with an increase of storage capacity by orders of magnitude, which is addressable individually in the whole domain or bit-by-bit mode without the crosstalk by designed thermal/optical stimuli. Remarkably, good data retention and robust fatigue resistance have been achieved in recycle data recording. Insight is forged from charge carrier dynamics and interactions with traps for a universal method of data storage, and proof-of-concept applications are also demonstrated, thereby providing the way to not only rewritable multilevel ODS but also high-security encryption/decryption. |
---|---|
AbstractList | In the current "big data" era, the state-of-the-art optical data storage (ODS) has become a front-runner in the competing data storage technologies. As one of the most promising methods for breaking the physical limitation suffered by traditional ones, the advance of optically stimulated luminescence (OSL) based optical storage technique is now still limited by the simultaneous single-level write-in and readout in a same spot. In this work, to bridge the data-capacity gap, we report for the first time a novel and promising nonphysical multidimensional OSL-based ODS flexible medium for erasable multilevel optical data recording and reading. We tailor multidimensional traps with discrete, narrowly distributed energy levels through (multi-)codoping of selective trivalent rare-earth ions into Eu2+-activated barium orthosilicate (Ba2SiO4). Upon UV/blue light illumination, information can be sequentially recorded in different traps assisted by thermal cleaning with an increase of storage capacity by orders of magnitude, which is addressable individually in the whole domain or bit-by-bit mode without the crosstalk by designed thermal/optical stimuli. Remarkably, good data retention and robust fatigue resistance have been achieved in recycle data recording. Insight is forged from charge carrier dynamics and interactions with traps for a universal method of data storage, and proof-of-concept applications are also demonstrated, thereby providing the way to not only rewritable multilevel ODS but also high-security encryption/decryption.In the current "big data" era, the state-of-the-art optical data storage (ODS) has become a front-runner in the competing data storage technologies. As one of the most promising methods for breaking the physical limitation suffered by traditional ones, the advance of optically stimulated luminescence (OSL) based optical storage technique is now still limited by the simultaneous single-level write-in and readout in a same spot. In this work, to bridge the data-capacity gap, we report for the first time a novel and promising nonphysical multidimensional OSL-based ODS flexible medium for erasable multilevel optical data recording and reading. We tailor multidimensional traps with discrete, narrowly distributed energy levels through (multi-)codoping of selective trivalent rare-earth ions into Eu2+-activated barium orthosilicate (Ba2SiO4). Upon UV/blue light illumination, information can be sequentially recorded in different traps assisted by thermal cleaning with an increase of storage capacity by orders of magnitude, which is addressable individually in the whole domain or bit-by-bit mode without the crosstalk by designed thermal/optical stimuli. Remarkably, good data retention and robust fatigue resistance have been achieved in recycle data recording. Insight is forged from charge carrier dynamics and interactions with traps for a universal method of data storage, and proof-of-concept applications are also demonstrated, thereby providing the way to not only rewritable multilevel ODS but also high-security encryption/decryption. In the current “big data” era, the state-of-the-art optical data storage (ODS) has become a front-runner in the competing data storage technologies. As one of the most promising methods for breaking the physical limitation suffered by traditional ones, the advance of optically stimulated luminescence (OSL) based optical storage technique is now still limited by the simultaneous single-level write-in and readout in a same spot. In this work, to bridge the data-capacity gap, we report for the first time a novel and promising nonphysical multidimensional OSL-based ODS flexible medium for erasable multilevel optical data recording and reading. We tailor multidimensional traps with discrete, narrowly distributed energy levels through (multi-)codoping of selective trivalent rare-earth ions into Eu2+-activated barium orthosilicate (Ba2SiO4). Upon UV/blue light illumination, information can be sequentially recorded in different traps assisted by thermal cleaning with an increase of storage capacity by orders of magnitude, which is addressable individually in the whole domain or bit-by-bit mode without the crosstalk by designed thermal/optical stimuli. Remarkably, good data retention and robust fatigue resistance have been achieved in recycle data recording. Insight is forged from charge carrier dynamics and interactions with traps for a universal method of data storage, and proof-of-concept applications are also demonstrated, thereby providing the way to not only rewritable multilevel ODS but also high-security encryption/decryption. In the current “big data” era, the state-of-the-art optical data storage (ODS) has become a front-runner in the competing data storage technologies. As one of the most promising methods for breaking the physical limitation suffered by traditional ones, the advance of optically stimulated luminescence (OSL) based optical storage technique is now still limited by the simultaneous single-level write-in and readout in a same spot. In this work, to bridge the data-capacity gap, we report for the first time a novel and promising nonphysical multidimensional OSL-based ODS flexible medium for erasable multilevel optical data recording and reading. We tailor multidimensional traps with discrete, narrowly distributed energy levels through (multi-)codoping of selective trivalent rare-earth ions into Eu²⁺-activated barium orthosilicate (Ba₂SiO₄). Upon UV/blue light illumination, information can be sequentially recorded in different traps assisted by thermal cleaning with an increase of storage capacity by orders of magnitude, which is addressable individually in the whole domain or bit-by-bit mode without the crosstalk by designed thermal/optical stimuli. Remarkably, good data retention and robust fatigue resistance have been achieved in recycle data recording. Insight is forged from charge carrier dynamics and interactions with traps for a universal method of data storage, and proof-of-concept applications are also demonstrated, thereby providing the way to not only rewritable multilevel ODS but also high-security encryption/decryption. |
Author | Lv, Yang Xiong, Guangting Yuan, Lifang Wu, Haoyi Yang, Shihe Ju, Guifang Chen, Li Liu, Dong Jin, Yahong Hu, Yihua |
AuthorAffiliation | Department of Chemistry The Hong Kong University of Science and Technology Peking University School of Physics and Optoelectronic Engineering Guangdong Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School Experimental Teaching Department |
AuthorAffiliation_xml | – name: Experimental Teaching Department – name: Department of Chemistry – name: Guangdong Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School – name: The Hong Kong University of Science and Technology – name: Peking University – name: School of Physics and Optoelectronic Engineering |
Author_xml | – sequence: 1 givenname: Dong surname: Liu fullname: Liu, Dong – sequence: 2 givenname: Lifang surname: Yuan fullname: Yuan, Lifang – sequence: 3 givenname: Yahong orcidid: 0000-0002-6626-7264 surname: Jin fullname: Jin, Yahong email: yhjin@gdut.edu.cn organization: The Hong Kong University of Science and Technology – sequence: 4 givenname: Haoyi surname: Wu fullname: Wu, Haoyi – sequence: 5 givenname: Yang surname: Lv fullname: Lv, Yang – sequence: 6 givenname: Guangting surname: Xiong fullname: Xiong, Guangting – sequence: 7 givenname: Guifang surname: Ju fullname: Ju, Guifang – sequence: 8 givenname: Li surname: Chen fullname: Chen, Li – sequence: 9 givenname: Shihe orcidid: 0000-0002-6469-8415 surname: Yang fullname: Yang, Shihe email: chsyang@pku.edu.cn organization: Peking University – sequence: 10 givenname: Yihua orcidid: 0000-0001-6037-976X surname: Hu fullname: Hu, Yihua email: huyh@gdut.edu.cn |
BookMark | eNqFkM9LwzAUgINMcJtePfcoQmd-tTZHmT9hMtB5Lq_t68jImppkiv-9kQ4PwvCUR_i-B--bkFFnOyTknNEZo5xdQe1hq2eqYoIydkTGTEmZFjzjo99ZyhMy8X5DaS44zcZkuQJtrNPdOnnemaAbvcXOa9uBSVYOep-01iUv-Ol0gMrgQBn8QJMs-6DryN1CgOQ1WAdrPCXHLRiPZ_t3St7u71bzx3SxfHia3yxSkDQPad7gNci8qCkvOG3ytuC1qGgFgC2XgFxRKKiqGmwg3oYqq3PWZBkqJZgALqbkYtjbO_u-Qx_KrfY1GgMd2p0vuci4pCov1P8oL4SQUhUsorMBrZ313mFb9k5vwX2VjJY_kcshcrmPHAX5R6hjpxD7BRfDHtYuBy3-lxu7czG3PwR_A82Hkqw |
CitedBy_id | crossref_primary_10_1016_j_optmat_2022_112129 crossref_primary_10_1016_j_ceramint_2024_03_258 crossref_primary_10_1111_ijac_14514 crossref_primary_10_1007_s40843_025_3279_0 crossref_primary_10_1016_j_jlumin_2023_119971 crossref_primary_10_1002_adom_202300303 crossref_primary_10_1016_j_mtcomm_2022_103802 crossref_primary_10_1039_D0TC04469E crossref_primary_10_1021_acsenergylett_4c00383 crossref_primary_10_1038_s41377_025_01746_9 crossref_primary_10_1021_acsami_2c12387 crossref_primary_10_1038_s41377_024_01533_y crossref_primary_10_1002_lpor_202000123 crossref_primary_10_1002_lpor_202300744 crossref_primary_10_29026_oea_2021_210002 crossref_primary_10_1039_D1TC05254C crossref_primary_10_1021_acs_jpcc_2c04862 crossref_primary_10_1038_s41377_020_0258_3 crossref_primary_10_34133_2021_7897849 crossref_primary_10_1364_OME_426596 crossref_primary_10_1002_adom_202101714 crossref_primary_10_1016_j_cej_2020_127820 crossref_primary_10_1016_j_mtla_2022_101374 crossref_primary_10_1021_acsanm_2c05552 crossref_primary_10_1002_lpor_202401376 crossref_primary_10_1039_D4CP01547A crossref_primary_10_1002_adma_202314083 crossref_primary_10_1016_j_mtchem_2024_102170 crossref_primary_10_1016_j_cej_2023_146826 crossref_primary_10_1016_j_jlumin_2024_120536 crossref_primary_10_1002_lpor_202400209 crossref_primary_10_1021_acs_inorgchem_4c02570 crossref_primary_10_1016_j_ceramint_2022_04_171 crossref_primary_10_2139_ssrn_4123938 crossref_primary_10_1016_j_nanoen_2021_106546 crossref_primary_10_1016_j_cej_2022_139558 crossref_primary_10_1021_acsaom_4c00482 crossref_primary_10_1038_s41377_024_01507_0 crossref_primary_10_1002_adom_202102496 crossref_primary_10_1016_j_jallcom_2022_163776 crossref_primary_10_1016_j_mseb_2023_116511 crossref_primary_10_1002_adom_202002090 crossref_primary_10_1016_j_molstruc_2023_135902 crossref_primary_10_1039_D3QI00956D crossref_primary_10_1117_1_AP_3_1_014001 crossref_primary_10_1007_s11696_022_02612_3 crossref_primary_10_1016_j_heliyon_2023_e22794 crossref_primary_10_1021_acsami_4c16548 crossref_primary_10_1002_bio_4559 crossref_primary_10_1016_j_ceramint_2021_02_271 crossref_primary_10_3788_COL202321_041602 crossref_primary_10_1002_adom_202000274 crossref_primary_10_1002_adom_202302553 crossref_primary_10_1016_j_mtchem_2022_100906 crossref_primary_10_1021_acssuschemeng_0c01377 crossref_primary_10_1002_adom_202202612 crossref_primary_10_1016_j_jallcom_2025_179800 crossref_primary_10_1016_j_jlumin_2024_121042 crossref_primary_10_1021_acsaom_4c00153 crossref_primary_10_1021_acsami_3c00673 crossref_primary_10_1007_s10854_022_08415_2 crossref_primary_10_1016_j_jlumin_2021_118518 crossref_primary_10_1016_j_cej_2021_129844 crossref_primary_10_1016_j_jlumin_2024_120879 crossref_primary_10_1002_smll_202311526 crossref_primary_10_1016_j_jlumin_2021_118671 crossref_primary_10_1364_OME_474698 crossref_primary_10_1016_j_cej_2021_133373 crossref_primary_10_1039_D3QI00160A crossref_primary_10_1002_lpor_202300016 crossref_primary_10_1016_j_ceramint_2025_01_342 crossref_primary_10_1016_j_ceramint_2023_09_342 crossref_primary_10_1016_j_heliyon_2022_e10045 crossref_primary_10_1016_j_mtcomm_2024_109296 crossref_primary_10_1021_acs_analchem_9b05174 crossref_primary_10_1103_PhysRevLett_125_256602 |
Cites_doi | 10.1016/j.optmat.2018.07.021 10.1002/lpor.201900006 10.1364/OE.26.012266 10.1103/PhysRevLett.112.033901 10.1038/nrg2857-c1 10.1038/nature08053 10.1002/adma.201705256 10.1364/OL.32.000277 10.1021/acsami.7b17271 10.1021/cr980073p 10.1016/j.jre.2018.12.003 10.1103/PhysRevB.87.035118 10.1109/IPCon.2017.8116242 10.1039/C8TC01722K 10.1021/acs.inorgchem.7b02431 10.1039/C8TC04018D 10.1364/ACPC.2016.AF1J.4 10.1364/OE.24.023557 10.1016/0038-1101(88)90120-7 10.1002/9780470977064 10.1038/lsa.2014.58 10.1038/s41467-018-03589-y 10.1080/08893118908032945 10.1002/pssa.2210620139 10.1002/adom.201900006 10.1103/PhysRevB.87.045126 10.1038/17989 10.1038/nphoton.2014.221 10.1016/B978-044450684-9/50091-X 10.1016/j.jallcom.2014.07.154 10.1021/acsami.8b08977 10.1016/j.ceramint.2018.02.224 10.1021/acs.chemmater.5b00288 10.1038/natrevmats.2016.70 10.1021/acsami.8b10713 10.1364/OL.35.000046 10.1038/srep01554 10.1016/j.jlumin.2012.09.034 10.1126/science.1200970 10.1590/S0103-97331999000200008 10.1021/cm500116u 10.1021/acs.nanolett.5b02300 10.1039/C6TC01640E 10.1002/adma.201703950 10.1149/1.2412291 10.1002/adma.201802489 10.1109/LPT.2014.2317792 10.1039/C9SC01321K 10.1002/adfm.201705769 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1021/acsami.9b13011 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 35029 |
ExternalDocumentID | 10_1021_acsami_9b13011 a114368326 |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ --- .K2 4.4 5VS 5ZA 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a406t-6de7a468c02820d6f82c3b0baaef24ae290a809bdeda021e95c61d55e99313a23 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Fri Jul 11 16:13:50 EDT 2025 Fri Jul 11 04:54:53 EDT 2025 Tue Jul 01 04:06:36 EDT 2025 Thu Apr 24 22:56:42 EDT 2025 Thu Aug 27 13:44:18 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Keywords | silicates solid-state reactions optically stimulated luminescence trap engineering optical data storage |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a406t-6de7a468c02820d6f82c3b0baaef24ae290a809bdeda021e95c61d55e99313a23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6469-8415 0000-0002-6626-7264 0000-0001-6037-976X |
PQID | 2283344981 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2352409689 proquest_miscellaneous_2283344981 crossref_primary_10_1021_acsami_9b13011 crossref_citationtrail_10_1021_acsami_9b13011 acs_journals_10_1021_acsami_9b13011 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-25 |
PublicationDateYYYYMMDD | 2019-09-25 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-25 day: 25 |
PublicationDecade | 2010 |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 McKeever S. W. (ref50/cit50) 1988; 3 ref16/cit16 ref52/cit52 ref23/cit23 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref42/cit42 ref46/cit46 Lindmayer J. (ref25/cit25) 1988; 31 ref49/cit49 ref13/cit13 Xu D. (ref8/cit8) 2016 ref24/cit24 ref38/cit38 Yukihara E. G. (ref20/cit20) 2011 ref54/cit54 ref6/cit6 ref36/cit36 Bøtter-Jensen L. (ref21/cit21) 2003 ref18/cit18 ref11/cit11 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref46/cit46 doi: 10.1016/j.optmat.2018.07.021 – ident: ref34/cit34 doi: 10.1002/lpor.201900006 – ident: ref16/cit16 doi: 10.1364/OE.26.012266 – ident: ref19/cit19 doi: 10.1103/PhysRevLett.112.033901 – ident: ref47/cit47 – ident: ref4/cit4 doi: 10.1038/nrg2857-c1 – ident: ref13/cit13 doi: 10.1038/nature08053 – ident: ref41/cit41 doi: 10.1002/adma.201705256 – ident: ref9/cit9 doi: 10.1364/OL.32.000277 – ident: ref29/cit29 doi: 10.1021/acsami.7b17271 – volume-title: Multi-Dimensional Optical Storage year: 2016 ident: ref8/cit8 – ident: ref14/cit14 doi: 10.1021/cr980073p – ident: ref37/cit37 doi: 10.1016/j.jre.2018.12.003 – ident: ref43/cit43 doi: 10.1103/PhysRevB.87.035118 – ident: ref18/cit18 doi: 10.1109/IPCon.2017.8116242 – ident: ref36/cit36 doi: 10.1039/C8TC01722K – ident: ref45/cit45 doi: 10.1021/acs.inorgchem.7b02431 – ident: ref31/cit31 doi: 10.1039/C8TC04018D – ident: ref17/cit17 doi: 10.1364/ACPC.2016.AF1J.4 – ident: ref11/cit11 doi: 10.1364/OE.24.023557 – volume: 31 start-page: 135 year: 1988 ident: ref25/cit25 publication-title: Solid State Technol. doi: 10.1016/0038-1101(88)90120-7 – volume-title: Optically Stimulated Luminescence: Fundamentals and Applications year: 2011 ident: ref20/cit20 doi: 10.1002/9780470977064 – ident: ref3/cit3 doi: 10.1038/lsa.2014.58 – ident: ref5/cit5 doi: 10.1038/s41467-018-03589-y – ident: ref38/cit38 doi: 10.1080/08893118908032945 – ident: ref49/cit49 doi: 10.1002/pssa.2210620139 – ident: ref2/cit2 – ident: ref35/cit35 doi: 10.1002/adom.201900006 – ident: ref52/cit52 doi: 10.1103/PhysRevB.87.045126 – ident: ref15/cit15 doi: 10.1038/17989 – ident: ref42/cit42 doi: 10.1038/nphoton.2014.221 – volume-title: Optically Stimulated Luminescence Dosimetry year: 2003 ident: ref21/cit21 doi: 10.1016/B978-044450684-9/50091-X – ident: ref22/cit22 doi: 10.1016/j.jallcom.2014.07.154 – ident: ref32/cit32 doi: 10.1021/acsami.8b08977 – ident: ref33/cit33 doi: 10.1016/j.ceramint.2018.02.224 – ident: ref24/cit24 – ident: ref53/cit53 doi: 10.1021/acs.chemmater.5b00288 – ident: ref6/cit6 doi: 10.1038/natrevmats.2016.70 – ident: ref30/cit30 doi: 10.1021/acsami.8b10713 – ident: ref12/cit12 doi: 10.1364/OL.35.000046 – ident: ref27/cit27 doi: 10.1038/srep01554 – ident: ref44/cit44 doi: 10.1016/j.jlumin.2012.09.034 – ident: ref1/cit1 doi: 10.1126/science.1200970 – ident: ref23/cit23 doi: 10.1590/S0103-97331999000200008 – ident: ref39/cit39 doi: 10.1021/cm500116u – ident: ref54/cit54 doi: 10.1021/acs.nanolett.5b02300 – ident: ref51/cit51 doi: 10.1039/C6TC01640E – volume: 3 volume-title: Thermoluminescence of Solids year: 1988 ident: ref50/cit50 – ident: ref7/cit7 doi: 10.1002/adma.201703950 – ident: ref48/cit48 doi: 10.1149/1.2412291 – ident: ref40/cit40 doi: 10.1002/adma.201802489 – ident: ref10/cit10 doi: 10.1109/LPT.2014.2317792 – ident: ref26/cit26 doi: 10.1039/C9SC01321K – ident: ref28/cit28 doi: 10.1002/adfm.201705769 |
SSID | ssj0063205 |
Score | 2.5453877 |
Snippet | In the current “big data” era, the state-of-the-art optical data storage (ODS) has become a front-runner in the competing data storage technologies. As one of... In the current "big data" era, the state-of-the-art optical data storage (ODS) has become a front-runner in the competing data storage technologies. As one of... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 35023 |
SubjectTerms | barium blue light cleaning energy information storage ions lighting luminescence rare earth elements storage technology |
Title | Tailoring Multidimensional Traps for Rewritable Multilevel Optical Data Storage |
URI | http://dx.doi.org/10.1021/acsami.9b13011 https://www.proquest.com/docview/2283344981 https://www.proquest.com/docview/2352409689 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46X_TBuzhvRBR86mzTJGseZTqGDw7cBnsrSZqCOLphOwR_vSdpq87h5f0UmpOcfN_JOfmC0CUFFGeRYJ5hKfEokcqGlPCU8U2gA5dE226LB94b0fsxG3-ed3yv4JPgWurcPoUjVGDX4ipaIxwi2JKgzqDec3lIXLMiZOTUiwCxannGpe8tCOl8EYQW92AHLN2tUuUod3qEtp_kuTUvVEu_Las1_vnP22izYpf4plwOO2jFZLto44vm4B7qD-VT2XWH3eXbxMr7l9IcGIBrlmOgsfjRvNpTAzUxpdXE9hbh_sydfONbWUg8gGwdNqN9NOreDTs9r3pVwZMA3oXHE9OWlEfaZlt-wtOI6FD5SkqTEioNEb6MfKESk0gYixFM8yBhzACTCUJJwgPUyKaZOUSYi1CD69OIK01tYpPqpB2kRCa2OBn6TXQBnoirqMhjV_AmQVy6J67c00RePRmxroTJ7fsYkx_trz7sZ6Ukx4-W5_XcxhA1thQiMzOd57EV_QkpFdFvNsBNIfvlkTj61ziO0TqwKdeARtgJahQvc3MKjKVQZ26xvgOuM-WX |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5WPagH3-LbiIKnapum2ea4rMr6Fl3BW0nSFMRlXWwXwV_vJG19oui1TEsek3zfdCZfAHYYongUi8gzUUY9RqWyS0p4yvgm0IELom21xQXv3LKTu-iuAfv1WRhsRI5fyl0S_11dINjHZ_ZGHKEC65IjMIZMhFqXbrVv6q2Xh9TVLGJgzrwYgatWafz2vsUinX_Gos9bscOXo2m4emuZKyt52BsWak-_fBFt_EfTZ2Cq4pqkVTrHLDRMfw4mPygQzsNlV96XNXjEHcVNrdh_KdRBEMYGOUFSS67Ns_2HoHqmtOrZSiNyOXD_wcmBLCS5wdgdt6YFuD067LY7XnXHgicRyguPp6YpGY-1jb38lGcx1aHylZQmo0waKnwZ-0KlJpXYFyMizYM0igzymiCUNFyE0f5j3ywB4SLUOANZzJVmNszJdNoMMipTm6oM_WXYxpFIqjWSJy79TYOkHJ6kGp5l8Oo5SXQlU25vy-j9aL_7Zj8oBTp-tNyqpzjBNWQTI7JvHod5YiWAQsZE_JsNMlWMhXksVv7Uj00Y73TPz5Kz44vTVZhAnuVK02i0BqPF09CsI5cp1Ibz31e_su34 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEA66guiDt3gbUfCp2qZptnkU18ULFV3Bt5KrIC7rYrsI_npn0q64iqKvZRpyzOSbyUy-ELLHAcWTVCaBS3IWcKY0mpQMtAtdZCIfRGO1xZU4vefnD8lDfY8b78JAJwpoqfBJfLTqvs1rhoHoEL7jqzhSR6iW42QCc3ao1kfHd8PtV8TM1y1CcM6DFMBryNT47X_EI1OM4tHoduwxpj1LOh-986UlTweDUh-Yty_Ejf_s_hyZqX1OelQpyTwZc70FMv2JiXCRXHfUY1WLR_2VXIuk_xVhBwU46xcUnFt6617xLEF3XSXVxYojet335-G0pUpF7yCGhy1qidy3TzrHp0H91kKgANLLQFjXVFykBmOw0Io8ZSbWoVbK5Ywrx2So0lBq66yCsTiZGBHZJHHg30SxYvEyafSee26FUCFjA6uQp0IbjuFObmwzypmymLKMw1WyCzOR1bZSZD4NzqKsmp6snp5VEgzXJTM1XTm-mtH9UX7_Q75fEXX8KLkzXOYMbAkTJKrnngdFhlRAMecy_U0GPFaIiUUq1_40jm0yedNqZ5dnVxfrZArcLV-hxpIN0ihfBm4TXJpSb3kVfgeEavB7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tailoring+Multidimensional+Traps+for+Rewritable+Multilevel+Optical+Data+Storage&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Liu%2C+Dong&rft.au=Yuan%2C+Lifang&rft.au=Jin%2C+Yahong&rft.au=Wu%2C+Haoyi&rft.date=2019-09-25&rft.issn=1944-8252&rft.eissn=1944-8252&rft.volume=11&rft.issue=38&rft.spage=35023&rft_id=info:doi/10.1021%2Facsami.9b13011&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |