High-Entropy Oxide Derived from Metal–Organic Framework as a Bifunctional Electrocatalyst for Efficient Urea Oxidation and Oxygen Evolution Reactions
High-entropy oxides (HEOs) offer unique features through a combination of incompatible metal cations to a single crystalline lattice. Owing to their special characteristics such as abundant cation compositions, high entropy stabilization, chemical and thermal stability, and lattice distortion effect...
Saved in:
Published in | ACS applied materials & interfaces Vol. 14; no. 34; pp. 38727 - 38738 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
31.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | High-entropy oxides (HEOs) offer unique features through a combination of incompatible metal cations to a single crystalline lattice. Owing to their special characteristics such as abundant cation compositions, high entropy stabilization, chemical and thermal stability, and lattice distortion effect, they have drawn ever-increasing attention for various applications. However, very few studies have been reported for catalytic application, and developing HEOs with large surface areas for efficient catalytic application is still in infancy. Herein, we design nanostructured HEO of (FeNiCoCrCu)3O4 using metal–organic frameworks (MOFs) as sacrificial templates to achieve a large surface area, high density of exposed active sites, and more oxygen vacancies. Single-crystalline phase HEOs with surface area as large as 206 m2 g–1 are produced and further applied as bifunctional electrocatalysts for the urea oxidation reaction (UOR) and oxygen evolution reaction (OER). Benefiting from enhanced oxygen vacancies and a large surface area with abundant exposed active sites, the optimized HEO exhibited excellent electrocatalytic activity toward UOR with a very low potential of 1.35 V at the current density of 10 mA cm–2 and showed long-term stability for 36 h operation, making a significant catalytic performance over previously reported HEOs. Moreover, the HEO demonstrated an efficient catalytic performance toward OER with a low overpotential of 270 mV at 10 mA cm–2 and low Tafel slope of 49 mV dec–1. The excellent catalytic activity is ascribed to the starting MOF precursor and favorable high-entropy effect. |
---|---|
AbstractList | High-entropy oxides (HEOs) offer unique features through a combination of incompatible metal cations to a single crystalline lattice. Owing to their special characteristics such as abundant cation compositions, high entropy stabilization, chemical and thermal stability, and lattice distortion effect, they have drawn ever-increasing attention for various applications. However, very few studies have been reported for catalytic application, and developing HEOs with large surface areas for efficient catalytic application is still in infancy. Herein, we design nanostructured HEO of (FeNiCoCrCu)₃O₄ using metal–organic frameworks (MOFs) as sacrificial templates to achieve a large surface area, high density of exposed active sites, and more oxygen vacancies. Single-crystalline phase HEOs with surface area as large as 206 m² g–¹ are produced and further applied as bifunctional electrocatalysts for the urea oxidation reaction (UOR) and oxygen evolution reaction (OER). Benefiting from enhanced oxygen vacancies and a large surface area with abundant exposed active sites, the optimized HEO exhibited excellent electrocatalytic activity toward UOR with a very low potential of 1.35 V at the current density of 10 mA cm–² and showed long-term stability for 36 h operation, making a significant catalytic performance over previously reported HEOs. Moreover, the HEO demonstrated an efficient catalytic performance toward OER with a low overpotential of 270 mV at 10 mA cm–² and low Tafel slope of 49 mV dec–¹. The excellent catalytic activity is ascribed to the starting MOF precursor and favorable high-entropy effect. High-entropy oxides (HEOs) offer unique features through a combination of incompatible metal cations to a single crystalline lattice. Owing to their special characteristics such as abundant cation compositions, high entropy stabilization, chemical and thermal stability, and lattice distortion effect, they have drawn ever-increasing attention for various applications. However, very few studies have been reported for catalytic application, and developing HEOs with large surface areas for efficient catalytic application is still in infancy. Herein, we design nanostructured HEO of (FeNiCoCrCu)3O4 using metal–organic frameworks (MOFs) as sacrificial templates to achieve a large surface area, high density of exposed active sites, and more oxygen vacancies. Single-crystalline phase HEOs with surface area as large as 206 m2 g–1 are produced and further applied as bifunctional electrocatalysts for the urea oxidation reaction (UOR) and oxygen evolution reaction (OER). Benefiting from enhanced oxygen vacancies and a large surface area with abundant exposed active sites, the optimized HEO exhibited excellent electrocatalytic activity toward UOR with a very low potential of 1.35 V at the current density of 10 mA cm–2 and showed long-term stability for 36 h operation, making a significant catalytic performance over previously reported HEOs. Moreover, the HEO demonstrated an efficient catalytic performance toward OER with a low overpotential of 270 mV at 10 mA cm–2 and low Tafel slope of 49 mV dec–1. The excellent catalytic activity is ascribed to the starting MOF precursor and favorable high-entropy effect. High-entropy oxides (HEOs) offer unique features through a combination of incompatible metal cations to a single crystalline lattice. Owing to their special characteristics such as abundant cation compositions, high entropy stabilization, chemical and thermal stability, and lattice distortion effect, they have drawn ever-increasing attention for various applications. However, very few studies have been reported for catalytic application, and developing HEOs with large surface areas for efficient catalytic application is still in infancy. Herein, we design nanostructured HEO of (FeNiCoCrCu)3O4 using metal-organic frameworks (MOFs) as sacrificial templates to achieve a large surface area, high density of exposed active sites, and more oxygen vacancies. Single-crystalline phase HEOs with surface area as large as 206 m2 g-1 are produced and further applied as bifunctional electrocatalysts for the urea oxidation reaction (UOR) and oxygen evolution reaction (OER). Benefiting from enhanced oxygen vacancies and a large surface area with abundant exposed active sites, the optimized HEO exhibited excellent electrocatalytic activity toward UOR with a very low potential of 1.35 V at the current density of 10 mA cm-2 and showed long-term stability for 36 h operation, making a significant catalytic performance over previously reported HEOs. Moreover, the HEO demonstrated an efficient catalytic performance toward OER with a low overpotential of 270 mV at 10 mA cm-2 and low Tafel slope of 49 mV dec-1. The excellent catalytic activity is ascribed to the starting MOF precursor and favorable high-entropy effect.High-entropy oxides (HEOs) offer unique features through a combination of incompatible metal cations to a single crystalline lattice. Owing to their special characteristics such as abundant cation compositions, high entropy stabilization, chemical and thermal stability, and lattice distortion effect, they have drawn ever-increasing attention for various applications. However, very few studies have been reported for catalytic application, and developing HEOs with large surface areas for efficient catalytic application is still in infancy. Herein, we design nanostructured HEO of (FeNiCoCrCu)3O4 using metal-organic frameworks (MOFs) as sacrificial templates to achieve a large surface area, high density of exposed active sites, and more oxygen vacancies. Single-crystalline phase HEOs with surface area as large as 206 m2 g-1 are produced and further applied as bifunctional electrocatalysts for the urea oxidation reaction (UOR) and oxygen evolution reaction (OER). Benefiting from enhanced oxygen vacancies and a large surface area with abundant exposed active sites, the optimized HEO exhibited excellent electrocatalytic activity toward UOR with a very low potential of 1.35 V at the current density of 10 mA cm-2 and showed long-term stability for 36 h operation, making a significant catalytic performance over previously reported HEOs. Moreover, the HEO demonstrated an efficient catalytic performance toward OER with a low overpotential of 270 mV at 10 mA cm-2 and low Tafel slope of 49 mV dec-1. The excellent catalytic activity is ascribed to the starting MOF precursor and favorable high-entropy effect. |
Author | Chen, Wei Li, Zongjun Zhang, Xiaohui Liu, Kaifan Fereja, Shemsu Ligani Zhang, Ziwei Fang, Zhongying Guo, Jinhan |
AuthorAffiliation | University of Science and Technology of China Wolkite University College of Natural and Computational Science Chinese Academy of Sciences State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry |
AuthorAffiliation_xml | – name: University of Science and Technology of China – name: State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry – name: Chinese Academy of Sciences – name: Wolkite University College of Natural and Computational Science |
Author_xml | – sequence: 1 givenname: Shemsu Ligani surname: Fereja fullname: Fereja, Shemsu Ligani organization: Wolkite University College of Natural and Computational Science – sequence: 2 givenname: Ziwei surname: Zhang fullname: Zhang, Ziwei organization: University of Science and Technology of China – sequence: 3 givenname: Zhongying surname: Fang fullname: Fang, Zhongying organization: University of Science and Technology of China – sequence: 4 givenname: Jinhan surname: Guo fullname: Guo, Jinhan organization: University of Science and Technology of China – sequence: 5 givenname: Xiaohui surname: Zhang fullname: Zhang, Xiaohui organization: University of Science and Technology of China – sequence: 6 givenname: Kaifan surname: Liu fullname: Liu, Kaifan organization: University of Science and Technology of China – sequence: 7 givenname: Zongjun orcidid: 0000-0002-7944-8371 surname: Li fullname: Li, Zongjun organization: Chinese Academy of Sciences – sequence: 8 givenname: Wei orcidid: 0000-0001-5700-0114 surname: Chen fullname: Chen, Wei email: weichen@ciac.ac.cn organization: University of Science and Technology of China |
BookMark | eNqNkb1OHDEURi1EpABJm9plhDSb67HnrwQyQCSilaJQj-56rxeTGXtje0i24x0oeL88SYZdlAIJKZXtq3O-K_k7ZPvOO2Lsg4CZgFx8Qh1xsLNcQyNKsccORKNUVudFvv_vrtRbdhjjLUApcygO2OOlXd1krUvBrzd8_tsuiX-mYO9oyU3wA_9KCfs_9w_zsEJnNT8PONAvH35wjBz5qTWj08l6hz1ve9JTkMZJ2cTEjQ-8NcZqSy7x60C43YBPOEe3nF6bFTne3vl-3A6_EW7D4jv2xmAf6f3zecSuz9vvZ5fZ1fziy9nJVYYKypQpAajRkF5IgKIBBXJRVKbRBVBeCSyRpFkuyooK3ZACJQtDSLU0IKlujDxiH3e56-B_jhRTN9ioqe_RkR9jN4XUss7LXP4HClKJSpbVhM52qA4-xkCmWwc7YNh0ArqnsrpdWd1zWZOgXgjapu0_pYC2f1073mnTvLv1Y5haiK_BfwGWXq5I |
CitedBy_id | crossref_primary_10_1039_D3DT04131J crossref_primary_10_1016_j_jallcom_2024_176591 crossref_primary_10_1016_j_jcis_2023_05_043 crossref_primary_10_1016_j_apsusc_2023_159102 crossref_primary_10_1016_S1872_2067_23_64544_9 crossref_primary_10_1021_acsanm_2c05302 crossref_primary_10_1016_j_pmatsci_2024_101385 crossref_primary_10_1039_D4SC05539J crossref_primary_10_1016_j_pmatsci_2024_101382 crossref_primary_10_1039_D3TA07253C crossref_primary_10_1039_D3NR06065A crossref_primary_10_1039_D4NJ02650K crossref_primary_10_1016_j_jelechem_2024_118687 crossref_primary_10_1021_acs_inorgchem_2c03609 crossref_primary_10_1016_j_jallcom_2024_176515 crossref_primary_10_1002_aenm_202300837 crossref_primary_10_1002_ange_202413932 crossref_primary_10_1111_jace_20098 crossref_primary_10_1016_j_cej_2023_144291 crossref_primary_10_1016_j_mtcata_2024_100039 crossref_primary_10_1016_j_ceramint_2024_04_139 crossref_primary_10_1021_acs_inorgchem_2c04064 crossref_primary_10_1016_j_jcis_2023_03_152 crossref_primary_10_1016_j_jallcom_2023_170690 crossref_primary_10_1016_j_jcis_2023_09_063 crossref_primary_10_1021_acssuschemeng_4c00591 crossref_primary_10_1002_aic_18470 crossref_primary_10_1016_j_isci_2023_107775 crossref_primary_10_1016_j_jallcom_2023_172517 crossref_primary_10_1021_acs_energyfuels_4c04337 crossref_primary_10_1016_j_cej_2024_151113 crossref_primary_10_1016_j_cej_2024_151234 crossref_primary_10_1016_j_jclepro_2024_143263 crossref_primary_10_1021_acs_inorgchem_3c00089 crossref_primary_10_1080_10643389_2024_2379028 crossref_primary_10_1002_inf2_12623 crossref_primary_10_1002_adma_202308490 crossref_primary_10_1007_s11426_024_2457_y crossref_primary_10_1016_j_jtice_2024_105928 crossref_primary_10_1016_j_talanta_2024_126620 crossref_primary_10_1021_acs_energyfuels_3c05202 crossref_primary_10_1016_j_inoche_2024_113315 crossref_primary_10_1016_j_ijhydene_2024_10_234 crossref_primary_10_1002_advs_202411175 crossref_primary_10_1016_j_cej_2023_148365 crossref_primary_10_1016_j_ensm_2024_103718 crossref_primary_10_1016_j_cej_2023_148122 crossref_primary_10_1038_s41467_024_52531_y crossref_primary_10_1016_j_jcis_2023_08_079 crossref_primary_10_1002_ppsc_202300103 crossref_primary_10_1002_smll_202207820 crossref_primary_10_1016_j_ijhydene_2024_10_160 crossref_primary_10_1002_anie_202413932 crossref_primary_10_1039_D3TA03500J crossref_primary_10_1039_D4EE03708A crossref_primary_10_1038_s41467_024_52225_5 crossref_primary_10_3390_chemistry5020051 crossref_primary_10_1007_s12598_024_02784_9 crossref_primary_10_1039_D4TA01747A crossref_primary_10_1016_j_jpowsour_2024_235207 crossref_primary_10_1016_j_jallcom_2023_169392 crossref_primary_10_1016_j_jeurceramsoc_2024_05_028 crossref_primary_10_1016_j_ijhydene_2025_01_120 crossref_primary_10_1021_acsami_3c17627 crossref_primary_10_1002_smll_202301130 crossref_primary_10_1002_smll_202307754 crossref_primary_10_1016_j_mtchem_2023_101835 crossref_primary_10_1002_asia_202300362 crossref_primary_10_1016_j_jpowsour_2024_235804 crossref_primary_10_1016_j_nxmate_2024_100192 crossref_primary_10_1039_D3NJ05877H crossref_primary_10_1002_adma_202407435 crossref_primary_10_1016_j_ccr_2025_216546 crossref_primary_10_1016_j_ceramint_2025_03_245 crossref_primary_10_1088_2752_5724_accbd8 crossref_primary_10_1016_j_jallcom_2023_169987 crossref_primary_10_1016_j_jmat_2024_02_003 crossref_primary_10_1002_aenm_202406047 crossref_primary_10_1016_j_jallcom_2024_175879 crossref_primary_10_1021_acs_energyfuels_4c02061 crossref_primary_10_1016_S1872_5813_24_60436_6 crossref_primary_10_1021_acs_analchem_4c01960 crossref_primary_10_1016_j_mattod_2023_10_007 crossref_primary_10_1016_j_ijhydene_2024_10_295 crossref_primary_10_1016_j_jallcom_2024_176005 crossref_primary_10_1016_j_jallcom_2024_174140 crossref_primary_10_1021_acsnano_4c12538 crossref_primary_10_1002_smll_202300673 crossref_primary_10_1039_D4QI01005A crossref_primary_10_1016_j_cej_2023_144660 |
Cites_doi | 10.1021/acsaem.8b01186 10.1016/j.matpr.2020.04.521 10.1016/j.molstruc.2017.08.041 10.1039/d1nr05747b 10.1016/j.cej.2021.129686 10.1039/c9cc02507c 10.1021/acssuschemeng.7b04808 10.1002/aenm.201700518 10.1021/acs.iecr.0c05565 10.1021/acsami.1c04325 10.1039/c9an02481f 10.1016/j.apcatb.2021.120196 10.1002/anie.201600687 10.1021/acs.inorgchem.7b02848 10.1002/anie.202004892 10.1038/ncomms8345 10.1038/s41467-021-21401-2 10.1038/s41467-018-05774-5 10.1038/s41467-018-07160-7 10.1039/c9ta09975a 10.1016/j.electacta.2021.139793 10.1016/j.jece.2021.106932 10.1016/j.jechem.2019.04.013 10.1016/j.est.2021.103004 10.1039/d0qi00929f 10.1039/d1nj04509a 10.1038/s41598-021-95844-4 10.1016/j.cej.2020.125507 10.1021/acsami.0c06716 10.1016/j.cej.2020.127831 10.1021/acsami.0c17446 10.1038/s41524-022-00780-0 10.1007/s10853-018-2168-9 10.1039/c9ta08740k 10.1016/j.matlet.2017.12.148 10.1007/s10853-021-05805-5 10.3390/nano11030657 10.1016/j.apcatb.2020.119436 10.1016/j.mattod.2018.10.038 10.1002/cssc.202001185 10.1016/j.jcis.2019.12.044 10.1021/acs.chemmater.9b00624 10.1021/jacs.9b12377 10.1002/adfm.202101632 10.1039/d1ta04755h 10.1016/j.elecom.2019.02.001 10.1002/smll.202104761 10.1002/anie.202107390 10.1039/d1dt01952j 10.1002/adma.201806236 10.1016/j.cej.2020.127630 10.1021/acs.langmuir.1c01105 10.1039/c9ra10300g 10.1021/acs.analchem.1c00568 10.1002/adma.201805004 10.1021/acsami.1c01188 10.1002/celc.202100443 10.1038/srep37946 10.1002/adma.202101342 10.1038/ncomms9485 10.1016/j.jeurceramsoc.2016.09.018 10.1002/aenm.202002887 10.1016/j.jallcom.2021.162640 10.1016/j.jcis.2022.03.063 10.1021/acssuschemeng.1c03353 10.1007/s10853-021-06391-2 10.1021/acsami.0c05916 10.1016/j.cej.2021.134274 10.1016/j.jcis.2021.07.124 10.1016/j.jallcom.2021.159064 |
ContentType | Journal Article |
Copyright | 2022 American Chemical Society |
Copyright_xml | – notice: 2022 American Chemical Society |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1021/acsami.2c09161 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 38738 |
ExternalDocumentID | 10_1021_acsami_2c09161 c506030343 |
GroupedDBID | - 23M 4.4 53G 55A 5GY 5VS 5ZA 6J9 7~N AABXI ABFRP ABMVS ABUCX ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED F5P GGK GNL IH9 JG K2 P2P RNS ROL UI2 VF5 VG9 W1F XKZ --- .K2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX BAANH CITATION CUPRZ ED~ JG~ 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a406t-410acafecb300590403b57f9c50e271a6ae3fdb67e5c9e40435feae83f03e89f3 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Fri Jul 11 06:00:58 EDT 2025 Thu Jul 10 20:29:14 EDT 2025 Tue Jul 01 01:14:47 EDT 2025 Thu Apr 24 23:10:28 EDT 2025 Fri Sep 02 14:05:34 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 34 |
Keywords | oxygen evolution reaction high-entropy oxide electrocatalysis oxygen vacancy urea oxidation reaction metal−organic framework |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a406t-410acafecb300590403b57f9c50e271a6ae3fdb67e5c9e40435feae83f03e89f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5700-0114 0000-0002-7944-8371 |
PQID | 2703417367 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2718382623 proquest_miscellaneous_2703417367 crossref_primary_10_1021_acsami_2c09161 crossref_citationtrail_10_1021_acsami_2c09161 acs_journals_10_1021_acsami_2c09161 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-31 |
PublicationDateYYYYMMDD | 2022-08-31 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-31 day: 31 |
PublicationDecade | 2020 |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref49/cit49 doi: 10.1021/acsaem.8b01186 – ident: ref42/cit42 doi: 10.1016/j.matpr.2020.04.521 – ident: ref44/cit44 doi: 10.1016/j.molstruc.2017.08.041 – ident: ref33/cit33 doi: 10.1039/d1nr05747b – ident: ref54/cit54 doi: 10.1016/j.cej.2021.129686 – ident: ref66/cit66 doi: 10.1039/c9cc02507c – ident: ref57/cit57 doi: 10.1021/acssuschemeng.7b04808 – ident: ref35/cit35 doi: 10.1002/aenm.201700518 – ident: ref64/cit64 doi: 10.1021/acs.iecr.0c05565 – ident: ref69/cit69 doi: 10.1021/acsami.1c04325 – ident: ref40/cit40 doi: 10.1039/c9an02481f – ident: ref55/cit55 doi: 10.1016/j.apcatb.2021.120196 – ident: ref56/cit56 doi: 10.1002/anie.201600687 – ident: ref50/cit50 doi: 10.1021/acs.inorgchem.7b02848 – ident: ref18/cit18 doi: 10.1002/anie.202004892 – ident: ref51/cit51 doi: 10.1038/ncomms8345 – ident: ref37/cit37 doi: 10.1038/s41467-021-21401-2 – ident: ref8/cit8 doi: 10.1038/s41467-018-05774-5 – ident: ref12/cit12 doi: 10.1038/s41467-018-07160-7 – ident: ref39/cit39 doi: 10.1039/c9ta09975a – ident: ref1/cit1 doi: 10.1016/j.electacta.2021.139793 – ident: ref21/cit21 doi: 10.1016/j.jece.2021.106932 – ident: ref36/cit36 doi: 10.1016/j.jechem.2019.04.013 – ident: ref26/cit26 doi: 10.1016/j.est.2021.103004 – ident: ref38/cit38 doi: 10.1039/d0qi00929f – ident: ref14/cit14 doi: 10.1039/d1nj04509a – ident: ref41/cit41 doi: 10.1038/s41598-021-95844-4 – ident: ref2/cit2 doi: 10.1016/j.cej.2020.125507 – ident: ref3/cit3 doi: 10.1021/acsami.0c06716 – ident: ref34/cit34 doi: 10.1016/j.cej.2020.127831 – ident: ref47/cit47 doi: 10.1021/acsami.0c17446 – ident: ref60/cit60 doi: 10.1038/s41524-022-00780-0 – ident: ref24/cit24 doi: 10.1007/s10853-018-2168-9 – ident: ref32/cit32 doi: 10.1039/c9ta08740k – ident: ref27/cit27 doi: 10.1016/j.matlet.2017.12.148 – ident: ref29/cit29 doi: 10.1007/s10853-021-05805-5 – ident: ref53/cit53 doi: 10.3390/nano11030657 – ident: ref68/cit68 doi: 10.1016/j.apcatb.2020.119436 – ident: ref46/cit46 doi: 10.1016/j.mattod.2018.10.038 – ident: ref62/cit62 doi: 10.1002/cssc.202001185 – ident: ref48/cit48 doi: 10.1016/j.jcis.2019.12.044 – ident: ref16/cit16 doi: 10.1021/acs.chemmater.9b00624 – ident: ref9/cit9 doi: 10.1021/jacs.9b12377 – ident: ref23/cit23 doi: 10.1002/adfm.202101632 – ident: ref15/cit15 doi: 10.1039/d1ta04755h – ident: ref20/cit20 doi: 10.1016/j.elecom.2019.02.001 – ident: ref28/cit28 doi: 10.1002/smll.202104761 – ident: ref30/cit30 doi: 10.1002/anie.202107390 – ident: ref4/cit4 doi: 10.1039/d1dt01952j – ident: ref17/cit17 doi: 10.1002/adma.201806236 – ident: ref7/cit7 doi: 10.1016/j.cej.2020.127630 – ident: ref25/cit25 doi: 10.1021/acs.langmuir.1c01105 – ident: ref43/cit43 doi: 10.1039/c9ra10300g – ident: ref59/cit59 doi: 10.1021/acs.analchem.1c00568 – ident: ref19/cit19 doi: 10.1002/adma.201805004 – ident: ref63/cit63 doi: 10.1021/acsami.1c01188 – ident: ref67/cit67 doi: 10.1002/celc.202100443 – ident: ref13/cit13 doi: 10.1038/srep37946 – ident: ref31/cit31 doi: 10.1002/adma.202101342 – ident: ref11/cit11 doi: 10.1038/ncomms9485 – ident: ref52/cit52 doi: 10.1016/j.jeurceramsoc.2016.09.018 – ident: ref10/cit10 doi: 10.1002/aenm.202002887 – ident: ref45/cit45 doi: 10.1016/j.jallcom.2021.162640 – ident: ref6/cit6 doi: 10.1016/j.jcis.2022.03.063 – ident: ref58/cit58 doi: 10.1021/acssuschemeng.1c03353 – ident: ref65/cit65 doi: 10.1007/s10853-021-06391-2 – ident: ref61/cit61 doi: 10.1021/acsami.0c05916 – ident: ref5/cit5 doi: 10.1016/j.cej.2021.134274 – ident: ref70/cit70 doi: 10.1016/j.jcis.2021.07.124 – ident: ref22/cit22 doi: 10.1016/j.jallcom.2021.159064 |
SSID | ssj0063205 |
Score | 2.6325204 |
Snippet | High-entropy oxides (HEOs) offer unique features through a combination of incompatible metal cations to a single crystalline lattice. Owing to their special... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 38727 |
SubjectTerms | catalytic activity cations coordination polymers Energy, Environmental, and Catalysis Applications entropy infancy oxidation oxygen oxygen production surface area thermal stability urea |
Title | High-Entropy Oxide Derived from Metal–Organic Framework as a Bifunctional Electrocatalyst for Efficient Urea Oxidation and Oxygen Evolution Reactions |
URI | http://dx.doi.org/10.1021/acsami.2c09161 https://www.proquest.com/docview/2703417367 https://www.proquest.com/docview/2718382623 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELZQe4EDbfkR_aEaBBInl8ROnPhY2qxWSAsSsFJvkeNMpFVRWpFs1e2p79BD369P0rGTUEq1wDGKoyT2eOab8cw3jL3TpUxSQ24qKceAR2mpeWF1xbU20pkvNJ5SaPJZjafRp6P46C7e8ecJvgg_GNu4VjjCkmVzfs6qULSDHQg6-DboXCWFT1YkjzziKVmsgZ7xwfPOCNnmvhG6r4O9YRmtdSxHjecjdPkkx3vzttizFw_ZGv_5zevsaY8uYb8Thw32COtn7MlvnIPP2bXL7OCZS1A_XcCX81mJcEj3zrAEV2sCEyQ8fnN51VVpWhgN6VtgGjDwceZMYRdBhKxrouNjQIumBULAkHlSCrJlMCVA6t_gVx9MXdLVgiQWsrNe4uErdpUVzQs2HWXfD8a8787ADYGAlkdhYKyp0BbSV7BGgSzipNI2DlAkoVEGZVUWKsHYanQkPnGFBlNZBRJTXcmXbKU-qfEVA4cqrZSVQYWRJi0TBCXJTyGVwlAps8ne0ozm_e5qcn9wLsK8m-a8n-ZNxodFzW1PcO76bPxYOv79r_GnHbXH0pFvBhnJafe5IxVT48m8yQUpzChMpEr-NobUJnlxQm79139ss8fC1Vj4wPUOW2l_zvE1IZ-22PVCfwvynwF5 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT9VAEN4QPKAHFMWAoozRhNNC22233SNiXx7KQyO8hFuz3U6TF0ghtI_4PPEfPPj__CXOblsECUSPbaftdjs7883uzLeMvVOFiBNNYSoZR4-HSaF4blTJldLCui_UjlJotC-H4_DjUXQ0x7b6WhhqRE1Pqt0i_h92AX-LztkdcQJDDs6GOw8IiQRWpbd3DnrTK0XgchYpMA95Qo6rZ2m8db_1Raa-6YtummLnXwaP2Zerlrm0kuPNaZNvmu9_kTb-R9OfsMUOa8J2qxxLbA6rp-zRNQbCZ-ynzfPgqU1XP5vB52-TAuEDXbvAAmzlCYyQ0Pmvyx9tzaaBQZ_MBboGDe8n1jG284mQtlvquBmhWd0A4WFIHUUFeTYYEzx1b3C6ALoq6GhG-gvpRaf_8BXbOot6mY0H6eHOkHd7NXBNkKDhoe9po0s0uXD1rKEn8igulYk8DGJfS42iLHIZY2QUWkqfqESNiSg9gYkqxXM2X51WuMLAYkwjRKlRYqjI5nheQdqUCynRl1KvsrfUo1k31urMLaMHftZ2c9Z18yrj_b_NTEd3bnfdOLlTfuNK_qwl-rhT8k2vKhmNRbvAois8ndZZQOYz9GMh4_tkyIhSTBeIF__0HetsYXg42sv2dvc_vWQPA1t94aa019h8cz7FV4SJmvy1Gwe_AeBVCdo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQkRAceCPKcxBInFySOHHiY2mzKo8WBF2pt8hxxlIFSlckW7Gc-A8c-H_8EmacpKKgIjgmmSSOM0975hshnphG5YWlMJWUYyTTojGydsZLY6xi84U2QArt7umdefryIDsY67i5FoYG0dGTurCJz1K9aPyIMBA_o_PcFSdxZOQ45DnPe3bM1ptb7yf1q1US8hYpOE9lQcZrQmr84362R647bY9Oq-NgY2ZXxP7J6EJqyYeNZV9vuC-_ATf-5_CvisujzwmbA5NcE-ewvS4u_YJEeEN853wPWXLa-mIFbz4fNgjbdO0YG-AKFNhF8tJ_fP021G46mE1JXWA7sPD8kA3ksK4I5dBaJ6wMrboeyC-GMkBVkIWDObmp4Q2BJ8C2DR2tiI-hPB7lAN7hUG_R3RTzWbm_tSPHng3SkmvQyzSOrLMeXa1CXWsaqTrLvXFZhEkeW21R-abWOWbOIEP7ZB4tFspHCgvj1S2x1h61eFsA-5pOKW9RY2pI90RRQ1xVK60x1tqui8c0o9Uoc10VttOTuBqmuRqneV3I6f9WboQ95-4bH8-kf3pCvxgAP86kfDSxS0UyyRsttsWjZVclpEbTOFc6_xsNKVOK7RJ155--46G48HZ7Vr1-sffqrriYcBFGWNm-J9b6T0u8T65RXz8IovATWl8MXQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Entropy+Oxide+Derived+from+Metal%E2%80%93Organic+Framework+as+a+Bifunctional+Electrocatalyst+for+Efficient+Urea+Oxidation+and+Oxygen+Evolution+Reactions&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Fereja%2C+Shemsu+Ligani&rft.au=Zhang%2C+Ziwei&rft.au=Fang%2C+Zhongying&rft.au=Guo%2C+Jinhan&rft.date=2022-08-31&rft.issn=1944-8252&rft.volume=14&rft.issue=34+p.38727-38738&rft.spage=38727&rft.epage=38738&rft_id=info:doi/10.1021%2Facsami.2c09161&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |