Disappearing Lakes in Semiarid Northern China: Drivers and Environmental Impact

The widely distributed 241 lakes in the semiarid region of China bordering the Asian Gobi desert provide an irreplaceable environment for the region’s human inhabitants, livestock, and wildlife. Using satellite imagery, we tracked the changing areas of lake water and freshwater/salty marshes during...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 47; no. 21; pp. 12107 - 12114
Main Authors Liu, Hongyan, Yin, Yi, Piao, Shilong, Zhao, Fengjun, Engels, Mike, Ciais, Philippe
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 05.11.2013
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The widely distributed 241 lakes in the semiarid region of China bordering the Asian Gobi desert provide an irreplaceable environment for the region’s human inhabitants, livestock, and wildlife. Using satellite imagery, we tracked the changing areas of lake water and freshwater/salty marshes during the last four decades and correlated observed changes with concurrent temperature and precipitation. On average, most of the lake size groups across different subregions showed a reduction in area from the 1970s to 2000s, particularly from the 1990s to 2000s (P < 0.05); 121 of the 241 lakes became fully desiccated at the end of the 2000s. Our results confirmed the prevalence of drought-induced lake shrinkage and desiccation at a regional scale, which has been sustained since the year 2000, and highlighted an accelerated shrinkage of individual lakes by human water use in the agriculture-dominated regions. Lake waters have become salinized, and freshwater marsh has been replaced by salty marsh, threatening the populations of endangered waterfowl species such as the red-crowned crane as well as the aquatic ecosystem. Although the dry lakebeds are a potential source of dust, the establishment of salty marsh on bare lake beds could have partially reduced dust release due to the increase in vegetation cover.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0013-936X
1520-5851
DOI:10.1021/es305298q