Morphology and Electronic Structure of the Oxide Shell on the Surface of Iron Nanoparticles
An iron (Fe) nanoparticle exposed to air at room temperature will be instantly covered by an oxide shell that is typically ∼3 nm thick. The nature of this native oxide shell, in combination with the underlying Fe0 core, determines the physical and chemical behavior of the core−shell nanoparticle. On...
Saved in:
Published in | Journal of the American Chemical Society Vol. 131; no. 25; pp. 8824 - 8832 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
01.07.2009
American Chemical Society (ACS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An iron (Fe) nanoparticle exposed to air at room temperature will be instantly covered by an oxide shell that is typically ∼3 nm thick. The nature of this native oxide shell, in combination with the underlying Fe0 core, determines the physical and chemical behavior of the core−shell nanoparticle. One of the challenges of characterizing core−shell nanoparticles is determining the structure of the oxide shell, that is, whether it is FeO, Fe3O4, γ-Fe2O3, α-Fe2O3, or something else. The results of prior characterization efforts, which have mostly used X-ray diffraction and spectroscopy, electron diffraction, and transmission electron microscopic imaging, have been framed in terms of one of the known Fe−oxide structures, although it is not necessarily true that the thin layer of Fe oxide is a known Fe oxide. In this Article, we probe the structure of the oxide shell on Fe nanoparticles using electron energy loss spectroscopy (EELS) at the oxygen (O) K-edge with a spatial resolution of several nanometers (i.e., less than that of an individual particle). We studied two types of representative particles: small particles that are fully oxidized (no Fe0 core) and larger core−shell particles that possess an Fe core. We found that O K-edge spectra collected for the oxide shell in nanoparticles show distinct differences from those of known Fe oxides. Typically, the prepeak of the spectra collected on both the core−shell and the fully oxidized particles is weaker than that collected on standard Fe3O4. Given the fact that the origin of this prepeak corresponds to the transition of the O 1s electron to the unoccupied state of O 2p hybridized with Fe 3d, a weak pre-edge peak indicates a combination of the following four factors: a higher degree of occupancy of the Fe 3d orbital; a longer Fe−O bond length; a decreased covalency of the Fe−O bond; and a measure of cation vacancies. These results suggest that the coordination configuration in the oxide shell on Fe nanoparticles is defective as compared to that of their bulk counterparts. Implications of these defective structural characteristics on the properties of core−shell structured iron nanoparticles are discussed. |
---|---|
AbstractList | An iron (Fe) nanoparticle exposed to air at room temperature will be instantly covered by an oxide shell that is typically approximately 3 nm thick. The nature of this native oxide shell, in combination with the underlying Fe(0) core, determines the physical and chemical behavior of the core-shell nanoparticle. One of the challenges of characterizing core-shell nanoparticles is determining the structure of the oxide shell, that is, whether it is FeO, Fe(3)O(4), gamma-Fe(2)O(3), alpha-Fe(2)O(3), or something else. The results of prior characterization efforts, which have mostly used X-ray diffraction and spectroscopy, electron diffraction, and transmission electron microscopic imaging, have been framed in terms of one of the known Fe-oxide structures, although it is not necessarily true that the thin layer of Fe oxide is a known Fe oxide. In this Article, we probe the structure of the oxide shell on Fe nanoparticles using electron energy loss spectroscopy (EELS) at the oxygen (O) K-edge with a spatial resolution of several nanometers (i.e., less than that of an individual particle). We studied two types of representative particles: small particles that are fully oxidized (no Fe(0) core) and larger core-shell particles that possess an Fe core. We found that O K-edge spectra collected for the oxide shell in nanoparticles show distinct differences from those of known Fe oxides. Typically, the prepeak of the spectra collected on both the core-shell and the fully oxidized particles is weaker than that collected on standard Fe(3)O(4). Given the fact that the origin of this prepeak corresponds to the transition of the O 1s electron to the unoccupied state of O 2p hybridized with Fe 3d, a weak pre-edge peak indicates a combination of the following four factors: a higher degree of occupancy of the Fe 3d orbital; a longer Fe-O bond length; a decreased covalency of the Fe-O bond; and a measure of cation vacancies. These results suggest that the coordination configuration in the oxide shell on Fe nanoparticles is defective as compared to that of their bulk counterparts. Implications of these defective structural characteristics on the properties of core-shell structured iron nanoparticles are discussed. An iron (Fe) nanoparticle exposed to air at room temperature will be instantly covered by an oxide shell that is typically ∼3 nm thick. The nature of this native oxide shell, in combination with the underlying Fe0 core, determines the physical and chemical behavior of the core−shell nanoparticle. One of the challenges of characterizing core−shell nanoparticles is determining the structure of the oxide shell, that is, whether it is FeO, Fe3O4, γ-Fe2O3, α-Fe2O3, or something else. The results of prior characterization efforts, which have mostly used X-ray diffraction and spectroscopy, electron diffraction, and transmission electron microscopic imaging, have been framed in terms of one of the known Fe−oxide structures, although it is not necessarily true that the thin layer of Fe oxide is a known Fe oxide. In this Article, we probe the structure of the oxide shell on Fe nanoparticles using electron energy loss spectroscopy (EELS) at the oxygen (O) K-edge with a spatial resolution of several nanometers (i.e., less than that of an individual particle). We studied two types of representative particles: small particles that are fully oxidized (no Fe0 core) and larger core−shell particles that possess an Fe core. We found that O K-edge spectra collected for the oxide shell in nanoparticles show distinct differences from those of known Fe oxides. Typically, the prepeak of the spectra collected on both the core−shell and the fully oxidized particles is weaker than that collected on standard Fe3O4. Given the fact that the origin of this prepeak corresponds to the transition of the O 1s electron to the unoccupied state of O 2p hybridized with Fe 3d, a weak pre-edge peak indicates a combination of the following four factors: a higher degree of occupancy of the Fe 3d orbital; a longer Fe−O bond length; a decreased covalency of the Fe−O bond; and a measure of cation vacancies. These results suggest that the coordination configuration in the oxide shell on Fe nanoparticles is defective as compared to that of their bulk counterparts. Implications of these defective structural characteristics on the properties of core−shell structured iron nanoparticles are discussed. An iron (Fe) nanoparticle exposed to air at room temperature will be instantly covered by an oxide shell that is typically approximately 3 nm thick. The nature of this native oxide shell, in combination with the underlying Fe(0) core, determines the physical and chemical behavior of the core-shell nanoparticle. One of the challenges of characterizing core-shell nanoparticles is determining the structure of the oxide shell, that is, whether it is FeO, Fe(3)O(4), gamma-Fe(2)O(3), alpha-Fe(2)O(3), or something else. The results of prior characterization efforts, which have mostly used X-ray diffraction and spectroscopy, electron diffraction, and transmission electron microscopic imaging, have been framed in terms of one of the known Fe-oxide structures, although it is not necessarily true that the thin layer of Fe oxide is a known Fe oxide. In this Article, we probe the structure of the oxide shell on Fe nanoparticles using electron energy loss spectroscopy (EELS) at the oxygen (O) K-edge with a spatial resolution of several nanometers (i.e., less than that of an individual particle). We studied two types of representative particles: small particles that are fully oxidized (no Fe(0) core) and larger core-shell particles that possess an Fe core. We found that O K-edge spectra collected for the oxide shell in nanoparticles show distinct differences from those of known Fe oxides. Typically, the prepeak of the spectra collected on both the core-shell and the fully oxidized particles is weaker than that collected on standard Fe(3)O(4). Given the fact that the origin of this prepeak corresponds to the transition of the O 1s electron to the unoccupied state of O 2p hybridized with Fe 3d, a weak pre-edge peak indicates a combination of the following four factors: a higher degree of occupancy of the Fe 3d orbital; a longer Fe-O bond length; a decreased covalency of the Fe-O bond; and a measure of cation vacancies. These results suggest that the coordination configuration in the oxide shell on Fe nanoparticles is defective as compared to that of their bulk counterparts. Implications of these defective structural characteristics on the properties of core-shell structured iron nanoparticles are discussed.An iron (Fe) nanoparticle exposed to air at room temperature will be instantly covered by an oxide shell that is typically approximately 3 nm thick. The nature of this native oxide shell, in combination with the underlying Fe(0) core, determines the physical and chemical behavior of the core-shell nanoparticle. One of the challenges of characterizing core-shell nanoparticles is determining the structure of the oxide shell, that is, whether it is FeO, Fe(3)O(4), gamma-Fe(2)O(3), alpha-Fe(2)O(3), or something else. The results of prior characterization efforts, which have mostly used X-ray diffraction and spectroscopy, electron diffraction, and transmission electron microscopic imaging, have been framed in terms of one of the known Fe-oxide structures, although it is not necessarily true that the thin layer of Fe oxide is a known Fe oxide. In this Article, we probe the structure of the oxide shell on Fe nanoparticles using electron energy loss spectroscopy (EELS) at the oxygen (O) K-edge with a spatial resolution of several nanometers (i.e., less than that of an individual particle). We studied two types of representative particles: small particles that are fully oxidized (no Fe(0) core) and larger core-shell particles that possess an Fe core. We found that O K-edge spectra collected for the oxide shell in nanoparticles show distinct differences from those of known Fe oxides. Typically, the prepeak of the spectra collected on both the core-shell and the fully oxidized particles is weaker than that collected on standard Fe(3)O(4). Given the fact that the origin of this prepeak corresponds to the transition of the O 1s electron to the unoccupied state of O 2p hybridized with Fe 3d, a weak pre-edge peak indicates a combination of the following four factors: a higher degree of occupancy of the Fe 3d orbital; a longer Fe-O bond length; a decreased covalency of the Fe-O bond; and a measure of cation vacancies. These results suggest that the coordination configuration in the oxide shell on Fe nanoparticles is defective as compared to that of their bulk counterparts. Implications of these defective structural characteristics on the properties of core-shell structured iron nanoparticles are discussed. A iron nanoparticle exposed to air at room temperature will be instantly covered by an oxide shell of typical thickness of ~ 3 nm. This native oxide shell in combination with an underlying iron core determines the physical and chemical behavior of this type of core-shell nanoparticles. One of the great challenges for characterizing this type of nanoparticles is determination of the structure of the oxide shell, as it is FeO, Fe3O4, γ-Fe2O3, α-Fe2O3, or anything else. Significant research effort, mostly based on x-ray diffraction and spectroscopy and electron diffraction and transmission electron microscopy imaging, has been made to determine the structure of this thin layer of iron oxide. Most of the experimental results have been framed with one of the known iron oxide structures, although it is not necessarily true that this thin layer of iron oxide consists of a standard iron oxide. In this paper, the structure of the oxide shell on iron nanoparticle is probed using electron energy loss spectroscopy (EELS) at O K-edge with a spatial resolution of several nanometers (individual particle). Two types of representative particles were studied: particles that are fully oxidized and core-shell particle which possesses a Fe core. We found that the O K-edge spectra collected on the oxide shell in the nanoparticles shows distinctive differences as compared with that of the known iron oxide. Based on finger printing and quantum mechanical calculations results, we conclude that the distances between the absorbing oxygen and the next-nearest neighbor oxygens are more widely distributed than that in bulk Fe3O4 for both of these two types of particles. For smaller and fully oxidized particles, there is also a broadened distribution between the absorbing oxygen and the nearest neighbor oxygens. These results clearly demonstrate that the coordination configuration in the oxide shell on Fe nanoparticle is defective as compared with that of their bulk counterpart. Of the two types particles examined in this work, the degree of disorder is larger for the smaller fully oxidized particles. |
Author | Baer, Donald R Amonette, James E Antony, Jiji Wang, Chongmin Qiang, You Engelhard, Mark H |
Author_xml | – sequence: 1 givenname: Chongmin surname: Wang fullname: Wang, Chongmin – sequence: 2 givenname: Donald R surname: Baer fullname: Baer, Donald R – sequence: 3 givenname: James E surname: Amonette fullname: Amonette, James E – sequence: 4 givenname: Mark H surname: Engelhard fullname: Engelhard, Mark H – sequence: 5 givenname: Jiji surname: Antony fullname: Antony, Jiji – sequence: 6 givenname: You surname: Qiang fullname: Qiang, You |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19496564$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/958479$$D View this record in Osti.gov |
BookMark | eNpt0c9vFCEUB3Biaux29eA_YPCgiYexMPwajqap2qTaw-rJA3nLgMtmFlZgkva_L3arTZqeyCOfL-G9d4KOYooOodeUfKSkp6db0IQwwfwztKCiJ52gvTxCC0JI36lBsmN0Usq2lbwf6At0TDXXUki-QL--pbzfpCn9vsEQR3w-OVtzisHiVc2zrXN2OHlcNw5fXYfR4dXGTRNO8e5qNWcP9k5ctBT-DjHtIddgJ1deoucepuJe3Z9L9PPz-Y-zr93l1ZeLs0-XHXAiamclg96vwRGmlV8TpriSSlEmGdGMSyL69SA0UDIyppT11o-DcIOnwEDqgS3R28O7qdRgig3V2Y1NMbZWjBYDV7qZ9wezz-nP7Eo1u1Bs6wSiS3MxUnHKeRvVEr25h_N650azz2EH-cb8G1kDHw7A5lRKdv6BEPN3Heb_Opo9fWTb56CGFGuGMD2ZeHdIgC1mm-Yc2-SecLczzJZ1 |
CitedBy_id | crossref_primary_10_1186_s11671_019_3128_2 crossref_primary_10_1016_j_mtchem_2024_102225 crossref_primary_10_1002_jctb_5284 crossref_primary_10_1002_cssc_202000290 crossref_primary_10_1039_C4CP02725F crossref_primary_10_1143_JJAP_50_08JF11 crossref_primary_10_1021_acscatal_1c01549 crossref_primary_10_1016_j_colsurfb_2013_11_050 crossref_primary_10_1179_2055075815Y_0000000003 crossref_primary_10_1149_1945_7111_abef47 crossref_primary_10_1007_s10163_013_0150_9 crossref_primary_10_3390_ijerph19169888 crossref_primary_10_1039_D2TA07681K crossref_primary_10_1039_D4RA03357D crossref_primary_10_1021_acs_analchem_3c05877 crossref_primary_10_1063_1_4965702 crossref_primary_10_1016_j_chemosphere_2019_124470 crossref_primary_10_1016_j_jclepro_2021_128272 crossref_primary_10_1080_25765299_2021_1878655 crossref_primary_10_1016_j_jhazmat_2012_10_051 crossref_primary_10_1021_acsaem_9b01343 crossref_primary_10_1016_j_ultramic_2010_11_002 crossref_primary_10_1155_2017_2749575 crossref_primary_10_1016_j_jnucmat_2012_03_009 crossref_primary_10_1021_am302437a crossref_primary_10_1155_2017_7868121 crossref_primary_10_1016_j_bcab_2022_102440 crossref_primary_10_1007_s11356_024_33197_x crossref_primary_10_1002_smll_202301255 crossref_primary_10_1021_ie4009524 crossref_primary_10_1021_la503598b crossref_primary_10_1039_D2SC02767D crossref_primary_10_1039_C5EM00470E crossref_primary_10_1016_j_jhazmat_2023_132190 crossref_primary_10_1021_acs_iecr_7b03012 crossref_primary_10_1016_j_cattod_2022_05_013 crossref_primary_10_1016_j_electacta_2014_10_073 crossref_primary_10_1021_acs_est_6b01897 crossref_primary_10_1016_j_matchemphys_2023_127944 crossref_primary_10_1039_C7NR05823C crossref_primary_10_1021_jp206357c crossref_primary_10_3390_polym10091038 crossref_primary_10_1021_acsnano_9b00888 crossref_primary_10_1063_1_4830434 crossref_primary_10_1021_acs_chemmater_6b03765 crossref_primary_10_1007_s11051_011_0313_3 crossref_primary_10_1016_j_gsf_2022_101494 crossref_primary_10_1016_j_scib_2018_12_002 crossref_primary_10_1016_j_cej_2020_124088 crossref_primary_10_1039_C9RA08595E crossref_primary_10_1007_s00339_020_04176_z crossref_primary_10_1039_C7RA12125C crossref_primary_10_1016_j_envadv_2020_100024 crossref_primary_10_1063_1_4963828 crossref_primary_10_1021_jp301453w crossref_primary_10_1002_aic_13740 crossref_primary_10_1021_es503777a crossref_primary_10_1021_acs_chemmater_2c00708 crossref_primary_10_1080_17458080_2015_1066514 crossref_primary_10_1016_j_chemosphere_2024_142707 crossref_primary_10_1021_es503154q crossref_primary_10_1155_2015_763124 crossref_primary_10_1016_j_cej_2013_01_010 crossref_primary_10_1038_srep03683 crossref_primary_10_22211_matwys_0172E crossref_primary_10_1063_1_4974052 crossref_primary_10_1007_s10661_020_8075_y crossref_primary_10_1007_s11270_014_2243_z crossref_primary_10_1007_s11051_013_1514_8 crossref_primary_10_1021_acs_est_9b01999 crossref_primary_10_1080_10643389_2015_1103832 crossref_primary_10_1039_C4NR03040K crossref_primary_10_1038_srep18818 crossref_primary_10_1088_1361_6528_acd38a crossref_primary_10_1007_s11051_012_1118_8 crossref_primary_10_1016_j_cej_2019_122828 crossref_primary_10_1039_c3nr00716b crossref_primary_10_1002_smll_201702877 crossref_primary_10_1016_j_jhazmat_2021_126014 crossref_primary_10_1016_j_colsurfa_2019_124269 crossref_primary_10_1016_j_jhazmat_2022_129922 crossref_primary_10_1016_j_watres_2015_01_002 crossref_primary_10_1007_s00340_022_07964_y crossref_primary_10_4028_www_scientific_net_AMR_424_425_1057 crossref_primary_10_1007_s11051_023_05851_x crossref_primary_10_1021_jp506281d crossref_primary_10_1021_ez5001512 crossref_primary_10_1016_j_jallcom_2022_168558 crossref_primary_10_3390_met8020107 crossref_primary_10_1007_s13391_019_00164_5 crossref_primary_10_1039_C7CP08364E crossref_primary_10_1021_jacs_0c06268 crossref_primary_10_1002_anie_201902750 crossref_primary_10_1016_j_ces_2015_08_036 crossref_primary_10_1016_j_mcat_2016_12_028 crossref_primary_10_1039_C2TC00159D crossref_primary_10_1016_j_matlet_2011_09_097 crossref_primary_10_1021_acs_est_1c02458 crossref_primary_10_1007_s11696_025_03893_0 crossref_primary_10_1021_acs_chemmater_8b03679 crossref_primary_10_1021_acssuschemeng_1c05335 crossref_primary_10_1515_ntrev_2020_0059 crossref_primary_10_15541_jim20200347 crossref_primary_10_1016_j_seppur_2019_116424 crossref_primary_10_1007_s11661_021_06326_1 crossref_primary_10_1021_acs_jpcc_6b02033 crossref_primary_10_1039_C6EN00398B crossref_primary_10_1039_C7TC03010J crossref_primary_10_1080_09593330_2018_1509891 crossref_primary_10_1002_ange_201902750 crossref_primary_10_1016_j_aca_2015_10_040 crossref_primary_10_1016_j_matchemphys_2020_122812 crossref_primary_10_3390_s23031727 crossref_primary_10_1021_acsestwater_2c00080 crossref_primary_10_1021_acschemneuro_3c00756 crossref_primary_10_1016_j_nanoen_2018_01_015 crossref_primary_10_1002_ange_201101737 crossref_primary_10_1021_acs_estlett_8b00259 crossref_primary_10_1021_jp208600n crossref_primary_10_1016_j_scitotenv_2024_175774 crossref_primary_10_1021_acsnano_6b01024 crossref_primary_10_1021_acs_jpcc_7b00198 crossref_primary_10_1021_es902772r crossref_primary_10_1007_s11051_013_1722_2 crossref_primary_10_3762_bjnano_6_167 crossref_primary_10_1016_j_jssc_2011_03_015 crossref_primary_10_1016_j_cej_2016_09_088 crossref_primary_10_1016_j_envpol_2011_06_021 crossref_primary_10_1021_es303037k crossref_primary_10_1038_s41598_021_99849_x crossref_primary_10_1039_C5RA06936J crossref_primary_10_1007_s12665_011_1139_0 crossref_primary_10_1016_j_jhazmat_2015_01_019 crossref_primary_10_1016_S1872_2067_15_60925_1 crossref_primary_10_11001_jksww_2018_32_3_243 crossref_primary_10_1021_jp3101392 crossref_primary_10_1016_j_cej_2021_129073 crossref_primary_10_1039_c3nr02247a crossref_primary_10_1155_2011_837123 crossref_primary_10_1016_j_clet_2021_100327 crossref_primary_10_1021_acs_jpcc_9b01678 crossref_primary_10_3390_nano12101729 crossref_primary_10_1021_acs_iecr_8b04464 crossref_primary_10_1039_c0cc02311f crossref_primary_10_1039_C6EN00231E crossref_primary_10_1002_adma_201903316 crossref_primary_10_1039_C8NR07642A crossref_primary_10_1063_1_4799522 crossref_primary_10_7567_JJAP_50_08JF11 crossref_primary_10_1039_C6CC04951F crossref_primary_10_1021_acsestengg_4c00795 crossref_primary_10_1002_anie_201101737 crossref_primary_10_1016_j_jhazmat_2019_120836 crossref_primary_10_1016_j_enconman_2014_06_058 crossref_primary_10_1021_jp106919a crossref_primary_10_1063_1_4798242 crossref_primary_10_1002_ente_201901070 crossref_primary_10_1039_c2ra23404a crossref_primary_10_3390_molecules24244629 crossref_primary_10_1021_cm102255j crossref_primary_10_1016_j_biomaterials_2009_11_034 crossref_primary_10_1016_j_jcis_2017_09_087 crossref_primary_10_1016_j_jconhyd_2010_09_003 crossref_primary_10_1016_j_ces_2017_04_007 crossref_primary_10_1016_j_jclepro_2017_10_091 crossref_primary_10_1002_cplu_201100074 crossref_primary_10_1016_j_cclet_2021_12_027 crossref_primary_10_1021_acs_est_7b02233 crossref_primary_10_1039_C4AN00679H crossref_primary_10_1039_D3RA03133K crossref_primary_10_1021_acs_langmuir_5b04491 crossref_primary_10_1039_c2nr30986f crossref_primary_10_1016_S1872_2067_14_60114_5 crossref_primary_10_31857_S0044185624030026 crossref_primary_10_1134_S2070205120060167 crossref_primary_10_1016_j_cej_2018_09_164 crossref_primary_10_1002_clen_201600139 crossref_primary_10_1021_acs_est_6b04315 crossref_primary_10_1080_10408436_2014_899890 crossref_primary_10_1039_C5CP07569F crossref_primary_10_1016_j_jece_2016_03_048 crossref_primary_10_5004_dwt_2017_21633 crossref_primary_10_1038_nmat3785 crossref_primary_10_22211_matwys_0172 crossref_primary_10_1088_1742_6596_303_1_012090 crossref_primary_10_1021_jp907982q crossref_primary_10_1039_C9NA00161A crossref_primary_10_1016_j_jnucmat_2012_06_017 crossref_primary_10_1007_s11051_014_2712_8 crossref_primary_10_1016_j_ijpharm_2012_09_050 crossref_primary_10_1016_j_fuproc_2023_107744 crossref_primary_10_5004_dwt_2020_24817 crossref_primary_10_1016_j_apsusc_2023_158867 crossref_primary_10_1039_C2EM30691C crossref_primary_10_1016_j_jmrt_2024_02_116 crossref_primary_10_1039_c0cp02153a crossref_primary_10_1016_j_watres_2024_121589 crossref_primary_10_1038_srep24189 crossref_primary_10_1039_c2jm32270f crossref_primary_10_1134_S1064229322602712 crossref_primary_10_1016_j_apcatb_2019_118057 crossref_primary_10_1016_S1872_2067_23_64558_9 crossref_primary_10_1371_journal_pone_0085686 crossref_primary_10_1007_s11783_015_0784_z crossref_primary_10_1038_s41598_019_55397_z |
Cites_doi | 10.1016/j.ultramic.2007.03.002 10.1002/sia.2726 10.1016/S0304-8853(01)00134-2 10.1103/PhysRevLett.68.1947 10.1016/0304-3991(90)90078-Z 10.1103/PhysRevB.38.3711 10.1007/s11051-005-9011-3 10.1016/j.jmmm.2004.03.037 10.1088/0022-3719/12/2/021 10.1023/B:JMSC.0000035328.99440.8d 10.1088/0034-4885/12/1/308 10.1016/0039-6028(73)90148-9 10.1016/0039-6028(72)90146-X 10.1016/0009-2614(84)85051-4 10.1103/PhysRevB.29.6890 10.1103/PhysRevB.66.174418 10.1103/PhysRevB.55.2570 10.1103/PhysRevB.40.5715 10.1021/jp050486b 10.1103/PhysRevLett.79.4282 10.1088/0031-8949/43/3/021 10.1016/j.jcrysgro.2007.10.084 10.1149/1.1393502 10.1039/c39910000229 10.1017/S1431927603444176 10.1007/s10562-007-9303-6 10.1088/0957-4484/18/25/255603 10.1107/S0567740869002111 10.1166/jnn.2006.135 10.1080/10408430601057611 10.1038/346255a0 10.1002/anie.200700677 10.1016/S0039-6028(99)01006-7 10.1524/zkri.2007.222.11.634 10.1021/es970039c 10.1023/B:NANO.0000023226.53516.b6 10.1016/S0022-4596(83)80010-3 10.1103/PhysRevB.45.9778 10.1021/jp0777418 10.1016/0039-6028(74)90220-9 10.1021/es049190u 10.1016/0079-6816(83)90001-1 10.1021/ja072574a 10.1103/PhysRevLett.72.282 10.1016/0039-6028(77)90239-4 10.1021/ja063969h 10.1080/10643380600620387 10.1016/0039-6028(76)90345-9 10.1103/PhysRevB.69.125415 10.1103/PhysRevB.45.14273 10.1107/S0567740881004597 10.1103/PhysRevB.44.11402 10.1103/PhysRevB.11.1279 10.1007/978-3-642-60311-2 10.1063/1.2130890 10.1016/S0965-9773(99)00027-6 10.1063/1.1333401 10.1103/PhysRevB.47.13763 10.1107/S0021889894010113 10.1016/0304-3991(90)90076-X 10.1166/jnn.2006.925 10.1016/0039-6028(75)90413-6 10.1063/1.1676031 10.1126/science.1148614 10.1038/282186a0 10.1016/S0955-2219(03)00308-X 10.1103/PhysRevB.68.195423 |
ContentType | Journal Article |
Copyright | Copyright © 2009 American Chemical Society |
Copyright_xml | – notice: Copyright © 2009 American Chemical Society |
CorporateAuthor | Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL) |
CorporateAuthor_xml | – name: Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL) |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 OTOTI |
DOI | 10.1021/ja900353f |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
DocumentTitleAlternate | Oxide Shell on the Surface of Iron Nanoparticles |
EISSN | 1520-5126 |
EndPage | 8832 |
ExternalDocumentID | 958479 19496564 10_1021_ja900353f e07971693 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | - .K2 02 4.4 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF AFFNX AFMIJ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TAF TN5 UHB UI2 UKR UPT UQL VF5 VG9 VQA W1F WH7 X XFK YZZ ZCG ZE2 ZHY --- -DZ -ET -~X .DC 6TJ AAHBH AAYOK AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 AAYWT CGR CUY CVF ECM EIF NPM 7X8 ABFRP OTOTI |
ID | FETCH-LOGICAL-a405t-c63a2fbae0397fb03747677136309346052b859a10d3377cfcfd85e8f1a3a6983 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Thu May 18 18:28:34 EDT 2023 Thu Jul 10 17:41:05 EDT 2025 Mon Jul 21 06:01:04 EDT 2025 Tue Jul 01 04:14:47 EDT 2025 Thu Apr 24 22:52:54 EDT 2025 Thu Aug 27 13:42:39 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 25 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a405t-c63a2fbae0397fb03747677136309346052b859a10d3377cfcfd85e8f1a3a6983 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 PNNL-SA-63967 USDOE AC05-76RL01830 |
PMID | 19496564 |
PQID | 67414486 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | osti_scitechconnect_958479 proquest_miscellaneous_67414486 pubmed_primary_19496564 crossref_primary_10_1021_ja900353f crossref_citationtrail_10_1021_ja900353f acs_journals_10_1021_ja900353f |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-07-01 |
PublicationDateYYYYMMDD | 2009-07-01 |
PublicationDate_xml | – month: 07 year: 2009 text: 2009-07-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2009 |
Publisher | American Chemical Society American Chemical Society (ACS) |
Publisher_xml | – name: American Chemical Society – name: American Chemical Society (ACS) |
References | Antony J. (ref6/cit6) 2006; 6 Wu L. (ref41/cit41) 2004; 69 Wang C. M. (ref13/cit13) 2005; 98 Bodker F. (ref32/cit32) 1994; 72 Tamaura Y. (ref3/cit3) 1990; 346 Roosendaal S. J. (ref20/cit20) 1999; 442 Peng S. (ref7/cit7) 2006; 128 Ueda K. (ref22/cit22) 1974; 43 Sarathy V. (ref69/cit69) 2008; 112 Ashley C. A. (ref62/cit62) 1975; 11 Yi W. (ref36/cit36) 2004; 95 Colliex C. (ref51/cit51) 1991; 44 Krishnan K. M. (ref54/cit54) 1990; 32 Zhang X. X. (ref2/cit2) 2001; 231 Sewell P. B. (ref24/cit24) 1972; 33 Weng X. (ref61/cit61) 2008; 310 Qiang Y. (ref1/cit1) 2006; 8 Peng S. (ref9/cit9) 2007; 46 Ruckman M. W. (ref25/cit25) 1992; 45 Ye X. R. (ref42/cit42) 2006; 6 Davenport A. J. (ref27/cit27) 2000; 147 Wang C. M. (ref15/cit15) 2007; 108 Koyama Y. (ref43/cit43) 2005; 109 Wu Z. Y. (ref53/cit53) 1997; 55 Koch F. (ref45/cit45) 1969; 25 Greaves C. (ref47/cit47) 1983; 49 Brundle C. R. (ref18/cit18) 1977; 68 Paterson J. H. (ref52/cit52) 1990; 32 Haneda K. (ref34/cit34) 1979; 282 Tsukada T. (ref58/cit58) 1983; 14 Baer D. R. (ref14/cit14) 2006 Nurmi J. T. (ref4/cit4) 2005; 39 Sparrow T. G. (ref55/cit55) 1984; 108 Moeck P. (ref38/cit38) 2007; 222 Toney M. F. (ref28/cit28) 1997; 79 Shafranovsky E. A. (ref37/cit37) 2004; 6 Groot F. M. F. (ref56/cit56) 1989; 40 Gangopadhyay S. (ref33/cit33) 1992; 45 Signorini L. (ref39/cit39) 2003; 68 Cabot A. (ref8/cit8) 2007; 129 Kutzler F. W. (ref63/cit63) 1984; 29 Fromm E. (ref12/cit12) 1998 Tsunekawa S. (ref66/cit66) 1999; 11 Shmakov A. N. (ref48/cit48) 1995; 28 Battle P. D. (ref44/cit44) 1979; 12 Simmons G. (ref21/cit21) 1975; 48 Kwok Y. S. (ref29/cit29) 2000; 77 Perkins D. A. (ref50/cit50) 1991; 202 Bianco L. D. (ref31/cit31) 2002; 66 Zhang F. (ref67/cit67) 2002 Li X. Q. (ref70/cit70) 2006; 31 Li L. (ref71/cit71) 2006; 36 Spaldin N. A. (ref74/cit74) 2003 Leibbrandt G. W. (ref17/cit17) 1992; 68 Leygraf C. (ref23/cit23) 1973; 40 Wang C. M. (ref10/cit10) 2007; 18 Guo T. (ref26/cit26) 1988; 38 Kurita H. (ref57/cit57) 1993; 47 Olsen J. S. (ref49/cit49) 1991; 43 Yoshiya M. (ref59/cit59) 1999; 11 Kadossov E. (ref72/cit72) 2008; 120 Baer D. R. (ref68/cit68) 2008; 40 Sutton A. P. (ref64/cit64) 2006 Baker C. (ref73/cit73) 2004; 280 Rojas T. C. (ref35/cit35) 2004; 39 Mitterbauer C. (ref60/cit60) 2003; 9 Fleet M. (ref46/cit46) 1981; 37 Navrotsky A. (ref40/cit40) 2008; 319 Brucker C. F. (ref19/cit19) 1976; 57 Khanna A. S. (ref16/cit16) 2002 Wang C. B. (ref5/cit5) 1997; 31 Caberra N. (ref11/cit11) 1948; 12 Kuhn L. T. (ref30/cit30) 2002; 14 Wynblatt P. (ref65/cit65) 2003; 23 |
References_xml | – volume-title: Interfaces in Crystalline Materials year: 2006 ident: ref64/cit64 – volume: 108 start-page: 43 year: 2007 ident: ref15/cit15 publication-title: Ultramicroscoy doi: 10.1016/j.ultramic.2007.03.002 – volume: 40 start-page: 529 year: 2008 ident: ref68/cit68 publication-title: Surf. Interface Anal. doi: 10.1002/sia.2726 – volume: 231 start-page: L9−L12 year: 2001 ident: ref2/cit2 publication-title: J. Magn. Magn. Mater. doi: 10.1016/S0304-8853(01)00134-2 – volume: 68 start-page: 1947 year: 1992 ident: ref17/cit17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.68.1947 – volume: 32 start-page: 319 year: 1990 ident: ref52/cit52 publication-title: Ultrmicroscopy doi: 10.1016/0304-3991(90)90078-Z – volume: 38 start-page: 3711 year: 1988 ident: ref26/cit26 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.38.3711 – volume: 8 start-page: 489 year: 2006 ident: ref1/cit1 publication-title: J. Nanopart. Res. doi: 10.1007/s11051-005-9011-3 – volume: 280 start-page: 412 year: 2004 ident: ref73/cit73 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2004.03.037 – volume: 12 start-page: 337 year: 1979 ident: ref44/cit44 publication-title: J. Phys. C: Solid State Phys. doi: 10.1088/0022-3719/12/2/021 – volume: 39 start-page: 4877 year: 2004 ident: ref35/cit35 publication-title: J. Mater. Sci. doi: 10.1023/B:JMSC.0000035328.99440.8d – volume: 12 start-page: 163 year: 1948 ident: ref11/cit11 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/12/1/308 – volume: 40 start-page: 609 year: 1973 ident: ref23/cit23 publication-title: Surf. Sci. doi: 10.1016/0039-6028(73)90148-9 – volume: 33 start-page: 535 year: 1972 ident: ref24/cit24 publication-title: Surf. Sci. doi: 10.1016/0039-6028(72)90146-X – volume: 108 start-page: 547 year: 1984 ident: ref55/cit55 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(84)85051-4 – volume: 11 start-page: 3217 year: 1999 ident: ref59/cit59 publication-title: J. Phys.: Condens. Matter. – volume: 29 start-page: 6890 year: 1984 ident: ref63/cit63 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.29.6890 – volume: 66 start-page: 174418 year: 2002 ident: ref31/cit31 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.66.174418 – volume: 55 start-page: 2570 year: 1997 ident: ref53/cit53 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.55.2570 – start-page: 80 year: 2002 ident: ref67/cit67 publication-title: Appl. Phys. Lett. – volume: 40 start-page: 5715 year: 1989 ident: ref56/cit56 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.40.5715 – volume: 109 start-page: 10749 year: 2005 ident: ref43/cit43 publication-title: J. Phys. Chem. B doi: 10.1021/jp050486b – volume: 79 start-page: 4282 year: 1997 ident: ref28/cit28 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.79.4282 – volume: 43 start-page: 327 year: 1991 ident: ref49/cit49 publication-title: Phys. Scr. doi: 10.1088/0031-8949/43/3/021 – volume: 310 start-page: 545 year: 2008 ident: ref61/cit61 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2007.10.084 – volume: 147 start-page: 2162 year: 2000 ident: ref27/cit27 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1393502 – volume: 202 start-page: 229 year: 1991 ident: ref50/cit50 publication-title: J. Chem. Soc., Chem. Commun. doi: 10.1039/c39910000229 – volume: 9 start-page: 834 year: 2003 ident: ref60/cit60 publication-title: Microsc. Microanal. doi: 10.1017/S1431927603444176 – volume: 120 start-page: 179 year: 2008 ident: ref72/cit72 publication-title: Catal. Lett. doi: 10.1007/s10562-007-9303-6 – volume: 18 start-page: 255603 year: 2007 ident: ref10/cit10 publication-title: Nanotechnology doi: 10.1088/0957-4484/18/25/255603 – volume: 25 start-page: 275 year: 1969 ident: ref45/cit45 publication-title: Acta Crystallogr. doi: 10.1107/S0567740869002111 – volume: 6 start-page: 852 year: 2006 ident: ref42/cit42 publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2006.135 – volume: 31 start-page: 111 year: 2006 ident: ref70/cit70 publication-title: Crit. Rev. Solid State Mater. Sci. doi: 10.1080/10408430601057611 – volume: 346 start-page: 255 year: 1990 ident: ref3/cit3 publication-title: Nature doi: 10.1038/346255a0 – volume: 46 start-page: 4155 year: 2007 ident: ref9/cit9 publication-title: Angew. Chem., Int. Ed doi: 10.1002/anie.200700677 – volume: 442 start-page: 329 year: 1999 ident: ref20/cit20 publication-title: Surf. Sci. doi: 10.1016/S0039-6028(99)01006-7 – volume: 222 start-page: 634 year: 2007 ident: ref38/cit38 publication-title: Z. Kristallogr. doi: 10.1524/zkri.2007.222.11.634 – volume: 31 start-page: 2154 year: 1997 ident: ref5/cit5 publication-title: Environ. Sci. Technol. doi: 10.1021/es970039c – volume: 6 start-page: 71 year: 2004 ident: ref37/cit37 publication-title: J. Nanopart. Res. doi: 10.1023/B:NANO.0000023226.53516.b6 – volume-title: Magnetic Materials year: 2003 ident: ref74/cit74 – volume: 49 start-page: 325 year: 1983 ident: ref47/cit47 publication-title: J. Solid State Commun. doi: 10.1016/S0022-4596(83)80010-3 – volume: 45 start-page: 9778 year: 1992 ident: ref33/cit33 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.45.9778 – volume: 112 start-page: 2286 year: 2008 ident: ref69/cit69 publication-title: J. Phys. Chem. C doi: 10.1021/jp0777418 – volume: 43 start-page: 77 year: 1974 ident: ref22/cit22 publication-title: Surf. Sci. doi: 10.1016/0039-6028(74)90220-9 – volume: 39 start-page: 1221 year: 2005 ident: ref4/cit4 publication-title: Environ. Sci. Technol. doi: 10.1021/es049190u – volume: 14 start-page: 113 year: 1983 ident: ref58/cit58 publication-title: Prog. Surf. Sci. doi: 10.1016/0079-6816(83)90001-1 – volume: 129 start-page: 10358 year: 2007 ident: ref8/cit8 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja072574a – volume: 72 start-page: 282 year: 1994 ident: ref32/cit32 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.72.282 – volume: 68 start-page: 459 year: 1977 ident: ref18/cit18 publication-title: Surf. Sci. doi: 10.1016/0039-6028(77)90239-4 – volume: 128 start-page: 10676 year: 2006 ident: ref7/cit7 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja063969h – volume: 36 start-page: 405 year: 2006 ident: ref71/cit71 publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643380600620387 – volume: 57 start-page: 523 year: 1976 ident: ref19/cit19 publication-title: Surf. Sci. doi: 10.1016/0039-6028(76)90345-9 – volume: 69 start-page: 125415 year: 2004 ident: ref41/cit41 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.69.125415 – volume: 45 start-page: 14273 year: 1992 ident: ref25/cit25 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.45.14273 – volume: 14 start-page: 13551 year: 2002 ident: ref30/cit30 publication-title: J. Phys.: Condens. Matter – volume-title: Introduction to High Temperature Oxidation and Corrosion year: 2002 ident: ref16/cit16 – volume: 37 start-page: 917 year: 1981 ident: ref46/cit46 publication-title: Acta Crystallogr. doi: 10.1107/S0567740881004597 – volume: 44 start-page: 11402 year: 1991 ident: ref51/cit51 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.44.11402 – volume: 11 start-page: 1279 year: 1975 ident: ref62/cit62 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.11.1279 – volume-title: Kinetics of Matal-Gas Interactions at Low Temperature: Hydriding, Oxidation, Poisoning year: 1998 ident: ref12/cit12 doi: 10.1007/978-3-642-60311-2 – volume: 98 start-page: 094308 year: 2005 ident: ref13/cit13 publication-title: J. Appl. Phys. doi: 10.1063/1.2130890 – volume: 11 start-page: 141 year: 1999 ident: ref66/cit66 publication-title: Nanostruct. Mater. doi: 10.1016/S0965-9773(99)00027-6 – volume: 77 start-page: 3971 year: 2000 ident: ref29/cit29 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1333401 – volume: 47 start-page: 13763 year: 1993 ident: ref57/cit57 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.13763 – volume: 28 start-page: 141 year: 1995 ident: ref48/cit48 publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889894010113 – volume: 32 start-page: 309 year: 1990 ident: ref54/cit54 publication-title: Ultramicroscopy doi: 10.1016/0304-3991(90)90076-X – volume: 6 start-page: 568 year: 2006 ident: ref6/cit6 publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2006.925 – volume: 48 start-page: 373 year: 1975 ident: ref21/cit21 publication-title: Surf. Sci. doi: 10.1016/0039-6028(75)90413-6 – volume: 95 start-page: 7136 year: 2004 ident: ref36/cit36 publication-title: J. Appl. Phys. doi: 10.1063/1.1676031 – volume: 319 start-page: 1635 year: 2008 ident: ref40/cit40 publication-title: Science doi: 10.1126/science.1148614 – volume: 282 start-page: 186 year: 1979 ident: ref34/cit34 publication-title: Nature doi: 10.1038/282186a0 – volume-title: Synthesis, Characterization and Properties of Zero Valent Iron Nanoparticles year: 2006 ident: ref14/cit14 – volume: 23 start-page: 2841 year: 2003 ident: ref65/cit65 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/S0955-2219(03)00308-X – volume: 68 start-page: 195423 year: 2003 ident: ref39/cit39 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.68.195423 |
SSID | ssj0004281 |
Score | 2.4176702 |
Snippet | An iron (Fe) nanoparticle exposed to air at room temperature will be instantly covered by an oxide shell that is typically ∼3 nm thick. The nature of this... An iron (Fe) nanoparticle exposed to air at room temperature will be instantly covered by an oxide shell that is typically approximately 3 nm thick. The nature... A iron nanoparticle exposed to air at room temperature will be instantly covered by an oxide shell of typical thickness of ~ 3 nm. This native oxide shell in... |
SourceID | osti proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8824 |
SubjectTerms | core-shell structure EELS ELECTRONIC STRUCTURE Electrons Environmental Molecular Sciences Laboratory Fe nanoparticles initial oxidation IRON Iron - chemistry IRON OXIDES MATERIALS SCIENCE Microscopy, Electron, Transmission Models, Molecular MORPHOLOGY Nanoparticles - chemistry Nanoparticles - ultrastructure NANOSCIENCE AND NANOTECHNOLOGY NANOSTRUCTURES Oxides - chemistry Particle Size Surface Properties X-Ray Diffraction |
Title | Morphology and Electronic Structure of the Oxide Shell on the Surface of Iron Nanoparticles |
URI | http://dx.doi.org/10.1021/ja900353f https://www.ncbi.nlm.nih.gov/pubmed/19496564 https://www.proquest.com/docview/67414486 https://www.osti.gov/biblio/958479 |
Volume | 131 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9swDCay9LBd1se2Ln1kwrbDLg5iK6bkY5G2SAe0PWQFCuxgyLIEDCvsoYmBob--pB_NijXtzTAo2CYp66NIfQT46skNHEU7gfZyzC3MXGByhQFGTnqUIbPwc7XFBc6uJt-v4-sefFmTwY-YH4g322LpX8FGhFpxhHU0na8OP0Y67DCu0ig7-qB_h_LSYxePlp5-SVNoPaysl5fTTTjuDuk0VSW_R9UyG9m7_zkbn3vzLXjbwktx1PjDNvRcsQOvp11Xt3fw87wkzdZ76cIUuTh5aIMj5jWVbHXrROkF4UJx-fdX7sScS0VFWdS35tWtN7aWOKNRgn7OFHW3xXXv4er05Md0FrQNFgJDOG0ZWJQm8plxY0IlPmMqGoWKwlbk_ChnTKNMx4kJx7mUSllvfa5jp31opMFEyw_QL8rCfQQR24lTCbo8c2O6QhPpHBOfhT7HLFRuAEOyQNpOkEVa574jij06HQ3gW2ec1Lb05Nwl4-Yp0c8Pon8aTo6nhPbYwikBCWbDtVw2ZJdpwmnhZACfOrunpH_OkZjCldUiRUJYFLHiAHYbd1g9IWFqfZzsvfQl-_CmSTlxTe8B9Ml47pCQyzIb1p57DyWS5Vs |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9wwEB7BcoALlEfL0gIWolIvQRt74ySHHtAC2uV5WJCQOKSOY0tVqwSRXfH4KfyV_rnOeJNdQKCekHqLIsexPePMN5nxNwDbFtXAoLfjRVa0qISZ8VQWSk9yI6wUPrHwU7bFqexetA8vg8speKzPwuAgSuypdEH8CbsA0QTRP7dA2CqB8sjc36J7Vn7v7aEsv3J-sH_e6XpVBQFPIRAZeFoKxW2qTAvNrk2JayWUIfplkgKAFBLkaRTEym9lQoShttpmUWAi6yuhZBwJ7HcaZhD0cHLsdjv9yZlLHvk1tA4jKWrWoqdDJYuny2cWr1Hgzn0bzTqrdrAAf8br4ZJZfu0MB-mOfnhBFfl_LtgHmK_ANNsdaf8iTJl8CWY7dQ27Zbg6KVCPXOSAqTxj--OiP6zviHOHN4YVliEKZmd3PzPD-pQYy4rc3eoPb6zSrkUPn2JoiorrOpVwBS7eZW4foZEXuVkFFui2CWNpstS08EoqHmUytqlvM5n6oWnCBookqT4HZeIi_Rw9rVomTfhW60SiKzJ2qgny-7WmW-Om1yMGktcarZFiJQibiPtXU5KUHiQxBcHjJmzW6pbg-lNESOWmGJaJRDyJ_rlswqeRFk7eEFMhAdle-9dMNmG2e35ynBz3To8-w9wo2EbZzF-ggYI064jZBumG2zwMfry38v0FAAZFfg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9tAEB7RVKJcaIECSVtYoVbiYhR747V96CEKRIS3lCIh9WDW-5AQyI5woj5-TP9K_1pnNnagFRUnJG6WtV7v7sx6ZvzNfgPw0aIaGIx2vNjyNpUwM57UkfBEYLgV3CcWfsq2OBH7552Di_BiDn7VZ2FwECX2VDoQn3b1SNuKYYCogui_W8htlUR5aH58wxCt_DzYRXl-CoL-3pfevldVEfAkOiNjTwkuA5tJ00bTazPiW4lEhLGZIBCQYMEgi8NE-m3NeRQpq6yOQxNbX3Ipkphjvy_gJcGDFNx1e8O7c5dB7NfudRQLXjMX3R8qWT1V_mX1GgXu3v97tM6y9V_D79mauISW653JONtRP_-hi3y-i_YGFiunmnWnu2AJ5ky-DK96dS27Ffh6XKA-OQSByVyzvVnxHzZ0BLqTW8MKy9AbZqffr7RhQ0qQZUXubg0nt1Yq12KATzE0ScWoTil8C-dPMrdVaORFbtaBhapjokQYnZk2XgkZxFokNvOtFpkfmSZsoFjS6rNQpg7xDzDiqmXShO1aL1JVkbJTbZCbh5puzZqOpkwkDzVqkXKl6D4RB7CiZCk1ThMCw5MmbNYql-L6EzIkc1NMylSgX4lxumjC2lQT796QUEEB0Wk9NpNNmD_b7adHg5PDd7Awxdwoqfk9NFCO5gO6buNsw-0fBpdPrXt_APXJSAE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Morphology+and+electronic+structure+of+the+oxide+shell+on+the+surface+of+iron+nanoparticles&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Wang%2C+Chongmin&rft.au=Baer%2C+Donald+R&rft.au=Amonette%2C+James+E&rft.au=Engelhard%2C+Mark+H&rft.date=2009-07-01&rft.eissn=1520-5126&rft.volume=131&rft.issue=25&rft.spage=8824&rft_id=info:doi/10.1021%2Fja900353f&rft_id=info%3Apmid%2F19496564&rft.externalDocID=19496564 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |