Multiscale and Multistep Ordering of Flow-Induced Nucleation of Polymers

Flow-induced crystallization (FIC) is a typical nonequilibrium phase transition and a core industry subject for the largest group of commercially useful polymeric materials: semicrystalline polymers. A fundamental understanding of FIC can benefit the research of nonequilibrium ordering in matter sys...

Full description

Saved in:
Bibliographic Details
Published inChemical reviews Vol. 118; no. 4; pp. 1840 - 1886
Main Authors Cui, Kunpeng, Ma, Zhe, Tian, Nan, Su, Fengmei, Liu, Dong, Li, Liangbin
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 28.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Flow-induced crystallization (FIC) is a typical nonequilibrium phase transition and a core industry subject for the largest group of commercially useful polymeric materials: semicrystalline polymers. A fundamental understanding of FIC can benefit the research of nonequilibrium ordering in matter systems and help to tailor the ultimate properties of polymeric materials. Concerning the crystallization process, flow can accelerate the kinetics by orders of magnitude and induce the formation of oriented crystallites like shish-kebab, which are associated with the major influences of flow on nucleation, that is, raised nucleation density and oriented nuclei. The topic of FIC has been studied for more than half a century. Recently, there have been many developments in experimental approaches, such as synchrotron radiation X-ray scattering, ultrafast X-ray detectors with a time resolution down to the order of milliseconds, and novel laboratory devices to mimic the severe flow field close to real processing conditions. By a combination of these advanced methods, the evolution process of FIC can be revealed more precisely (with higher time resolution and on more length scales) and quantitatively. The new findings are challenging the classical interpretations and theories that were mostly derived from quiescent or mild-flow conditions, and they are triggering the reconsideration of FIC foundations. This review mainly summarizes experimental results, advances in physical understanding, and discussions on the multiscale and multistep nature of oriented nuclei induced by strong flow. The multiscale structures include segmental conformation, packing of conformational ordering, deformation on the whole-chain scale, and macroscopic aggregation of crystallites. The multistep process involves conformation transition, isotropic–nematic transition, density fluctuation (or phase separation), formation of precursors, and shish-kebab crystallites, which are possible ordering processes during nucleation. Furthermore, some theoretical progress and modeling efforts are also included.
AbstractList Flow-induced crystallization (FIC) is a typical nonequilibrium phase transition and a core industry subject for the largest group of commercially useful polymeric materials: semicrystalline polymers. A fundamental understanding of FIC can benefit the research of nonequilibrium ordering in matter systems and help to tailor the ultimate properties of polymeric materials. Concerning the crystallization process, flow can accelerate the kinetics by orders of magnitude and induce the formation of oriented crystallites like shish-kebab, which are associated with the major influences of flow on nucleation, that is, raised nucleation density and oriented nuclei. The topic of FIC has been studied for more than half a century. Recently, there have been many developments in experimental approaches, such as synchrotron radiation X-ray scattering, ultrafast X-ray detectors with a time resolution down to the order of milliseconds, and novel laboratory devices to mimic the severe flow field close to real processing conditions. By a combination of these advanced methods, the evolution process of FIC can be revealed more precisely (with higher time resolution and on more length scales) and quantitatively. The new findings are challenging the classical interpretations and theories that were mostly derived from quiescent or mild-flow conditions, and they are triggering the reconsideration of FIC foundations. This review mainly summarizes experimental results, advances in physical understanding, and discussions on the multiscale and multistep nature of oriented nuclei induced by strong flow. The multiscale structures include segmental conformation, packing of conformational ordering, deformation on the whole-chain scale, and macroscopic aggregation of crystallites. The multistep process involves conformation transition, isotropic-nematic transition, density fluctuation (or phase separation), formation of precursors, and shish-kebab crystallites, which are possible ordering processes during nucleation. Furthermore, some theoretical progress and modeling efforts are also included.Flow-induced crystallization (FIC) is a typical nonequilibrium phase transition and a core industry subject for the largest group of commercially useful polymeric materials: semicrystalline polymers. A fundamental understanding of FIC can benefit the research of nonequilibrium ordering in matter systems and help to tailor the ultimate properties of polymeric materials. Concerning the crystallization process, flow can accelerate the kinetics by orders of magnitude and induce the formation of oriented crystallites like shish-kebab, which are associated with the major influences of flow on nucleation, that is, raised nucleation density and oriented nuclei. The topic of FIC has been studied for more than half a century. Recently, there have been many developments in experimental approaches, such as synchrotron radiation X-ray scattering, ultrafast X-ray detectors with a time resolution down to the order of milliseconds, and novel laboratory devices to mimic the severe flow field close to real processing conditions. By a combination of these advanced methods, the evolution process of FIC can be revealed more precisely (with higher time resolution and on more length scales) and quantitatively. The new findings are challenging the classical interpretations and theories that were mostly derived from quiescent or mild-flow conditions, and they are triggering the reconsideration of FIC foundations. This review mainly summarizes experimental results, advances in physical understanding, and discussions on the multiscale and multistep nature of oriented nuclei induced by strong flow. The multiscale structures include segmental conformation, packing of conformational ordering, deformation on the whole-chain scale, and macroscopic aggregation of crystallites. The multistep process involves conformation transition, isotropic-nematic transition, density fluctuation (or phase separation), formation of precursors, and shish-kebab crystallites, which are possible ordering processes during nucleation. Furthermore, some theoretical progress and modeling efforts are also included.
Flow-induced crystallization (FIC) is a typical nonequilibrium phase transition and a core industry subject for the largest group of commercially useful polymeric materials: semicrystalline polymers. A fundamental understanding of FIC can benefit the research of nonequilibrium ordering in matter systems and help to tailor the ultimate properties of polymeric materials. Concerning the crystallization process, flow can accelerate the kinetics by orders of magnitude and induce the formation of oriented crystallites like shish-kebab, which are associated with the major influences of flow on nucleation, that is, raised nucleation density and oriented nuclei. The topic of FIC has been studied for more than half a century. Recently, there have been many developments in experimental approaches, such as synchrotron radiation X-ray scattering, ultrafast X-ray detectors with a time resolution down to the order of milliseconds, and novel laboratory devices to mimic the severe flow field close to real processing conditions. By a combination of these advanced methods, the evolution process of FIC can be revealed more precisely (with higher time resolution and on more length scales) and quantitatively. The new findings are challenging the classical interpretations and theories that were mostly derived from quiescent or mild-flow conditions, and they are triggering the reconsideration of FIC foundations. This review mainly summarizes experimental results, advances in physical understanding, and discussions on the multiscale and multistep nature of oriented nuclei induced by strong flow. The multiscale structures include segmental conformation, packing of conformational ordering, deformation on the whole-chain scale, and macroscopic aggregation of crystallites. The multistep process involves conformation transition, isotropic–nematic transition, density fluctuation (or phase separation), formation of precursors, and shish-kebab crystallites, which are possible ordering processes during nucleation. Furthermore, some theoretical progress and modeling efforts are also included.
Author Tian, Nan
Su, Fengmei
Li, Liangbin
Ma, Zhe
Liu, Dong
Cui, Kunpeng
AuthorAffiliation University of Science and Technology of China
Tianjin University
Ministry of Education Key Laboratory of Space Applied Physics and Chemistry and Shanxi Key Laboratory of Macromolecular Science and Technology, School of Science
China Academy of Engineering Physics
Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering
Northwestern Polytechnical University
Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry
National Synchrotron Radiation Laboratory, Chinese Academy of Sciences Key Laboratory of Soft Matter Chemistry, and Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film
AuthorAffiliation_xml – name: University of Science and Technology of China
– name: Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering
– name: Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry
– name: Northwestern Polytechnical University
– name: National Synchrotron Radiation Laboratory, Chinese Academy of Sciences Key Laboratory of Soft Matter Chemistry, and Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film
– name: Tianjin University
– name: China Academy of Engineering Physics
– name: Ministry of Education Key Laboratory of Space Applied Physics and Chemistry and Shanxi Key Laboratory of Macromolecular Science and Technology, School of Science
Author_xml – sequence: 1
  givenname: Kunpeng
  surname: Cui
  fullname: Cui, Kunpeng
  organization: University of Science and Technology of China
– sequence: 2
  givenname: Zhe
  surname: Ma
  fullname: Ma, Zhe
  email: zhe.ma@tju.edu.cn
  organization: Tianjin University
– sequence: 3
  givenname: Nan
  orcidid: 0000-0003-1822-876X
  surname: Tian
  fullname: Tian, Nan
  organization: Northwestern Polytechnical University
– sequence: 4
  givenname: Fengmei
  surname: Su
  fullname: Su, Fengmei
  organization: University of Science and Technology of China
– sequence: 5
  givenname: Dong
  surname: Liu
  fullname: Liu, Dong
  organization: China Academy of Engineering Physics
– sequence: 6
  givenname: Liangbin
  orcidid: 0000-0002-1887-9856
  surname: Li
  fullname: Li, Liangbin
  email: lbli@ustc.edu.cn
  organization: University of Science and Technology of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29350931$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1P3DAQhi0EKgvtL6hUReqFS5axHTvxsULlQ-LrQM-W7UxokBNv7aSIf4-XXThwgNNoNM87mnnfA7I7hhEJ-U5hSYHRY-PS0v3FIeL_ZW0BBMAOWVDBoJSNgl2yAABVMinFPjlI6SG3QrD6C9lnigtQnC7I-dXspz4547EwY1ts2glXxU1sMfbjfRG64tSHx_JibGeHbXE9O49m6sO4Ht0G_zRgTF_JXmd8wm_bekj-nP6-OzkvL2_OLk5-XZamAjmVVWupRDCyM44ZMLbKFaVoGedOdcqKGpA1tnbKtNJ2jaKutozJTlZoZc0PydFm7yqGfzOmSQ_5fPTejBjmpBnltFGVkvJTlKpGCdVIvt768x36EOY45kc0A8arbJxsMvVjS812wFavYj-Y-KRf7cyA2gAuhpQidtr104tVUzS91xT0Ojqdo9Pb6PQ2uqzl77Sv6z9WHW9U6-HbzR8pngE266-S
CitedBy_id crossref_primary_10_1021_acs_macromol_3c00461
crossref_primary_10_1016_j_polymer_2020_122960
crossref_primary_10_3390_ijms241813691
crossref_primary_10_1021_acs_macromol_8b00195
crossref_primary_10_1002_agt2_338
crossref_primary_10_1021_acs_macromol_3c02524
crossref_primary_10_1016_j_polymer_2023_126362
crossref_primary_10_1007_s11426_022_1520_9
crossref_primary_10_1002_marc_202400760
crossref_primary_10_1016_j_polymer_2018_08_078
crossref_primary_10_1007_s10118_020_2447_1
crossref_primary_10_1021_acs_cgd_3c01198
crossref_primary_10_1021_acs_macromol_2c00370
crossref_primary_10_1016_j_polymer_2022_125303
crossref_primary_10_1002_mgea_70003
crossref_primary_10_1016_j_polymer_2019_121625
crossref_primary_10_1016_j_polymer_2023_126378
crossref_primary_10_1016_j_polymertesting_2019_04_029
crossref_primary_10_1016_j_polymer_2023_126498
crossref_primary_10_1063_5_0097112
crossref_primary_10_1021_acs_macromol_3c01541
crossref_primary_10_1016_j_polymer_2020_123000
crossref_primary_10_1002_pcr2_10052
crossref_primary_10_1002_pcr2_10053
crossref_primary_10_1021_acs_jpclett_2c00798
crossref_primary_10_1021_acs_macromol_0c00885
crossref_primary_10_1021_acs_macromol_9b02463
crossref_primary_10_1021_acs_macromol_9b02220
crossref_primary_10_1021_acs_macromol_4c00438
crossref_primary_10_1002_marc_202400195
crossref_primary_10_1016_j_polymer_2019_121719
crossref_primary_10_1016_j_polymer_2021_123795
crossref_primary_10_1002_anie_202215582
crossref_primary_10_1016_j_polymer_2020_122985
crossref_primary_10_1002_pen_25474
crossref_primary_10_1021_acs_iecr_8b00708
crossref_primary_10_1016_j_polymer_2020_123150
crossref_primary_10_1021_acsami_3c08265
crossref_primary_10_1021_acs_macromol_0c02398
crossref_primary_10_1039_D5SM00019J
crossref_primary_10_1002_app_55326
crossref_primary_10_1021_acs_macromol_1c01472
crossref_primary_10_1016_j_polymer_2022_124797
crossref_primary_10_1002_ange_202310953
crossref_primary_10_1002_smll_202304196
crossref_primary_10_1007_s10965_019_1869_3
crossref_primary_10_1016_j_polymer_2024_127741
crossref_primary_10_1038_s41428_021_00516_9
crossref_primary_10_1021_acs_macromol_0c00542
crossref_primary_10_1360_SSC_2022_0032
crossref_primary_10_1021_acsapm_9b00391
crossref_primary_10_1021_acs_macromol_3c01594
crossref_primary_10_1016_j_polymer_2019_121817
crossref_primary_10_1016_j_polymer_2019_121934
crossref_primary_10_1021_acs_macromol_1c01606
crossref_primary_10_1021_acs_macromol_3c02447
crossref_primary_10_1007_s00170_022_09522_4
crossref_primary_10_1021_acs_chemrev_8b00593
crossref_primary_10_1021_acsapm_0c00179
crossref_primary_10_1016_j_cej_2018_10_108
crossref_primary_10_1021_acsami_3c00120
crossref_primary_10_1021_acs_macromol_2c01823
crossref_primary_10_1063_1_5054273
crossref_primary_10_1021_acs_macromol_2c01942
crossref_primary_10_1039_D0CP04964F
crossref_primary_10_1039_D0CE00157K
crossref_primary_10_1016_j_polymer_2023_125909
crossref_primary_10_1021_acs_iecr_0c01328
crossref_primary_10_1007_s10118_022_2672_x
crossref_primary_10_1021_acs_macromol_8b02569
crossref_primary_10_1002_pol_20220330
crossref_primary_10_1021_acs_macromol_4c00242
crossref_primary_10_1016_j_polymer_2021_124438
crossref_primary_10_1016_j_polymer_2020_122875
crossref_primary_10_1002_polb_24790
crossref_primary_10_1016_j_ijmecsci_2022_107917
crossref_primary_10_1016_j_polymer_2019_05_055
crossref_primary_10_1021_acs_macromol_4c01570
crossref_primary_10_1063_5_0130284
crossref_primary_10_1002_pcr2_10132
crossref_primary_10_1021_acs_macromol_1c00077
crossref_primary_10_1016_j_polymer_2020_122987
crossref_primary_10_1016_j_nucana_2022_100011
crossref_primary_10_1016_j_polymer_2020_123078
crossref_primary_10_1016_j_polymer_2021_124203
crossref_primary_10_1007_s10118_024_3218_1
crossref_primary_10_1063_5_0219366
crossref_primary_10_1021_acs_macromol_4c01343
crossref_primary_10_1021_acs_macromol_9b00346
crossref_primary_10_1016_j_polymertesting_2021_107143
crossref_primary_10_1016_j_compscitech_2018_11_002
crossref_primary_10_1063_5_0080767
crossref_primary_10_1002_pcr2_10045
crossref_primary_10_1021_acs_macromol_0c02477
crossref_primary_10_1016_j_polymer_2018_10_066
crossref_primary_10_1002_pcr2_10043
crossref_primary_10_1016_j_polymertesting_2019_105913
crossref_primary_10_1007_s10118_022_2804_3
crossref_primary_10_3390_polym12102341
crossref_primary_10_1016_j_compscitech_2022_109770
crossref_primary_10_1016_j_polymer_2020_122773
crossref_primary_10_1021_acs_macromol_1c00849
crossref_primary_10_1039_D1CP01067K
crossref_primary_10_1007_s10118_022_2710_8
crossref_primary_10_1016_j_polymer_2021_123484
crossref_primary_10_1016_j_polymer_2022_125287
crossref_primary_10_1002_pcr2_10035
crossref_primary_10_1002_pc_27346
crossref_primary_10_1007_s10965_021_02810_9
crossref_primary_10_1016_j_polymer_2020_122442
crossref_primary_10_1021_acs_macromol_3c02243
crossref_primary_10_1002_gch2_202000008
crossref_primary_10_1016_j_apsusc_2024_159385
crossref_primary_10_1016_j_polymer_2019_121698
crossref_primary_10_1021_acsapm_0c01345
crossref_primary_10_1021_acsapm_1c00462
crossref_primary_10_1002_pcr2_10105
crossref_primary_10_1021_acspolymersau_2c00049
crossref_primary_10_1016_j_polymdegradstab_2023_110293
crossref_primary_10_1021_acs_cgd_4c00592
crossref_primary_10_1021_acs_iecr_9b05667
crossref_primary_10_1039_C9SM02554E
crossref_primary_10_1016_j_polymer_2018_02_048
crossref_primary_10_1021_acs_macromol_1c00204
crossref_primary_10_1021_acs_macromol_8b00346
crossref_primary_10_1515_epoly_2021_0084
crossref_primary_10_1021_acs_macromol_4c00721
crossref_primary_10_1016_j_polymer_2021_124359
crossref_primary_10_1063_1_5123983
crossref_primary_10_1002_pen_26730
crossref_primary_10_1021_acs_jpcb_0c01972
crossref_primary_10_1021_acs_macromol_4c01252
crossref_primary_10_1021_acsomega_9b04138
crossref_primary_10_1016_j_cclet_2018_10_028
crossref_primary_10_1039_D1SM01492G
crossref_primary_10_1021_acs_macromol_1c01407
crossref_primary_10_1007_s10118_021_2622_z
crossref_primary_10_1038_s41428_023_00821_5
crossref_primary_10_1016_j_polymertesting_2019_105903
crossref_primary_10_1021_acs_macromol_1c02056
crossref_primary_10_1122_1_5056170
crossref_primary_10_1021_acs_iecr_0c02846
crossref_primary_10_1016_j_polymertesting_2020_106439
crossref_primary_10_1103_PhysRevLett_124_147802
crossref_primary_10_1063_5_0012376
crossref_primary_10_3390_polym12020447
crossref_primary_10_1007_s10118_018_2169_9
crossref_primary_10_1016_j_polymer_2024_127912
crossref_primary_10_1016_j_polymer_2021_123390
crossref_primary_10_1016_j_bpj_2019_04_025
crossref_primary_10_1021_acsami_0c17900
crossref_primary_10_1016_j_polymer_2025_128179
crossref_primary_10_1016_j_polymer_2024_127592
crossref_primary_10_1021_acs_macromol_3c01846
crossref_primary_10_1063_5_0060120
crossref_primary_10_1016_j_seppur_2022_120847
crossref_primary_10_1021_acs_macromol_8b01538
crossref_primary_10_1021_acs_macromol_8b00325
crossref_primary_10_1002_macp_202100427
crossref_primary_10_1021_acs_macromol_4c01399
crossref_primary_10_1007_s10118_024_3227_0
crossref_primary_10_1021_acs_cgd_3c00811
crossref_primary_10_1021_acs_macromol_3c00194
crossref_primary_10_1021_acs_macromol_4c01952
crossref_primary_10_1039_C8TA03778G
crossref_primary_10_1039_D2CP01522F
crossref_primary_10_1016_j_polymer_2024_127464
crossref_primary_10_1016_j_eurpolymj_2018_08_041
crossref_primary_10_1016_j_compscitech_2022_109847
crossref_primary_10_1021_acs_langmuir_8b03028
crossref_primary_10_1002_macp_202300203
crossref_primary_10_1021_acs_macromol_0c02208
crossref_primary_10_1021_acs_macromol_9b01195
crossref_primary_10_1002_anie_202310953
crossref_primary_10_1016_j_polymer_2021_124267
crossref_primary_10_1021_acs_macromol_4c02256
crossref_primary_10_1016_j_polymer_2019_121899
crossref_primary_10_1088_1361_6633_ac4d92
crossref_primary_10_1007_s10118_022_2709_1
crossref_primary_10_1021_acs_biomac_9b00975
crossref_primary_10_3390_polym12112571
crossref_primary_10_1021_jacs_1c02644
crossref_primary_10_1002_polb_24727
crossref_primary_10_1002_app_46985
crossref_primary_10_1002_ange_202215582
crossref_primary_10_1007_s10118_022_2690_8
crossref_primary_10_1021_acs_macromol_0c02855
crossref_primary_10_1134_S0965545X19050043
crossref_primary_10_1021_acs_macromol_9b01188
crossref_primary_10_1515_polyeng_2023_0026
crossref_primary_10_1063_5_0086136
crossref_primary_10_1016_j_polymer_2022_125586
crossref_primary_10_1016_j_polymer_2024_126792
crossref_primary_10_1039_D1RA02594E
crossref_primary_10_1016_j_cej_2018_04_197
crossref_primary_10_1021_acsapm_9b00658
crossref_primary_10_1039_D0SM01361G
crossref_primary_10_1021_acs_macromol_2c00343
crossref_primary_10_1016_j_polymer_2018_12_029
crossref_primary_10_1016_j_cej_2023_141371
crossref_primary_10_1021_acs_macromol_9b02141
crossref_primary_10_1016_j_polymer_2020_122385
crossref_primary_10_1021_acs_macromol_4c00413
crossref_primary_10_1016_j_eurpolymj_2022_111232
crossref_primary_10_1002_smll_202205960
crossref_primary_10_1039_C9SM00556K
crossref_primary_10_1021_acssuschemeng_0c07802
crossref_primary_10_1007_s10118_023_2974_7
crossref_primary_10_1039_D1CP02617H
crossref_primary_10_1016_j_cej_2021_134475
crossref_primary_10_3390_polym11101565
crossref_primary_10_1002_asia_202100957
crossref_primary_10_1063_1_5139621
crossref_primary_10_1016_j_polymdegradstab_2018_06_001
crossref_primary_10_1021_acs_macromol_4c01079
crossref_primary_10_1016_j_polymer_2019_121641
crossref_primary_10_1016_j_polymer_2020_122492
crossref_primary_10_1021_acs_macromol_4c02042
crossref_primary_10_1021_acsmacrolett_9b00953
crossref_primary_10_1021_acs_jpcb_8b05991
crossref_primary_10_1016_j_polymer_2023_126393
crossref_primary_10_1016_j_physrep_2018_04_004
crossref_primary_10_1016_j_polymer_2023_126390
crossref_primary_10_1063_5_0130699
crossref_primary_10_1039_D0SM02181D
crossref_primary_10_1021_acsami_9b15865
crossref_primary_10_1021_acs_macromol_0c01318
crossref_primary_10_1016_j_polymdegradstab_2023_110441
Cites_doi 10.1023/A:1004820824004
10.1016/j.progpolymsci.2005.09.001
10.1021/ma071475e
10.1002/polb.20098
10.1002/app.1995.070550518
10.1110/ps.03501704
10.1122/1.3545844
10.1021/ma9020642
10.1016/j.polymer.2005.06.074
10.1103/PhysRevLett.81.373
10.1140/epje/i2002-10044-x
10.1021/ma300338c
10.1002/9783527603978.mst0211
10.1021/acs.macromol.5b00386
10.1007/BF01410467
10.1295/polymj.31.722
10.1021/ma052589y
10.1063/1.3574219
10.1002/polb.22176
10.1016/j.polymer.2005.08.102
10.1002/polb.1990.090281001
10.1002/macp.200400130
10.1021/ma9906332
10.1002/pol.1965.100030827
10.1021/ma502412y
10.1021/ma001124z
10.1039/c3sm52152d
10.1122/1.2829149
10.1122/1.1595099
10.1007/BF01415506
10.1529/biophysj.105.067090
10.1016/0032-3861(95)91578-U
10.1021/ma402031m
10.1021/ma062842+
10.1016/j.physrep.2008.02.002
10.1103/PhysRevE.63.021909
10.1021/ma990641i
10.1021/ma062105d
10.1073/pnas.96.1.11
10.1002/marc.201400505
10.1063/1.436284
10.1246/bcsj.78.1
10.1021/ma301888r
10.3139/217.950243
10.1063/1.1603724
10.1021/ma300974w
10.1016/j.polymer.2014.09.039
10.1016/S0022-0248(02)01453-7
10.1021/ma201249y
10.1021/ma0350157
10.1021/ma0606307
10.1016/j.polymer.2013.04.066
10.1122/1.3596599
10.1016/S0032-3861(01)00402-5
10.1007/BFb0115440
10.1021/jp012165f
10.1016/0032-3861(96)00175-9
10.1021/ma100677f
10.1007/BF02086621
10.1007/b107175
10.1002/pol.1966.110040411
10.1016/j.polymer.2012.05.062
10.1002/pol.1981.180190405
10.1021/ma902495z
10.1063/1.1744378
10.1021/ma011631w
10.1021/ma071021h
10.1098/rspa.1970.0170
10.1016/j.polymer.2008.03.041
10.1007/BF01507982
10.1021/acs.macromol.5b00819
10.1098/rsta.1975.0020
10.1007/BF01382398
10.1122/1.549715
10.1016/0921-4526(95)00258-B
10.1016/0371-1951(64)80084-9
10.1021/ma102662p
10.1073/pnas.0506864102
10.6028/jres.084.018
10.1021/ma0104478
10.1021/ma200165q
10.1063/1.1149720
10.1063/1.1855407
10.1002/mats.201300004
10.1021/ma00020a032
10.1088/1757-899X/14/1/012005
10.1103/PhysRevLett.100.048302
10.1007/s11426-015-5361-6
10.1038/200778a0
10.1016/j.polymer.2014.05.013
10.1021/jp802511b
10.1007/BFb0008607
10.1007/BF01729257
10.1122/1.2241989
10.1007/s00397-004-0382-7
10.1021/ma010249g
10.1016/S0377-0257(00)00088-4
10.1021/acs.jpcb.5b01480
10.1016/S0032-3861(98)00864-7
10.3139/217.930236
10.1063/1.1557473
10.1002/pol.1977.130151102
10.1021/ma0255581
10.1002/polb.1993.090310316
10.1039/a900246d
10.1080/00222347508217861
10.1063/1.1746537
10.1122/1.4913696
10.1007/s00397-002-0247-x
10.1021/ma047444q
10.1021/ma702118x
10.1021/ma400061a
10.1021/acs.macromol.5b02688
10.1002/pol.1979.180170104
10.1016/S0032-3861(99)00461-9
10.1021/ma0114180
10.1016/j.polymer.2015.01.026
10.1016/j.eurpolymj.2010.09.021
10.1007/BF02086847
10.1021/ma050092i
10.1002/1521-3900(200208)185:1<105::AID-MASY105>3.0.CO;2-3
10.1016/j.polymer.2005.02.133
10.1103/PhysRevLett.84.2160
10.1122/1.4982703
10.1007/s00397-010-0435-z
10.1021/ma9004567
10.1016/0032-3861(96)88476-X
10.1142/S0256767909004187
10.1063/1.1747055
10.1080/00222349408248082
10.1103/PhysRevB.52.12696
10.1051/jp2:1992225
10.1007/12_013
10.1016/0032-3861(92)90400-Q
10.1021/ma011359q
10.1021/ma0485989
10.1002/bip.1979.360180918
10.1063/1.3463393
10.1002/app.1959.070020404
10.1021/ma051914e
10.1021/ma020785o
10.1038/199798a0
10.1021/ma100496g
10.1111/j.1749-6632.1949.tb27296.x
10.1021/ma702603v
10.1021/bk-2000-0739.ch013
10.1007/s00397-003-0329-4
10.1016/j.progpolymsci.2006.01.001
10.1366/0003702934065920
10.1007/BF01524712
10.1039/b202680e
10.1016/j.polymer.2005.02.096
10.1021/ma201263z
10.1016/0032-3861(92)90399-H
10.1021/am3019756
10.1021/ma062606z
10.1016/S0032-3861(01)00416-5
10.1007/s10118-013-1354-0
10.1007/BF00652825
10.1016/j.polymer.2005.06.034
10.1021/ie401162c
10.1081/MB-120021578
10.1126/science.283.5408.1724
10.1016/0032-3861(71)90064-4
10.1063/1.1730390
10.1007/BF01552509
10.1021/acs.macromol.5b01408
10.1007/3-540-12994-4_1
10.1016/j.polymer.2009.06.021
10.1039/C3CC49668F
10.1021/ma052340g
10.1007/3-540-47307-6_5
10.1021/ma800063e
10.1002/pi.3180
10.1002/pen.760190605
10.1038/srep32968
10.1007/BFb0115450
10.1016/j.matlet.2006.11.085
10.1063/1.1768515
10.1002/1521-3900(200208)185:1<211::AID-MASY211>3.0.CO;2-B
10.1002/9783527603978.mst0210
10.1021/ma802679h
10.1002/mame.201400131
10.1081/MB-120021579
10.1016/j.polymer.2011.03.001
10.1021/ma3014756
10.1039/C5PY00339C
10.1021/ma00163a027
10.1063/1.1696134
10.1021/ma001697b
10.1021/ma991468t
10.1063/1.1372510
10.1021/ma0351569
10.1021/ma302095k
10.1021/ma400024m
10.1016/j.polymer.2015.06.030
10.1007/BF01491823
10.1103/PhysRevB.56.11536
10.1023/A:1004824924912
10.1007/BF00556059
10.1002/pen.21891
10.1021/acs.macromol.6b02544
10.1016/0032-3861(73)90073-6
10.1021/ma802169t
10.1122/1.4808439
10.1016/S0378-4371(01)00509-X
10.1002/pol.1965.100030319
10.1021/acs.macromol.6b00333
10.1002/mats.200900016
10.1016/j.polymer.2009.03.008
10.1103/PhysRevLett.110.087801
10.1039/C3CS60308C
10.1007/BF01031850
10.1002/app.1959.070020403
10.1201/9781420057805
10.1021/ma980536t
10.1016/j.polymer.2012.08.046
10.1021/acs.macromol.5b01043
10.1007/s10118-015-1705-0
10.1103/PhysRevLett.94.117802
10.1021/ma300207f
10.1021/ma010275e
10.1021/ma1020193
10.1080/00222349208215459
10.1021/sc4003032
10.1021/acs.macromol.5b00013
10.1002/(SICI)1099-0488(199610)34:14<2393::AID-POLB9>3.0.CO;2-X
10.1021/ie020237z
10.1021/ma049925f
10.1063/1.1746629
10.1002/9781118541838.ch15
10.1007/s10118-015-1663-6
10.1016/j.eurpolymj.2010.06.004
10.1021/ma501482w
10.1007/s10118-015-1617-z
10.1021/ma500307h
10.1007/BF02403108
10.1103/PhysRevE.65.061801
10.1016/j.polymer.2012.02.023
10.1021/ma401833k
10.1016/j.polymer.2006.12.025
10.1080/00222340801955313
10.1080/00222347208219131
10.1021/ma5005293
10.1063/1.1681018
10.1016/S0032-3861(99)00327-4
10.1021/ma960333+
10.1021/acs.macromol.6b00428
10.1016/S0032-3861(97)00547-8
10.1002/macp.200390097
10.1007/BF01451543
10.1126/science.281.5381.1335
10.1103/PhysRevLett.103.115702
10.1007/BF01332685
10.1021/ma951222y
10.1002/1521-3919(20010601)10:5<447::AID-MATS447>3.0.CO;2-C
10.1021/ma3000384
10.1021/ma2008817
10.1007/BF02086256
10.1063/1.1590737
10.1002/9781118541838.ch14
10.1021/ma048285d
10.1002/marc.201600185
10.1021/acs.macromol.6b01945
10.1039/C7SM00107J
10.1002/1521-3900(200208)185:1<233::AID-MASY233>3.0.CO;2-W
10.1039/c3ra46504g
10.1021/ma900954c
10.1016/0022-3093(94)90637-8
10.1021/ma021373i
10.1021/ma3023958
10.1007/b107169
10.1021/ma802479c
10.1126/science.1140132
10.1103/PhysRevLett.78.2690
10.1063/1.1147295
10.1016/j.polymer.2014.01.034
10.1002/9781118541838.ch6
ContentType Journal Article
Copyright Copyright © 2018 American Chemical Society
Copyright American Chemical Society Feb 28, 2018
Copyright_xml – notice: Copyright © 2018 American Chemical Society
– notice: Copyright American Chemical Society Feb 28, 2018
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
7S9
L.6
DOI 10.1021/acs.chemrev.7b00500
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Materials Research Database
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-6890
EndPage 1886
ExternalDocumentID 29350931
10_1021_acs_chemrev_7b00500
a37052146
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
1AW
29B
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
D0L
DU5
DZ
EBS
ED
ED~
EJD
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
P2P
PQEST
PQQKQ
ROL
RWL
TAE
TN5
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
YZZ
ZHY
---
-DZ
-~X
.DC
4.4
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AFXLT
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
XSW
~02
NPM
7SR
8BQ
8FD
JG9
7X8
7S9
L.6
ID FETCH-LOGICAL-a406t-4db16e0a6fac2a0ab4ac2e65d233c9f9b570e28b7c9ad6bf891c7b226f64eb673
IEDL.DBID ACS
ISSN 0009-2665
1520-6890
IngestDate Thu Jul 10 17:55:18 EDT 2025
Fri Jul 11 03:42:52 EDT 2025
Mon Jun 30 08:45:15 EDT 2025
Thu Apr 03 06:56:59 EDT 2025
Tue Jul 01 03:16:16 EDT 2025
Thu Apr 24 22:57:12 EDT 2025
Sun Dec 06 13:24:36 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a406t-4db16e0a6fac2a0ab4ac2e65d233c9f9b570e28b7c9ad6bf891c7b226f64eb673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1887-9856
0000-0003-1822-876X
PMID 29350931
PQID 2023405568
PQPubID 45407
PageCount 47
ParticipantIDs proquest_miscellaneous_2131894966
proquest_miscellaneous_1989598637
proquest_journals_2023405568
pubmed_primary_29350931
crossref_citationtrail_10_1021_acs_chemrev_7b00500
crossref_primary_10_1021_acs_chemrev_7b00500
acs_journals_10_1021_acs_chemrev_7b00500
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180228
2018-02-28
PublicationDateYYYYMMDD 2018-02-28
PublicationDate_xml – month: 02
  year: 2018
  text: 20180228
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Easton
PublicationTitle Chemical reviews
PublicationTitleAlternate Chem. Rev
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
ref185/cit185
ref23/cit23
ref115/cit115
ref259/cit259
ref187/cit187
ref181/cit181
ref111/cit111
ref255/cit255
ref113/cit113
ref183/cit183
ref257/cit257
ref117/cit117
ref48/cit48
ref74/cit74
ref189/cit189
ref119/cit119
ref10/cit10
ref35/cit35
ref93/cit93
ref251/cit251
ref253/cit253
ref42/cit42
ref120/cit120
ref178/cit178
ref122/cit122
ref248/cit248
ref61/cit61
ref176/cit176
ref128/cit128
ref124/cit124
ref126/cit126
ref54/cit54
ref240/cit240
ref137/cit137
ref11/cit11
ref102/cit102
ref29/cit29
ref174/cit174
ref86/cit86
ref170/cit170
ref244/cit244
ref271/cit271
ref5/cit5
ref43/cit43
ref80/cit80
ref133/cit133
ref207/cit207
ref28/cit28
ref279/cit279
ref203/cit203
ref275/cit275
ref233/cit233
ref148/cit148
ref55/cit55
ref144/cit144
ref167/cit167
ref163/cit163
ref237/cit237
ref66/cit66
ref264/cit264
ref260/cit260
ref87/cit87
ref106/cit106
ref190/cit190
ref140/cit140
ref198/cit198
ref214/cit214
ref194/cit194
ref98/cit98
ref210/cit210
ref268/cit268
ref153/cit153
ref227/cit227
ref222/cit222
ref150/cit150
ref63/cit63
ref224/cit224
ref56/cit56
ref155/cit155
ref229/cit229
ref156/cit156
ref158/cit158
ref8/cit8
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref60/cit60
ref17/cit17
ref219/cit219
ref82/cit82
ref147/cit147
ref232/cit232
Doi M. (ref67/cit67) 1986
ref230/cit230
ref145/cit145
ref238/cit238
ref21/cit21
ref166/cit166
ref164/cit164
ref213/cit213
ref284/cit284
ref78/cit78
ref211/cit211
ref36/cit36
ref83/cit83
ref79/cit79
ref139/cit139
ref172/cit172
ref246/cit246
ref243/cit243
ref270/cit270
ref200/cit200
ref14/cit14
ref57/cit57
ref169/cit169
ref278/cit278
ref134/cit134
ref208/cit208
ref273/cit273
ref131/cit131
ref205/cit205
Ebewele R. O. (ref22/cit22) 2000
ref161/cit161
ref142/cit142
ref216/cit216
ref15/cit15
ref180/cit180
ref235/cit235
ref62/cit62
ref41/cit41
ref58/cit58
ref104/cit104
ref262/cit262
ref177/cit177
ref84/cit84
ref1/cit1
ref123/cit123
ref196/cit196
ref281/cit281
ref7/cit7
ref45/cit45
ref52/cit52
ref184/cit184
ref114/cit114
ref258/cit258
ref186/cit186
ref116/cit116
ref110/cit110
ref254/cit254
ref182/cit182
ref2/cit2
ref112/cit112
ref256/cit256
ref77/cit77
ref71/cit71
ref188/cit188
ref20/cit20
ref118/cit118
ref89/cit89
ref19/cit19
ref96/cit96
ref107/cit107
ref191/cit191
ref265/cit265
ref109/cit109
ref13/cit13
ref193/cit193
ref105/cit105
ref261/cit261
ref263/cit263
ref197/cit197
ref38/cit38
ref199/cit199
ref90/cit90
ref267/cit267
ref195/cit195
ref269/cit269
ref64/cit64
ref6/cit6
ref18/cit18
ref136/cit136
ref65/cit65
ref171/cit171
ref97/cit97
ref101/cit101
ref245/cit245
ref241/cit241
ref76/cit76
ref32/cit32
ref39/cit39
ref272/cit272
ref202/cit202
ref168/cit168
ref206/cit206
ref132/cit132
ref276/cit276
ref91/cit91
ref252/cit252
ref12/cit12
ref179/cit179
ref121/cit121
ref33/cit33
ref249/cit249
ref283/cit283
ref129/cit129
ref44/cit44
ref70/cit70
ref125/cit125
ref9/cit9
ref152/cit152
ref225/cit225
ref226/cit226
ref154/cit154
ref27/cit27
ref228/cit228
ref223/cit223
ref151/cit151
ref159/cit159
ref92/cit92
ref157/cit157
Mitsuhashi S. (ref175/cit175) 1963; 66
ref31/cit31
ref220/cit220
ref88/cit88
ref160/cit160
ref234/cit234
ref143/cit143
ref217/cit217
ref53/cit53
ref149/cit149
ref162/cit162
ref46/cit46
ref236/cit236
ref49/cit49
ref75/cit75
ref24/cit24
ref141/cit141
ref215/cit215
ref280/cit280
ref50/cit50
ref282/cit282
ref209/cit209
ref138/cit138
ref100/cit100
ref25/cit25
ref173/cit173
ref103/cit103
ref247/cit247
ref72/cit72
ref242/cit242
ref201/cit201
ref51/cit51
ref277/cit277
ref135/cit135
ref68/cit68
ref94/cit94
ref130/cit130
ref274/cit274
ref204/cit204
ref146/cit146
ref26/cit26
ref73/cit73
ref231/cit231
ref69/cit69
ref165/cit165
Hoffman J. (ref218/cit218) 1979; 20
ref239/cit239
Sheils C. A. (ref40/cit40) 1996; 148
ref250/cit250
ref95/cit95
ref108/cit108
ref192/cit192
ref266/cit266
ref4/cit4
ref30/cit30
ref212/cit212
ref47/cit47
ref127/cit127
References_xml – ident: ref87/cit87
  doi: 10.1023/A:1004820824004
– ident: ref260/cit260
  doi: 10.1016/j.progpolymsci.2005.09.001
– ident: ref118/cit118
  doi: 10.1021/ma071475e
– ident: ref192/cit192
  doi: 10.1002/polb.20098
– volume: 20
  start-page: 1071
  year: 1979
  ident: ref218/cit218
  publication-title: Polymer
– ident: ref202/cit202
  doi: 10.1002/app.1995.070550518
– ident: ref129/cit129
  doi: 10.1110/ps.03501704
– ident: ref281/cit281
  doi: 10.1122/1.3545844
– ident: ref217/cit217
  doi: 10.1021/ma9020642
– ident: ref93/cit93
  doi: 10.1016/j.polymer.2005.06.074
– ident: ref35/cit35
  doi: 10.1103/PhysRevLett.81.373
– ident: ref47/cit47
  doi: 10.1140/epje/i2002-10044-x
– ident: ref97/cit97
  doi: 10.1021/ma300338c
– ident: ref279/cit279
  doi: 10.1002/9783527603978.mst0211
– ident: ref15/cit15
  doi: 10.1021/acs.macromol.5b00386
– ident: ref191/cit191
  doi: 10.1007/BF01410467
– ident: ref89/cit89
  doi: 10.1295/polymj.31.722
– ident: ref195/cit195
  doi: 10.1021/ma052589y
– ident: ref92/cit92
  doi: 10.1063/1.3574219
– ident: ref198/cit198
  doi: 10.1002/polb.22176
– ident: ref226/cit226
  doi: 10.1016/j.polymer.2005.08.102
– ident: ref214/cit214
  doi: 10.1002/polb.1990.090281001
– ident: ref264/cit264
  doi: 10.1002/macp.200400130
– ident: ref4/cit4
  doi: 10.1021/ma9906332
– ident: ref25/cit25
  doi: 10.1002/pol.1965.100030827
– ident: ref30/cit30
  doi: 10.1021/ma502412y
– ident: ref122/cit122
  doi: 10.1021/ma001124z
– ident: ref262/cit262
  doi: 10.1039/c3sm52152d
– ident: ref255/cit255
  doi: 10.1122/1.2829149
– ident: ref274/cit274
  doi: 10.1122/1.1595099
– ident: ref188/cit188
  doi: 10.1007/BF01415506
– ident: ref46/cit46
  doi: 10.1529/biophysj.105.067090
– ident: ref58/cit58
  doi: 10.1016/0032-3861(95)91578-U
– ident: ref134/cit134
  doi: 10.1021/ma402031m
– ident: ref197/cit197
  doi: 10.1021/ma062842+
– ident: ref76/cit76
  doi: 10.1016/j.physrep.2008.02.002
– ident: ref36/cit36
  doi: 10.1103/PhysRevE.63.021909
– ident: ref24/cit24
  doi: 10.1021/ma990641i
– ident: ref133/cit133
  doi: 10.1021/ma062105d
– ident: ref39/cit39
  doi: 10.1073/pnas.96.1.11
– ident: ref137/cit137
  doi: 10.1002/marc.201400505
– ident: ref100/cit100
  doi: 10.1063/1.436284
– ident: ref193/cit193
  doi: 10.1246/bcsj.78.1
– ident: ref124/cit124
  doi: 10.1021/ma301888r
– ident: ref132/cit132
  doi: 10.3139/217.950243
– ident: ref272/cit272
  doi: 10.1063/1.1603724
– ident: ref161/cit161
  doi: 10.1021/ma300974w
– ident: ref111/cit111
  doi: 10.1016/j.polymer.2014.09.039
– ident: ref201/cit201
  doi: 10.1016/S0022-0248(02)01453-7
– ident: ref267/cit267
  doi: 10.1021/ma201249y
– ident: ref117/cit117
  doi: 10.1021/ma0350157
– ident: ref227/cit227
  doi: 10.1021/ma0606307
– ident: ref3/cit3
  doi: 10.1016/j.polymer.2013.04.066
– ident: ref266/cit266
  doi: 10.1122/1.3596599
– ident: ref115/cit115
  doi: 10.1016/S0032-3861(01)00402-5
– ident: ref1/cit1
  doi: 10.1007/BFb0115440
– ident: ref49/cit49
  doi: 10.1021/jp012165f
– ident: ref57/cit57
  doi: 10.1016/0032-3861(96)00175-9
– ident: ref270/cit270
  doi: 10.1021/ma100677f
– ident: ref181/cit181
  doi: 10.1007/BF02086621
– ident: ref83/cit83
  doi: 10.1007/b107175
– ident: ref174/cit174
  doi: 10.1002/pol.1966.110040411
– ident: ref121/cit121
  doi: 10.1016/j.polymer.2012.05.062
– ident: ref110/cit110
  doi: 10.1002/pol.1981.180190405
– ident: ref151/cit151
  doi: 10.1021/ma902495z
– ident: ref42/cit42
  doi: 10.1063/1.1744378
– ident: ref45/cit45
  doi: 10.1021/ma011631w
– ident: ref50/cit50
  doi: 10.1021/ma071021h
– volume-title: The Theory of Polymer Dynamics
  year: 1986
  ident: ref67/cit67
– ident: ref182/cit182
  doi: 10.1098/rspa.1970.0170
– ident: ref168/cit168
  doi: 10.1016/j.polymer.2008.03.041
– ident: ref177/cit177
  doi: 10.1007/BF01507982
– ident: ref228/cit228
  doi: 10.1021/acs.macromol.5b00819
– ident: ref209/cit209
  doi: 10.1098/rsta.1975.0020
– ident: ref190/cit190
  doi: 10.1007/BF01382398
– ident: ref254/cit254
  doi: 10.1122/1.549715
– ident: ref103/cit103
  doi: 10.1016/0921-4526(95)00258-B
– ident: ref48/cit48
  doi: 10.1016/0371-1951(64)80084-9
– ident: ref27/cit27
  doi: 10.1021/ma102662p
– ident: ref41/cit41
  doi: 10.1073/pnas.0506864102
– ident: ref219/cit219
  doi: 10.6028/jres.084.018
– ident: ref96/cit96
  doi: 10.1021/ma0104478
– ident: ref152/cit152
  doi: 10.1021/ma200165q
– ident: ref91/cit91
  doi: 10.1063/1.1149720
– ident: ref235/cit235
  doi: 10.1063/1.1855407
– ident: ref282/cit282
  doi: 10.1002/mats.201300004
– ident: ref20/cit20
  doi: 10.1021/ma00020a032
– ident: ref148/cit148
  doi: 10.1088/1757-899X/14/1/012005
– ident: ref120/cit120
  doi: 10.1103/PhysRevLett.100.048302
– ident: ref252/cit252
  doi: 10.1007/s11426-015-5361-6
– ident: ref179/cit179
  doi: 10.1038/200778a0
– ident: ref14/cit14
  doi: 10.1016/j.polymer.2014.05.013
– ident: ref51/cit51
  doi: 10.1021/jp802511b
– ident: ref38/cit38
  doi: 10.1007/BFb0008607
– ident: ref187/cit187
  doi: 10.1007/BF01729257
– ident: ref265/cit265
  doi: 10.1122/1.2241989
– ident: ref155/cit155
  doi: 10.1007/s00397-004-0382-7
– ident: ref75/cit75
  doi: 10.1021/ma010249g
– ident: ref5/cit5
  doi: 10.1016/S0377-0257(00)00088-4
– ident: ref80/cit80
  doi: 10.1021/acs.jpcb.5b01480
– ident: ref65/cit65
  doi: 10.1016/S0032-3861(98)00864-7
– ident: ref90/cit90
  doi: 10.3139/217.930236
– ident: ref212/cit212
  doi: 10.1063/1.1557473
– ident: ref215/cit215
  doi: 10.1002/pol.1977.130151102
– ident: ref271/cit271
  doi: 10.1021/ma0255581
– ident: ref109/cit109
  doi: 10.1002/polb.1993.090310316
– ident: ref107/cit107
  doi: 10.1039/a900246d
– ident: ref246/cit246
  doi: 10.1080/00222347508217861
– ident: ref239/cit239
  doi: 10.1063/1.1746537
– ident: ref283/cit283
  doi: 10.1122/1.4913696
– ident: ref149/cit149
  doi: 10.1007/s00397-002-0247-x
– ident: ref157/cit157
  doi: 10.1021/ma047444q
– ident: ref159/cit159
  doi: 10.1021/ma702118x
– ident: ref68/cit68
  doi: 10.1021/ma400061a
– ident: ref19/cit19
  doi: 10.1021/acs.macromol.5b02688
– ident: ref237/cit237
  doi: 10.1002/pol.1979.180170104
– ident: ref243/cit243
  doi: 10.1016/S0032-3861(99)00461-9
– ident: ref154/cit154
  doi: 10.1021/ma0114180
– ident: ref171/cit171
  doi: 10.1016/j.polymer.2015.01.026
– ident: ref138/cit138
  doi: 10.1016/j.eurpolymj.2010.09.021
– ident: ref180/cit180
  doi: 10.1007/BF02086847
– ident: ref194/cit194
  doi: 10.1021/ma050092i
– ident: ref125/cit125
  doi: 10.1002/1521-3900(200208)185:1<105::AID-MASY105>3.0.CO;2-3
– ident: ref236/cit236
  doi: 10.1016/j.polymer.2005.02.133
– ident: ref44/cit44
  doi: 10.1103/PhysRevLett.84.2160
– ident: ref230/cit230
  doi: 10.1122/1.4982703
– ident: ref208/cit208
  doi: 10.1007/s00397-010-0435-z
– ident: ref53/cit53
  doi: 10.1021/ma9004567
– ident: ref86/cit86
  doi: 10.1016/0032-3861(96)88476-X
– ident: ref6/cit6
  doi: 10.1142/S0256767909004187
– ident: ref79/cit79
  doi: 10.1063/1.1747055
– ident: ref213/cit213
  doi: 10.1080/00222349408248082
– ident: ref104/cit104
  doi: 10.1103/PhysRevB.52.12696
– ident: ref248/cit248
  doi: 10.1051/jp2:1992225
– ident: ref31/cit31
  doi: 10.1007/12_013
– ident: ref105/cit105
  doi: 10.1016/0032-3861(92)90400-Q
– ident: ref95/cit95
  doi: 10.1021/ma011359q
– ident: ref72/cit72
  doi: 10.1021/ma0485989
– ident: ref82/cit82
  doi: 10.1002/bip.1979.360180918
– ident: ref269/cit269
  doi: 10.1063/1.3463393
– ident: ref173/cit173
  doi: 10.1002/app.1959.070020404
– ident: ref196/cit196
  doi: 10.1021/ma051914e
– ident: ref242/cit242
  doi: 10.1021/ma020785o
– ident: ref176/cit176
  doi: 10.1038/199798a0
– ident: ref245/cit245
  doi: 10.1021/ma100496g
– ident: ref66/cit66
  doi: 10.1111/j.1749-6632.1949.tb27296.x
– ident: ref150/cit150
  doi: 10.1021/ma702603v
– ident: ref106/cit106
  doi: 10.1021/bk-2000-0739.ch013
– ident: ref258/cit258
  doi: 10.1007/s00397-003-0329-4
– ident: ref33/cit33
  doi: 10.1016/j.progpolymsci.2006.01.001
– ident: ref52/cit52
  doi: 10.1366/0003702934065920
– ident: ref200/cit200
  doi: 10.1007/BF01524712
– ident: ref34/cit34
  doi: 10.1039/b202680e
– ident: ref130/cit130
  doi: 10.1016/j.polymer.2005.02.096
– ident: ref261/cit261
  doi: 10.1021/ma201263z
– ident: ref101/cit101
  doi: 10.1016/0032-3861(92)90399-H
– ident: ref160/cit160
  doi: 10.1021/am3019756
– ident: ref205/cit205
  doi: 10.1021/ma062606z
– ident: ref64/cit64
  doi: 10.1016/S0032-3861(01)00416-5
– ident: ref10/cit10
  doi: 10.1007/s10118-013-1354-0
– ident: ref280/cit280
  doi: 10.1007/BF00652825
– ident: ref11/cit11
  doi: 10.1016/j.polymer.2005.06.034
– ident: ref2/cit2
  doi: 10.1021/ie401162c
– ident: ref203/cit203
  doi: 10.1081/MB-120021578
– ident: ref210/cit210
  doi: 10.1126/science.283.5408.1724
– ident: ref184/cit184
  doi: 10.1016/0032-3861(71)90064-4
– ident: ref43/cit43
  doi: 10.1063/1.1730390
– ident: ref85/cit85
  doi: 10.1007/BF01552509
– ident: ref17/cit17
  doi: 10.1021/acs.macromol.5b01408
– ident: ref37/cit37
  doi: 10.1007/3-540-12994-4_1
– ident: ref135/cit135
  doi: 10.1016/j.polymer.2009.06.021
– ident: ref13/cit13
  doi: 10.1039/C3CC49668F
– ident: ref222/cit222
  doi: 10.1021/ma052340g
– ident: ref244/cit244
  doi: 10.1007/3-540-47307-6_5
– ident: ref153/cit153
  doi: 10.1021/ma800063e
– ident: ref158/cit158
  doi: 10.1002/pi.3180
– ident: ref241/cit241
  doi: 10.1002/pen.760190605
– ident: ref249/cit249
  doi: 10.1038/srep32968
– ident: ref207/cit207
  doi: 10.1007/BFb0115450
– ident: ref8/cit8
  doi: 10.1016/j.matlet.2006.11.085
– ident: ref268/cit268
  doi: 10.1063/1.1768515
– ident: ref73/cit73
  doi: 10.1002/1521-3900(200208)185:1<211::AID-MASY211>3.0.CO;2-B
– ident: ref216/cit216
  doi: 10.1002/9783527603978.mst0210
– ident: ref232/cit232
  doi: 10.1021/ma802679h
– ident: ref284/cit284
  doi: 10.1002/mame.201400131
– ident: ref74/cit74
  doi: 10.1081/MB-120021579
– ident: ref143/cit143
  doi: 10.1016/j.polymer.2011.03.001
– ident: ref142/cit142
  doi: 10.1021/ma3014756
– ident: ref169/cit169
  doi: 10.1039/C5PY00339C
– ident: ref21/cit21
  doi: 10.1021/ma00163a027
– volume: 66
  start-page: 1
  year: 1963
  ident: ref175/cit175
  publication-title: Bull. Text. Res. Inst. Jpn.
– ident: ref23/cit23
  doi: 10.1063/1.1696134
– ident: ref136/cit136
  doi: 10.1021/ma001697b
– ident: ref113/cit113
  doi: 10.1021/ma991468t
– ident: ref78/cit78
  doi: 10.1063/1.1372510
– ident: ref56/cit56
  doi: 10.1021/ma0351569
– ident: ref9/cit9
  doi: 10.1021/ma302095k
– ident: ref144/cit144
  doi: 10.1021/ma400024m
– ident: ref170/cit170
  doi: 10.1016/j.polymer.2015.06.030
– ident: ref183/cit183
  doi: 10.1007/BF01491823
– ident: ref29/cit29
  doi: 10.1103/PhysRevB.56.11536
– ident: ref224/cit224
  doi: 10.1023/A:1004824924912
– ident: ref189/cit189
  doi: 10.1007/BF00556059
– ident: ref259/cit259
  doi: 10.1002/pen.21891
– ident: ref54/cit54
  doi: 10.1021/acs.macromol.6b02544
– ident: ref18/cit18
  doi: 10.1016/0032-3861(73)90073-6
– ident: ref145/cit145
  doi: 10.1021/ma802169t
– ident: ref131/cit131
  doi: 10.1122/1.4808439
– ident: ref126/cit126
  doi: 10.1016/S0378-4371(01)00509-X
– ident: ref178/cit178
  doi: 10.1002/pol.1965.100030319
– ident: ref238/cit238
  doi: 10.1021/acs.macromol.6b00333
– ident: ref276/cit276
  doi: 10.1002/mats.200900016
– ident: ref71/cit71
  doi: 10.1016/j.polymer.2009.03.008
– ident: ref233/cit233
  doi: 10.1103/PhysRevLett.110.087801
– ident: ref12/cit12
  doi: 10.1039/C3CS60308C
– ident: ref185/cit185
  doi: 10.1007/BF01031850
– ident: ref172/cit172
  doi: 10.1002/app.1959.070020403
– volume-title: Polymer Science and Technology
  year: 2000
  ident: ref22/cit22
  doi: 10.1201/9781420057805
– ident: ref88/cit88
  doi: 10.1021/ma980536t
– ident: ref69/cit69
  doi: 10.1016/j.polymer.2012.08.046
– ident: ref167/cit167
  doi: 10.1021/acs.macromol.5b01043
– ident: ref163/cit163
  doi: 10.1007/s10118-015-1705-0
– ident: ref59/cit59
  doi: 10.1103/PhysRevLett.94.117802
– volume: 148
  start-page: 919
  year: 1996
  ident: ref40/cit40
  publication-title: Am. J. Pathol.
– ident: ref70/cit70
  doi: 10.1021/ma300207f
– ident: ref253/cit253
  doi: 10.1021/ma010275e
– ident: ref119/cit119
  doi: 10.1021/ma1020193
– ident: ref63/cit63
  doi: 10.1080/00222349208215459
– ident: ref162/cit162
  doi: 10.1021/sc4003032
– ident: ref32/cit32
  doi: 10.1021/acs.macromol.5b00013
– ident: ref257/cit257
  doi: 10.1002/(SICI)1099-0488(199610)34:14<2393::AID-POLB9>3.0.CO;2-X
– ident: ref128/cit128
  doi: 10.1021/ie020237z
– ident: ref231/cit231
  doi: 10.1021/ma049925f
– ident: ref240/cit240
  doi: 10.1063/1.1746629
– ident: ref278/cit278
  doi: 10.1002/9781118541838.ch15
– ident: ref7/cit7
  doi: 10.1007/s10118-015-1663-6
– ident: ref165/cit165
  doi: 10.1016/j.eurpolymj.2010.06.004
– ident: ref123/cit123
  doi: 10.1021/ma501482w
– ident: ref164/cit164
  doi: 10.1007/s10118-015-1617-z
– ident: ref55/cit55
  doi: 10.1021/ma500307h
– ident: ref220/cit220
  doi: 10.1007/BF02403108
– ident: ref102/cit102
  doi: 10.1103/PhysRevE.65.061801
– ident: ref141/cit141
  doi: 10.1016/j.polymer.2012.02.023
– ident: ref98/cit98
  doi: 10.1021/ma401833k
– ident: ref116/cit116
  doi: 10.1016/j.polymer.2006.12.025
– ident: ref166/cit166
  doi: 10.1080/00222340801955313
– ident: ref204/cit204
  doi: 10.1080/00222347208219131
– ident: ref99/cit99
  doi: 10.1021/ma5005293
– ident: ref206/cit206
  doi: 10.1063/1.1681018
– ident: ref112/cit112
  doi: 10.1016/S0032-3861(99)00327-4
– ident: ref61/cit61
  doi: 10.1021/ma960333+
– ident: ref127/cit127
  doi: 10.1021/acs.macromol.6b00428
– ident: ref108/cit108
  doi: 10.1016/S0032-3861(97)00547-8
– ident: ref186/cit186
  doi: 10.1016/0032-3861(73)90073-6
– ident: ref199/cit199
  doi: 10.1002/macp.200390097
– ident: ref225/cit225
  doi: 10.1007/BF01451543
– ident: ref211/cit211
  doi: 10.1126/science.281.5381.1335
– ident: ref273/cit273
  doi: 10.1103/PhysRevLett.103.115702
– ident: ref60/cit60
  doi: 10.1007/BF01332685
– ident: ref62/cit62
  doi: 10.1021/ma951222y
– ident: ref275/cit275
  doi: 10.1002/1521-3919(20010601)10:5<447::AID-MATS447>3.0.CO;2-C
– ident: ref139/cit139
  doi: 10.1021/ma3000384
– ident: ref223/cit223
  doi: 10.1021/ma2008817
– ident: ref84/cit84
  doi: 10.1007/BF02086256
– ident: ref234/cit234
  doi: 10.1063/1.1590737
– ident: ref16/cit16
  doi: 10.1002/9781118541838.ch14
– ident: ref146/cit146
  doi: 10.1021/ma048285d
– ident: ref250/cit250
  doi: 10.1002/marc.201600185
– ident: ref229/cit229
  doi: 10.1021/acs.macromol.6b01945
– ident: ref251/cit251
  doi: 10.1039/C7SM00107J
– ident: ref256/cit256
  doi: 10.1002/1521-3900(200208)185:1<233::AID-MASY233>3.0.CO;2-W
– ident: ref263/cit263
  doi: 10.1039/c3ra46504g
– ident: ref26/cit26
  doi: 10.1021/ma900954c
– ident: ref247/cit247
  doi: 10.1016/0022-3093(94)90637-8
– ident: ref114/cit114
  doi: 10.1021/ma021373i
– ident: ref140/cit140
  doi: 10.1021/ma3023958
– ident: ref28/cit28
  doi: 10.1007/b107169
– ident: ref156/cit156
  doi: 10.1021/ma802479c
– ident: ref147/cit147
  doi: 10.1126/science.1140132
– ident: ref77/cit77
  doi: 10.1103/PhysRevLett.78.2690
– ident: ref94/cit94
  doi: 10.1063/1.1147295
– ident: ref81/cit81
  doi: 10.1016/j.polymer.2014.01.034
– ident: ref277/cit277
  doi: 10.1002/9781118541838.ch6
SSID ssj0005527
Score 2.6424
SecondaryResourceType review_article
Snippet Flow-induced crystallization (FIC) is a typical nonequilibrium phase transition and a core industry subject for the largest group of commercially useful...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1840
SubjectTerms Crystallites
Crystallization
Deformation
Flow
Nucleation
Nuclei
Phase separation
Phase transitions
Polymers
separation
Synchrotron radiation
Variation
X ray detectors
X-ray scattering
Title Multiscale and Multistep Ordering of Flow-Induced Nucleation of Polymers
URI http://dx.doi.org/10.1021/acs.chemrev.7b00500
https://www.ncbi.nlm.nih.gov/pubmed/29350931
https://www.proquest.com/docview/2023405568
https://www.proquest.com/docview/1989598637
https://www.proquest.com/docview/2131894966
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYQHOgFKLR0C1RB4sCB0NjxIz6iFatVJZZKLRK3yK8IiSVB3awQ_PrO5LFQKAjlECV2ImfGznxje74h5EBbTwGH8xigrI55odI4s4LH1FFXiCRo63C-42wixxf8x6W4fBKs_mwFn9HvxoHwr8INpmRR2GkS8NBXmMwU-lonw1-POzr6DK24aCCl6EmG_v8SNEdu9q85egVjNrZmtE4mfcROu8Xk-nhe22P38JLA8X2fsUHWOtQZnbTd5CNZCuUmWR32yd62yLgJxJ2BwkJkSh-1l3W4jc6RmxPsW1QV0Wha3cWY7MMFH02QCbnRKxb9rKb3OAX-iVyMTn8Px3GXZCE2YMvrmHtLZUiMLIxjJjGWwzlI4VmaOl1oK1QSWGaV08ZLW2SaOmUBtBWSBytV-pksl1UZvuAuqUI467UPWeBCMwvgzsNhFLcCXJMBOQQp5N0gmeXN-jejOd7sRJN3ohkQ1qsldx1ZOebMmL790NHioduWq-Pt6ru9vh_bhNnkORIMZQOyvygGZeA6iilDNYd260wjrX2qXq_DKPwsNQdnckC22760aBMgLIBpKf36fnnskA-A1LI2ln6XLNd_5mEP0FBtvzVj4C-rvgXT
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VciiX8qYLBYIEEgdSEsd24gOHamG1pe2CRCv1FvzKhSWpSFZV-T38Ff4XM3nsCkQrLpVQDlH80tgeZz6_vgF4royLEYfzEKGsCnmRJmFmBA9jG9tCRF4ZS-sdhzM5PebvT8TJGvwY7sKgEDWWVLeb-Ct2gfg1hWE1vpJnlpR0J4r6o5T7_vwMJ2r1m7232KsvGJu8OxpPw96XQKjRZDUhdyaWPtKy0JbpSBuOby-FY0liVaGMSCPPMpNapZ00RaZimxrEJoXk3sg0wXKvwXWEP4ymeLvjT6uDJINjWNqrkFIM3EZ_F5qsoK1_t4IXQNvWxE1uws9l47QnW77sLBqzY7__wRv5v7feLdjsMXaw2w2K27DmyzuwMR5c292FaXvtuEb19IEuXdB9Nv40-EBMpGjNg6oIJvPqLCTXJta7YEa8z60WU9THan5OC_734PhKKnIf1suq9Ft0JqwQ1jjlfOa5UMwglHX46JQbgROxEbzEVs_7X0Kdt7v9LM4psO-KvO-KEbBBG3LbU7OTh5D55ZleLTOddswklyffHtRsJRNDxMaJTikbwbNlNHYG7Rrp0lcLlFtlikj8k_TiNCxG06A4Tp1H8KBT4aVMiCcRlCbxw39vj6ewMT06PMgP9mb7j-AGYtSsYxHYhvXm28I_RhzYmCftMAzg81Vr7i9pOWrH
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIgEX3o-FAkECiQMpsWM78YFDtWW1pbBUgkq9pfEjl26TFcmqKr-Iv8K_YiaPrUC04tIDyiGKY1tje5z57HG-AXipjWOIw0WIUFaHokjiMDVShMwyW8jIa2Npv-PTTE33xYcDebAGP4Z_YVCIGmuqWyc-zeqFK3qGAfaW0rEpxxSdJSH9iaL-OOWuPz3BxVr9bmcbR_YV55P3X8fTsI8nEOZotppQOMOUj3JV5JbnUW4E3r2Sjsex1YU2Mok8T01ide6UKVLNbGIQnxRKeKOSGOu9AlfJUUjLvK3xl7PDJENwWPJXKCUHfqO_C02W0Na_W8Jz4G1r5ia34Oeqg9rTLUeby8Zs2u9_cEf-Dz14G272WDvY6ibHHVjz5V24Ph5C3N2Dafv7cY1q6oO8dEH32PhF8JkYSdGqB1URTObVSUghTqx3wYz4n1ttpld71fyUNv7vw_6lNOQBrJdV6R_R2bBCWuO086kXUnODkNbhlSfCSFyQjeA19nrWfxrqrPX6c5ZRYj8UWT8UI-CDRmS2p2inSCHziwu9WRVadAwlF2ffGFTtTCaOyE0QrVI6gher1zgY5D3KS18tUW6daiLzj5Pz83CGJkILXEKP4GGnxiuZEFciOI3Z43_vj-dwbW97kn3cme0-gRsIVdOOTGAD1ptvS_8U4WBjnrUzMYDDy1bcXzdubUo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiscale+and+Multistep+Ordering+of+Flow-Induced+Nucleation+of+Polymers&rft.jtitle=Chemical+reviews&rft.au=Cui%2C+Kunpeng&rft.au=Ma%2C+Zhe&rft.au=Tian%2C+Nan&rft.au=Su%2C+Fengmei&rft.date=2018-02-28&rft.eissn=1520-6890&rft.volume=118&rft.issue=4&rft.spage=1840&rft_id=info:doi/10.1021%2Facs.chemrev.7b00500&rft_id=info%3Apmid%2F29350931&rft.externalDocID=29350931
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2665&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2665&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2665&client=summon