Tailoring Multidimensional Traps for Rewritable Multilevel Optical Data Storage

In the current “big data” era, the state-of-the-art optical data storage (ODS) has become a front-runner in the competing data storage technologies. As one of the most promising methods for breaking the physical limitation suffered by traditional ones, the advance of optically stimulated luminescenc...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 11; no. 38; pp. 35023 - 35029
Main Authors Liu, Dong, Yuan, Lifang, Jin, Yahong, Wu, Haoyi, Lv, Yang, Xiong, Guangting, Ju, Guifang, Chen, Li, Yang, Shihe, Hu, Yihua
Format Journal Article
LanguageEnglish
Published American Chemical Society 25.09.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the current “big data” era, the state-of-the-art optical data storage (ODS) has become a front-runner in the competing data storage technologies. As one of the most promising methods for breaking the physical limitation suffered by traditional ones, the advance of optically stimulated luminescence (OSL) based optical storage technique is now still limited by the simultaneous single-level write-in and readout in a same spot. In this work, to bridge the data-capacity gap, we report for the first time a novel and promising nonphysical multidimensional OSL-based ODS flexible medium for erasable multilevel optical data recording and reading. We tailor multidimensional traps with discrete, narrowly distributed energy levels through (multi-)­codoping of selective trivalent rare-earth ions into Eu2+-activated barium orthosilicate (Ba2SiO4). Upon UV/blue light illumination, information can be sequentially recorded in different traps assisted by thermal cleaning with an increase of storage capacity by orders of magnitude, which is addressable individually in the whole domain or bit-by-bit mode without the crosstalk by designed thermal/optical stimuli. Remarkably, good data retention and robust fatigue resistance have been achieved in recycle data recording. Insight is forged from charge carrier dynamics and interactions with traps for a universal method of data storage, and proof-of-concept applications are also demonstrated, thereby providing the way to not only rewritable multilevel ODS but also high-security encryption/decryption.
AbstractList In the current "big data" era, the state-of-the-art optical data storage (ODS) has become a front-runner in the competing data storage technologies. As one of the most promising methods for breaking the physical limitation suffered by traditional ones, the advance of optically stimulated luminescence (OSL) based optical storage technique is now still limited by the simultaneous single-level write-in and readout in a same spot. In this work, to bridge the data-capacity gap, we report for the first time a novel and promising nonphysical multidimensional OSL-based ODS flexible medium for erasable multilevel optical data recording and reading. We tailor multidimensional traps with discrete, narrowly distributed energy levels through (multi-)codoping of selective trivalent rare-earth ions into Eu2+-activated barium orthosilicate (Ba2SiO4). Upon UV/blue light illumination, information can be sequentially recorded in different traps assisted by thermal cleaning with an increase of storage capacity by orders of magnitude, which is addressable individually in the whole domain or bit-by-bit mode without the crosstalk by designed thermal/optical stimuli. Remarkably, good data retention and robust fatigue resistance have been achieved in recycle data recording. Insight is forged from charge carrier dynamics and interactions with traps for a universal method of data storage, and proof-of-concept applications are also demonstrated, thereby providing the way to not only rewritable multilevel ODS but also high-security encryption/decryption.In the current "big data" era, the state-of-the-art optical data storage (ODS) has become a front-runner in the competing data storage technologies. As one of the most promising methods for breaking the physical limitation suffered by traditional ones, the advance of optically stimulated luminescence (OSL) based optical storage technique is now still limited by the simultaneous single-level write-in and readout in a same spot. In this work, to bridge the data-capacity gap, we report for the first time a novel and promising nonphysical multidimensional OSL-based ODS flexible medium for erasable multilevel optical data recording and reading. We tailor multidimensional traps with discrete, narrowly distributed energy levels through (multi-)codoping of selective trivalent rare-earth ions into Eu2+-activated barium orthosilicate (Ba2SiO4). Upon UV/blue light illumination, information can be sequentially recorded in different traps assisted by thermal cleaning with an increase of storage capacity by orders of magnitude, which is addressable individually in the whole domain or bit-by-bit mode without the crosstalk by designed thermal/optical stimuli. Remarkably, good data retention and robust fatigue resistance have been achieved in recycle data recording. Insight is forged from charge carrier dynamics and interactions with traps for a universal method of data storage, and proof-of-concept applications are also demonstrated, thereby providing the way to not only rewritable multilevel ODS but also high-security encryption/decryption.
In the current “big data” era, the state-of-the-art optical data storage (ODS) has become a front-runner in the competing data storage technologies. As one of the most promising methods for breaking the physical limitation suffered by traditional ones, the advance of optically stimulated luminescence (OSL) based optical storage technique is now still limited by the simultaneous single-level write-in and readout in a same spot. In this work, to bridge the data-capacity gap, we report for the first time a novel and promising nonphysical multidimensional OSL-based ODS flexible medium for erasable multilevel optical data recording and reading. We tailor multidimensional traps with discrete, narrowly distributed energy levels through (multi-)­codoping of selective trivalent rare-earth ions into Eu2+-activated barium orthosilicate (Ba2SiO4). Upon UV/blue light illumination, information can be sequentially recorded in different traps assisted by thermal cleaning with an increase of storage capacity by orders of magnitude, which is addressable individually in the whole domain or bit-by-bit mode without the crosstalk by designed thermal/optical stimuli. Remarkably, good data retention and robust fatigue resistance have been achieved in recycle data recording. Insight is forged from charge carrier dynamics and interactions with traps for a universal method of data storage, and proof-of-concept applications are also demonstrated, thereby providing the way to not only rewritable multilevel ODS but also high-security encryption/decryption.
In the current “big data” era, the state-of-the-art optical data storage (ODS) has become a front-runner in the competing data storage technologies. As one of the most promising methods for breaking the physical limitation suffered by traditional ones, the advance of optically stimulated luminescence (OSL) based optical storage technique is now still limited by the simultaneous single-level write-in and readout in a same spot. In this work, to bridge the data-capacity gap, we report for the first time a novel and promising nonphysical multidimensional OSL-based ODS flexible medium for erasable multilevel optical data recording and reading. We tailor multidimensional traps with discrete, narrowly distributed energy levels through (multi-)codoping of selective trivalent rare-earth ions into Eu²⁺-activated barium orthosilicate (Ba₂SiO₄). Upon UV/blue light illumination, information can be sequentially recorded in different traps assisted by thermal cleaning with an increase of storage capacity by orders of magnitude, which is addressable individually in the whole domain or bit-by-bit mode without the crosstalk by designed thermal/optical stimuli. Remarkably, good data retention and robust fatigue resistance have been achieved in recycle data recording. Insight is forged from charge carrier dynamics and interactions with traps for a universal method of data storage, and proof-of-concept applications are also demonstrated, thereby providing the way to not only rewritable multilevel ODS but also high-security encryption/decryption.
Author Lv, Yang
Xiong, Guangting
Yuan, Lifang
Wu, Haoyi
Yang, Shihe
Ju, Guifang
Chen, Li
Liu, Dong
Jin, Yahong
Hu, Yihua
AuthorAffiliation Department of Chemistry
The Hong Kong University of Science and Technology
Peking University
School of Physics and Optoelectronic Engineering
Guangdong Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School
Experimental Teaching Department
AuthorAffiliation_xml – name: Experimental Teaching Department
– name: Department of Chemistry
– name: Guangdong Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School
– name: The Hong Kong University of Science and Technology
– name: Peking University
– name: School of Physics and Optoelectronic Engineering
Author_xml – sequence: 1
  givenname: Dong
  surname: Liu
  fullname: Liu, Dong
– sequence: 2
  givenname: Lifang
  surname: Yuan
  fullname: Yuan, Lifang
– sequence: 3
  givenname: Yahong
  orcidid: 0000-0002-6626-7264
  surname: Jin
  fullname: Jin, Yahong
  email: yhjin@gdut.edu.cn
  organization: The Hong Kong University of Science and Technology
– sequence: 4
  givenname: Haoyi
  surname: Wu
  fullname: Wu, Haoyi
– sequence: 5
  givenname: Yang
  surname: Lv
  fullname: Lv, Yang
– sequence: 6
  givenname: Guangting
  surname: Xiong
  fullname: Xiong, Guangting
– sequence: 7
  givenname: Guifang
  surname: Ju
  fullname: Ju, Guifang
– sequence: 8
  givenname: Li
  surname: Chen
  fullname: Chen, Li
– sequence: 9
  givenname: Shihe
  orcidid: 0000-0002-6469-8415
  surname: Yang
  fullname: Yang, Shihe
  email: chsyang@pku.edu.cn
  organization: Peking University
– sequence: 10
  givenname: Yihua
  orcidid: 0000-0001-6037-976X
  surname: Hu
  fullname: Hu, Yihua
  email: huyh@gdut.edu.cn
BookMark eNqFkM9LwzAUgINMcJtePfcoQmd-tTZHmT9hMtB5Lq_t68jImppkiv-9kQ4PwvCUR_i-B--bkFFnOyTknNEZo5xdQe1hq2eqYoIydkTGTEmZFjzjo99ZyhMy8X5DaS44zcZkuQJtrNPdOnnemaAbvcXOa9uBSVYOep-01iUv-Ol0gMrgQBn8QJMs-6DryN1CgOQ1WAdrPCXHLRiPZ_t3St7u71bzx3SxfHia3yxSkDQPad7gNci8qCkvOG3ytuC1qGgFgC2XgFxRKKiqGmwg3oYqq3PWZBkqJZgALqbkYtjbO_u-Qx_KrfY1GgMd2p0vuci4pCov1P8oL4SQUhUsorMBrZ313mFb9k5vwX2VjJY_kcshcrmPHAX5R6hjpxD7BRfDHtYuBy3-lxu7czG3PwR_A82Hkqw
CitedBy_id crossref_primary_10_1016_j_optmat_2022_112129
crossref_primary_10_1016_j_ceramint_2024_03_258
crossref_primary_10_1111_ijac_14514
crossref_primary_10_1007_s40843_025_3279_0
crossref_primary_10_1016_j_jlumin_2023_119971
crossref_primary_10_1002_adom_202300303
crossref_primary_10_1016_j_mtcomm_2022_103802
crossref_primary_10_1039_D0TC04469E
crossref_primary_10_1021_acsenergylett_4c00383
crossref_primary_10_1038_s41377_025_01746_9
crossref_primary_10_1021_acsami_2c12387
crossref_primary_10_1038_s41377_024_01533_y
crossref_primary_10_1002_lpor_202000123
crossref_primary_10_1002_lpor_202300744
crossref_primary_10_29026_oea_2021_210002
crossref_primary_10_1039_D1TC05254C
crossref_primary_10_1021_acs_jpcc_2c04862
crossref_primary_10_1038_s41377_020_0258_3
crossref_primary_10_34133_2021_7897849
crossref_primary_10_1364_OME_426596
crossref_primary_10_1002_adom_202101714
crossref_primary_10_1016_j_cej_2020_127820
crossref_primary_10_1016_j_mtla_2022_101374
crossref_primary_10_1021_acsanm_2c05552
crossref_primary_10_1002_lpor_202401376
crossref_primary_10_1039_D4CP01547A
crossref_primary_10_1002_adma_202314083
crossref_primary_10_1016_j_mtchem_2024_102170
crossref_primary_10_1016_j_cej_2023_146826
crossref_primary_10_1016_j_jlumin_2024_120536
crossref_primary_10_1002_lpor_202400209
crossref_primary_10_1021_acs_inorgchem_4c02570
crossref_primary_10_1016_j_ceramint_2022_04_171
crossref_primary_10_2139_ssrn_4123938
crossref_primary_10_1016_j_nanoen_2021_106546
crossref_primary_10_1016_j_cej_2022_139558
crossref_primary_10_1021_acsaom_4c00482
crossref_primary_10_1038_s41377_024_01507_0
crossref_primary_10_1002_adom_202102496
crossref_primary_10_1016_j_jallcom_2022_163776
crossref_primary_10_1016_j_mseb_2023_116511
crossref_primary_10_1002_adom_202002090
crossref_primary_10_1016_j_molstruc_2023_135902
crossref_primary_10_1039_D3QI00956D
crossref_primary_10_1117_1_AP_3_1_014001
crossref_primary_10_1007_s11696_022_02612_3
crossref_primary_10_1016_j_heliyon_2023_e22794
crossref_primary_10_1021_acsami_4c16548
crossref_primary_10_1002_bio_4559
crossref_primary_10_1016_j_ceramint_2021_02_271
crossref_primary_10_3788_COL202321_041602
crossref_primary_10_1002_adom_202000274
crossref_primary_10_1002_adom_202302553
crossref_primary_10_1016_j_mtchem_2022_100906
crossref_primary_10_1021_acssuschemeng_0c01377
crossref_primary_10_1002_adom_202202612
crossref_primary_10_1016_j_jallcom_2025_179800
crossref_primary_10_1016_j_jlumin_2024_121042
crossref_primary_10_1021_acsaom_4c00153
crossref_primary_10_1021_acsami_3c00673
crossref_primary_10_1007_s10854_022_08415_2
crossref_primary_10_1016_j_jlumin_2021_118518
crossref_primary_10_1016_j_cej_2021_129844
crossref_primary_10_1016_j_jlumin_2024_120879
crossref_primary_10_1002_smll_202311526
crossref_primary_10_1016_j_jlumin_2021_118671
crossref_primary_10_1364_OME_474698
crossref_primary_10_1016_j_cej_2021_133373
crossref_primary_10_1039_D3QI00160A
crossref_primary_10_1002_lpor_202300016
crossref_primary_10_1016_j_ceramint_2025_01_342
crossref_primary_10_1016_j_ceramint_2023_09_342
crossref_primary_10_1016_j_heliyon_2022_e10045
crossref_primary_10_1016_j_mtcomm_2024_109296
crossref_primary_10_1021_acs_analchem_9b05174
crossref_primary_10_1103_PhysRevLett_125_256602
Cites_doi 10.1016/j.optmat.2018.07.021
10.1002/lpor.201900006
10.1364/OE.26.012266
10.1103/PhysRevLett.112.033901
10.1038/nrg2857-c1
10.1038/nature08053
10.1002/adma.201705256
10.1364/OL.32.000277
10.1021/acsami.7b17271
10.1021/cr980073p
10.1016/j.jre.2018.12.003
10.1103/PhysRevB.87.035118
10.1109/IPCon.2017.8116242
10.1039/C8TC01722K
10.1021/acs.inorgchem.7b02431
10.1039/C8TC04018D
10.1364/ACPC.2016.AF1J.4
10.1364/OE.24.023557
10.1016/0038-1101(88)90120-7
10.1002/9780470977064
10.1038/lsa.2014.58
10.1038/s41467-018-03589-y
10.1080/08893118908032945
10.1002/pssa.2210620139
10.1002/adom.201900006
10.1103/PhysRevB.87.045126
10.1038/17989
10.1038/nphoton.2014.221
10.1016/B978-044450684-9/50091-X
10.1016/j.jallcom.2014.07.154
10.1021/acsami.8b08977
10.1016/j.ceramint.2018.02.224
10.1021/acs.chemmater.5b00288
10.1038/natrevmats.2016.70
10.1021/acsami.8b10713
10.1364/OL.35.000046
10.1038/srep01554
10.1016/j.jlumin.2012.09.034
10.1126/science.1200970
10.1590/S0103-97331999000200008
10.1021/cm500116u
10.1021/acs.nanolett.5b02300
10.1039/C6TC01640E
10.1002/adma.201703950
10.1149/1.2412291
10.1002/adma.201802489
10.1109/LPT.2014.2317792
10.1039/C9SC01321K
10.1002/adfm.201705769
ContentType Journal Article
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1021/acsami.9b13011
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 35029
ExternalDocumentID 10_1021_acsami_9b13011
a114368326
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
4.4
5VS
5ZA
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
7X8
7S9
L.6
ID FETCH-LOGICAL-a406t-6de7a468c02820d6f82c3b0baaef24ae290a809bdeda021e95c61d55e99313a23
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Fri Jul 11 16:13:50 EDT 2025
Fri Jul 11 04:54:53 EDT 2025
Tue Jul 01 04:06:36 EDT 2025
Thu Apr 24 22:56:42 EDT 2025
Thu Aug 27 13:44:18 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 38
Keywords silicates
solid-state reactions
optically stimulated luminescence
trap engineering
optical data storage
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a406t-6de7a468c02820d6f82c3b0baaef24ae290a809bdeda021e95c61d55e99313a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6469-8415
0000-0002-6626-7264
0000-0001-6037-976X
PQID 2283344981
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2352409689
proquest_miscellaneous_2283344981
crossref_primary_10_1021_acsami_9b13011
crossref_citationtrail_10_1021_acsami_9b13011
acs_journals_10_1021_acsami_9b13011
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-25
PublicationDateYYYYMMDD 2019-09-25
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-25
  day: 25
PublicationDecade 2010
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
McKeever S. W. (ref50/cit50) 1988; 3
ref16/cit16
ref52/cit52
ref23/cit23
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref42/cit42
ref46/cit46
Lindmayer J. (ref25/cit25) 1988; 31
ref49/cit49
ref13/cit13
Xu D. (ref8/cit8) 2016
ref24/cit24
ref38/cit38
Yukihara E. G. (ref20/cit20) 2011
ref54/cit54
ref6/cit6
ref36/cit36
Bøtter-Jensen L. (ref21/cit21) 2003
ref18/cit18
ref11/cit11
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref46/cit46
  doi: 10.1016/j.optmat.2018.07.021
– ident: ref34/cit34
  doi: 10.1002/lpor.201900006
– ident: ref16/cit16
  doi: 10.1364/OE.26.012266
– ident: ref19/cit19
  doi: 10.1103/PhysRevLett.112.033901
– ident: ref47/cit47
– ident: ref4/cit4
  doi: 10.1038/nrg2857-c1
– ident: ref13/cit13
  doi: 10.1038/nature08053
– ident: ref41/cit41
  doi: 10.1002/adma.201705256
– ident: ref9/cit9
  doi: 10.1364/OL.32.000277
– ident: ref29/cit29
  doi: 10.1021/acsami.7b17271
– volume-title: Multi-Dimensional Optical Storage
  year: 2016
  ident: ref8/cit8
– ident: ref14/cit14
  doi: 10.1021/cr980073p
– ident: ref37/cit37
  doi: 10.1016/j.jre.2018.12.003
– ident: ref43/cit43
  doi: 10.1103/PhysRevB.87.035118
– ident: ref18/cit18
  doi: 10.1109/IPCon.2017.8116242
– ident: ref36/cit36
  doi: 10.1039/C8TC01722K
– ident: ref45/cit45
  doi: 10.1021/acs.inorgchem.7b02431
– ident: ref31/cit31
  doi: 10.1039/C8TC04018D
– ident: ref17/cit17
  doi: 10.1364/ACPC.2016.AF1J.4
– ident: ref11/cit11
  doi: 10.1364/OE.24.023557
– volume: 31
  start-page: 135
  year: 1988
  ident: ref25/cit25
  publication-title: Solid State Technol.
  doi: 10.1016/0038-1101(88)90120-7
– volume-title: Optically Stimulated Luminescence: Fundamentals and Applications
  year: 2011
  ident: ref20/cit20
  doi: 10.1002/9780470977064
– ident: ref3/cit3
  doi: 10.1038/lsa.2014.58
– ident: ref5/cit5
  doi: 10.1038/s41467-018-03589-y
– ident: ref38/cit38
  doi: 10.1080/08893118908032945
– ident: ref49/cit49
  doi: 10.1002/pssa.2210620139
– ident: ref2/cit2
– ident: ref35/cit35
  doi: 10.1002/adom.201900006
– ident: ref52/cit52
  doi: 10.1103/PhysRevB.87.045126
– ident: ref15/cit15
  doi: 10.1038/17989
– ident: ref42/cit42
  doi: 10.1038/nphoton.2014.221
– volume-title: Optically Stimulated Luminescence Dosimetry
  year: 2003
  ident: ref21/cit21
  doi: 10.1016/B978-044450684-9/50091-X
– ident: ref22/cit22
  doi: 10.1016/j.jallcom.2014.07.154
– ident: ref32/cit32
  doi: 10.1021/acsami.8b08977
– ident: ref33/cit33
  doi: 10.1016/j.ceramint.2018.02.224
– ident: ref24/cit24
– ident: ref53/cit53
  doi: 10.1021/acs.chemmater.5b00288
– ident: ref6/cit6
  doi: 10.1038/natrevmats.2016.70
– ident: ref30/cit30
  doi: 10.1021/acsami.8b10713
– ident: ref12/cit12
  doi: 10.1364/OL.35.000046
– ident: ref27/cit27
  doi: 10.1038/srep01554
– ident: ref44/cit44
  doi: 10.1016/j.jlumin.2012.09.034
– ident: ref1/cit1
  doi: 10.1126/science.1200970
– ident: ref23/cit23
  doi: 10.1590/S0103-97331999000200008
– ident: ref39/cit39
  doi: 10.1021/cm500116u
– ident: ref54/cit54
  doi: 10.1021/acs.nanolett.5b02300
– ident: ref51/cit51
  doi: 10.1039/C6TC01640E
– volume: 3
  volume-title: Thermoluminescence of Solids
  year: 1988
  ident: ref50/cit50
– ident: ref7/cit7
  doi: 10.1002/adma.201703950
– ident: ref48/cit48
  doi: 10.1149/1.2412291
– ident: ref40/cit40
  doi: 10.1002/adma.201802489
– ident: ref10/cit10
  doi: 10.1109/LPT.2014.2317792
– ident: ref26/cit26
  doi: 10.1039/C9SC01321K
– ident: ref28/cit28
  doi: 10.1002/adfm.201705769
SSID ssj0063205
Score 2.5453877
Snippet In the current “big data” era, the state-of-the-art optical data storage (ODS) has become a front-runner in the competing data storage technologies. As one of...
In the current "big data" era, the state-of-the-art optical data storage (ODS) has become a front-runner in the competing data storage technologies. As one of...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 35023
SubjectTerms barium
blue light
cleaning
energy
information storage
ions
lighting
luminescence
rare earth elements
storage technology
Title Tailoring Multidimensional Traps for Rewritable Multilevel Optical Data Storage
URI http://dx.doi.org/10.1021/acsami.9b13011
https://www.proquest.com/docview/2283344981
https://www.proquest.com/docview/2352409689
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46X_TBuzhvRBR86mzTJGseZTqGDw7cBnsrSZqCOLphOwR_vSdpq87h5f0UmpOcfN_JOfmC0CUFFGeRYJ5hKfEokcqGlPCU8U2gA5dE226LB94b0fsxG3-ed3yv4JPgWurcPoUjVGDX4ipaIxwi2JKgzqDec3lIXLMiZOTUiwCxannGpe8tCOl8EYQW92AHLN2tUuUod3qEtp_kuTUvVEu_Las1_vnP22izYpf4plwOO2jFZLto44vm4B7qD-VT2XWH3eXbxMr7l9IcGIBrlmOgsfjRvNpTAzUxpdXE9hbh_sydfONbWUg8gGwdNqN9NOreDTs9r3pVwZMA3oXHE9OWlEfaZlt-wtOI6FD5SkqTEioNEb6MfKESk0gYixFM8yBhzACTCUJJwgPUyKaZOUSYi1CD69OIK01tYpPqpB2kRCa2OBn6TXQBnoirqMhjV_AmQVy6J67c00RePRmxroTJ7fsYkx_trz7sZ6Ukx4-W5_XcxhA1thQiMzOd57EV_QkpFdFvNsBNIfvlkTj61ziO0TqwKdeARtgJahQvc3MKjKVQZ26xvgOuM-WX
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5WPagH3-LbiIKnapum2ea4rMr6Fl3BW0nSFMRlXWwXwV_vJG19oui1TEsek3zfdCZfAHYYongUi8gzUUY9RqWyS0p4yvgm0IELom21xQXv3LKTu-iuAfv1WRhsRI5fyl0S_11dINjHZ_ZGHKEC65IjMIZMhFqXbrVv6q2Xh9TVLGJgzrwYgatWafz2vsUinX_Gos9bscOXo2m4emuZKyt52BsWak-_fBFt_EfTZ2Cq4pqkVTrHLDRMfw4mPygQzsNlV96XNXjEHcVNrdh_KdRBEMYGOUFSS67Ns_2HoHqmtOrZSiNyOXD_wcmBLCS5wdgdt6YFuD067LY7XnXHgicRyguPp6YpGY-1jb38lGcx1aHylZQmo0waKnwZ-0KlJpXYFyMizYM0igzymiCUNFyE0f5j3ywB4SLUOANZzJVmNszJdNoMMipTm6oM_WXYxpFIqjWSJy79TYOkHJ6kGp5l8Oo5SXQlU25vy-j9aL_7Zj8oBTp-tNyqpzjBNWQTI7JvHod5YiWAQsZE_JsNMlWMhXksVv7Uj00Y73TPz5Kz44vTVZhAnuVK02i0BqPF09CsI5cp1Ibz31e_su34
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEA66guiDt3gbUfCp2qZptnkU18ULFV3Bt5KrIC7rYrsI_npn0q64iqKvZRpyzOSbyUy-ELLHAcWTVCaBS3IWcKY0mpQMtAtdZCIfRGO1xZU4vefnD8lDfY8b78JAJwpoqfBJfLTqvs1rhoHoEL7jqzhSR6iW42QCc3ao1kfHd8PtV8TM1y1CcM6DFMBryNT47X_EI1OM4tHoduwxpj1LOh-986UlTweDUh-Yty_Ejf_s_hyZqX1OelQpyTwZc70FMv2JiXCRXHfUY1WLR_2VXIuk_xVhBwU46xcUnFt6617xLEF3XSXVxYojet335-G0pUpF7yCGhy1qidy3TzrHp0H91kKgANLLQFjXVFykBmOw0Io8ZSbWoVbK5Ywrx2So0lBq66yCsTiZGBHZJHHg30SxYvEyafSee26FUCFjA6uQp0IbjuFObmwzypmymLKMw1WyCzOR1bZSZD4NzqKsmp6snp5VEgzXJTM1XTm-mtH9UX7_Q75fEXX8KLkzXOYMbAkTJKrnngdFhlRAMecy_U0GPFaIiUUq1_40jm0yedNqZ5dnVxfrZArcLV-hxpIN0ihfBm4TXJpSb3kVfgeEavB7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tailoring+Multidimensional+Traps+for+Rewritable+Multilevel+Optical+Data+Storage&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Liu%2C+Dong&rft.au=Yuan%2C+Lifang&rft.au=Jin%2C+Yahong&rft.au=Wu%2C+Haoyi&rft.date=2019-09-25&rft.issn=1944-8252&rft.eissn=1944-8252&rft.volume=11&rft.issue=38&rft.spage=35023&rft_id=info:doi/10.1021%2Facsami.9b13011&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon