Multiscale and Multistep Ordering of Flow-Induced Nucleation of Polymers
Flow-induced crystallization (FIC) is a typical nonequilibrium phase transition and a core industry subject for the largest group of commercially useful polymeric materials: semicrystalline polymers. A fundamental understanding of FIC can benefit the research of nonequilibrium ordering in matter sys...
Saved in:
Published in | Chemical reviews Vol. 118; no. 4; pp. 1840 - 1886 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
28.02.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Flow-induced crystallization (FIC) is a typical nonequilibrium phase transition and a core industry subject for the largest group of commercially useful polymeric materials: semicrystalline polymers. A fundamental understanding of FIC can benefit the research of nonequilibrium ordering in matter systems and help to tailor the ultimate properties of polymeric materials. Concerning the crystallization process, flow can accelerate the kinetics by orders of magnitude and induce the formation of oriented crystallites like shish-kebab, which are associated with the major influences of flow on nucleation, that is, raised nucleation density and oriented nuclei. The topic of FIC has been studied for more than half a century. Recently, there have been many developments in experimental approaches, such as synchrotron radiation X-ray scattering, ultrafast X-ray detectors with a time resolution down to the order of milliseconds, and novel laboratory devices to mimic the severe flow field close to real processing conditions. By a combination of these advanced methods, the evolution process of FIC can be revealed more precisely (with higher time resolution and on more length scales) and quantitatively. The new findings are challenging the classical interpretations and theories that were mostly derived from quiescent or mild-flow conditions, and they are triggering the reconsideration of FIC foundations. This review mainly summarizes experimental results, advances in physical understanding, and discussions on the multiscale and multistep nature of oriented nuclei induced by strong flow. The multiscale structures include segmental conformation, packing of conformational ordering, deformation on the whole-chain scale, and macroscopic aggregation of crystallites. The multistep process involves conformation transition, isotropic–nematic transition, density fluctuation (or phase separation), formation of precursors, and shish-kebab crystallites, which are possible ordering processes during nucleation. Furthermore, some theoretical progress and modeling efforts are also included. |
---|---|
AbstractList | Flow-induced crystallization (FIC) is a typical nonequilibrium phase transition and a core industry subject for the largest group of commercially useful polymeric materials: semicrystalline polymers. A fundamental understanding of FIC can benefit the research of nonequilibrium ordering in matter systems and help to tailor the ultimate properties of polymeric materials. Concerning the crystallization process, flow can accelerate the kinetics by orders of magnitude and induce the formation of oriented crystallites like shish-kebab, which are associated with the major influences of flow on nucleation, that is, raised nucleation density and oriented nuclei. The topic of FIC has been studied for more than half a century. Recently, there have been many developments in experimental approaches, such as synchrotron radiation X-ray scattering, ultrafast X-ray detectors with a time resolution down to the order of milliseconds, and novel laboratory devices to mimic the severe flow field close to real processing conditions. By a combination of these advanced methods, the evolution process of FIC can be revealed more precisely (with higher time resolution and on more length scales) and quantitatively. The new findings are challenging the classical interpretations and theories that were mostly derived from quiescent or mild-flow conditions, and they are triggering the reconsideration of FIC foundations. This review mainly summarizes experimental results, advances in physical understanding, and discussions on the multiscale and multistep nature of oriented nuclei induced by strong flow. The multiscale structures include segmental conformation, packing of conformational ordering, deformation on the whole-chain scale, and macroscopic aggregation of crystallites. The multistep process involves conformation transition, isotropic-nematic transition, density fluctuation (or phase separation), formation of precursors, and shish-kebab crystallites, which are possible ordering processes during nucleation. Furthermore, some theoretical progress and modeling efforts are also included.Flow-induced crystallization (FIC) is a typical nonequilibrium phase transition and a core industry subject for the largest group of commercially useful polymeric materials: semicrystalline polymers. A fundamental understanding of FIC can benefit the research of nonequilibrium ordering in matter systems and help to tailor the ultimate properties of polymeric materials. Concerning the crystallization process, flow can accelerate the kinetics by orders of magnitude and induce the formation of oriented crystallites like shish-kebab, which are associated with the major influences of flow on nucleation, that is, raised nucleation density and oriented nuclei. The topic of FIC has been studied for more than half a century. Recently, there have been many developments in experimental approaches, such as synchrotron radiation X-ray scattering, ultrafast X-ray detectors with a time resolution down to the order of milliseconds, and novel laboratory devices to mimic the severe flow field close to real processing conditions. By a combination of these advanced methods, the evolution process of FIC can be revealed more precisely (with higher time resolution and on more length scales) and quantitatively. The new findings are challenging the classical interpretations and theories that were mostly derived from quiescent or mild-flow conditions, and they are triggering the reconsideration of FIC foundations. This review mainly summarizes experimental results, advances in physical understanding, and discussions on the multiscale and multistep nature of oriented nuclei induced by strong flow. The multiscale structures include segmental conformation, packing of conformational ordering, deformation on the whole-chain scale, and macroscopic aggregation of crystallites. The multistep process involves conformation transition, isotropic-nematic transition, density fluctuation (or phase separation), formation of precursors, and shish-kebab crystallites, which are possible ordering processes during nucleation. Furthermore, some theoretical progress and modeling efforts are also included. Flow-induced crystallization (FIC) is a typical nonequilibrium phase transition and a core industry subject for the largest group of commercially useful polymeric materials: semicrystalline polymers. A fundamental understanding of FIC can benefit the research of nonequilibrium ordering in matter systems and help to tailor the ultimate properties of polymeric materials. Concerning the crystallization process, flow can accelerate the kinetics by orders of magnitude and induce the formation of oriented crystallites like shish-kebab, which are associated with the major influences of flow on nucleation, that is, raised nucleation density and oriented nuclei. The topic of FIC has been studied for more than half a century. Recently, there have been many developments in experimental approaches, such as synchrotron radiation X-ray scattering, ultrafast X-ray detectors with a time resolution down to the order of milliseconds, and novel laboratory devices to mimic the severe flow field close to real processing conditions. By a combination of these advanced methods, the evolution process of FIC can be revealed more precisely (with higher time resolution and on more length scales) and quantitatively. The new findings are challenging the classical interpretations and theories that were mostly derived from quiescent or mild-flow conditions, and they are triggering the reconsideration of FIC foundations. This review mainly summarizes experimental results, advances in physical understanding, and discussions on the multiscale and multistep nature of oriented nuclei induced by strong flow. The multiscale structures include segmental conformation, packing of conformational ordering, deformation on the whole-chain scale, and macroscopic aggregation of crystallites. The multistep process involves conformation transition, isotropic–nematic transition, density fluctuation (or phase separation), formation of precursors, and shish-kebab crystallites, which are possible ordering processes during nucleation. Furthermore, some theoretical progress and modeling efforts are also included. |
Author | Tian, Nan Su, Fengmei Li, Liangbin Ma, Zhe Liu, Dong Cui, Kunpeng |
AuthorAffiliation | University of Science and Technology of China Tianjin University Ministry of Education Key Laboratory of Space Applied Physics and Chemistry and Shanxi Key Laboratory of Macromolecular Science and Technology, School of Science China Academy of Engineering Physics Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering Northwestern Polytechnical University Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry National Synchrotron Radiation Laboratory, Chinese Academy of Sciences Key Laboratory of Soft Matter Chemistry, and Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film |
AuthorAffiliation_xml | – name: University of Science and Technology of China – name: Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering – name: Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry – name: Northwestern Polytechnical University – name: National Synchrotron Radiation Laboratory, Chinese Academy of Sciences Key Laboratory of Soft Matter Chemistry, and Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film – name: Tianjin University – name: China Academy of Engineering Physics – name: Ministry of Education Key Laboratory of Space Applied Physics and Chemistry and Shanxi Key Laboratory of Macromolecular Science and Technology, School of Science |
Author_xml | – sequence: 1 givenname: Kunpeng surname: Cui fullname: Cui, Kunpeng organization: University of Science and Technology of China – sequence: 2 givenname: Zhe surname: Ma fullname: Ma, Zhe email: zhe.ma@tju.edu.cn organization: Tianjin University – sequence: 3 givenname: Nan orcidid: 0000-0003-1822-876X surname: Tian fullname: Tian, Nan organization: Northwestern Polytechnical University – sequence: 4 givenname: Fengmei surname: Su fullname: Su, Fengmei organization: University of Science and Technology of China – sequence: 5 givenname: Dong surname: Liu fullname: Liu, Dong organization: China Academy of Engineering Physics – sequence: 6 givenname: Liangbin orcidid: 0000-0002-1887-9856 surname: Li fullname: Li, Liangbin email: lbli@ustc.edu.cn organization: University of Science and Technology of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29350931$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1P3DAQhi0EKgvtL6hUReqFS5axHTvxsULlQ-LrQM-W7UxokBNv7aSIf4-XXThwgNNoNM87mnnfA7I7hhEJ-U5hSYHRY-PS0v3FIeL_ZW0BBMAOWVDBoJSNgl2yAABVMinFPjlI6SG3QrD6C9lnigtQnC7I-dXspz4547EwY1ts2glXxU1sMfbjfRG64tSHx_JibGeHbXE9O49m6sO4Ht0G_zRgTF_JXmd8wm_bekj-nP6-OzkvL2_OLk5-XZamAjmVVWupRDCyM44ZMLbKFaVoGedOdcqKGpA1tnbKtNJ2jaKutozJTlZoZc0PydFm7yqGfzOmSQ_5fPTejBjmpBnltFGVkvJTlKpGCdVIvt768x36EOY45kc0A8arbJxsMvVjS812wFavYj-Y-KRf7cyA2gAuhpQidtr104tVUzS91xT0Ojqdo9Pb6PQ2uqzl77Sv6z9WHW9U6-HbzR8pngE266-S |
CitedBy_id | crossref_primary_10_1021_acs_macromol_3c00461 crossref_primary_10_1016_j_polymer_2020_122960 crossref_primary_10_3390_ijms241813691 crossref_primary_10_1021_acs_macromol_8b00195 crossref_primary_10_1002_agt2_338 crossref_primary_10_1021_acs_macromol_3c02524 crossref_primary_10_1016_j_polymer_2023_126362 crossref_primary_10_1007_s11426_022_1520_9 crossref_primary_10_1002_marc_202400760 crossref_primary_10_1016_j_polymer_2018_08_078 crossref_primary_10_1007_s10118_020_2447_1 crossref_primary_10_1021_acs_cgd_3c01198 crossref_primary_10_1021_acs_macromol_2c00370 crossref_primary_10_1016_j_polymer_2022_125303 crossref_primary_10_1002_mgea_70003 crossref_primary_10_1016_j_polymer_2019_121625 crossref_primary_10_1016_j_polymer_2023_126378 crossref_primary_10_1016_j_polymertesting_2019_04_029 crossref_primary_10_1016_j_polymer_2023_126498 crossref_primary_10_1063_5_0097112 crossref_primary_10_1021_acs_macromol_3c01541 crossref_primary_10_1016_j_polymer_2020_123000 crossref_primary_10_1002_pcr2_10052 crossref_primary_10_1002_pcr2_10053 crossref_primary_10_1021_acs_jpclett_2c00798 crossref_primary_10_1021_acs_macromol_0c00885 crossref_primary_10_1021_acs_macromol_9b02463 crossref_primary_10_1021_acs_macromol_9b02220 crossref_primary_10_1021_acs_macromol_4c00438 crossref_primary_10_1002_marc_202400195 crossref_primary_10_1016_j_polymer_2019_121719 crossref_primary_10_1016_j_polymer_2021_123795 crossref_primary_10_1002_anie_202215582 crossref_primary_10_1016_j_polymer_2020_122985 crossref_primary_10_1002_pen_25474 crossref_primary_10_1021_acs_iecr_8b00708 crossref_primary_10_1016_j_polymer_2020_123150 crossref_primary_10_1021_acsami_3c08265 crossref_primary_10_1021_acs_macromol_0c02398 crossref_primary_10_1039_D5SM00019J crossref_primary_10_1002_app_55326 crossref_primary_10_1021_acs_macromol_1c01472 crossref_primary_10_1016_j_polymer_2022_124797 crossref_primary_10_1002_ange_202310953 crossref_primary_10_1002_smll_202304196 crossref_primary_10_1007_s10965_019_1869_3 crossref_primary_10_1016_j_polymer_2024_127741 crossref_primary_10_1038_s41428_021_00516_9 crossref_primary_10_1021_acs_macromol_0c00542 crossref_primary_10_1360_SSC_2022_0032 crossref_primary_10_1021_acsapm_9b00391 crossref_primary_10_1021_acs_macromol_3c01594 crossref_primary_10_1016_j_polymer_2019_121817 crossref_primary_10_1016_j_polymer_2019_121934 crossref_primary_10_1021_acs_macromol_1c01606 crossref_primary_10_1021_acs_macromol_3c02447 crossref_primary_10_1007_s00170_022_09522_4 crossref_primary_10_1021_acs_chemrev_8b00593 crossref_primary_10_1021_acsapm_0c00179 crossref_primary_10_1016_j_cej_2018_10_108 crossref_primary_10_1021_acsami_3c00120 crossref_primary_10_1021_acs_macromol_2c01823 crossref_primary_10_1063_1_5054273 crossref_primary_10_1021_acs_macromol_2c01942 crossref_primary_10_1039_D0CP04964F crossref_primary_10_1039_D0CE00157K crossref_primary_10_1016_j_polymer_2023_125909 crossref_primary_10_1021_acs_iecr_0c01328 crossref_primary_10_1007_s10118_022_2672_x crossref_primary_10_1021_acs_macromol_8b02569 crossref_primary_10_1002_pol_20220330 crossref_primary_10_1021_acs_macromol_4c00242 crossref_primary_10_1016_j_polymer_2021_124438 crossref_primary_10_1016_j_polymer_2020_122875 crossref_primary_10_1002_polb_24790 crossref_primary_10_1016_j_ijmecsci_2022_107917 crossref_primary_10_1016_j_polymer_2019_05_055 crossref_primary_10_1021_acs_macromol_4c01570 crossref_primary_10_1063_5_0130284 crossref_primary_10_1002_pcr2_10132 crossref_primary_10_1021_acs_macromol_1c00077 crossref_primary_10_1016_j_polymer_2020_122987 crossref_primary_10_1016_j_nucana_2022_100011 crossref_primary_10_1016_j_polymer_2020_123078 crossref_primary_10_1016_j_polymer_2021_124203 crossref_primary_10_1007_s10118_024_3218_1 crossref_primary_10_1063_5_0219366 crossref_primary_10_1021_acs_macromol_4c01343 crossref_primary_10_1021_acs_macromol_9b00346 crossref_primary_10_1016_j_polymertesting_2021_107143 crossref_primary_10_1016_j_compscitech_2018_11_002 crossref_primary_10_1063_5_0080767 crossref_primary_10_1002_pcr2_10045 crossref_primary_10_1021_acs_macromol_0c02477 crossref_primary_10_1016_j_polymer_2018_10_066 crossref_primary_10_1002_pcr2_10043 crossref_primary_10_1016_j_polymertesting_2019_105913 crossref_primary_10_1007_s10118_022_2804_3 crossref_primary_10_3390_polym12102341 crossref_primary_10_1016_j_compscitech_2022_109770 crossref_primary_10_1016_j_polymer_2020_122773 crossref_primary_10_1021_acs_macromol_1c00849 crossref_primary_10_1039_D1CP01067K crossref_primary_10_1007_s10118_022_2710_8 crossref_primary_10_1016_j_polymer_2021_123484 crossref_primary_10_1016_j_polymer_2022_125287 crossref_primary_10_1002_pcr2_10035 crossref_primary_10_1002_pc_27346 crossref_primary_10_1007_s10965_021_02810_9 crossref_primary_10_1016_j_polymer_2020_122442 crossref_primary_10_1021_acs_macromol_3c02243 crossref_primary_10_1002_gch2_202000008 crossref_primary_10_1016_j_apsusc_2024_159385 crossref_primary_10_1016_j_polymer_2019_121698 crossref_primary_10_1021_acsapm_0c01345 crossref_primary_10_1021_acsapm_1c00462 crossref_primary_10_1002_pcr2_10105 crossref_primary_10_1021_acspolymersau_2c00049 crossref_primary_10_1016_j_polymdegradstab_2023_110293 crossref_primary_10_1021_acs_cgd_4c00592 crossref_primary_10_1021_acs_iecr_9b05667 crossref_primary_10_1039_C9SM02554E crossref_primary_10_1016_j_polymer_2018_02_048 crossref_primary_10_1021_acs_macromol_1c00204 crossref_primary_10_1021_acs_macromol_8b00346 crossref_primary_10_1515_epoly_2021_0084 crossref_primary_10_1021_acs_macromol_4c00721 crossref_primary_10_1016_j_polymer_2021_124359 crossref_primary_10_1063_1_5123983 crossref_primary_10_1002_pen_26730 crossref_primary_10_1021_acs_jpcb_0c01972 crossref_primary_10_1021_acs_macromol_4c01252 crossref_primary_10_1021_acsomega_9b04138 crossref_primary_10_1016_j_cclet_2018_10_028 crossref_primary_10_1039_D1SM01492G crossref_primary_10_1021_acs_macromol_1c01407 crossref_primary_10_1007_s10118_021_2622_z crossref_primary_10_1038_s41428_023_00821_5 crossref_primary_10_1016_j_polymertesting_2019_105903 crossref_primary_10_1021_acs_macromol_1c02056 crossref_primary_10_1122_1_5056170 crossref_primary_10_1021_acs_iecr_0c02846 crossref_primary_10_1016_j_polymertesting_2020_106439 crossref_primary_10_1103_PhysRevLett_124_147802 crossref_primary_10_1063_5_0012376 crossref_primary_10_3390_polym12020447 crossref_primary_10_1007_s10118_018_2169_9 crossref_primary_10_1016_j_polymer_2024_127912 crossref_primary_10_1016_j_polymer_2021_123390 crossref_primary_10_1016_j_bpj_2019_04_025 crossref_primary_10_1021_acsami_0c17900 crossref_primary_10_1016_j_polymer_2025_128179 crossref_primary_10_1016_j_polymer_2024_127592 crossref_primary_10_1021_acs_macromol_3c01846 crossref_primary_10_1063_5_0060120 crossref_primary_10_1016_j_seppur_2022_120847 crossref_primary_10_1021_acs_macromol_8b01538 crossref_primary_10_1021_acs_macromol_8b00325 crossref_primary_10_1002_macp_202100427 crossref_primary_10_1021_acs_macromol_4c01399 crossref_primary_10_1007_s10118_024_3227_0 crossref_primary_10_1021_acs_cgd_3c00811 crossref_primary_10_1021_acs_macromol_3c00194 crossref_primary_10_1021_acs_macromol_4c01952 crossref_primary_10_1039_C8TA03778G crossref_primary_10_1039_D2CP01522F crossref_primary_10_1016_j_polymer_2024_127464 crossref_primary_10_1016_j_eurpolymj_2018_08_041 crossref_primary_10_1016_j_compscitech_2022_109847 crossref_primary_10_1021_acs_langmuir_8b03028 crossref_primary_10_1002_macp_202300203 crossref_primary_10_1021_acs_macromol_0c02208 crossref_primary_10_1021_acs_macromol_9b01195 crossref_primary_10_1002_anie_202310953 crossref_primary_10_1016_j_polymer_2021_124267 crossref_primary_10_1021_acs_macromol_4c02256 crossref_primary_10_1016_j_polymer_2019_121899 crossref_primary_10_1088_1361_6633_ac4d92 crossref_primary_10_1007_s10118_022_2709_1 crossref_primary_10_1021_acs_biomac_9b00975 crossref_primary_10_3390_polym12112571 crossref_primary_10_1021_jacs_1c02644 crossref_primary_10_1002_polb_24727 crossref_primary_10_1002_app_46985 crossref_primary_10_1002_ange_202215582 crossref_primary_10_1007_s10118_022_2690_8 crossref_primary_10_1021_acs_macromol_0c02855 crossref_primary_10_1134_S0965545X19050043 crossref_primary_10_1021_acs_macromol_9b01188 crossref_primary_10_1515_polyeng_2023_0026 crossref_primary_10_1063_5_0086136 crossref_primary_10_1016_j_polymer_2022_125586 crossref_primary_10_1016_j_polymer_2024_126792 crossref_primary_10_1039_D1RA02594E crossref_primary_10_1016_j_cej_2018_04_197 crossref_primary_10_1021_acsapm_9b00658 crossref_primary_10_1039_D0SM01361G crossref_primary_10_1021_acs_macromol_2c00343 crossref_primary_10_1016_j_polymer_2018_12_029 crossref_primary_10_1016_j_cej_2023_141371 crossref_primary_10_1021_acs_macromol_9b02141 crossref_primary_10_1016_j_polymer_2020_122385 crossref_primary_10_1021_acs_macromol_4c00413 crossref_primary_10_1016_j_eurpolymj_2022_111232 crossref_primary_10_1002_smll_202205960 crossref_primary_10_1039_C9SM00556K crossref_primary_10_1021_acssuschemeng_0c07802 crossref_primary_10_1007_s10118_023_2974_7 crossref_primary_10_1039_D1CP02617H crossref_primary_10_1016_j_cej_2021_134475 crossref_primary_10_3390_polym11101565 crossref_primary_10_1002_asia_202100957 crossref_primary_10_1063_1_5139621 crossref_primary_10_1016_j_polymdegradstab_2018_06_001 crossref_primary_10_1021_acs_macromol_4c01079 crossref_primary_10_1016_j_polymer_2019_121641 crossref_primary_10_1016_j_polymer_2020_122492 crossref_primary_10_1021_acs_macromol_4c02042 crossref_primary_10_1021_acsmacrolett_9b00953 crossref_primary_10_1021_acs_jpcb_8b05991 crossref_primary_10_1016_j_polymer_2023_126393 crossref_primary_10_1016_j_physrep_2018_04_004 crossref_primary_10_1016_j_polymer_2023_126390 crossref_primary_10_1063_5_0130699 crossref_primary_10_1039_D0SM02181D crossref_primary_10_1021_acsami_9b15865 crossref_primary_10_1021_acs_macromol_0c01318 crossref_primary_10_1016_j_polymdegradstab_2023_110441 |
Cites_doi | 10.1023/A:1004820824004 10.1016/j.progpolymsci.2005.09.001 10.1021/ma071475e 10.1002/polb.20098 10.1002/app.1995.070550518 10.1110/ps.03501704 10.1122/1.3545844 10.1021/ma9020642 10.1016/j.polymer.2005.06.074 10.1103/PhysRevLett.81.373 10.1140/epje/i2002-10044-x 10.1021/ma300338c 10.1002/9783527603978.mst0211 10.1021/acs.macromol.5b00386 10.1007/BF01410467 10.1295/polymj.31.722 10.1021/ma052589y 10.1063/1.3574219 10.1002/polb.22176 10.1016/j.polymer.2005.08.102 10.1002/polb.1990.090281001 10.1002/macp.200400130 10.1021/ma9906332 10.1002/pol.1965.100030827 10.1021/ma502412y 10.1021/ma001124z 10.1039/c3sm52152d 10.1122/1.2829149 10.1122/1.1595099 10.1007/BF01415506 10.1529/biophysj.105.067090 10.1016/0032-3861(95)91578-U 10.1021/ma402031m 10.1021/ma062842+ 10.1016/j.physrep.2008.02.002 10.1103/PhysRevE.63.021909 10.1021/ma990641i 10.1021/ma062105d 10.1073/pnas.96.1.11 10.1002/marc.201400505 10.1063/1.436284 10.1246/bcsj.78.1 10.1021/ma301888r 10.3139/217.950243 10.1063/1.1603724 10.1021/ma300974w 10.1016/j.polymer.2014.09.039 10.1016/S0022-0248(02)01453-7 10.1021/ma201249y 10.1021/ma0350157 10.1021/ma0606307 10.1016/j.polymer.2013.04.066 10.1122/1.3596599 10.1016/S0032-3861(01)00402-5 10.1007/BFb0115440 10.1021/jp012165f 10.1016/0032-3861(96)00175-9 10.1021/ma100677f 10.1007/BF02086621 10.1007/b107175 10.1002/pol.1966.110040411 10.1016/j.polymer.2012.05.062 10.1002/pol.1981.180190405 10.1021/ma902495z 10.1063/1.1744378 10.1021/ma011631w 10.1021/ma071021h 10.1098/rspa.1970.0170 10.1016/j.polymer.2008.03.041 10.1007/BF01507982 10.1021/acs.macromol.5b00819 10.1098/rsta.1975.0020 10.1007/BF01382398 10.1122/1.549715 10.1016/0921-4526(95)00258-B 10.1016/0371-1951(64)80084-9 10.1021/ma102662p 10.1073/pnas.0506864102 10.6028/jres.084.018 10.1021/ma0104478 10.1021/ma200165q 10.1063/1.1149720 10.1063/1.1855407 10.1002/mats.201300004 10.1021/ma00020a032 10.1088/1757-899X/14/1/012005 10.1103/PhysRevLett.100.048302 10.1007/s11426-015-5361-6 10.1038/200778a0 10.1016/j.polymer.2014.05.013 10.1021/jp802511b 10.1007/BFb0008607 10.1007/BF01729257 10.1122/1.2241989 10.1007/s00397-004-0382-7 10.1021/ma010249g 10.1016/S0377-0257(00)00088-4 10.1021/acs.jpcb.5b01480 10.1016/S0032-3861(98)00864-7 10.3139/217.930236 10.1063/1.1557473 10.1002/pol.1977.130151102 10.1021/ma0255581 10.1002/polb.1993.090310316 10.1039/a900246d 10.1080/00222347508217861 10.1063/1.1746537 10.1122/1.4913696 10.1007/s00397-002-0247-x 10.1021/ma047444q 10.1021/ma702118x 10.1021/ma400061a 10.1021/acs.macromol.5b02688 10.1002/pol.1979.180170104 10.1016/S0032-3861(99)00461-9 10.1021/ma0114180 10.1016/j.polymer.2015.01.026 10.1016/j.eurpolymj.2010.09.021 10.1007/BF02086847 10.1021/ma050092i 10.1002/1521-3900(200208)185:1<105::AID-MASY105>3.0.CO;2-3 10.1016/j.polymer.2005.02.133 10.1103/PhysRevLett.84.2160 10.1122/1.4982703 10.1007/s00397-010-0435-z 10.1021/ma9004567 10.1016/0032-3861(96)88476-X 10.1142/S0256767909004187 10.1063/1.1747055 10.1080/00222349408248082 10.1103/PhysRevB.52.12696 10.1051/jp2:1992225 10.1007/12_013 10.1016/0032-3861(92)90400-Q 10.1021/ma011359q 10.1021/ma0485989 10.1002/bip.1979.360180918 10.1063/1.3463393 10.1002/app.1959.070020404 10.1021/ma051914e 10.1021/ma020785o 10.1038/199798a0 10.1021/ma100496g 10.1111/j.1749-6632.1949.tb27296.x 10.1021/ma702603v 10.1021/bk-2000-0739.ch013 10.1007/s00397-003-0329-4 10.1016/j.progpolymsci.2006.01.001 10.1366/0003702934065920 10.1007/BF01524712 10.1039/b202680e 10.1016/j.polymer.2005.02.096 10.1021/ma201263z 10.1016/0032-3861(92)90399-H 10.1021/am3019756 10.1021/ma062606z 10.1016/S0032-3861(01)00416-5 10.1007/s10118-013-1354-0 10.1007/BF00652825 10.1016/j.polymer.2005.06.034 10.1021/ie401162c 10.1081/MB-120021578 10.1126/science.283.5408.1724 10.1016/0032-3861(71)90064-4 10.1063/1.1730390 10.1007/BF01552509 10.1021/acs.macromol.5b01408 10.1007/3-540-12994-4_1 10.1016/j.polymer.2009.06.021 10.1039/C3CC49668F 10.1021/ma052340g 10.1007/3-540-47307-6_5 10.1021/ma800063e 10.1002/pi.3180 10.1002/pen.760190605 10.1038/srep32968 10.1007/BFb0115450 10.1016/j.matlet.2006.11.085 10.1063/1.1768515 10.1002/1521-3900(200208)185:1<211::AID-MASY211>3.0.CO;2-B 10.1002/9783527603978.mst0210 10.1021/ma802679h 10.1002/mame.201400131 10.1081/MB-120021579 10.1016/j.polymer.2011.03.001 10.1021/ma3014756 10.1039/C5PY00339C 10.1021/ma00163a027 10.1063/1.1696134 10.1021/ma001697b 10.1021/ma991468t 10.1063/1.1372510 10.1021/ma0351569 10.1021/ma302095k 10.1021/ma400024m 10.1016/j.polymer.2015.06.030 10.1007/BF01491823 10.1103/PhysRevB.56.11536 10.1023/A:1004824924912 10.1007/BF00556059 10.1002/pen.21891 10.1021/acs.macromol.6b02544 10.1016/0032-3861(73)90073-6 10.1021/ma802169t 10.1122/1.4808439 10.1016/S0378-4371(01)00509-X 10.1002/pol.1965.100030319 10.1021/acs.macromol.6b00333 10.1002/mats.200900016 10.1016/j.polymer.2009.03.008 10.1103/PhysRevLett.110.087801 10.1039/C3CS60308C 10.1007/BF01031850 10.1002/app.1959.070020403 10.1201/9781420057805 10.1021/ma980536t 10.1016/j.polymer.2012.08.046 10.1021/acs.macromol.5b01043 10.1007/s10118-015-1705-0 10.1103/PhysRevLett.94.117802 10.1021/ma300207f 10.1021/ma010275e 10.1021/ma1020193 10.1080/00222349208215459 10.1021/sc4003032 10.1021/acs.macromol.5b00013 10.1002/(SICI)1099-0488(199610)34:14<2393::AID-POLB9>3.0.CO;2-X 10.1021/ie020237z 10.1021/ma049925f 10.1063/1.1746629 10.1002/9781118541838.ch15 10.1007/s10118-015-1663-6 10.1016/j.eurpolymj.2010.06.004 10.1021/ma501482w 10.1007/s10118-015-1617-z 10.1021/ma500307h 10.1007/BF02403108 10.1103/PhysRevE.65.061801 10.1016/j.polymer.2012.02.023 10.1021/ma401833k 10.1016/j.polymer.2006.12.025 10.1080/00222340801955313 10.1080/00222347208219131 10.1021/ma5005293 10.1063/1.1681018 10.1016/S0032-3861(99)00327-4 10.1021/ma960333+ 10.1021/acs.macromol.6b00428 10.1016/S0032-3861(97)00547-8 10.1002/macp.200390097 10.1007/BF01451543 10.1126/science.281.5381.1335 10.1103/PhysRevLett.103.115702 10.1007/BF01332685 10.1021/ma951222y 10.1002/1521-3919(20010601)10:5<447::AID-MATS447>3.0.CO;2-C 10.1021/ma3000384 10.1021/ma2008817 10.1007/BF02086256 10.1063/1.1590737 10.1002/9781118541838.ch14 10.1021/ma048285d 10.1002/marc.201600185 10.1021/acs.macromol.6b01945 10.1039/C7SM00107J 10.1002/1521-3900(200208)185:1<233::AID-MASY233>3.0.CO;2-W 10.1039/c3ra46504g 10.1021/ma900954c 10.1016/0022-3093(94)90637-8 10.1021/ma021373i 10.1021/ma3023958 10.1007/b107169 10.1021/ma802479c 10.1126/science.1140132 10.1103/PhysRevLett.78.2690 10.1063/1.1147295 10.1016/j.polymer.2014.01.034 10.1002/9781118541838.ch6 |
ContentType | Journal Article |
Copyright | Copyright © 2018 American Chemical Society Copyright American Chemical Society Feb 28, 2018 |
Copyright_xml | – notice: Copyright © 2018 American Chemical Society – notice: Copyright American Chemical Society Feb 28, 2018 |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 7S9 L.6 |
DOI | 10.1021/acs.chemrev.7b00500 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-6890 |
EndPage | 1886 |
ExternalDocumentID | 29350931 10_1021_acs_chemrev_7b00500 a37052146 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 1AW 29B 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 D0L DU5 DZ EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 LG6 P2P PQEST PQQKQ ROL RWL TAE TN5 UI2 UKR UPT VF5 VG9 VQA W1F WH7 X YZZ ZHY --- -DZ -~X .DC 4.4 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AFXLT AGXLV AHGAQ CITATION CUPRZ GGK XSW ~02 NPM 7SR 8BQ 8FD JG9 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a406t-4db16e0a6fac2a0ab4ac2e65d233c9f9b570e28b7c9ad6bf891c7b226f64eb673 |
IEDL.DBID | ACS |
ISSN | 0009-2665 1520-6890 |
IngestDate | Thu Jul 10 17:55:18 EDT 2025 Fri Jul 11 03:42:52 EDT 2025 Mon Jun 30 08:45:15 EDT 2025 Thu Apr 03 06:56:59 EDT 2025 Tue Jul 01 03:16:16 EDT 2025 Thu Apr 24 22:57:12 EDT 2025 Sun Dec 06 13:24:36 EST 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a406t-4db16e0a6fac2a0ab4ac2e65d233c9f9b570e28b7c9ad6bf891c7b226f64eb673 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1887-9856 0000-0003-1822-876X |
PMID | 29350931 |
PQID | 2023405568 |
PQPubID | 45407 |
PageCount | 47 |
ParticipantIDs | proquest_miscellaneous_2131894966 proquest_miscellaneous_1989598637 proquest_journals_2023405568 pubmed_primary_29350931 crossref_citationtrail_10_1021_acs_chemrev_7b00500 crossref_primary_10_1021_acs_chemrev_7b00500 acs_journals_10_1021_acs_chemrev_7b00500 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180228 2018-02-28 |
PublicationDateYYYYMMDD | 2018-02-28 |
PublicationDate_xml | – month: 02 year: 2018 text: 20180228 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Easton |
PublicationTitle | Chemical reviews |
PublicationTitleAlternate | Chem. Rev |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref99/cit99 ref3/cit3 ref81/cit81 ref16/cit16 ref185/cit185 ref23/cit23 ref115/cit115 ref259/cit259 ref187/cit187 ref181/cit181 ref111/cit111 ref255/cit255 ref113/cit113 ref183/cit183 ref257/cit257 ref117/cit117 ref48/cit48 ref74/cit74 ref189/cit189 ref119/cit119 ref10/cit10 ref35/cit35 ref93/cit93 ref251/cit251 ref253/cit253 ref42/cit42 ref120/cit120 ref178/cit178 ref122/cit122 ref248/cit248 ref61/cit61 ref176/cit176 ref128/cit128 ref124/cit124 ref126/cit126 ref54/cit54 ref240/cit240 ref137/cit137 ref11/cit11 ref102/cit102 ref29/cit29 ref174/cit174 ref86/cit86 ref170/cit170 ref244/cit244 ref271/cit271 ref5/cit5 ref43/cit43 ref80/cit80 ref133/cit133 ref207/cit207 ref28/cit28 ref279/cit279 ref203/cit203 ref275/cit275 ref233/cit233 ref148/cit148 ref55/cit55 ref144/cit144 ref167/cit167 ref163/cit163 ref237/cit237 ref66/cit66 ref264/cit264 ref260/cit260 ref87/cit87 ref106/cit106 ref190/cit190 ref140/cit140 ref198/cit198 ref214/cit214 ref194/cit194 ref98/cit98 ref210/cit210 ref268/cit268 ref153/cit153 ref227/cit227 ref222/cit222 ref150/cit150 ref63/cit63 ref224/cit224 ref56/cit56 ref155/cit155 ref229/cit229 ref156/cit156 ref158/cit158 ref8/cit8 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref60/cit60 ref17/cit17 ref219/cit219 ref82/cit82 ref147/cit147 ref232/cit232 Doi M. (ref67/cit67) 1986 ref230/cit230 ref145/cit145 ref238/cit238 ref21/cit21 ref166/cit166 ref164/cit164 ref213/cit213 ref284/cit284 ref78/cit78 ref211/cit211 ref36/cit36 ref83/cit83 ref79/cit79 ref139/cit139 ref172/cit172 ref246/cit246 ref243/cit243 ref270/cit270 ref200/cit200 ref14/cit14 ref57/cit57 ref169/cit169 ref278/cit278 ref134/cit134 ref208/cit208 ref273/cit273 ref131/cit131 ref205/cit205 Ebewele R. O. (ref22/cit22) 2000 ref161/cit161 ref142/cit142 ref216/cit216 ref15/cit15 ref180/cit180 ref235/cit235 ref62/cit62 ref41/cit41 ref58/cit58 ref104/cit104 ref262/cit262 ref177/cit177 ref84/cit84 ref1/cit1 ref123/cit123 ref196/cit196 ref281/cit281 ref7/cit7 ref45/cit45 ref52/cit52 ref184/cit184 ref114/cit114 ref258/cit258 ref186/cit186 ref116/cit116 ref110/cit110 ref254/cit254 ref182/cit182 ref2/cit2 ref112/cit112 ref256/cit256 ref77/cit77 ref71/cit71 ref188/cit188 ref20/cit20 ref118/cit118 ref89/cit89 ref19/cit19 ref96/cit96 ref107/cit107 ref191/cit191 ref265/cit265 ref109/cit109 ref13/cit13 ref193/cit193 ref105/cit105 ref261/cit261 ref263/cit263 ref197/cit197 ref38/cit38 ref199/cit199 ref90/cit90 ref267/cit267 ref195/cit195 ref269/cit269 ref64/cit64 ref6/cit6 ref18/cit18 ref136/cit136 ref65/cit65 ref171/cit171 ref97/cit97 ref101/cit101 ref245/cit245 ref241/cit241 ref76/cit76 ref32/cit32 ref39/cit39 ref272/cit272 ref202/cit202 ref168/cit168 ref206/cit206 ref132/cit132 ref276/cit276 ref91/cit91 ref252/cit252 ref12/cit12 ref179/cit179 ref121/cit121 ref33/cit33 ref249/cit249 ref283/cit283 ref129/cit129 ref44/cit44 ref70/cit70 ref125/cit125 ref9/cit9 ref152/cit152 ref225/cit225 ref226/cit226 ref154/cit154 ref27/cit27 ref228/cit228 ref223/cit223 ref151/cit151 ref159/cit159 ref92/cit92 ref157/cit157 Mitsuhashi S. (ref175/cit175) 1963; 66 ref31/cit31 ref220/cit220 ref88/cit88 ref160/cit160 ref234/cit234 ref143/cit143 ref217/cit217 ref53/cit53 ref149/cit149 ref162/cit162 ref46/cit46 ref236/cit236 ref49/cit49 ref75/cit75 ref24/cit24 ref141/cit141 ref215/cit215 ref280/cit280 ref50/cit50 ref282/cit282 ref209/cit209 ref138/cit138 ref100/cit100 ref25/cit25 ref173/cit173 ref103/cit103 ref247/cit247 ref72/cit72 ref242/cit242 ref201/cit201 ref51/cit51 ref277/cit277 ref135/cit135 ref68/cit68 ref94/cit94 ref130/cit130 ref274/cit274 ref204/cit204 ref146/cit146 ref26/cit26 ref73/cit73 ref231/cit231 ref69/cit69 ref165/cit165 Hoffman J. (ref218/cit218) 1979; 20 ref239/cit239 Sheils C. A. (ref40/cit40) 1996; 148 ref250/cit250 ref95/cit95 ref108/cit108 ref192/cit192 ref266/cit266 ref4/cit4 ref30/cit30 ref212/cit212 ref47/cit47 ref127/cit127 |
References_xml | – ident: ref87/cit87 doi: 10.1023/A:1004820824004 – ident: ref260/cit260 doi: 10.1016/j.progpolymsci.2005.09.001 – ident: ref118/cit118 doi: 10.1021/ma071475e – ident: ref192/cit192 doi: 10.1002/polb.20098 – volume: 20 start-page: 1071 year: 1979 ident: ref218/cit218 publication-title: Polymer – ident: ref202/cit202 doi: 10.1002/app.1995.070550518 – ident: ref129/cit129 doi: 10.1110/ps.03501704 – ident: ref281/cit281 doi: 10.1122/1.3545844 – ident: ref217/cit217 doi: 10.1021/ma9020642 – ident: ref93/cit93 doi: 10.1016/j.polymer.2005.06.074 – ident: ref35/cit35 doi: 10.1103/PhysRevLett.81.373 – ident: ref47/cit47 doi: 10.1140/epje/i2002-10044-x – ident: ref97/cit97 doi: 10.1021/ma300338c – ident: ref279/cit279 doi: 10.1002/9783527603978.mst0211 – ident: ref15/cit15 doi: 10.1021/acs.macromol.5b00386 – ident: ref191/cit191 doi: 10.1007/BF01410467 – ident: ref89/cit89 doi: 10.1295/polymj.31.722 – ident: ref195/cit195 doi: 10.1021/ma052589y – ident: ref92/cit92 doi: 10.1063/1.3574219 – ident: ref198/cit198 doi: 10.1002/polb.22176 – ident: ref226/cit226 doi: 10.1016/j.polymer.2005.08.102 – ident: ref214/cit214 doi: 10.1002/polb.1990.090281001 – ident: ref264/cit264 doi: 10.1002/macp.200400130 – ident: ref4/cit4 doi: 10.1021/ma9906332 – ident: ref25/cit25 doi: 10.1002/pol.1965.100030827 – ident: ref30/cit30 doi: 10.1021/ma502412y – ident: ref122/cit122 doi: 10.1021/ma001124z – ident: ref262/cit262 doi: 10.1039/c3sm52152d – ident: ref255/cit255 doi: 10.1122/1.2829149 – ident: ref274/cit274 doi: 10.1122/1.1595099 – ident: ref188/cit188 doi: 10.1007/BF01415506 – ident: ref46/cit46 doi: 10.1529/biophysj.105.067090 – ident: ref58/cit58 doi: 10.1016/0032-3861(95)91578-U – ident: ref134/cit134 doi: 10.1021/ma402031m – ident: ref197/cit197 doi: 10.1021/ma062842+ – ident: ref76/cit76 doi: 10.1016/j.physrep.2008.02.002 – ident: ref36/cit36 doi: 10.1103/PhysRevE.63.021909 – ident: ref24/cit24 doi: 10.1021/ma990641i – ident: ref133/cit133 doi: 10.1021/ma062105d – ident: ref39/cit39 doi: 10.1073/pnas.96.1.11 – ident: ref137/cit137 doi: 10.1002/marc.201400505 – ident: ref100/cit100 doi: 10.1063/1.436284 – ident: ref193/cit193 doi: 10.1246/bcsj.78.1 – ident: ref124/cit124 doi: 10.1021/ma301888r – ident: ref132/cit132 doi: 10.3139/217.950243 – ident: ref272/cit272 doi: 10.1063/1.1603724 – ident: ref161/cit161 doi: 10.1021/ma300974w – ident: ref111/cit111 doi: 10.1016/j.polymer.2014.09.039 – ident: ref201/cit201 doi: 10.1016/S0022-0248(02)01453-7 – ident: ref267/cit267 doi: 10.1021/ma201249y – ident: ref117/cit117 doi: 10.1021/ma0350157 – ident: ref227/cit227 doi: 10.1021/ma0606307 – ident: ref3/cit3 doi: 10.1016/j.polymer.2013.04.066 – ident: ref266/cit266 doi: 10.1122/1.3596599 – ident: ref115/cit115 doi: 10.1016/S0032-3861(01)00402-5 – ident: ref1/cit1 doi: 10.1007/BFb0115440 – ident: ref49/cit49 doi: 10.1021/jp012165f – ident: ref57/cit57 doi: 10.1016/0032-3861(96)00175-9 – ident: ref270/cit270 doi: 10.1021/ma100677f – ident: ref181/cit181 doi: 10.1007/BF02086621 – ident: ref83/cit83 doi: 10.1007/b107175 – ident: ref174/cit174 doi: 10.1002/pol.1966.110040411 – ident: ref121/cit121 doi: 10.1016/j.polymer.2012.05.062 – ident: ref110/cit110 doi: 10.1002/pol.1981.180190405 – ident: ref151/cit151 doi: 10.1021/ma902495z – ident: ref42/cit42 doi: 10.1063/1.1744378 – ident: ref45/cit45 doi: 10.1021/ma011631w – ident: ref50/cit50 doi: 10.1021/ma071021h – volume-title: The Theory of Polymer Dynamics year: 1986 ident: ref67/cit67 – ident: ref182/cit182 doi: 10.1098/rspa.1970.0170 – ident: ref168/cit168 doi: 10.1016/j.polymer.2008.03.041 – ident: ref177/cit177 doi: 10.1007/BF01507982 – ident: ref228/cit228 doi: 10.1021/acs.macromol.5b00819 – ident: ref209/cit209 doi: 10.1098/rsta.1975.0020 – ident: ref190/cit190 doi: 10.1007/BF01382398 – ident: ref254/cit254 doi: 10.1122/1.549715 – ident: ref103/cit103 doi: 10.1016/0921-4526(95)00258-B – ident: ref48/cit48 doi: 10.1016/0371-1951(64)80084-9 – ident: ref27/cit27 doi: 10.1021/ma102662p – ident: ref41/cit41 doi: 10.1073/pnas.0506864102 – ident: ref219/cit219 doi: 10.6028/jres.084.018 – ident: ref96/cit96 doi: 10.1021/ma0104478 – ident: ref152/cit152 doi: 10.1021/ma200165q – ident: ref91/cit91 doi: 10.1063/1.1149720 – ident: ref235/cit235 doi: 10.1063/1.1855407 – ident: ref282/cit282 doi: 10.1002/mats.201300004 – ident: ref20/cit20 doi: 10.1021/ma00020a032 – ident: ref148/cit148 doi: 10.1088/1757-899X/14/1/012005 – ident: ref120/cit120 doi: 10.1103/PhysRevLett.100.048302 – ident: ref252/cit252 doi: 10.1007/s11426-015-5361-6 – ident: ref179/cit179 doi: 10.1038/200778a0 – ident: ref14/cit14 doi: 10.1016/j.polymer.2014.05.013 – ident: ref51/cit51 doi: 10.1021/jp802511b – ident: ref38/cit38 doi: 10.1007/BFb0008607 – ident: ref187/cit187 doi: 10.1007/BF01729257 – ident: ref265/cit265 doi: 10.1122/1.2241989 – ident: ref155/cit155 doi: 10.1007/s00397-004-0382-7 – ident: ref75/cit75 doi: 10.1021/ma010249g – ident: ref5/cit5 doi: 10.1016/S0377-0257(00)00088-4 – ident: ref80/cit80 doi: 10.1021/acs.jpcb.5b01480 – ident: ref65/cit65 doi: 10.1016/S0032-3861(98)00864-7 – ident: ref90/cit90 doi: 10.3139/217.930236 – ident: ref212/cit212 doi: 10.1063/1.1557473 – ident: ref215/cit215 doi: 10.1002/pol.1977.130151102 – ident: ref271/cit271 doi: 10.1021/ma0255581 – ident: ref109/cit109 doi: 10.1002/polb.1993.090310316 – ident: ref107/cit107 doi: 10.1039/a900246d – ident: ref246/cit246 doi: 10.1080/00222347508217861 – ident: ref239/cit239 doi: 10.1063/1.1746537 – ident: ref283/cit283 doi: 10.1122/1.4913696 – ident: ref149/cit149 doi: 10.1007/s00397-002-0247-x – ident: ref157/cit157 doi: 10.1021/ma047444q – ident: ref159/cit159 doi: 10.1021/ma702118x – ident: ref68/cit68 doi: 10.1021/ma400061a – ident: ref19/cit19 doi: 10.1021/acs.macromol.5b02688 – ident: ref237/cit237 doi: 10.1002/pol.1979.180170104 – ident: ref243/cit243 doi: 10.1016/S0032-3861(99)00461-9 – ident: ref154/cit154 doi: 10.1021/ma0114180 – ident: ref171/cit171 doi: 10.1016/j.polymer.2015.01.026 – ident: ref138/cit138 doi: 10.1016/j.eurpolymj.2010.09.021 – ident: ref180/cit180 doi: 10.1007/BF02086847 – ident: ref194/cit194 doi: 10.1021/ma050092i – ident: ref125/cit125 doi: 10.1002/1521-3900(200208)185:1<105::AID-MASY105>3.0.CO;2-3 – ident: ref236/cit236 doi: 10.1016/j.polymer.2005.02.133 – ident: ref44/cit44 doi: 10.1103/PhysRevLett.84.2160 – ident: ref230/cit230 doi: 10.1122/1.4982703 – ident: ref208/cit208 doi: 10.1007/s00397-010-0435-z – ident: ref53/cit53 doi: 10.1021/ma9004567 – ident: ref86/cit86 doi: 10.1016/0032-3861(96)88476-X – ident: ref6/cit6 doi: 10.1142/S0256767909004187 – ident: ref79/cit79 doi: 10.1063/1.1747055 – ident: ref213/cit213 doi: 10.1080/00222349408248082 – ident: ref104/cit104 doi: 10.1103/PhysRevB.52.12696 – ident: ref248/cit248 doi: 10.1051/jp2:1992225 – ident: ref31/cit31 doi: 10.1007/12_013 – ident: ref105/cit105 doi: 10.1016/0032-3861(92)90400-Q – ident: ref95/cit95 doi: 10.1021/ma011359q – ident: ref72/cit72 doi: 10.1021/ma0485989 – ident: ref82/cit82 doi: 10.1002/bip.1979.360180918 – ident: ref269/cit269 doi: 10.1063/1.3463393 – ident: ref173/cit173 doi: 10.1002/app.1959.070020404 – ident: ref196/cit196 doi: 10.1021/ma051914e – ident: ref242/cit242 doi: 10.1021/ma020785o – ident: ref176/cit176 doi: 10.1038/199798a0 – ident: ref245/cit245 doi: 10.1021/ma100496g – ident: ref66/cit66 doi: 10.1111/j.1749-6632.1949.tb27296.x – ident: ref150/cit150 doi: 10.1021/ma702603v – ident: ref106/cit106 doi: 10.1021/bk-2000-0739.ch013 – ident: ref258/cit258 doi: 10.1007/s00397-003-0329-4 – ident: ref33/cit33 doi: 10.1016/j.progpolymsci.2006.01.001 – ident: ref52/cit52 doi: 10.1366/0003702934065920 – ident: ref200/cit200 doi: 10.1007/BF01524712 – ident: ref34/cit34 doi: 10.1039/b202680e – ident: ref130/cit130 doi: 10.1016/j.polymer.2005.02.096 – ident: ref261/cit261 doi: 10.1021/ma201263z – ident: ref101/cit101 doi: 10.1016/0032-3861(92)90399-H – ident: ref160/cit160 doi: 10.1021/am3019756 – ident: ref205/cit205 doi: 10.1021/ma062606z – ident: ref64/cit64 doi: 10.1016/S0032-3861(01)00416-5 – ident: ref10/cit10 doi: 10.1007/s10118-013-1354-0 – ident: ref280/cit280 doi: 10.1007/BF00652825 – ident: ref11/cit11 doi: 10.1016/j.polymer.2005.06.034 – ident: ref2/cit2 doi: 10.1021/ie401162c – ident: ref203/cit203 doi: 10.1081/MB-120021578 – ident: ref210/cit210 doi: 10.1126/science.283.5408.1724 – ident: ref184/cit184 doi: 10.1016/0032-3861(71)90064-4 – ident: ref43/cit43 doi: 10.1063/1.1730390 – ident: ref85/cit85 doi: 10.1007/BF01552509 – ident: ref17/cit17 doi: 10.1021/acs.macromol.5b01408 – ident: ref37/cit37 doi: 10.1007/3-540-12994-4_1 – ident: ref135/cit135 doi: 10.1016/j.polymer.2009.06.021 – ident: ref13/cit13 doi: 10.1039/C3CC49668F – ident: ref222/cit222 doi: 10.1021/ma052340g – ident: ref244/cit244 doi: 10.1007/3-540-47307-6_5 – ident: ref153/cit153 doi: 10.1021/ma800063e – ident: ref158/cit158 doi: 10.1002/pi.3180 – ident: ref241/cit241 doi: 10.1002/pen.760190605 – ident: ref249/cit249 doi: 10.1038/srep32968 – ident: ref207/cit207 doi: 10.1007/BFb0115450 – ident: ref8/cit8 doi: 10.1016/j.matlet.2006.11.085 – ident: ref268/cit268 doi: 10.1063/1.1768515 – ident: ref73/cit73 doi: 10.1002/1521-3900(200208)185:1<211::AID-MASY211>3.0.CO;2-B – ident: ref216/cit216 doi: 10.1002/9783527603978.mst0210 – ident: ref232/cit232 doi: 10.1021/ma802679h – ident: ref284/cit284 doi: 10.1002/mame.201400131 – ident: ref74/cit74 doi: 10.1081/MB-120021579 – ident: ref143/cit143 doi: 10.1016/j.polymer.2011.03.001 – ident: ref142/cit142 doi: 10.1021/ma3014756 – ident: ref169/cit169 doi: 10.1039/C5PY00339C – ident: ref21/cit21 doi: 10.1021/ma00163a027 – volume: 66 start-page: 1 year: 1963 ident: ref175/cit175 publication-title: Bull. Text. Res. Inst. Jpn. – ident: ref23/cit23 doi: 10.1063/1.1696134 – ident: ref136/cit136 doi: 10.1021/ma001697b – ident: ref113/cit113 doi: 10.1021/ma991468t – ident: ref78/cit78 doi: 10.1063/1.1372510 – ident: ref56/cit56 doi: 10.1021/ma0351569 – ident: ref9/cit9 doi: 10.1021/ma302095k – ident: ref144/cit144 doi: 10.1021/ma400024m – ident: ref170/cit170 doi: 10.1016/j.polymer.2015.06.030 – ident: ref183/cit183 doi: 10.1007/BF01491823 – ident: ref29/cit29 doi: 10.1103/PhysRevB.56.11536 – ident: ref224/cit224 doi: 10.1023/A:1004824924912 – ident: ref189/cit189 doi: 10.1007/BF00556059 – ident: ref259/cit259 doi: 10.1002/pen.21891 – ident: ref54/cit54 doi: 10.1021/acs.macromol.6b02544 – ident: ref18/cit18 doi: 10.1016/0032-3861(73)90073-6 – ident: ref145/cit145 doi: 10.1021/ma802169t – ident: ref131/cit131 doi: 10.1122/1.4808439 – ident: ref126/cit126 doi: 10.1016/S0378-4371(01)00509-X – ident: ref178/cit178 doi: 10.1002/pol.1965.100030319 – ident: ref238/cit238 doi: 10.1021/acs.macromol.6b00333 – ident: ref276/cit276 doi: 10.1002/mats.200900016 – ident: ref71/cit71 doi: 10.1016/j.polymer.2009.03.008 – ident: ref233/cit233 doi: 10.1103/PhysRevLett.110.087801 – ident: ref12/cit12 doi: 10.1039/C3CS60308C – ident: ref185/cit185 doi: 10.1007/BF01031850 – ident: ref172/cit172 doi: 10.1002/app.1959.070020403 – volume-title: Polymer Science and Technology year: 2000 ident: ref22/cit22 doi: 10.1201/9781420057805 – ident: ref88/cit88 doi: 10.1021/ma980536t – ident: ref69/cit69 doi: 10.1016/j.polymer.2012.08.046 – ident: ref167/cit167 doi: 10.1021/acs.macromol.5b01043 – ident: ref163/cit163 doi: 10.1007/s10118-015-1705-0 – ident: ref59/cit59 doi: 10.1103/PhysRevLett.94.117802 – volume: 148 start-page: 919 year: 1996 ident: ref40/cit40 publication-title: Am. J. Pathol. – ident: ref70/cit70 doi: 10.1021/ma300207f – ident: ref253/cit253 doi: 10.1021/ma010275e – ident: ref119/cit119 doi: 10.1021/ma1020193 – ident: ref63/cit63 doi: 10.1080/00222349208215459 – ident: ref162/cit162 doi: 10.1021/sc4003032 – ident: ref32/cit32 doi: 10.1021/acs.macromol.5b00013 – ident: ref257/cit257 doi: 10.1002/(SICI)1099-0488(199610)34:14<2393::AID-POLB9>3.0.CO;2-X – ident: ref128/cit128 doi: 10.1021/ie020237z – ident: ref231/cit231 doi: 10.1021/ma049925f – ident: ref240/cit240 doi: 10.1063/1.1746629 – ident: ref278/cit278 doi: 10.1002/9781118541838.ch15 – ident: ref7/cit7 doi: 10.1007/s10118-015-1663-6 – ident: ref165/cit165 doi: 10.1016/j.eurpolymj.2010.06.004 – ident: ref123/cit123 doi: 10.1021/ma501482w – ident: ref164/cit164 doi: 10.1007/s10118-015-1617-z – ident: ref55/cit55 doi: 10.1021/ma500307h – ident: ref220/cit220 doi: 10.1007/BF02403108 – ident: ref102/cit102 doi: 10.1103/PhysRevE.65.061801 – ident: ref141/cit141 doi: 10.1016/j.polymer.2012.02.023 – ident: ref98/cit98 doi: 10.1021/ma401833k – ident: ref116/cit116 doi: 10.1016/j.polymer.2006.12.025 – ident: ref166/cit166 doi: 10.1080/00222340801955313 – ident: ref204/cit204 doi: 10.1080/00222347208219131 – ident: ref99/cit99 doi: 10.1021/ma5005293 – ident: ref206/cit206 doi: 10.1063/1.1681018 – ident: ref112/cit112 doi: 10.1016/S0032-3861(99)00327-4 – ident: ref61/cit61 doi: 10.1021/ma960333+ – ident: ref127/cit127 doi: 10.1021/acs.macromol.6b00428 – ident: ref108/cit108 doi: 10.1016/S0032-3861(97)00547-8 – ident: ref186/cit186 doi: 10.1016/0032-3861(73)90073-6 – ident: ref199/cit199 doi: 10.1002/macp.200390097 – ident: ref225/cit225 doi: 10.1007/BF01451543 – ident: ref211/cit211 doi: 10.1126/science.281.5381.1335 – ident: ref273/cit273 doi: 10.1103/PhysRevLett.103.115702 – ident: ref60/cit60 doi: 10.1007/BF01332685 – ident: ref62/cit62 doi: 10.1021/ma951222y – ident: ref275/cit275 doi: 10.1002/1521-3919(20010601)10:5<447::AID-MATS447>3.0.CO;2-C – ident: ref139/cit139 doi: 10.1021/ma3000384 – ident: ref223/cit223 doi: 10.1021/ma2008817 – ident: ref84/cit84 doi: 10.1007/BF02086256 – ident: ref234/cit234 doi: 10.1063/1.1590737 – ident: ref16/cit16 doi: 10.1002/9781118541838.ch14 – ident: ref146/cit146 doi: 10.1021/ma048285d – ident: ref250/cit250 doi: 10.1002/marc.201600185 – ident: ref229/cit229 doi: 10.1021/acs.macromol.6b01945 – ident: ref251/cit251 doi: 10.1039/C7SM00107J – ident: ref256/cit256 doi: 10.1002/1521-3900(200208)185:1<233::AID-MASY233>3.0.CO;2-W – ident: ref263/cit263 doi: 10.1039/c3ra46504g – ident: ref26/cit26 doi: 10.1021/ma900954c – ident: ref247/cit247 doi: 10.1016/0022-3093(94)90637-8 – ident: ref114/cit114 doi: 10.1021/ma021373i – ident: ref140/cit140 doi: 10.1021/ma3023958 – ident: ref28/cit28 doi: 10.1007/b107169 – ident: ref156/cit156 doi: 10.1021/ma802479c – ident: ref147/cit147 doi: 10.1126/science.1140132 – ident: ref77/cit77 doi: 10.1103/PhysRevLett.78.2690 – ident: ref94/cit94 doi: 10.1063/1.1147295 – ident: ref81/cit81 doi: 10.1016/j.polymer.2014.01.034 – ident: ref277/cit277 doi: 10.1002/9781118541838.ch6 |
SSID | ssj0005527 |
Score | 2.6424 |
SecondaryResourceType | review_article |
Snippet | Flow-induced crystallization (FIC) is a typical nonequilibrium phase transition and a core industry subject for the largest group of commercially useful... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1840 |
SubjectTerms | Crystallites Crystallization Deformation Flow Nucleation Nuclei Phase separation Phase transitions Polymers separation Synchrotron radiation Variation X ray detectors X-ray scattering |
Title | Multiscale and Multistep Ordering of Flow-Induced Nucleation of Polymers |
URI | http://dx.doi.org/10.1021/acs.chemrev.7b00500 https://www.ncbi.nlm.nih.gov/pubmed/29350931 https://www.proquest.com/docview/2023405568 https://www.proquest.com/docview/1989598637 https://www.proquest.com/docview/2131894966 |
Volume | 118 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYQHOgFKLR0C1RB4sCB0NjxIz6iFatVJZZKLRK3yK8IiSVB3awQ_PrO5LFQKAjlECV2ImfGznxje74h5EBbTwGH8xigrI55odI4s4LH1FFXiCRo63C-42wixxf8x6W4fBKs_mwFn9HvxoHwr8INpmRR2GkS8NBXmMwU-lonw1-POzr6DK24aCCl6EmG_v8SNEdu9q85egVjNrZmtE4mfcROu8Xk-nhe22P38JLA8X2fsUHWOtQZnbTd5CNZCuUmWR32yd62yLgJxJ2BwkJkSh-1l3W4jc6RmxPsW1QV0Wha3cWY7MMFH02QCbnRKxb9rKb3OAX-iVyMTn8Px3GXZCE2YMvrmHtLZUiMLIxjJjGWwzlI4VmaOl1oK1QSWGaV08ZLW2SaOmUBtBWSBytV-pksl1UZvuAuqUI467UPWeBCMwvgzsNhFLcCXJMBOQQp5N0gmeXN-jejOd7sRJN3ohkQ1qsldx1ZOebMmL790NHioduWq-Pt6ru9vh_bhNnkORIMZQOyvygGZeA6iilDNYd260wjrX2qXq_DKPwsNQdnckC22760aBMgLIBpKf36fnnskA-A1LI2ln6XLNd_5mEP0FBtvzVj4C-rvgXT |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VciiX8qYLBYIEEgdSEsd24gOHamG1pe2CRCv1FvzKhSWpSFZV-T38Ff4XM3nsCkQrLpVQDlH80tgeZz6_vgF4royLEYfzEKGsCnmRJmFmBA9jG9tCRF4ZS-sdhzM5PebvT8TJGvwY7sKgEDWWVLeb-Ct2gfg1hWE1vpJnlpR0J4r6o5T7_vwMJ2r1m7232KsvGJu8OxpPw96XQKjRZDUhdyaWPtKy0JbpSBuOby-FY0liVaGMSCPPMpNapZ00RaZimxrEJoXk3sg0wXKvwXWEP4ymeLvjT6uDJINjWNqrkFIM3EZ_F5qsoK1_t4IXQNvWxE1uws9l47QnW77sLBqzY7__wRv5v7feLdjsMXaw2w2K27DmyzuwMR5c292FaXvtuEb19IEuXdB9Nv40-EBMpGjNg6oIJvPqLCTXJta7YEa8z60WU9THan5OC_734PhKKnIf1suq9Ft0JqwQ1jjlfOa5UMwglHX46JQbgROxEbzEVs_7X0Kdt7v9LM4psO-KvO-KEbBBG3LbU7OTh5D55ZleLTOddswklyffHtRsJRNDxMaJTikbwbNlNHYG7Rrp0lcLlFtlikj8k_TiNCxG06A4Tp1H8KBT4aVMiCcRlCbxw39vj6ewMT06PMgP9mb7j-AGYtSsYxHYhvXm28I_RhzYmCftMAzg81Vr7i9pOWrH |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIgEX3o-FAkECiQMpsWM78YFDtWW1pbBUgkq9pfEjl26TFcmqKr-Iv8K_YiaPrUC04tIDyiGKY1tje5z57HG-AXipjWOIw0WIUFaHokjiMDVShMwyW8jIa2Npv-PTTE33xYcDebAGP4Z_YVCIGmuqWyc-zeqFK3qGAfaW0rEpxxSdJSH9iaL-OOWuPz3BxVr9bmcbR_YV55P3X8fTsI8nEOZotppQOMOUj3JV5JbnUW4E3r2Sjsex1YU2Mok8T01ide6UKVLNbGIQnxRKeKOSGOu9AlfJUUjLvK3xl7PDJENwWPJXKCUHfqO_C02W0Na_W8Jz4G1r5ia34Oeqg9rTLUeby8Zs2u9_cEf-Dz14G272WDvY6ibHHVjz5V24Ph5C3N2Dafv7cY1q6oO8dEH32PhF8JkYSdGqB1URTObVSUghTqx3wYz4n1ttpld71fyUNv7vw_6lNOQBrJdV6R_R2bBCWuO086kXUnODkNbhlSfCSFyQjeA19nrWfxrqrPX6c5ZRYj8UWT8UI-CDRmS2p2inSCHziwu9WRVadAwlF2ffGFTtTCaOyE0QrVI6gher1zgY5D3KS18tUW6daiLzj5Pz83CGJkILXEKP4GGnxiuZEFciOI3Z43_vj-dwbW97kn3cme0-gRsIVdOOTGAD1ptvS_8U4WBjnrUzMYDDy1bcXzdubUo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiscale+and+Multistep+Ordering+of+Flow-Induced+Nucleation+of+Polymers&rft.jtitle=Chemical+reviews&rft.au=Cui%2C+Kunpeng&rft.au=Ma%2C+Zhe&rft.au=Tian%2C+Nan&rft.au=Su%2C+Fengmei&rft.date=2018-02-28&rft.eissn=1520-6890&rft.volume=118&rft.issue=4&rft.spage=1840&rft_id=info:doi/10.1021%2Facs.chemrev.7b00500&rft_id=info%3Apmid%2F29350931&rft.externalDocID=29350931 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2665&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2665&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2665&client=summon |