Morphology and Electronic Structure of the Oxide Shell on the Surface of Iron Nanoparticles

An iron (Fe) nanoparticle exposed to air at room temperature will be instantly covered by an oxide shell that is typically ∼3 nm thick. The nature of this native oxide shell, in combination with the underlying Fe0 core, determines the physical and chemical behavior of the core−shell nanoparticle. On...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 131; no. 25; pp. 8824 - 8832
Main Authors Wang, Chongmin, Baer, Donald R, Amonette, James E, Engelhard, Mark H, Antony, Jiji, Qiang, You
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 01.07.2009
American Chemical Society (ACS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An iron (Fe) nanoparticle exposed to air at room temperature will be instantly covered by an oxide shell that is typically ∼3 nm thick. The nature of this native oxide shell, in combination with the underlying Fe0 core, determines the physical and chemical behavior of the core−shell nanoparticle. One of the challenges of characterizing core−shell nanoparticles is determining the structure of the oxide shell, that is, whether it is FeO, Fe3O4, γ-Fe2O3, α-Fe2O3, or something else. The results of prior characterization efforts, which have mostly used X-ray diffraction and spectroscopy, electron diffraction, and transmission electron microscopic imaging, have been framed in terms of one of the known Fe−oxide structures, although it is not necessarily true that the thin layer of Fe oxide is a known Fe oxide. In this Article, we probe the structure of the oxide shell on Fe nanoparticles using electron energy loss spectroscopy (EELS) at the oxygen (O) K-edge with a spatial resolution of several nanometers (i.e., less than that of an individual particle). We studied two types of representative particles: small particles that are fully oxidized (no Fe0 core) and larger core−shell particles that possess an Fe core. We found that O K-edge spectra collected for the oxide shell in nanoparticles show distinct differences from those of known Fe oxides. Typically, the prepeak of the spectra collected on both the core−shell and the fully oxidized particles is weaker than that collected on standard Fe3O4. Given the fact that the origin of this prepeak corresponds to the transition of the O 1s electron to the unoccupied state of O 2p hybridized with Fe 3d, a weak pre-edge peak indicates a combination of the following four factors: a higher degree of occupancy of the Fe 3d orbital; a longer Fe−O bond length; a decreased covalency of the Fe−O bond; and a measure of cation vacancies. These results suggest that the coordination configuration in the oxide shell on Fe nanoparticles is defective as compared to that of their bulk counterparts. Implications of these defective structural characteristics on the properties of core−shell structured iron nanoparticles are discussed.
AbstractList An iron (Fe) nanoparticle exposed to air at room temperature will be instantly covered by an oxide shell that is typically approximately 3 nm thick. The nature of this native oxide shell, in combination with the underlying Fe(0) core, determines the physical and chemical behavior of the core-shell nanoparticle. One of the challenges of characterizing core-shell nanoparticles is determining the structure of the oxide shell, that is, whether it is FeO, Fe(3)O(4), gamma-Fe(2)O(3), alpha-Fe(2)O(3), or something else. The results of prior characterization efforts, which have mostly used X-ray diffraction and spectroscopy, electron diffraction, and transmission electron microscopic imaging, have been framed in terms of one of the known Fe-oxide structures, although it is not necessarily true that the thin layer of Fe oxide is a known Fe oxide. In this Article, we probe the structure of the oxide shell on Fe nanoparticles using electron energy loss spectroscopy (EELS) at the oxygen (O) K-edge with a spatial resolution of several nanometers (i.e., less than that of an individual particle). We studied two types of representative particles: small particles that are fully oxidized (no Fe(0) core) and larger core-shell particles that possess an Fe core. We found that O K-edge spectra collected for the oxide shell in nanoparticles show distinct differences from those of known Fe oxides. Typically, the prepeak of the spectra collected on both the core-shell and the fully oxidized particles is weaker than that collected on standard Fe(3)O(4). Given the fact that the origin of this prepeak corresponds to the transition of the O 1s electron to the unoccupied state of O 2p hybridized with Fe 3d, a weak pre-edge peak indicates a combination of the following four factors: a higher degree of occupancy of the Fe 3d orbital; a longer Fe-O bond length; a decreased covalency of the Fe-O bond; and a measure of cation vacancies. These results suggest that the coordination configuration in the oxide shell on Fe nanoparticles is defective as compared to that of their bulk counterparts. Implications of these defective structural characteristics on the properties of core-shell structured iron nanoparticles are discussed.
An iron (Fe) nanoparticle exposed to air at room temperature will be instantly covered by an oxide shell that is typically ∼3 nm thick. The nature of this native oxide shell, in combination with the underlying Fe0 core, determines the physical and chemical behavior of the core−shell nanoparticle. One of the challenges of characterizing core−shell nanoparticles is determining the structure of the oxide shell, that is, whether it is FeO, Fe3O4, γ-Fe2O3, α-Fe2O3, or something else. The results of prior characterization efforts, which have mostly used X-ray diffraction and spectroscopy, electron diffraction, and transmission electron microscopic imaging, have been framed in terms of one of the known Fe−oxide structures, although it is not necessarily true that the thin layer of Fe oxide is a known Fe oxide. In this Article, we probe the structure of the oxide shell on Fe nanoparticles using electron energy loss spectroscopy (EELS) at the oxygen (O) K-edge with a spatial resolution of several nanometers (i.e., less than that of an individual particle). We studied two types of representative particles: small particles that are fully oxidized (no Fe0 core) and larger core−shell particles that possess an Fe core. We found that O K-edge spectra collected for the oxide shell in nanoparticles show distinct differences from those of known Fe oxides. Typically, the prepeak of the spectra collected on both the core−shell and the fully oxidized particles is weaker than that collected on standard Fe3O4. Given the fact that the origin of this prepeak corresponds to the transition of the O 1s electron to the unoccupied state of O 2p hybridized with Fe 3d, a weak pre-edge peak indicates a combination of the following four factors: a higher degree of occupancy of the Fe 3d orbital; a longer Fe−O bond length; a decreased covalency of the Fe−O bond; and a measure of cation vacancies. These results suggest that the coordination configuration in the oxide shell on Fe nanoparticles is defective as compared to that of their bulk counterparts. Implications of these defective structural characteristics on the properties of core−shell structured iron nanoparticles are discussed.
An iron (Fe) nanoparticle exposed to air at room temperature will be instantly covered by an oxide shell that is typically approximately 3 nm thick. The nature of this native oxide shell, in combination with the underlying Fe(0) core, determines the physical and chemical behavior of the core-shell nanoparticle. One of the challenges of characterizing core-shell nanoparticles is determining the structure of the oxide shell, that is, whether it is FeO, Fe(3)O(4), gamma-Fe(2)O(3), alpha-Fe(2)O(3), or something else. The results of prior characterization efforts, which have mostly used X-ray diffraction and spectroscopy, electron diffraction, and transmission electron microscopic imaging, have been framed in terms of one of the known Fe-oxide structures, although it is not necessarily true that the thin layer of Fe oxide is a known Fe oxide. In this Article, we probe the structure of the oxide shell on Fe nanoparticles using electron energy loss spectroscopy (EELS) at the oxygen (O) K-edge with a spatial resolution of several nanometers (i.e., less than that of an individual particle). We studied two types of representative particles: small particles that are fully oxidized (no Fe(0) core) and larger core-shell particles that possess an Fe core. We found that O K-edge spectra collected for the oxide shell in nanoparticles show distinct differences from those of known Fe oxides. Typically, the prepeak of the spectra collected on both the core-shell and the fully oxidized particles is weaker than that collected on standard Fe(3)O(4). Given the fact that the origin of this prepeak corresponds to the transition of the O 1s electron to the unoccupied state of O 2p hybridized with Fe 3d, a weak pre-edge peak indicates a combination of the following four factors: a higher degree of occupancy of the Fe 3d orbital; a longer Fe-O bond length; a decreased covalency of the Fe-O bond; and a measure of cation vacancies. These results suggest that the coordination configuration in the oxide shell on Fe nanoparticles is defective as compared to that of their bulk counterparts. Implications of these defective structural characteristics on the properties of core-shell structured iron nanoparticles are discussed.An iron (Fe) nanoparticle exposed to air at room temperature will be instantly covered by an oxide shell that is typically approximately 3 nm thick. The nature of this native oxide shell, in combination with the underlying Fe(0) core, determines the physical and chemical behavior of the core-shell nanoparticle. One of the challenges of characterizing core-shell nanoparticles is determining the structure of the oxide shell, that is, whether it is FeO, Fe(3)O(4), gamma-Fe(2)O(3), alpha-Fe(2)O(3), or something else. The results of prior characterization efforts, which have mostly used X-ray diffraction and spectroscopy, electron diffraction, and transmission electron microscopic imaging, have been framed in terms of one of the known Fe-oxide structures, although it is not necessarily true that the thin layer of Fe oxide is a known Fe oxide. In this Article, we probe the structure of the oxide shell on Fe nanoparticles using electron energy loss spectroscopy (EELS) at the oxygen (O) K-edge with a spatial resolution of several nanometers (i.e., less than that of an individual particle). We studied two types of representative particles: small particles that are fully oxidized (no Fe(0) core) and larger core-shell particles that possess an Fe core. We found that O K-edge spectra collected for the oxide shell in nanoparticles show distinct differences from those of known Fe oxides. Typically, the prepeak of the spectra collected on both the core-shell and the fully oxidized particles is weaker than that collected on standard Fe(3)O(4). Given the fact that the origin of this prepeak corresponds to the transition of the O 1s electron to the unoccupied state of O 2p hybridized with Fe 3d, a weak pre-edge peak indicates a combination of the following four factors: a higher degree of occupancy of the Fe 3d orbital; a longer Fe-O bond length; a decreased covalency of the Fe-O bond; and a measure of cation vacancies. These results suggest that the coordination configuration in the oxide shell on Fe nanoparticles is defective as compared to that of their bulk counterparts. Implications of these defective structural characteristics on the properties of core-shell structured iron nanoparticles are discussed.
A iron nanoparticle exposed to air at room temperature will be instantly covered by an oxide shell of typical thickness of ~ 3 nm. This native oxide shell in combination with an underlying iron core determines the physical and chemical behavior of this type of core-shell nanoparticles. One of the great challenges for characterizing this type of nanoparticles is determination of the structure of the oxide shell, as it is FeO, Fe3O4, γ-Fe2O3, α-Fe2O3, or anything else. Significant research effort, mostly based on x-ray diffraction and spectroscopy and electron diffraction and transmission electron microscopy imaging, has been made to determine the structure of this thin layer of iron oxide. Most of the experimental results have been framed with one of the known iron oxide structures, although it is not necessarily true that this thin layer of iron oxide consists of a standard iron oxide. In this paper, the structure of the oxide shell on iron nanoparticle is probed using electron energy loss spectroscopy (EELS) at O K-edge with a spatial resolution of several nanometers (individual particle). Two types of representative particles were studied: particles that are fully oxidized and core-shell particle which possesses a Fe core. We found that the O K-edge spectra collected on the oxide shell in the nanoparticles shows distinctive differences as compared with that of the known iron oxide. Based on finger printing and quantum mechanical calculations results, we conclude that the distances between the absorbing oxygen and the next-nearest neighbor oxygens are more widely distributed than that in bulk Fe3O4 for both of these two types of particles. For smaller and fully oxidized particles, there is also a broadened distribution between the absorbing oxygen and the nearest neighbor oxygens. These results clearly demonstrate that the coordination configuration in the oxide shell on Fe nanoparticle is defective as compared with that of their bulk counterpart. Of the two types particles examined in this work, the degree of disorder is larger for the smaller fully oxidized particles.
Author Baer, Donald R
Amonette, James E
Antony, Jiji
Wang, Chongmin
Qiang, You
Engelhard, Mark H
Author_xml – sequence: 1
  givenname: Chongmin
  surname: Wang
  fullname: Wang, Chongmin
– sequence: 2
  givenname: Donald R
  surname: Baer
  fullname: Baer, Donald R
– sequence: 3
  givenname: James E
  surname: Amonette
  fullname: Amonette, James E
– sequence: 4
  givenname: Mark H
  surname: Engelhard
  fullname: Engelhard, Mark H
– sequence: 5
  givenname: Jiji
  surname: Antony
  fullname: Antony, Jiji
– sequence: 6
  givenname: You
  surname: Qiang
  fullname: Qiang, You
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19496564$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/958479$$D View this record in Osti.gov
BookMark eNpt0c9vFCEUB3Biaux29eA_YPCgiYexMPwajqap2qTaw-rJA3nLgMtmFlZgkva_L3arTZqeyCOfL-G9d4KOYooOodeUfKSkp6db0IQwwfwztKCiJ52gvTxCC0JI36lBsmN0Usq2lbwf6At0TDXXUki-QL--pbzfpCn9vsEQR3w-OVtzisHiVc2zrXN2OHlcNw5fXYfR4dXGTRNO8e5qNWcP9k5ctBT-DjHtIddgJ1deoucepuJe3Z9L9PPz-Y-zr93l1ZeLs0-XHXAiamclg96vwRGmlV8TpriSSlEmGdGMSyL69SA0UDIyppT11o-DcIOnwEDqgS3R28O7qdRgig3V2Y1NMbZWjBYDV7qZ9wezz-nP7Eo1u1Bs6wSiS3MxUnHKeRvVEr25h_N650azz2EH-cb8G1kDHw7A5lRKdv6BEPN3Heb_Opo9fWTb56CGFGuGMD2ZeHdIgC1mm-Yc2-SecLczzJZ1
CitedBy_id crossref_primary_10_1186_s11671_019_3128_2
crossref_primary_10_1016_j_mtchem_2024_102225
crossref_primary_10_1002_jctb_5284
crossref_primary_10_1002_cssc_202000290
crossref_primary_10_1039_C4CP02725F
crossref_primary_10_1143_JJAP_50_08JF11
crossref_primary_10_1021_acscatal_1c01549
crossref_primary_10_1016_j_colsurfb_2013_11_050
crossref_primary_10_1179_2055075815Y_0000000003
crossref_primary_10_1149_1945_7111_abef47
crossref_primary_10_1007_s10163_013_0150_9
crossref_primary_10_3390_ijerph19169888
crossref_primary_10_1039_D2TA07681K
crossref_primary_10_1039_D4RA03357D
crossref_primary_10_1021_acs_analchem_3c05877
crossref_primary_10_1063_1_4965702
crossref_primary_10_1016_j_chemosphere_2019_124470
crossref_primary_10_1016_j_jclepro_2021_128272
crossref_primary_10_1080_25765299_2021_1878655
crossref_primary_10_1016_j_jhazmat_2012_10_051
crossref_primary_10_1021_acsaem_9b01343
crossref_primary_10_1016_j_ultramic_2010_11_002
crossref_primary_10_1155_2017_2749575
crossref_primary_10_1016_j_jnucmat_2012_03_009
crossref_primary_10_1021_am302437a
crossref_primary_10_1155_2017_7868121
crossref_primary_10_1016_j_bcab_2022_102440
crossref_primary_10_1007_s11356_024_33197_x
crossref_primary_10_1002_smll_202301255
crossref_primary_10_1021_ie4009524
crossref_primary_10_1021_la503598b
crossref_primary_10_1039_D2SC02767D
crossref_primary_10_1039_C5EM00470E
crossref_primary_10_1016_j_jhazmat_2023_132190
crossref_primary_10_1021_acs_iecr_7b03012
crossref_primary_10_1016_j_cattod_2022_05_013
crossref_primary_10_1016_j_electacta_2014_10_073
crossref_primary_10_1021_acs_est_6b01897
crossref_primary_10_1016_j_matchemphys_2023_127944
crossref_primary_10_1039_C7NR05823C
crossref_primary_10_1021_jp206357c
crossref_primary_10_3390_polym10091038
crossref_primary_10_1021_acsnano_9b00888
crossref_primary_10_1063_1_4830434
crossref_primary_10_1021_acs_chemmater_6b03765
crossref_primary_10_1007_s11051_011_0313_3
crossref_primary_10_1016_j_gsf_2022_101494
crossref_primary_10_1016_j_scib_2018_12_002
crossref_primary_10_1016_j_cej_2020_124088
crossref_primary_10_1039_C9RA08595E
crossref_primary_10_1007_s00339_020_04176_z
crossref_primary_10_1039_C7RA12125C
crossref_primary_10_1016_j_envadv_2020_100024
crossref_primary_10_1063_1_4963828
crossref_primary_10_1021_jp301453w
crossref_primary_10_1002_aic_13740
crossref_primary_10_1021_es503777a
crossref_primary_10_1021_acs_chemmater_2c00708
crossref_primary_10_1080_17458080_2015_1066514
crossref_primary_10_1016_j_chemosphere_2024_142707
crossref_primary_10_1021_es503154q
crossref_primary_10_1155_2015_763124
crossref_primary_10_1016_j_cej_2013_01_010
crossref_primary_10_1038_srep03683
crossref_primary_10_22211_matwys_0172E
crossref_primary_10_1063_1_4974052
crossref_primary_10_1007_s10661_020_8075_y
crossref_primary_10_1007_s11270_014_2243_z
crossref_primary_10_1007_s11051_013_1514_8
crossref_primary_10_1021_acs_est_9b01999
crossref_primary_10_1080_10643389_2015_1103832
crossref_primary_10_1039_C4NR03040K
crossref_primary_10_1038_srep18818
crossref_primary_10_1088_1361_6528_acd38a
crossref_primary_10_1007_s11051_012_1118_8
crossref_primary_10_1016_j_cej_2019_122828
crossref_primary_10_1039_c3nr00716b
crossref_primary_10_1002_smll_201702877
crossref_primary_10_1016_j_jhazmat_2021_126014
crossref_primary_10_1016_j_colsurfa_2019_124269
crossref_primary_10_1016_j_jhazmat_2022_129922
crossref_primary_10_1016_j_watres_2015_01_002
crossref_primary_10_1007_s00340_022_07964_y
crossref_primary_10_4028_www_scientific_net_AMR_424_425_1057
crossref_primary_10_1007_s11051_023_05851_x
crossref_primary_10_1021_jp506281d
crossref_primary_10_1021_ez5001512
crossref_primary_10_1016_j_jallcom_2022_168558
crossref_primary_10_3390_met8020107
crossref_primary_10_1007_s13391_019_00164_5
crossref_primary_10_1039_C7CP08364E
crossref_primary_10_1021_jacs_0c06268
crossref_primary_10_1002_anie_201902750
crossref_primary_10_1016_j_ces_2015_08_036
crossref_primary_10_1016_j_mcat_2016_12_028
crossref_primary_10_1039_C2TC00159D
crossref_primary_10_1016_j_matlet_2011_09_097
crossref_primary_10_1021_acs_est_1c02458
crossref_primary_10_1007_s11696_025_03893_0
crossref_primary_10_1021_acs_chemmater_8b03679
crossref_primary_10_1021_acssuschemeng_1c05335
crossref_primary_10_1515_ntrev_2020_0059
crossref_primary_10_15541_jim20200347
crossref_primary_10_1016_j_seppur_2019_116424
crossref_primary_10_1007_s11661_021_06326_1
crossref_primary_10_1021_acs_jpcc_6b02033
crossref_primary_10_1039_C6EN00398B
crossref_primary_10_1039_C7TC03010J
crossref_primary_10_1080_09593330_2018_1509891
crossref_primary_10_1002_ange_201902750
crossref_primary_10_1016_j_aca_2015_10_040
crossref_primary_10_1016_j_matchemphys_2020_122812
crossref_primary_10_3390_s23031727
crossref_primary_10_1021_acsestwater_2c00080
crossref_primary_10_1021_acschemneuro_3c00756
crossref_primary_10_1016_j_nanoen_2018_01_015
crossref_primary_10_1002_ange_201101737
crossref_primary_10_1021_acs_estlett_8b00259
crossref_primary_10_1021_jp208600n
crossref_primary_10_1016_j_scitotenv_2024_175774
crossref_primary_10_1021_acsnano_6b01024
crossref_primary_10_1021_acs_jpcc_7b00198
crossref_primary_10_1021_es902772r
crossref_primary_10_1007_s11051_013_1722_2
crossref_primary_10_3762_bjnano_6_167
crossref_primary_10_1016_j_jssc_2011_03_015
crossref_primary_10_1016_j_cej_2016_09_088
crossref_primary_10_1016_j_envpol_2011_06_021
crossref_primary_10_1021_es303037k
crossref_primary_10_1038_s41598_021_99849_x
crossref_primary_10_1039_C5RA06936J
crossref_primary_10_1007_s12665_011_1139_0
crossref_primary_10_1016_j_jhazmat_2015_01_019
crossref_primary_10_1016_S1872_2067_15_60925_1
crossref_primary_10_11001_jksww_2018_32_3_243
crossref_primary_10_1021_jp3101392
crossref_primary_10_1016_j_cej_2021_129073
crossref_primary_10_1039_c3nr02247a
crossref_primary_10_1155_2011_837123
crossref_primary_10_1016_j_clet_2021_100327
crossref_primary_10_1021_acs_jpcc_9b01678
crossref_primary_10_3390_nano12101729
crossref_primary_10_1021_acs_iecr_8b04464
crossref_primary_10_1039_c0cc02311f
crossref_primary_10_1039_C6EN00231E
crossref_primary_10_1002_adma_201903316
crossref_primary_10_1039_C8NR07642A
crossref_primary_10_1063_1_4799522
crossref_primary_10_7567_JJAP_50_08JF11
crossref_primary_10_1039_C6CC04951F
crossref_primary_10_1021_acsestengg_4c00795
crossref_primary_10_1002_anie_201101737
crossref_primary_10_1016_j_jhazmat_2019_120836
crossref_primary_10_1016_j_enconman_2014_06_058
crossref_primary_10_1021_jp106919a
crossref_primary_10_1063_1_4798242
crossref_primary_10_1002_ente_201901070
crossref_primary_10_1039_c2ra23404a
crossref_primary_10_3390_molecules24244629
crossref_primary_10_1021_cm102255j
crossref_primary_10_1016_j_biomaterials_2009_11_034
crossref_primary_10_1016_j_jcis_2017_09_087
crossref_primary_10_1016_j_jconhyd_2010_09_003
crossref_primary_10_1016_j_ces_2017_04_007
crossref_primary_10_1016_j_jclepro_2017_10_091
crossref_primary_10_1002_cplu_201100074
crossref_primary_10_1016_j_cclet_2021_12_027
crossref_primary_10_1021_acs_est_7b02233
crossref_primary_10_1039_C4AN00679H
crossref_primary_10_1039_D3RA03133K
crossref_primary_10_1021_acs_langmuir_5b04491
crossref_primary_10_1039_c2nr30986f
crossref_primary_10_1016_S1872_2067_14_60114_5
crossref_primary_10_31857_S0044185624030026
crossref_primary_10_1134_S2070205120060167
crossref_primary_10_1016_j_cej_2018_09_164
crossref_primary_10_1002_clen_201600139
crossref_primary_10_1021_acs_est_6b04315
crossref_primary_10_1080_10408436_2014_899890
crossref_primary_10_1039_C5CP07569F
crossref_primary_10_1016_j_jece_2016_03_048
crossref_primary_10_5004_dwt_2017_21633
crossref_primary_10_1038_nmat3785
crossref_primary_10_22211_matwys_0172
crossref_primary_10_1088_1742_6596_303_1_012090
crossref_primary_10_1021_jp907982q
crossref_primary_10_1039_C9NA00161A
crossref_primary_10_1016_j_jnucmat_2012_06_017
crossref_primary_10_1007_s11051_014_2712_8
crossref_primary_10_1016_j_ijpharm_2012_09_050
crossref_primary_10_1016_j_fuproc_2023_107744
crossref_primary_10_5004_dwt_2020_24817
crossref_primary_10_1016_j_apsusc_2023_158867
crossref_primary_10_1039_C2EM30691C
crossref_primary_10_1016_j_jmrt_2024_02_116
crossref_primary_10_1039_c0cp02153a
crossref_primary_10_1016_j_watres_2024_121589
crossref_primary_10_1038_srep24189
crossref_primary_10_1039_c2jm32270f
crossref_primary_10_1134_S1064229322602712
crossref_primary_10_1016_j_apcatb_2019_118057
crossref_primary_10_1016_S1872_2067_23_64558_9
crossref_primary_10_1371_journal_pone_0085686
crossref_primary_10_1007_s11783_015_0784_z
crossref_primary_10_1038_s41598_019_55397_z
Cites_doi 10.1016/j.ultramic.2007.03.002
10.1002/sia.2726
10.1016/S0304-8853(01)00134-2
10.1103/PhysRevLett.68.1947
10.1016/0304-3991(90)90078-Z
10.1103/PhysRevB.38.3711
10.1007/s11051-005-9011-3
10.1016/j.jmmm.2004.03.037
10.1088/0022-3719/12/2/021
10.1023/B:JMSC.0000035328.99440.8d
10.1088/0034-4885/12/1/308
10.1016/0039-6028(73)90148-9
10.1016/0039-6028(72)90146-X
10.1016/0009-2614(84)85051-4
10.1103/PhysRevB.29.6890
10.1103/PhysRevB.66.174418
10.1103/PhysRevB.55.2570
10.1103/PhysRevB.40.5715
10.1021/jp050486b
10.1103/PhysRevLett.79.4282
10.1088/0031-8949/43/3/021
10.1016/j.jcrysgro.2007.10.084
10.1149/1.1393502
10.1039/c39910000229
10.1017/S1431927603444176
10.1007/s10562-007-9303-6
10.1088/0957-4484/18/25/255603
10.1107/S0567740869002111
10.1166/jnn.2006.135
10.1080/10408430601057611
10.1038/346255a0
10.1002/anie.200700677
10.1016/S0039-6028(99)01006-7
10.1524/zkri.2007.222.11.634
10.1021/es970039c
10.1023/B:NANO.0000023226.53516.b6
10.1016/S0022-4596(83)80010-3
10.1103/PhysRevB.45.9778
10.1021/jp0777418
10.1016/0039-6028(74)90220-9
10.1021/es049190u
10.1016/0079-6816(83)90001-1
10.1021/ja072574a
10.1103/PhysRevLett.72.282
10.1016/0039-6028(77)90239-4
10.1021/ja063969h
10.1080/10643380600620387
10.1016/0039-6028(76)90345-9
10.1103/PhysRevB.69.125415
10.1103/PhysRevB.45.14273
10.1107/S0567740881004597
10.1103/PhysRevB.44.11402
10.1103/PhysRevB.11.1279
10.1007/978-3-642-60311-2
10.1063/1.2130890
10.1016/S0965-9773(99)00027-6
10.1063/1.1333401
10.1103/PhysRevB.47.13763
10.1107/S0021889894010113
10.1016/0304-3991(90)90076-X
10.1166/jnn.2006.925
10.1016/0039-6028(75)90413-6
10.1063/1.1676031
10.1126/science.1148614
10.1038/282186a0
10.1016/S0955-2219(03)00308-X
10.1103/PhysRevB.68.195423
ContentType Journal Article
Copyright Copyright © 2009 American Chemical Society
Copyright_xml – notice: Copyright © 2009 American Chemical Society
CorporateAuthor Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)
CorporateAuthor_xml – name: Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
OTOTI
DOI 10.1021/ja900353f
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
DocumentTitleAlternate Oxide Shell on the Surface of Iron Nanoparticles
EISSN 1520-5126
EndPage 8832
ExternalDocumentID 958479
19496564
10_1021_ja900353f
e07971693
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID -
.K2
02
4.4
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
AFFNX
AFMIJ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TAF
TN5
UHB
UI2
UKR
UPT
UQL
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZCG
ZE2
ZHY
---
-DZ
-ET
-~X
.DC
6TJ
AAHBH
AAYOK
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
AAYWT
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ABFRP
OTOTI
ID FETCH-LOGICAL-a405t-c63a2fbae0397fb03747677136309346052b859a10d3377cfcfd85e8f1a3a6983
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Thu May 18 18:28:34 EDT 2023
Thu Jul 10 17:41:05 EDT 2025
Mon Jul 21 06:01:04 EDT 2025
Tue Jul 01 04:14:47 EDT 2025
Thu Apr 24 22:52:54 EDT 2025
Thu Aug 27 13:42:39 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 25
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a405t-c63a2fbae0397fb03747677136309346052b859a10d3377cfcfd85e8f1a3a6983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PNNL-SA-63967
USDOE
AC05-76RL01830
PMID 19496564
PQID 67414486
PQPubID 23479
PageCount 9
ParticipantIDs osti_scitechconnect_958479
proquest_miscellaneous_67414486
pubmed_primary_19496564
crossref_primary_10_1021_ja900353f
crossref_citationtrail_10_1021_ja900353f
acs_journals_10_1021_ja900353f
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-07-01
PublicationDateYYYYMMDD 2009-07-01
PublicationDate_xml – month: 07
  year: 2009
  text: 2009-07-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2009
Publisher American Chemical Society
American Chemical Society (ACS)
Publisher_xml – name: American Chemical Society
– name: American Chemical Society (ACS)
References Antony J. (ref6/cit6) 2006; 6
Wu L. (ref41/cit41) 2004; 69
Wang C. M. (ref13/cit13) 2005; 98
Bodker F. (ref32/cit32) 1994; 72
Tamaura Y. (ref3/cit3) 1990; 346
Roosendaal S. J. (ref20/cit20) 1999; 442
Peng S. (ref7/cit7) 2006; 128
Ueda K. (ref22/cit22) 1974; 43
Sarathy V. (ref69/cit69) 2008; 112
Ashley C. A. (ref62/cit62) 1975; 11
Yi W. (ref36/cit36) 2004; 95
Colliex C. (ref51/cit51) 1991; 44
Krishnan K. M. (ref54/cit54) 1990; 32
Zhang X. X. (ref2/cit2) 2001; 231
Sewell P. B. (ref24/cit24) 1972; 33
Weng X. (ref61/cit61) 2008; 310
Qiang Y. (ref1/cit1) 2006; 8
Peng S. (ref9/cit9) 2007; 46
Ruckman M. W. (ref25/cit25) 1992; 45
Ye X. R. (ref42/cit42) 2006; 6
Davenport A. J. (ref27/cit27) 2000; 147
Wang C. M. (ref15/cit15) 2007; 108
Koyama Y. (ref43/cit43) 2005; 109
Wu Z. Y. (ref53/cit53) 1997; 55
Koch F. (ref45/cit45) 1969; 25
Greaves C. (ref47/cit47) 1983; 49
Brundle C. R. (ref18/cit18) 1977; 68
Paterson J. H. (ref52/cit52) 1990; 32
Haneda K. (ref34/cit34) 1979; 282
Tsukada T. (ref58/cit58) 1983; 14
Baer D. R. (ref14/cit14) 2006
Nurmi J. T. (ref4/cit4) 2005; 39
Sparrow T. G. (ref55/cit55) 1984; 108
Moeck P. (ref38/cit38) 2007; 222
Toney M. F. (ref28/cit28) 1997; 79
Shafranovsky E. A. (ref37/cit37) 2004; 6
Groot F. M. F. (ref56/cit56) 1989; 40
Gangopadhyay S. (ref33/cit33) 1992; 45
Signorini L. (ref39/cit39) 2003; 68
Cabot A. (ref8/cit8) 2007; 129
Kutzler F. W. (ref63/cit63) 1984; 29
Fromm E. (ref12/cit12) 1998
Tsunekawa S. (ref66/cit66) 1999; 11
Shmakov A. N. (ref48/cit48) 1995; 28
Battle P. D. (ref44/cit44) 1979; 12
Simmons G. (ref21/cit21) 1975; 48
Kwok Y. S. (ref29/cit29) 2000; 77
Perkins D. A. (ref50/cit50) 1991; 202
Bianco L. D. (ref31/cit31) 2002; 66
Zhang F. (ref67/cit67) 2002
Li X. Q. (ref70/cit70) 2006; 31
Li L. (ref71/cit71) 2006; 36
Spaldin N. A. (ref74/cit74) 2003
Leibbrandt G. W. (ref17/cit17) 1992; 68
Leygraf C. (ref23/cit23) 1973; 40
Wang C. M. (ref10/cit10) 2007; 18
Guo T. (ref26/cit26) 1988; 38
Kurita H. (ref57/cit57) 1993; 47
Olsen J. S. (ref49/cit49) 1991; 43
Yoshiya M. (ref59/cit59) 1999; 11
Kadossov E. (ref72/cit72) 2008; 120
Baer D. R. (ref68/cit68) 2008; 40
Sutton A. P. (ref64/cit64) 2006
Baker C. (ref73/cit73) 2004; 280
Rojas T. C. (ref35/cit35) 2004; 39
Mitterbauer C. (ref60/cit60) 2003; 9
Fleet M. (ref46/cit46) 1981; 37
Navrotsky A. (ref40/cit40) 2008; 319
Brucker C. F. (ref19/cit19) 1976; 57
Khanna A. S. (ref16/cit16) 2002
Wang C. B. (ref5/cit5) 1997; 31
Caberra N. (ref11/cit11) 1948; 12
Kuhn L. T. (ref30/cit30) 2002; 14
Wynblatt P. (ref65/cit65) 2003; 23
References_xml – volume-title: Interfaces in Crystalline Materials
  year: 2006
  ident: ref64/cit64
– volume: 108
  start-page: 43
  year: 2007
  ident: ref15/cit15
  publication-title: Ultramicroscoy
  doi: 10.1016/j.ultramic.2007.03.002
– volume: 40
  start-page: 529
  year: 2008
  ident: ref68/cit68
  publication-title: Surf. Interface Anal.
  doi: 10.1002/sia.2726
– volume: 231
  start-page: L9−L12
  year: 2001
  ident: ref2/cit2
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/S0304-8853(01)00134-2
– volume: 68
  start-page: 1947
  year: 1992
  ident: ref17/cit17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.68.1947
– volume: 32
  start-page: 319
  year: 1990
  ident: ref52/cit52
  publication-title: Ultrmicroscopy
  doi: 10.1016/0304-3991(90)90078-Z
– volume: 38
  start-page: 3711
  year: 1988
  ident: ref26/cit26
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.38.3711
– volume: 8
  start-page: 489
  year: 2006
  ident: ref1/cit1
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-005-9011-3
– volume: 280
  start-page: 412
  year: 2004
  ident: ref73/cit73
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2004.03.037
– volume: 12
  start-page: 337
  year: 1979
  ident: ref44/cit44
  publication-title: J. Phys. C: Solid State Phys.
  doi: 10.1088/0022-3719/12/2/021
– volume: 39
  start-page: 4877
  year: 2004
  ident: ref35/cit35
  publication-title: J. Mater. Sci.
  doi: 10.1023/B:JMSC.0000035328.99440.8d
– volume: 12
  start-page: 163
  year: 1948
  ident: ref11/cit11
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/12/1/308
– volume: 40
  start-page: 609
  year: 1973
  ident: ref23/cit23
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(73)90148-9
– volume: 33
  start-page: 535
  year: 1972
  ident: ref24/cit24
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(72)90146-X
– volume: 108
  start-page: 547
  year: 1984
  ident: ref55/cit55
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(84)85051-4
– volume: 11
  start-page: 3217
  year: 1999
  ident: ref59/cit59
  publication-title: J. Phys.: Condens. Matter.
– volume: 29
  start-page: 6890
  year: 1984
  ident: ref63/cit63
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.29.6890
– volume: 66
  start-page: 174418
  year: 2002
  ident: ref31/cit31
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.66.174418
– volume: 55
  start-page: 2570
  year: 1997
  ident: ref53/cit53
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.55.2570
– start-page: 80
  year: 2002
  ident: ref67/cit67
  publication-title: Appl. Phys. Lett.
– volume: 40
  start-page: 5715
  year: 1989
  ident: ref56/cit56
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.40.5715
– volume: 109
  start-page: 10749
  year: 2005
  ident: ref43/cit43
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp050486b
– volume: 79
  start-page: 4282
  year: 1997
  ident: ref28/cit28
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.79.4282
– volume: 43
  start-page: 327
  year: 1991
  ident: ref49/cit49
  publication-title: Phys. Scr.
  doi: 10.1088/0031-8949/43/3/021
– volume: 310
  start-page: 545
  year: 2008
  ident: ref61/cit61
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2007.10.084
– volume: 147
  start-page: 2162
  year: 2000
  ident: ref27/cit27
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1393502
– volume: 202
  start-page: 229
  year: 1991
  ident: ref50/cit50
  publication-title: J. Chem. Soc., Chem. Commun.
  doi: 10.1039/c39910000229
– volume: 9
  start-page: 834
  year: 2003
  ident: ref60/cit60
  publication-title: Microsc. Microanal.
  doi: 10.1017/S1431927603444176
– volume: 120
  start-page: 179
  year: 2008
  ident: ref72/cit72
  publication-title: Catal. Lett.
  doi: 10.1007/s10562-007-9303-6
– volume: 18
  start-page: 255603
  year: 2007
  ident: ref10/cit10
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/18/25/255603
– volume: 25
  start-page: 275
  year: 1969
  ident: ref45/cit45
  publication-title: Acta Crystallogr.
  doi: 10.1107/S0567740869002111
– volume: 6
  start-page: 852
  year: 2006
  ident: ref42/cit42
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2006.135
– volume: 31
  start-page: 111
  year: 2006
  ident: ref70/cit70
  publication-title: Crit. Rev. Solid State Mater. Sci.
  doi: 10.1080/10408430601057611
– volume: 346
  start-page: 255
  year: 1990
  ident: ref3/cit3
  publication-title: Nature
  doi: 10.1038/346255a0
– volume: 46
  start-page: 4155
  year: 2007
  ident: ref9/cit9
  publication-title: Angew. Chem., Int. Ed
  doi: 10.1002/anie.200700677
– volume: 442
  start-page: 329
  year: 1999
  ident: ref20/cit20
  publication-title: Surf. Sci.
  doi: 10.1016/S0039-6028(99)01006-7
– volume: 222
  start-page: 634
  year: 2007
  ident: ref38/cit38
  publication-title: Z. Kristallogr.
  doi: 10.1524/zkri.2007.222.11.634
– volume: 31
  start-page: 2154
  year: 1997
  ident: ref5/cit5
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es970039c
– volume: 6
  start-page: 71
  year: 2004
  ident: ref37/cit37
  publication-title: J. Nanopart. Res.
  doi: 10.1023/B:NANO.0000023226.53516.b6
– volume-title: Magnetic Materials
  year: 2003
  ident: ref74/cit74
– volume: 49
  start-page: 325
  year: 1983
  ident: ref47/cit47
  publication-title: J. Solid State Commun.
  doi: 10.1016/S0022-4596(83)80010-3
– volume: 45
  start-page: 9778
  year: 1992
  ident: ref33/cit33
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.45.9778
– volume: 112
  start-page: 2286
  year: 2008
  ident: ref69/cit69
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp0777418
– volume: 43
  start-page: 77
  year: 1974
  ident: ref22/cit22
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(74)90220-9
– volume: 39
  start-page: 1221
  year: 2005
  ident: ref4/cit4
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es049190u
– volume: 14
  start-page: 113
  year: 1983
  ident: ref58/cit58
  publication-title: Prog. Surf. Sci.
  doi: 10.1016/0079-6816(83)90001-1
– volume: 129
  start-page: 10358
  year: 2007
  ident: ref8/cit8
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja072574a
– volume: 72
  start-page: 282
  year: 1994
  ident: ref32/cit32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.72.282
– volume: 68
  start-page: 459
  year: 1977
  ident: ref18/cit18
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(77)90239-4
– volume: 128
  start-page: 10676
  year: 2006
  ident: ref7/cit7
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja063969h
– volume: 36
  start-page: 405
  year: 2006
  ident: ref71/cit71
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643380600620387
– volume: 57
  start-page: 523
  year: 1976
  ident: ref19/cit19
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(76)90345-9
– volume: 69
  start-page: 125415
  year: 2004
  ident: ref41/cit41
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.69.125415
– volume: 45
  start-page: 14273
  year: 1992
  ident: ref25/cit25
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.45.14273
– volume: 14
  start-page: 13551
  year: 2002
  ident: ref30/cit30
  publication-title: J. Phys.: Condens. Matter
– volume-title: Introduction to High Temperature Oxidation and Corrosion
  year: 2002
  ident: ref16/cit16
– volume: 37
  start-page: 917
  year: 1981
  ident: ref46/cit46
  publication-title: Acta Crystallogr.
  doi: 10.1107/S0567740881004597
– volume: 44
  start-page: 11402
  year: 1991
  ident: ref51/cit51
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.44.11402
– volume: 11
  start-page: 1279
  year: 1975
  ident: ref62/cit62
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.11.1279
– volume-title: Kinetics of Matal-Gas Interactions at Low Temperature: Hydriding, Oxidation, Poisoning
  year: 1998
  ident: ref12/cit12
  doi: 10.1007/978-3-642-60311-2
– volume: 98
  start-page: 094308
  year: 2005
  ident: ref13/cit13
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2130890
– volume: 11
  start-page: 141
  year: 1999
  ident: ref66/cit66
  publication-title: Nanostruct. Mater.
  doi: 10.1016/S0965-9773(99)00027-6
– volume: 77
  start-page: 3971
  year: 2000
  ident: ref29/cit29
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1333401
– volume: 47
  start-page: 13763
  year: 1993
  ident: ref57/cit57
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.13763
– volume: 28
  start-page: 141
  year: 1995
  ident: ref48/cit48
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889894010113
– volume: 32
  start-page: 309
  year: 1990
  ident: ref54/cit54
  publication-title: Ultramicroscopy
  doi: 10.1016/0304-3991(90)90076-X
– volume: 6
  start-page: 568
  year: 2006
  ident: ref6/cit6
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2006.925
– volume: 48
  start-page: 373
  year: 1975
  ident: ref21/cit21
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(75)90413-6
– volume: 95
  start-page: 7136
  year: 2004
  ident: ref36/cit36
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1676031
– volume: 319
  start-page: 1635
  year: 2008
  ident: ref40/cit40
  publication-title: Science
  doi: 10.1126/science.1148614
– volume: 282
  start-page: 186
  year: 1979
  ident: ref34/cit34
  publication-title: Nature
  doi: 10.1038/282186a0
– volume-title: Synthesis, Characterization and Properties of Zero Valent Iron Nanoparticles
  year: 2006
  ident: ref14/cit14
– volume: 23
  start-page: 2841
  year: 2003
  ident: ref65/cit65
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/S0955-2219(03)00308-X
– volume: 68
  start-page: 195423
  year: 2003
  ident: ref39/cit39
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.68.195423
SSID ssj0004281
Score 2.4176702
Snippet An iron (Fe) nanoparticle exposed to air at room temperature will be instantly covered by an oxide shell that is typically ∼3 nm thick. The nature of this...
An iron (Fe) nanoparticle exposed to air at room temperature will be instantly covered by an oxide shell that is typically approximately 3 nm thick. The nature...
A iron nanoparticle exposed to air at room temperature will be instantly covered by an oxide shell of typical thickness of ~ 3 nm. This native oxide shell in...
SourceID osti
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8824
SubjectTerms core-shell structure
EELS
ELECTRONIC STRUCTURE
Electrons
Environmental Molecular Sciences Laboratory
Fe nanoparticles
initial oxidation
IRON
Iron - chemistry
IRON OXIDES
MATERIALS SCIENCE
Microscopy, Electron, Transmission
Models, Molecular
MORPHOLOGY
Nanoparticles - chemistry
Nanoparticles - ultrastructure
NANOSCIENCE AND NANOTECHNOLOGY
NANOSTRUCTURES
Oxides - chemistry
Particle Size
Surface Properties
X-Ray Diffraction
Title Morphology and Electronic Structure of the Oxide Shell on the Surface of Iron Nanoparticles
URI http://dx.doi.org/10.1021/ja900353f
https://www.ncbi.nlm.nih.gov/pubmed/19496564
https://www.proquest.com/docview/67414486
https://www.osti.gov/biblio/958479
Volume 131
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9swDCay9LBd1se2Ln1kwrbDLg5iK6bkY5G2SAe0PWQFCuxgyLIEDCvsoYmBob--pB_NijXtzTAo2CYp66NIfQT46skNHEU7gfZyzC3MXGByhQFGTnqUIbPwc7XFBc6uJt-v4-sefFmTwY-YH4g322LpX8FGhFpxhHU0na8OP0Y67DCu0ig7-qB_h_LSYxePlp5-SVNoPaysl5fTTTjuDuk0VSW_R9UyG9m7_zkbn3vzLXjbwktx1PjDNvRcsQOvp11Xt3fw87wkzdZ76cIUuTh5aIMj5jWVbHXrROkF4UJx-fdX7sScS0VFWdS35tWtN7aWOKNRgn7OFHW3xXXv4er05Md0FrQNFgJDOG0ZWJQm8plxY0IlPmMqGoWKwlbk_ChnTKNMx4kJx7mUSllvfa5jp31opMFEyw_QL8rCfQQR24lTCbo8c2O6QhPpHBOfhT7HLFRuAEOyQNpOkEVa574jij06HQ3gW2ec1Lb05Nwl4-Yp0c8Pon8aTo6nhPbYwikBCWbDtVw2ZJdpwmnhZACfOrunpH_OkZjCldUiRUJYFLHiAHYbd1g9IWFqfZzsvfQl-_CmSTlxTe8B9Ml47pCQyzIb1p57DyWS5Vs
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9wwEB7BcoALlEfL0gIWolIvQRt74ySHHtAC2uV5WJCQOKSOY0tVqwSRXfH4KfyV_rnOeJNdQKCekHqLIsexPePMN5nxNwDbFtXAoLfjRVa0qISZ8VQWSk9yI6wUPrHwU7bFqexetA8vg8speKzPwuAgSuypdEH8CbsA0QTRP7dA2CqB8sjc36J7Vn7v7aEsv3J-sH_e6XpVBQFPIRAZeFoKxW2qTAvNrk2JayWUIfplkgKAFBLkaRTEym9lQoShttpmUWAi6yuhZBwJ7HcaZhD0cHLsdjv9yZlLHvk1tA4jKWrWoqdDJYuny2cWr1Hgzn0bzTqrdrAAf8br4ZJZfu0MB-mOfnhBFfl_LtgHmK_ANNsdaf8iTJl8CWY7dQ27Zbg6KVCPXOSAqTxj--OiP6zviHOHN4YVliEKZmd3PzPD-pQYy4rc3eoPb6zSrkUPn2JoiorrOpVwBS7eZW4foZEXuVkFFui2CWNpstS08EoqHmUytqlvM5n6oWnCBookqT4HZeIi_Rw9rVomTfhW60SiKzJ2qgny-7WmW-Om1yMGktcarZFiJQibiPtXU5KUHiQxBcHjJmzW6pbg-lNESOWmGJaJRDyJ_rlswqeRFk7eEFMhAdle-9dMNmG2e35ynBz3To8-w9wo2EbZzF-ggYI064jZBumG2zwMfry38v0FAAZFfg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9tAEB7RVKJcaIECSVtYoVbiYhR747V96CEKRIS3lCIh9WDW-5AQyI5woj5-TP9K_1pnNnagFRUnJG6WtV7v7sx6ZvzNfgPw0aIaGIx2vNjyNpUwM57UkfBEYLgV3CcWfsq2OBH7552Di_BiDn7VZ2FwECX2VDoQn3b1SNuKYYCogui_W8htlUR5aH58wxCt_DzYRXl-CoL-3pfevldVEfAkOiNjTwkuA5tJ00bTazPiW4lEhLGZIBCQYMEgi8NE-m3NeRQpq6yOQxNbX3Ipkphjvy_gJcGDFNx1e8O7c5dB7NfudRQLXjMX3R8qWT1V_mX1GgXu3v97tM6y9V_D79mauISW653JONtRP_-hi3y-i_YGFiunmnWnu2AJ5ky-DK96dS27Ffh6XKA-OQSByVyzvVnxHzZ0BLqTW8MKy9AbZqffr7RhQ0qQZUXubg0nt1Yq12KATzE0ScWoTil8C-dPMrdVaORFbtaBhapjokQYnZk2XgkZxFokNvOtFpkfmSZsoFjS6rNQpg7xDzDiqmXShO1aL1JVkbJTbZCbh5puzZqOpkwkDzVqkXKl6D4RB7CiZCk1ThMCw5MmbNYql-L6EzIkc1NMylSgX4lxumjC2lQT796QUEEB0Wk9NpNNmD_b7adHg5PDd7Awxdwoqfk9NFCO5gO6buNsw-0fBpdPrXt_APXJSAE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Morphology+and+electronic+structure+of+the+oxide+shell+on+the+surface+of+iron+nanoparticles&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Wang%2C+Chongmin&rft.au=Baer%2C+Donald+R&rft.au=Amonette%2C+James+E&rft.au=Engelhard%2C+Mark+H&rft.date=2009-07-01&rft.eissn=1520-5126&rft.volume=131&rft.issue=25&rft.spage=8824&rft_id=info:doi/10.1021%2Fja900353f&rft_id=info%3Apmid%2F19496564&rft.externalDocID=19496564
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon