High-Entropy Oxide Derived from Metal–Organic Framework as a Bifunctional Electrocatalyst for Efficient Urea Oxidation and Oxygen Evolution Reactions

High-entropy oxides (HEOs) offer unique features through a combination of incompatible metal cations to a single crystalline lattice. Owing to their special characteristics such as abundant cation compositions, high entropy stabilization, chemical and thermal stability, and lattice distortion effect...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 14; no. 34; pp. 38727 - 38738
Main Authors Fereja, Shemsu Ligani, Zhang, Ziwei, Fang, Zhongying, Guo, Jinhan, Zhang, Xiaohui, Liu, Kaifan, Li, Zongjun, Chen, Wei
Format Journal Article
LanguageEnglish
Published American Chemical Society 31.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High-entropy oxides (HEOs) offer unique features through a combination of incompatible metal cations to a single crystalline lattice. Owing to their special characteristics such as abundant cation compositions, high entropy stabilization, chemical and thermal stability, and lattice distortion effect, they have drawn ever-increasing attention for various applications. However, very few studies have been reported for catalytic application, and developing HEOs with large surface areas for efficient catalytic application is still in infancy. Herein, we design nanostructured HEO of (FeNiCoCrCu)3O4 using metal–organic frameworks (MOFs) as sacrificial templates to achieve a large surface area, high density of exposed active sites, and more oxygen vacancies. Single-crystalline phase HEOs with surface area as large as 206 m2 g–1 are produced and further applied as bifunctional electrocatalysts for the urea oxidation reaction (UOR) and oxygen evolution reaction (OER). Benefiting from enhanced oxygen vacancies and a large surface area with abundant exposed active sites, the optimized HEO exhibited excellent electrocatalytic activity toward UOR with a very low potential of 1.35 V at the current density of 10 mA cm–2 and showed long-term stability for 36 h operation, making a significant catalytic performance over previously reported HEOs. Moreover, the HEO demonstrated an efficient catalytic performance toward OER with a low overpotential of 270 mV at 10 mA cm–2 and low Tafel slope of 49 mV dec–1. The excellent catalytic activity is ascribed to the starting MOF precursor and favorable high-entropy effect.
AbstractList High-entropy oxides (HEOs) offer unique features through a combination of incompatible metal cations to a single crystalline lattice. Owing to their special characteristics such as abundant cation compositions, high entropy stabilization, chemical and thermal stability, and lattice distortion effect, they have drawn ever-increasing attention for various applications. However, very few studies have been reported for catalytic application, and developing HEOs with large surface areas for efficient catalytic application is still in infancy. Herein, we design nanostructured HEO of (FeNiCoCrCu)₃O₄ using metal–organic frameworks (MOFs) as sacrificial templates to achieve a large surface area, high density of exposed active sites, and more oxygen vacancies. Single-crystalline phase HEOs with surface area as large as 206 m² g–¹ are produced and further applied as bifunctional electrocatalysts for the urea oxidation reaction (UOR) and oxygen evolution reaction (OER). Benefiting from enhanced oxygen vacancies and a large surface area with abundant exposed active sites, the optimized HEO exhibited excellent electrocatalytic activity toward UOR with a very low potential of 1.35 V at the current density of 10 mA cm–² and showed long-term stability for 36 h operation, making a significant catalytic performance over previously reported HEOs. Moreover, the HEO demonstrated an efficient catalytic performance toward OER with a low overpotential of 270 mV at 10 mA cm–² and low Tafel slope of 49 mV dec–¹. The excellent catalytic activity is ascribed to the starting MOF precursor and favorable high-entropy effect.
High-entropy oxides (HEOs) offer unique features through a combination of incompatible metal cations to a single crystalline lattice. Owing to their special characteristics such as abundant cation compositions, high entropy stabilization, chemical and thermal stability, and lattice distortion effect, they have drawn ever-increasing attention for various applications. However, very few studies have been reported for catalytic application, and developing HEOs with large surface areas for efficient catalytic application is still in infancy. Herein, we design nanostructured HEO of (FeNiCoCrCu)3O4 using metal–organic frameworks (MOFs) as sacrificial templates to achieve a large surface area, high density of exposed active sites, and more oxygen vacancies. Single-crystalline phase HEOs with surface area as large as 206 m2 g–1 are produced and further applied as bifunctional electrocatalysts for the urea oxidation reaction (UOR) and oxygen evolution reaction (OER). Benefiting from enhanced oxygen vacancies and a large surface area with abundant exposed active sites, the optimized HEO exhibited excellent electrocatalytic activity toward UOR with a very low potential of 1.35 V at the current density of 10 mA cm–2 and showed long-term stability for 36 h operation, making a significant catalytic performance over previously reported HEOs. Moreover, the HEO demonstrated an efficient catalytic performance toward OER with a low overpotential of 270 mV at 10 mA cm–2 and low Tafel slope of 49 mV dec–1. The excellent catalytic activity is ascribed to the starting MOF precursor and favorable high-entropy effect.
High-entropy oxides (HEOs) offer unique features through a combination of incompatible metal cations to a single crystalline lattice. Owing to their special characteristics such as abundant cation compositions, high entropy stabilization, chemical and thermal stability, and lattice distortion effect, they have drawn ever-increasing attention for various applications. However, very few studies have been reported for catalytic application, and developing HEOs with large surface areas for efficient catalytic application is still in infancy. Herein, we design nanostructured HEO of (FeNiCoCrCu)3O4 using metal-organic frameworks (MOFs) as sacrificial templates to achieve a large surface area, high density of exposed active sites, and more oxygen vacancies. Single-crystalline phase HEOs with surface area as large as 206 m2 g-1 are produced and further applied as bifunctional electrocatalysts for the urea oxidation reaction (UOR) and oxygen evolution reaction (OER). Benefiting from enhanced oxygen vacancies and a large surface area with abundant exposed active sites, the optimized HEO exhibited excellent electrocatalytic activity toward UOR with a very low potential of 1.35 V at the current density of 10 mA cm-2 and showed long-term stability for 36 h operation, making a significant catalytic performance over previously reported HEOs. Moreover, the HEO demonstrated an efficient catalytic performance toward OER with a low overpotential of 270 mV at 10 mA cm-2 and low Tafel slope of 49 mV dec-1. The excellent catalytic activity is ascribed to the starting MOF precursor and favorable high-entropy effect.High-entropy oxides (HEOs) offer unique features through a combination of incompatible metal cations to a single crystalline lattice. Owing to their special characteristics such as abundant cation compositions, high entropy stabilization, chemical and thermal stability, and lattice distortion effect, they have drawn ever-increasing attention for various applications. However, very few studies have been reported for catalytic application, and developing HEOs with large surface areas for efficient catalytic application is still in infancy. Herein, we design nanostructured HEO of (FeNiCoCrCu)3O4 using metal-organic frameworks (MOFs) as sacrificial templates to achieve a large surface area, high density of exposed active sites, and more oxygen vacancies. Single-crystalline phase HEOs with surface area as large as 206 m2 g-1 are produced and further applied as bifunctional electrocatalysts for the urea oxidation reaction (UOR) and oxygen evolution reaction (OER). Benefiting from enhanced oxygen vacancies and a large surface area with abundant exposed active sites, the optimized HEO exhibited excellent electrocatalytic activity toward UOR with a very low potential of 1.35 V at the current density of 10 mA cm-2 and showed long-term stability for 36 h operation, making a significant catalytic performance over previously reported HEOs. Moreover, the HEO demonstrated an efficient catalytic performance toward OER with a low overpotential of 270 mV at 10 mA cm-2 and low Tafel slope of 49 mV dec-1. The excellent catalytic activity is ascribed to the starting MOF precursor and favorable high-entropy effect.
Author Chen, Wei
Li, Zongjun
Zhang, Xiaohui
Liu, Kaifan
Fereja, Shemsu Ligani
Zhang, Ziwei
Fang, Zhongying
Guo, Jinhan
AuthorAffiliation University of Science and Technology of China
Wolkite University College of Natural and Computational Science
Chinese Academy of Sciences
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry
AuthorAffiliation_xml – name: University of Science and Technology of China
– name: State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry
– name: Chinese Academy of Sciences
– name: Wolkite University College of Natural and Computational Science
Author_xml – sequence: 1
  givenname: Shemsu Ligani
  surname: Fereja
  fullname: Fereja, Shemsu Ligani
  organization: Wolkite University College of Natural and Computational Science
– sequence: 2
  givenname: Ziwei
  surname: Zhang
  fullname: Zhang, Ziwei
  organization: University of Science and Technology of China
– sequence: 3
  givenname: Zhongying
  surname: Fang
  fullname: Fang, Zhongying
  organization: University of Science and Technology of China
– sequence: 4
  givenname: Jinhan
  surname: Guo
  fullname: Guo, Jinhan
  organization: University of Science and Technology of China
– sequence: 5
  givenname: Xiaohui
  surname: Zhang
  fullname: Zhang, Xiaohui
  organization: University of Science and Technology of China
– sequence: 6
  givenname: Kaifan
  surname: Liu
  fullname: Liu, Kaifan
  organization: University of Science and Technology of China
– sequence: 7
  givenname: Zongjun
  orcidid: 0000-0002-7944-8371
  surname: Li
  fullname: Li, Zongjun
  organization: Chinese Academy of Sciences
– sequence: 8
  givenname: Wei
  orcidid: 0000-0001-5700-0114
  surname: Chen
  fullname: Chen, Wei
  email: weichen@ciac.ac.cn
  organization: University of Science and Technology of China
BookMark eNqNkb1OHDEURi1EpABJm9plhDSb67HnrwQyQCSilaJQj-56rxeTGXtje0i24x0oeL88SYZdlAIJKZXtq3O-K_k7ZPvOO2Lsg4CZgFx8Qh1xsLNcQyNKsccORKNUVudFvv_vrtRbdhjjLUApcygO2OOlXd1krUvBrzd8_tsuiX-mYO9oyU3wA_9KCfs_9w_zsEJnNT8PONAvH35wjBz5qTWj08l6hz1ve9JTkMZJ2cTEjQ-8NcZqSy7x60C43YBPOEe3nF6bFTne3vl-3A6_EW7D4jv2xmAf6f3zecSuz9vvZ5fZ1fziy9nJVYYKypQpAajRkF5IgKIBBXJRVKbRBVBeCSyRpFkuyooK3ZACJQtDSLU0IKlujDxiH3e56-B_jhRTN9ioqe_RkR9jN4XUss7LXP4HClKJSpbVhM52qA4-xkCmWwc7YNh0ArqnsrpdWd1zWZOgXgjapu0_pYC2f1073mnTvLv1Y5haiK_BfwGWXq5I
CitedBy_id crossref_primary_10_1039_D3DT04131J
crossref_primary_10_1016_j_jallcom_2024_176591
crossref_primary_10_1016_j_jcis_2023_05_043
crossref_primary_10_1016_j_apsusc_2023_159102
crossref_primary_10_1016_S1872_2067_23_64544_9
crossref_primary_10_1021_acsanm_2c05302
crossref_primary_10_1016_j_pmatsci_2024_101385
crossref_primary_10_1039_D4SC05539J
crossref_primary_10_1016_j_pmatsci_2024_101382
crossref_primary_10_1039_D3TA07253C
crossref_primary_10_1039_D3NR06065A
crossref_primary_10_1039_D4NJ02650K
crossref_primary_10_1016_j_jelechem_2024_118687
crossref_primary_10_1021_acs_inorgchem_2c03609
crossref_primary_10_1016_j_jallcom_2024_176515
crossref_primary_10_1002_aenm_202300837
crossref_primary_10_1002_ange_202413932
crossref_primary_10_1111_jace_20098
crossref_primary_10_1016_j_cej_2023_144291
crossref_primary_10_1016_j_mtcata_2024_100039
crossref_primary_10_1016_j_ceramint_2024_04_139
crossref_primary_10_1021_acs_inorgchem_2c04064
crossref_primary_10_1016_j_jcis_2023_03_152
crossref_primary_10_1016_j_jallcom_2023_170690
crossref_primary_10_1016_j_jcis_2023_09_063
crossref_primary_10_1021_acssuschemeng_4c00591
crossref_primary_10_1002_aic_18470
crossref_primary_10_1016_j_isci_2023_107775
crossref_primary_10_1016_j_jallcom_2023_172517
crossref_primary_10_1021_acs_energyfuels_4c04337
crossref_primary_10_1016_j_cej_2024_151113
crossref_primary_10_1016_j_cej_2024_151234
crossref_primary_10_1016_j_jclepro_2024_143263
crossref_primary_10_1021_acs_inorgchem_3c00089
crossref_primary_10_1080_10643389_2024_2379028
crossref_primary_10_1002_inf2_12623
crossref_primary_10_1002_adma_202308490
crossref_primary_10_1007_s11426_024_2457_y
crossref_primary_10_1016_j_jtice_2024_105928
crossref_primary_10_1016_j_talanta_2024_126620
crossref_primary_10_1021_acs_energyfuels_3c05202
crossref_primary_10_1016_j_inoche_2024_113315
crossref_primary_10_1016_j_ijhydene_2024_10_234
crossref_primary_10_1002_advs_202411175
crossref_primary_10_1016_j_cej_2023_148365
crossref_primary_10_1016_j_ensm_2024_103718
crossref_primary_10_1016_j_cej_2023_148122
crossref_primary_10_1038_s41467_024_52531_y
crossref_primary_10_1016_j_jcis_2023_08_079
crossref_primary_10_1002_ppsc_202300103
crossref_primary_10_1002_smll_202207820
crossref_primary_10_1016_j_ijhydene_2024_10_160
crossref_primary_10_1002_anie_202413932
crossref_primary_10_1039_D3TA03500J
crossref_primary_10_1039_D4EE03708A
crossref_primary_10_1038_s41467_024_52225_5
crossref_primary_10_3390_chemistry5020051
crossref_primary_10_1007_s12598_024_02784_9
crossref_primary_10_1039_D4TA01747A
crossref_primary_10_1016_j_jpowsour_2024_235207
crossref_primary_10_1016_j_jallcom_2023_169392
crossref_primary_10_1016_j_jeurceramsoc_2024_05_028
crossref_primary_10_1016_j_ijhydene_2025_01_120
crossref_primary_10_1021_acsami_3c17627
crossref_primary_10_1002_smll_202301130
crossref_primary_10_1002_smll_202307754
crossref_primary_10_1016_j_mtchem_2023_101835
crossref_primary_10_1002_asia_202300362
crossref_primary_10_1016_j_jpowsour_2024_235804
crossref_primary_10_1016_j_nxmate_2024_100192
crossref_primary_10_1039_D3NJ05877H
crossref_primary_10_1002_adma_202407435
crossref_primary_10_1016_j_ccr_2025_216546
crossref_primary_10_1016_j_ceramint_2025_03_245
crossref_primary_10_1088_2752_5724_accbd8
crossref_primary_10_1016_j_jallcom_2023_169987
crossref_primary_10_1016_j_jmat_2024_02_003
crossref_primary_10_1002_aenm_202406047
crossref_primary_10_1016_j_jallcom_2024_175879
crossref_primary_10_1021_acs_energyfuels_4c02061
crossref_primary_10_1016_S1872_5813_24_60436_6
crossref_primary_10_1021_acs_analchem_4c01960
crossref_primary_10_1016_j_mattod_2023_10_007
crossref_primary_10_1016_j_ijhydene_2024_10_295
crossref_primary_10_1016_j_jallcom_2024_176005
crossref_primary_10_1016_j_jallcom_2024_174140
crossref_primary_10_1021_acsnano_4c12538
crossref_primary_10_1002_smll_202300673
crossref_primary_10_1039_D4QI01005A
crossref_primary_10_1016_j_cej_2023_144660
Cites_doi 10.1021/acsaem.8b01186
10.1016/j.matpr.2020.04.521
10.1016/j.molstruc.2017.08.041
10.1039/d1nr05747b
10.1016/j.cej.2021.129686
10.1039/c9cc02507c
10.1021/acssuschemeng.7b04808
10.1002/aenm.201700518
10.1021/acs.iecr.0c05565
10.1021/acsami.1c04325
10.1039/c9an02481f
10.1016/j.apcatb.2021.120196
10.1002/anie.201600687
10.1021/acs.inorgchem.7b02848
10.1002/anie.202004892
10.1038/ncomms8345
10.1038/s41467-021-21401-2
10.1038/s41467-018-05774-5
10.1038/s41467-018-07160-7
10.1039/c9ta09975a
10.1016/j.electacta.2021.139793
10.1016/j.jece.2021.106932
10.1016/j.jechem.2019.04.013
10.1016/j.est.2021.103004
10.1039/d0qi00929f
10.1039/d1nj04509a
10.1038/s41598-021-95844-4
10.1016/j.cej.2020.125507
10.1021/acsami.0c06716
10.1016/j.cej.2020.127831
10.1021/acsami.0c17446
10.1038/s41524-022-00780-0
10.1007/s10853-018-2168-9
10.1039/c9ta08740k
10.1016/j.matlet.2017.12.148
10.1007/s10853-021-05805-5
10.3390/nano11030657
10.1016/j.apcatb.2020.119436
10.1016/j.mattod.2018.10.038
10.1002/cssc.202001185
10.1016/j.jcis.2019.12.044
10.1021/acs.chemmater.9b00624
10.1021/jacs.9b12377
10.1002/adfm.202101632
10.1039/d1ta04755h
10.1016/j.elecom.2019.02.001
10.1002/smll.202104761
10.1002/anie.202107390
10.1039/d1dt01952j
10.1002/adma.201806236
10.1016/j.cej.2020.127630
10.1021/acs.langmuir.1c01105
10.1039/c9ra10300g
10.1021/acs.analchem.1c00568
10.1002/adma.201805004
10.1021/acsami.1c01188
10.1002/celc.202100443
10.1038/srep37946
10.1002/adma.202101342
10.1038/ncomms9485
10.1016/j.jeurceramsoc.2016.09.018
10.1002/aenm.202002887
10.1016/j.jallcom.2021.162640
10.1016/j.jcis.2022.03.063
10.1021/acssuschemeng.1c03353
10.1007/s10853-021-06391-2
10.1021/acsami.0c05916
10.1016/j.cej.2021.134274
10.1016/j.jcis.2021.07.124
10.1016/j.jallcom.2021.159064
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1021/acsami.2c09161
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 38738
ExternalDocumentID 10_1021_acsami_2c09161
c506030343
GroupedDBID -
23M
4.4
53G
55A
5GY
5VS
5ZA
6J9
7~N
AABXI
ABFRP
ABMVS
ABUCX
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
F5P
GGK
GNL
IH9
JG
K2
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
BAANH
CITATION
CUPRZ
ED~
JG~
7X8
7S9
L.6
ID FETCH-LOGICAL-a406t-410acafecb300590403b57f9c50e271a6ae3fdb67e5c9e40435feae83f03e89f3
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Fri Jul 11 06:00:58 EDT 2025
Thu Jul 10 20:29:14 EDT 2025
Tue Jul 01 01:14:47 EDT 2025
Thu Apr 24 23:10:28 EDT 2025
Fri Sep 02 14:05:34 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 34
Keywords oxygen evolution reaction
high-entropy oxide
electrocatalysis
oxygen vacancy
urea oxidation reaction
metal−organic framework
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a406t-410acafecb300590403b57f9c50e271a6ae3fdb67e5c9e40435feae83f03e89f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5700-0114
0000-0002-7944-8371
PQID 2703417367
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2718382623
proquest_miscellaneous_2703417367
crossref_primary_10_1021_acsami_2c09161
crossref_citationtrail_10_1021_acsami_2c09161
acs_journals_10_1021_acsami_2c09161
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-31
PublicationDateYYYYMMDD 2022-08-31
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-31
  day: 31
PublicationDecade 2020
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref49/cit49
  doi: 10.1021/acsaem.8b01186
– ident: ref42/cit42
  doi: 10.1016/j.matpr.2020.04.521
– ident: ref44/cit44
  doi: 10.1016/j.molstruc.2017.08.041
– ident: ref33/cit33
  doi: 10.1039/d1nr05747b
– ident: ref54/cit54
  doi: 10.1016/j.cej.2021.129686
– ident: ref66/cit66
  doi: 10.1039/c9cc02507c
– ident: ref57/cit57
  doi: 10.1021/acssuschemeng.7b04808
– ident: ref35/cit35
  doi: 10.1002/aenm.201700518
– ident: ref64/cit64
  doi: 10.1021/acs.iecr.0c05565
– ident: ref69/cit69
  doi: 10.1021/acsami.1c04325
– ident: ref40/cit40
  doi: 10.1039/c9an02481f
– ident: ref55/cit55
  doi: 10.1016/j.apcatb.2021.120196
– ident: ref56/cit56
  doi: 10.1002/anie.201600687
– ident: ref50/cit50
  doi: 10.1021/acs.inorgchem.7b02848
– ident: ref18/cit18
  doi: 10.1002/anie.202004892
– ident: ref51/cit51
  doi: 10.1038/ncomms8345
– ident: ref37/cit37
  doi: 10.1038/s41467-021-21401-2
– ident: ref8/cit8
  doi: 10.1038/s41467-018-05774-5
– ident: ref12/cit12
  doi: 10.1038/s41467-018-07160-7
– ident: ref39/cit39
  doi: 10.1039/c9ta09975a
– ident: ref1/cit1
  doi: 10.1016/j.electacta.2021.139793
– ident: ref21/cit21
  doi: 10.1016/j.jece.2021.106932
– ident: ref36/cit36
  doi: 10.1016/j.jechem.2019.04.013
– ident: ref26/cit26
  doi: 10.1016/j.est.2021.103004
– ident: ref38/cit38
  doi: 10.1039/d0qi00929f
– ident: ref14/cit14
  doi: 10.1039/d1nj04509a
– ident: ref41/cit41
  doi: 10.1038/s41598-021-95844-4
– ident: ref2/cit2
  doi: 10.1016/j.cej.2020.125507
– ident: ref3/cit3
  doi: 10.1021/acsami.0c06716
– ident: ref34/cit34
  doi: 10.1016/j.cej.2020.127831
– ident: ref47/cit47
  doi: 10.1021/acsami.0c17446
– ident: ref60/cit60
  doi: 10.1038/s41524-022-00780-0
– ident: ref24/cit24
  doi: 10.1007/s10853-018-2168-9
– ident: ref32/cit32
  doi: 10.1039/c9ta08740k
– ident: ref27/cit27
  doi: 10.1016/j.matlet.2017.12.148
– ident: ref29/cit29
  doi: 10.1007/s10853-021-05805-5
– ident: ref53/cit53
  doi: 10.3390/nano11030657
– ident: ref68/cit68
  doi: 10.1016/j.apcatb.2020.119436
– ident: ref46/cit46
  doi: 10.1016/j.mattod.2018.10.038
– ident: ref62/cit62
  doi: 10.1002/cssc.202001185
– ident: ref48/cit48
  doi: 10.1016/j.jcis.2019.12.044
– ident: ref16/cit16
  doi: 10.1021/acs.chemmater.9b00624
– ident: ref9/cit9
  doi: 10.1021/jacs.9b12377
– ident: ref23/cit23
  doi: 10.1002/adfm.202101632
– ident: ref15/cit15
  doi: 10.1039/d1ta04755h
– ident: ref20/cit20
  doi: 10.1016/j.elecom.2019.02.001
– ident: ref28/cit28
  doi: 10.1002/smll.202104761
– ident: ref30/cit30
  doi: 10.1002/anie.202107390
– ident: ref4/cit4
  doi: 10.1039/d1dt01952j
– ident: ref17/cit17
  doi: 10.1002/adma.201806236
– ident: ref7/cit7
  doi: 10.1016/j.cej.2020.127630
– ident: ref25/cit25
  doi: 10.1021/acs.langmuir.1c01105
– ident: ref43/cit43
  doi: 10.1039/c9ra10300g
– ident: ref59/cit59
  doi: 10.1021/acs.analchem.1c00568
– ident: ref19/cit19
  doi: 10.1002/adma.201805004
– ident: ref63/cit63
  doi: 10.1021/acsami.1c01188
– ident: ref67/cit67
  doi: 10.1002/celc.202100443
– ident: ref13/cit13
  doi: 10.1038/srep37946
– ident: ref31/cit31
  doi: 10.1002/adma.202101342
– ident: ref11/cit11
  doi: 10.1038/ncomms9485
– ident: ref52/cit52
  doi: 10.1016/j.jeurceramsoc.2016.09.018
– ident: ref10/cit10
  doi: 10.1002/aenm.202002887
– ident: ref45/cit45
  doi: 10.1016/j.jallcom.2021.162640
– ident: ref6/cit6
  doi: 10.1016/j.jcis.2022.03.063
– ident: ref58/cit58
  doi: 10.1021/acssuschemeng.1c03353
– ident: ref65/cit65
  doi: 10.1007/s10853-021-06391-2
– ident: ref61/cit61
  doi: 10.1021/acsami.0c05916
– ident: ref5/cit5
  doi: 10.1016/j.cej.2021.134274
– ident: ref70/cit70
  doi: 10.1016/j.jcis.2021.07.124
– ident: ref22/cit22
  doi: 10.1016/j.jallcom.2021.159064
SSID ssj0063205
Score 2.6325204
Snippet High-entropy oxides (HEOs) offer unique features through a combination of incompatible metal cations to a single crystalline lattice. Owing to their special...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 38727
SubjectTerms catalytic activity
cations
coordination polymers
Energy, Environmental, and Catalysis Applications
entropy
infancy
oxidation
oxygen
oxygen production
surface area
thermal stability
urea
Title High-Entropy Oxide Derived from Metal–Organic Framework as a Bifunctional Electrocatalyst for Efficient Urea Oxidation and Oxygen Evolution Reactions
URI http://dx.doi.org/10.1021/acsami.2c09161
https://www.proquest.com/docview/2703417367
https://www.proquest.com/docview/2718382623
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELZQe4EDbfkR_aEaBBInl8ROnPhY2qxWSAsSsFJvkeNMpFVRWpFs1e2p79BD369P0rGTUEq1wDGKoyT2eOab8cw3jL3TpUxSQ24qKceAR2mpeWF1xbU20pkvNJ5SaPJZjafRp6P46C7e8ecJvgg_GNu4VjjCkmVzfs6qULSDHQg6-DboXCWFT1YkjzziKVmsgZ7xwfPOCNnmvhG6r4O9YRmtdSxHjecjdPkkx3vzttizFw_ZGv_5zevsaY8uYb8Thw32COtn7MlvnIPP2bXL7OCZS1A_XcCX81mJcEj3zrAEV2sCEyQ8fnN51VVpWhgN6VtgGjDwceZMYRdBhKxrouNjQIumBULAkHlSCrJlMCVA6t_gVx9MXdLVgiQWsrNe4uErdpUVzQs2HWXfD8a8787ADYGAlkdhYKyp0BbSV7BGgSzipNI2DlAkoVEGZVUWKsHYanQkPnGFBlNZBRJTXcmXbKU-qfEVA4cqrZSVQYWRJi0TBCXJTyGVwlAps8ne0ozm_e5qcn9wLsK8m-a8n-ZNxodFzW1PcO76bPxYOv79r_GnHbXH0pFvBhnJafe5IxVT48m8yQUpzChMpEr-NobUJnlxQm79139ss8fC1Vj4wPUOW2l_zvE1IZ-22PVCfwvynwF5
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT9VAEN4QPKAHFMWAoozRhNNC22233SNiXx7KQyO8hFuz3U6TF0ghtI_4PPEfPPj__CXOblsECUSPbaftdjs7883uzLeMvVOFiBNNYSoZR4-HSaF4blTJldLCui_UjlJotC-H4_DjUXQ0x7b6WhhqRE1Pqt0i_h92AX-LztkdcQJDDs6GOw8IiQRWpbd3DnrTK0XgchYpMA95Qo6rZ2m8db_1Raa-6YtummLnXwaP2Zerlrm0kuPNaZNvmu9_kTb-R9OfsMUOa8J2qxxLbA6rp-zRNQbCZ-ynzfPgqU1XP5vB52-TAuEDXbvAAmzlCYyQ0Pmvyx9tzaaBQZ_MBboGDe8n1jG284mQtlvquBmhWd0A4WFIHUUFeTYYEzx1b3C6ALoq6GhG-gvpRaf_8BXbOot6mY0H6eHOkHd7NXBNkKDhoe9po0s0uXD1rKEn8igulYk8DGJfS42iLHIZY2QUWkqfqESNiSg9gYkqxXM2X51WuMLAYkwjRKlRYqjI5nheQdqUCynRl1KvsrfUo1k31urMLaMHftZ2c9Z18yrj_b_NTEd3bnfdOLlTfuNK_qwl-rhT8k2vKhmNRbvAois8ndZZQOYz9GMh4_tkyIhSTBeIF__0HetsYXg42sv2dvc_vWQPA1t94aa019h8cz7FV4SJmvy1Gwe_AeBVCdo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQkRAceCPKcxBInFySOHHiY2mzKo8WBF2pt8hxxlIFSlckW7Gc-A8c-H_8EmacpKKgIjgmmSSOM0975hshnphG5YWlMJWUYyTTojGydsZLY6xi84U2QArt7umdefryIDsY67i5FoYG0dGTurCJz1K9aPyIMBA_o_PcFSdxZOQ45DnPe3bM1ptb7yf1q1US8hYpOE9lQcZrQmr84362R647bY9Oq-NgY2ZXxP7J6EJqyYeNZV9vuC-_ATf-5_CvisujzwmbA5NcE-ewvS4u_YJEeEN853wPWXLa-mIFbz4fNgjbdO0YG-AKFNhF8tJ_fP021G46mE1JXWA7sPD8kA3ksK4I5dBaJ6wMrboeyC-GMkBVkIWDObmp4Q2BJ8C2DR2tiI-hPB7lAN7hUG_R3RTzWbm_tSPHng3SkmvQyzSOrLMeXa1CXWsaqTrLvXFZhEkeW21R-abWOWbOIEP7ZB4tFspHCgvj1S2x1h61eFsA-5pOKW9RY2pI90RRQ1xVK60x1tqui8c0o9Uoc10VttOTuBqmuRqneV3I6f9WboQ95-4bH8-kf3pCvxgAP86kfDSxS0UyyRsttsWjZVclpEbTOFc6_xsNKVOK7RJ155--46G48HZ7Vr1-sffqrriYcBFGWNm-J9b6T0u8T65RXz8IovATWl8MXQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Entropy+Oxide+Derived+from+Metal%E2%80%93Organic+Framework+as+a+Bifunctional+Electrocatalyst+for+Efficient+Urea+Oxidation+and+Oxygen+Evolution+Reactions&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Fereja%2C+Shemsu+Ligani&rft.au=Zhang%2C+Ziwei&rft.au=Fang%2C+Zhongying&rft.au=Guo%2C+Jinhan&rft.date=2022-08-31&rft.issn=1944-8252&rft.volume=14&rft.issue=34+p.38727-38738&rft.spage=38727&rft.epage=38738&rft_id=info:doi/10.1021%2Facsami.2c09161&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon