Nanopore-Based Single-Entity Electrochemistry for the Label-Free Monitoring of Single-Molecule Glycoprotein–Boronate Affinity Interaction and Its Sensing Application

Nanopipettes provide a promising confined space that enables advances in single-molecule analysis, and their unique conical tubular structure is also suitable for single-cell analysis. In this work, functionalized-nanopore-based single-entity electrochemistry (SEE) analysis tools were developed for...

Full description

Saved in:
Bibliographic Details
Published inAnalytical chemistry (Washington) Vol. 94; no. 14; pp. 5715 - 5722
Main Authors Tang, Haoran, Wang, Hao, Zhao, Dandan, Cao, Mengya, Zhu, Yanyan, Li, Yongxin
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 12.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanopipettes provide a promising confined space that enables advances in single-molecule analysis, and their unique conical tubular structure is also suitable for single-cell analysis. In this work, functionalized-nanopore-based single-entity electrochemistry (SEE) analysis tools were developed for the label-free monitoring of single-molecule glycoprotein–boronate affinity interaction for the first time, and immunoglobulin G (IgG, one of the important biomarkers for many diseases such as COVID-19 and cancers) was employed as the model glycoprotein. The principle of this method is based on a single glycoprotein molecule passing through 4-mercaptophenylboronic acid (4-MPBA)-modified nanopipettes under a bias voltage and in the meantime interacting with the boronate group from modified 4-MPBA. This translocation and affinity interaction process can generate distinguishable current blockade signals. Based on the statistical analysis of these signals, the equilibrium association constant (κa) of single-molecule glycoprotein–boronate affinity interaction was obtained. The results show that the κa of IgG in the confined nanopore at the single-molecule level is much larger than that measured in the open system at the ensemble level, which is possibly due to the enhanced multivalent synergistic binding in the restricted space. Moreover, the functionalized-nanopore-based SEE analysis tools were further applied for the label-free detection of IgG, and the results indicate that our method has potential application value for the detection of glycoproteins in real samples, which also paves way for the single-cell analysis of glycoproteins.
AbstractList Nanopipettes provide a promising confined space that enables advances in single-molecule analysis, and their unique conical tubular structure is also suitable for single-cell analysis. In this work, functionalized-nanopore-based single-entity electrochemistry (SEE) analysis tools were developed for the label-free monitoring of single-molecule glycoprotein–boronate affinity interaction for the first time, and immunoglobulin G (IgG, one of the important biomarkers for many diseases such as COVID-19 and cancers) was employed as the model glycoprotein. The principle of this method is based on a single glycoprotein molecule passing through 4-mercaptophenylboronic acid (4-MPBA)-modified nanopipettes under a bias voltage and in the meantime interacting with the boronate group from modified 4-MPBA. This translocation and affinity interaction process can generate distinguishable current blockade signals. Based on the statistical analysis of these signals, the equilibrium association constant (κa) of single-molecule glycoprotein–boronate affinity interaction was obtained. The results show that the κa of IgG in the confined nanopore at the single-molecule level is much larger than that measured in the open system at the ensemble level, which is possibly due to the enhanced multivalent synergistic binding in the restricted space. Moreover, the functionalized-nanopore-based SEE analysis tools were further applied for the label-free detection of IgG, and the results indicate that our method has potential application value for the detection of glycoproteins in real samples, which also paves way for the single-cell analysis of glycoproteins.
Nanopipettes provide a promising confined space that enables advances in single-molecule analysis, and their unique conical tubular structure is also suitable for single-cell analysis. In this work, functionalized-nanopore-based single-entity electrochemistry (SEE) analysis tools were developed for the label-free monitoring of single-molecule glycoprotein–boronate affinity interaction for the first time, and immunoglobulin G (IgG, one of the important biomarkers for many diseases such as COVID-19 and cancers) was employed as the model glycoprotein. The principle of this method is based on a single glycoprotein molecule passing through 4-mercaptophenylboronic acid (4-MPBA)-modified nanopipettes under a bias voltage and in the meantime interacting with the boronate group from modified 4-MPBA. This translocation and affinity interaction process can generate distinguishable current blockade signals. Based on the statistical analysis of these signals, the equilibrium association constant (κₐ) of single-molecule glycoprotein–boronate affinity interaction was obtained. The results show that the κₐ of IgG in the confined nanopore at the single-molecule level is much larger than that measured in the open system at the ensemble level, which is possibly due to the enhanced multivalent synergistic binding in the restricted space. Moreover, the functionalized-nanopore-based SEE analysis tools were further applied for the label-free detection of IgG, and the results indicate that our method has potential application value for the detection of glycoproteins in real samples, which also paves way for the single-cell analysis of glycoproteins.
Nanopipettes provide a promising confined space that enables advances in single-molecule analysis, and their unique conical tubular structure is also suitable for single-cell analysis. In this work, functionalized-nanopore-based single-entity electrochemistry (SEE) analysis tools were developed for the label-free monitoring of single-molecule glycoprotein-boronate affinity interaction for the first time, and immunoglobulin G (IgG, one of the important biomarkers for many diseases such as COVID-19 and cancers) was employed as the model glycoprotein. The principle of this method is based on a single glycoprotein molecule passing through 4-mercaptophenylboronic acid (4-MPBA)-modified nanopipettes under a bias voltage and in the meantime interacting with the boronate group from modified 4-MPBA. This translocation and affinity interaction process can generate distinguishable current blockade signals. Based on the statistical analysis of these signals, the equilibrium association constant (κa) of single-molecule glycoprotein-boronate affinity interaction was obtained. The results show that the κa of IgG in the confined nanopore at the single-molecule level is much larger than that measured in the open system at the ensemble level, which is possibly due to the enhanced multivalent synergistic binding in the restricted space. Moreover, the functionalized-nanopore-based SEE analysis tools were further applied for the label-free detection of IgG, and the results indicate that our method has potential application value for the detection of glycoproteins in real samples, which also paves way for the single-cell analysis of glycoproteins.Nanopipettes provide a promising confined space that enables advances in single-molecule analysis, and their unique conical tubular structure is also suitable for single-cell analysis. In this work, functionalized-nanopore-based single-entity electrochemistry (SEE) analysis tools were developed for the label-free monitoring of single-molecule glycoprotein-boronate affinity interaction for the first time, and immunoglobulin G (IgG, one of the important biomarkers for many diseases such as COVID-19 and cancers) was employed as the model glycoprotein. The principle of this method is based on a single glycoprotein molecule passing through 4-mercaptophenylboronic acid (4-MPBA)-modified nanopipettes under a bias voltage and in the meantime interacting with the boronate group from modified 4-MPBA. This translocation and affinity interaction process can generate distinguishable current blockade signals. Based on the statistical analysis of these signals, the equilibrium association constant (κa) of single-molecule glycoprotein-boronate affinity interaction was obtained. The results show that the κa of IgG in the confined nanopore at the single-molecule level is much larger than that measured in the open system at the ensemble level, which is possibly due to the enhanced multivalent synergistic binding in the restricted space. Moreover, the functionalized-nanopore-based SEE analysis tools were further applied for the label-free detection of IgG, and the results indicate that our method has potential application value for the detection of glycoproteins in real samples, which also paves way for the single-cell analysis of glycoproteins.
Nanopipettes provide a promising confined space that enables advances in single-molecule analysis, and their unique conical tubular structure is also suitable for single-cell analysis. In this work, functionalized-nanopore-based single-entity electrochemistry (SEE) analysis tools were developed for the label-free monitoring of single-molecule glycoprotein-boronate affinity interaction for the first time, and immunoglobulin G (IgG, one of the important biomarkers for many diseases such as COVID-19 and cancers) was employed as the model glycoprotein. The principle of this method is based on a single glycoprotein molecule passing through 4-mercaptophenylboronic acid (4-MPBA)-modified nanopipettes under a bias voltage and in the meantime interacting with the boronate group from modified 4-MPBA. This translocation and affinity interaction process can generate distinguishable current blockade signals. Based on the statistical analysis of these signals, the equilibrium association constant (κ ) of single-molecule glycoprotein-boronate affinity interaction was obtained. The results show that the κ of IgG in the confined nanopore at the single-molecule level is much larger than that measured in the open system at the ensemble level, which is possibly due to the enhanced multivalent synergistic binding in the restricted space. Moreover, the functionalized-nanopore-based SEE analysis tools were further applied for the label-free detection of IgG, and the results indicate that our method has potential application value for the detection of glycoproteins in real samples, which also paves way for the single-cell analysis of glycoproteins.
Author Cao, Mengya
Zhu, Yanyan
Zhao, Dandan
Li, Yongxin
Tang, Haoran
Wang, Hao
AuthorAffiliation Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science
AuthorAffiliation_xml – name: Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science
Author_xml – sequence: 1
  givenname: Haoran
  orcidid: 0000-0002-4016-8479
  surname: Tang
  fullname: Tang, Haoran
– sequence: 2
  givenname: Hao
  surname: Wang
  fullname: Wang, Hao
– sequence: 3
  givenname: Dandan
  surname: Zhao
  fullname: Zhao, Dandan
– sequence: 4
  givenname: Mengya
  surname: Cao
  fullname: Cao, Mengya
– sequence: 5
  givenname: Yanyan
  surname: Zhu
  fullname: Zhu, Yanyan
– sequence: 6
  givenname: Yongxin
  orcidid: 0000-0001-5543-4242
  surname: Li
  fullname: Li, Yongxin
  email: yongli@mail.ahnu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35362966$$D View this record in MEDLINE/PubMed
BookMark eNqNks1uEzEQgC1URNPCGyBkiQuXDWPv2pvlllZpiZTCoXBeeb2z1JVjB9s55MY78BC8V5-kXpJw6AE4-TDfNz-eOSMnzjsk5DWDKQPO3isdp8opq-9wPeUaYCbhGZkwwaGQsxk_IRMAKAteA5ySsxjvARgDJl-Q01KUkjdSTsivT8r5jQ9YXKiIPb017pvFYuGSSTu6sKhT8GMJE1PY0cEHmu6QrlSHtrgKiPTGO5N8yB71w9G_8dncWqTXdqf9JviExj38-Hnhg3cqIZ0Pg3FjiaVLGJROxjuqXE-XKdJbdHHMN99srNFqjL0kzwdlI746vOfk69Xiy-XHYvX5enk5XxWqApHy4FzqcmB1zbXsSpzJTjWNrnrZY80G2QvsMlGjGFgPsmkkL7Hpqgp0A03Zlefk3T5v7vn7FmNq8-QarVUO_Ta2XEoGQsxE9R9oJevcSVln9O0T9N5vQ17eSAnBpOAcMvXmQG27NfbtJpi1Crv2uK0MfNgDOvgYAw6tNun396SgjG0ZtONptPk02uNptIfTyHL1RD7m_4cGe22M_un6r8ojuAzUlg
CitedBy_id crossref_primary_10_1016_j_bios_2023_115299
crossref_primary_10_1021_acs_analchem_2c01959
crossref_primary_10_1002_asia_202200261
crossref_primary_10_3390_s24165442
crossref_primary_10_1002_bkcs_12911
crossref_primary_10_1021_acs_analchem_3c03052
crossref_primary_10_1002_ange_202203769
crossref_primary_10_1002_asia_202200747
crossref_primary_10_1016_j_bios_2022_114448
crossref_primary_10_1016_j_aca_2022_340162
crossref_primary_10_1016_j_microc_2023_109058
crossref_primary_10_3390_bios13080785
crossref_primary_10_1016_j_coelec_2023_101346
crossref_primary_10_1021_acs_analchem_4c01354
crossref_primary_10_1021_acs_langmuir_4c00607
crossref_primary_10_1007_s41061_023_00425_w
crossref_primary_10_1021_acs_jpclett_2c00960
crossref_primary_10_1039_D3NJ00560G
crossref_primary_10_1039_D2NR07280G
crossref_primary_10_1039_D3NR01784B
crossref_primary_10_1002_elan_202300173
crossref_primary_10_1039_D3AY02040A
crossref_primary_10_1002_anie_202203769
crossref_primary_10_1039_D4AN00899E
crossref_primary_10_1016_j_bioelechem_2024_108651
crossref_primary_10_1021_acs_analchem_3c00543
crossref_primary_10_1021_acs_analchem_3c00741
crossref_primary_10_1016_j_talanta_2024_127431
crossref_primary_10_3390_bios14120627
crossref_primary_10_1021_acs_analchem_4c03620
crossref_primary_10_1002_chem_202400281
crossref_primary_10_1016_j_talanta_2024_125990
crossref_primary_10_1021_acssensors_2c02102
Cites_doi 10.1021/jacs.8b09747
10.1021/acs.accounts.6b00294
10.1021/la402496z
10.1039/C6CC90523D
10.1021/acs.analchem.1c01790
10.1039/C5CS00013K
10.1021/ac501020b
10.1002/anie.202002455
10.1039/C7CC03927A
10.1016/j.talanta.2020.121178
10.1681/ASN.2004040287
10.1016/j.foodchem.2020.127944
10.1016/j.aca.2019.11.072
10.1039/b910511e
10.1021/acs.analchem.0c04585
10.1073/pnas.0900306106
10.1021/cr500279h
10.1038/nprot.2017.015
10.1021/nn405612q
10.1021/acs.jpclett.1c01389
10.1002/smtd.202000356
10.1021/bm050782u
10.1021/acs.analchem.6b04260
10.1039/C9CS00184K
10.1021/acssensors.0c00798
10.1021/acs.analchem.0c05055
10.1021/acs.jpcc.0c09644
10.1002/jmv.25727
10.1002/anie.20140474482071
10.1039/D1SC00061F
10.1002/celc.201801169
10.1021/acs.analchem.0c01394
10.1039/c2sc20125a
10.1021/acs.accounts.9b00543
10.1021/acs.analchem.9b04185
10.1016/j.talanta.2018.02.021
10.1021/acsami.5b00371
10.1021/acsnano.7b08105
10.1021/jacs.8b10854
10.1021/nn4004567
10.1039/c3sc51623g
10.1021/jacs.1c02426
10.1039/C7NR09342J
10.1002/chem.201900076
10.1021/ac3033917
10.1021/acs.analchem.7b02508
10.1021/acssensors.9b00881
10.1002/anie.201504839
10.1073/pnas.231434698
10.1002/anie.201712740
10.1016/j.trac.2012.03.010
10.1021/acs.analchem.9b04793
10.1021/acs.analchem.7b01921
10.1021/acs.analchem.9b02025
10.1021/ja047675c
10.1038/s41586-021-03715-9
10.1007/s11426-020-9716-2
10.1021/acs.accounts.7b00179
10.1039/C9CC04864B
10.1021/acs.analchem.9b05264
10.1021/jacs.7b12106
10.1038/s41467-018-04081-3
10.1021/acsami.7b00444
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright American Chemical Society Apr 12, 2022
Copyright_xml – notice: 2022 American Chemical Society
– notice: Copyright American Chemical Society Apr 12, 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7S9
L.6
DOI 10.1021/acs.analchem.2c00860
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Toxicology Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database
AGRICOLA
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-6882
EndPage 5722
ExternalDocumentID 35362966
10_1021_acs_analchem_2c00860
d261777813
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
02
23M
4.4
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABFRP
ABMVS
ABOCM
ABPPZ
ABPTK
ABUCX
ACGFS
ACGOD
ACIWK
ACJ
ACNCT
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
D0L
DZ
EBS
ED
F5P
GGK
GNL
IH9
IHE
JG
K2
P2P
PQEST
PQQKQ
ROL
RXW
TAE
TN5
UHB
UI2
UKR
VF5
VG9
VQA
W1F
WH7
X
X6Y
YZZ
---
-DZ
-~X
.DC
.K2
53G
6J9
AAHBH
AAYXX
ABBLG
ABHFT
ABHMW
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ACKOT
ADHLV
CITATION
CUPRZ
ED~
JG~
KZ1
LMP
XSW
ZCA
~02
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7S9
L.6
ID FETCH-LOGICAL-a405t-6826c3f1772c6b3e86ba99c4d6de71f6d5eb26c7e5f1d0699623e9b440c9093b3
IEDL.DBID ACS
ISSN 0003-2700
1520-6882
IngestDate Fri Jul 11 05:17:05 EDT 2025
Fri Jul 11 02:57:42 EDT 2025
Mon Jun 30 08:28:49 EDT 2025
Thu Apr 03 07:00:10 EDT 2025
Tue Jul 01 03:28:05 EDT 2025
Thu Apr 24 23:08:18 EDT 2025
Thu Apr 14 05:46:49 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a405t-6826c3f1772c6b3e86ba99c4d6de71f6d5eb26c7e5f1d0699623e9b440c9093b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4016-8479
0000-0001-5543-4242
PMID 35362966
PQID 2655165220
PQPubID 45400
PageCount 8
ParticipantIDs proquest_miscellaneous_2661055854
proquest_miscellaneous_2646717737
proquest_journals_2655165220
pubmed_primary_35362966
crossref_citationtrail_10_1021_acs_analchem_2c00860
crossref_primary_10_1021_acs_analchem_2c00860
acs_journals_10_1021_acs_analchem_2c00860
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-12
PublicationDateYYYYMMDD 2022-04-12
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-12
  day: 12
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Analytical chemistry (Washington)
PublicationTitleAlternate Anal. Chem
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref1/cit1
  doi: 10.1021/jacs.8b09747
– ident: ref9/cit9
  doi: 10.1021/acs.accounts.6b00294
– ident: ref13/cit13
  doi: 10.1021/la402496z
– ident: ref22/cit22
  doi: 10.1039/C6CC90523D
– ident: ref53/cit53
  doi: 10.1021/acs.analchem.1c01790
– ident: ref37/cit37
  doi: 10.1039/C5CS00013K
– ident: ref34/cit34
  doi: 10.1021/ac501020b
– ident: ref8/cit8
  doi: 10.1002/anie.202002455
– ident: ref25/cit25
  doi: 10.1039/C7CC03927A
– ident: ref61/cit61
  doi: 10.1016/j.talanta.2020.121178
– ident: ref63/cit63
  doi: 10.1681/ASN.2004040287
– ident: ref31/cit31
  doi: 10.1016/j.foodchem.2020.127944
– ident: ref57/cit57
  doi: 10.1016/j.aca.2019.11.072
– ident: ref52/cit52
  doi: 10.1039/b910511e
– ident: ref16/cit16
  doi: 10.1021/acs.analchem.0c04585
– ident: ref24/cit24
  doi: 10.1073/pnas.0900306106
– ident: ref28/cit28
  doi: 10.1021/cr500279h
– ident: ref32/cit32
  doi: 10.1038/nprot.2017.015
– ident: ref4/cit4
  doi: 10.1021/nn405612q
– ident: ref11/cit11
  doi: 10.1021/acs.jpclett.1c01389
– ident: ref26/cit26
  doi: 10.1002/smtd.202000356
– ident: ref42/cit42
  doi: 10.1021/bm050782u
– ident: ref47/cit47
  doi: 10.1021/acs.analchem.6b04260
– ident: ref36/cit36
  doi: 10.1039/C9CS00184K
– ident: ref51/cit51
  doi: 10.1021/acssensors.0c00798
– ident: ref15/cit15
  doi: 10.1021/acs.analchem.0c05055
– ident: ref12/cit12
  doi: 10.1021/acs.jpcc.0c09644
– ident: ref44/cit44
  doi: 10.1002/jmv.25727
– ident: ref6/cit6
  doi: 10.1002/anie.20140474482071
– ident: ref17/cit17
  doi: 10.1039/D1SC00061F
– ident: ref3/cit3
  doi: 10.1002/celc.201801169
– ident: ref30/cit30
  doi: 10.1021/acs.analchem.0c01394
– ident: ref38/cit38
  doi: 10.1039/c2sc20125a
– ident: ref2/cit2
  doi: 10.1021/acs.accounts.9b00543
– ident: ref49/cit49
  doi: 10.1021/acs.analchem.9b04185
– ident: ref43/cit43
  doi: 10.1016/j.talanta.2018.02.021
– ident: ref45/cit45
  doi: 10.1021/acsami.5b00371
– ident: ref21/cit21
  doi: 10.1021/acsnano.7b08105
– ident: ref46/cit46
  doi: 10.1021/jacs.8b10854
– ident: ref58/cit58
  doi: 10.1021/nn4004567
– ident: ref39/cit39
  doi: 10.1039/c3sc51623g
– ident: ref19/cit19
  doi: 10.1021/jacs.1c02426
– ident: ref35/cit35
  doi: 10.1039/C7NR09342J
– ident: ref10/cit10
  doi: 10.1002/chem.201900076
– ident: ref41/cit41
  doi: 10.1021/ac3033917
– ident: ref5/cit5
  doi: 10.1021/acs.analchem.7b02508
– ident: ref55/cit55
  doi: 10.1021/acssensors.9b00881
– ident: ref7/cit7
  doi: 10.1002/anie.201504839
– ident: ref60/cit60
  doi: 10.1073/pnas.231434698
– ident: ref27/cit27
  doi: 10.1002/anie.201712740
– ident: ref62/cit62
  doi: 10.1016/j.trac.2012.03.010
– ident: ref14/cit14
  doi: 10.1021/acs.analchem.9b04793
– ident: ref59/cit59
  doi: 10.1021/acs.analchem.7b01921
– ident: ref48/cit48
  doi: 10.1021/acs.analchem.9b02025
– ident: ref56/cit56
  doi: 10.1021/ja047675c
– ident: ref18/cit18
  doi: 10.1038/s41586-021-03715-9
– ident: ref20/cit20
  doi: 10.1007/s11426-020-9716-2
– ident: ref40/cit40
  doi: 10.1021/acs.accounts.7b00179
– ident: ref50/cit50
  doi: 10.1039/C9CC04864B
– ident: ref54/cit54
  doi: 10.1021/acs.analchem.9b05264
– ident: ref23/cit23
  doi: 10.1021/jacs.7b12106
– ident: ref33/cit33
  doi: 10.1038/s41467-018-04081-3
– ident: ref29/cit29
  doi: 10.1021/acsami.7b00444
SSID ssj0011016
Score 2.5313072
Snippet Nanopipettes provide a promising confined space that enables advances in single-molecule analysis, and their unique conical tubular structure is also suitable...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5715
SubjectTerms Affinity
analytical chemistry
Biomarkers
Chemistry
Confined spaces
COVID-19
COVID-19 infection
electric potential difference
Electrochemistry
Glycoproteins
Glycoproteins - chemistry
Humans
IgG antibody
Immunoglobulin G
Monitoring
Nanopores
Open systems
Signal processing
Statistical analysis
Statistical methods
Translocation
Title Nanopore-Based Single-Entity Electrochemistry for the Label-Free Monitoring of Single-Molecule Glycoprotein–Boronate Affinity Interaction and Its Sensing Application
URI http://dx.doi.org/10.1021/acs.analchem.2c00860
https://www.ncbi.nlm.nih.gov/pubmed/35362966
https://www.proquest.com/docview/2655165220
https://www.proquest.com/docview/2646717737
https://www.proquest.com/docview/2661055854
Volume 94
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZQOQAHCuVvS0FG4sLBSxLH3uS4Xe1SEIXDUqm3yHbGUtUlQd3soZx4Bx6C9-qTdCaJd_lRKVxtj-OfseebjGeGsZdOeQUqkgKFrxOpo3swMyBsYpTV2mTQZm84_KAPjtJ3x-p4oyj-bsFP4tfGLYcGFxXn8HmYOMLgqKLfTDSeY4JCk_naakCaaMiQRwbV4Cp3RS8kkNzyV4F0Bcpspc1sm30MPjvdI5PT4aqxQ_f1zxCO_ziRe-xuDzz5uOOU--wGVDvs1iTke9thd34KTfiA_cBrt0ZsDmIf5VzJ51i6ADElr95zPu2S57hAzRH6coSS_L2xsBCzMwDe3RbUG699oD_ssvECf7M4d3UbJOKkuvj2fZ8CKSDs5WPvTyr6RPursvO64KYq-dtmyef02h77G2-s7g_Z0Wz6aXIg-qQOwiA2bIRGfcZJHyOqd9pKyLQ1ee7SUpcwir0uFer62o1A-biMNKpjiYTcpmnk8iiXVj5iW1VdwRPGfYZMZlVksDaVeJEY0MZLB2WqpCvzAXuFa170h3JZtPb2JC6oMGxE0W_EgMnABYXro6NTko7FNVRiTfWliw5yTfu9wGCbYSWajJWIg7H6xboat49MN6aCekVtUKDhmsnR39poynaaqXTAHnfMux6UVAhUULPd_Y8lecpuJ-Tr0Qa23GNbzdkKniECa-zz9thdAunaMM4
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqcigceJTXQgEjceHgJYljb3LcrnbZwm4v26LeItuZSBVLgprsoZz4D_wI_he_hJm8FpBK1avtcfwYe77JeGYYe-NUpkB5UqDwdSJ0dA9GBoQNjLJamwjq7A3LYz0_DT-cqbMdpjpfGBxEiT2VtRF_G13Af0dlBtcWp_JlGDiC4qip30I8EhBjjyer3nhACmmXKI_sqp3H3BW9kFxy5d9y6QqwWQud2T32qR9u_dbk83BT2aH79k8kxxvP5z6728JQPm745gHbgXyf7U267G_77M4fgQofsp94CReI1EEcotRL-QpL1yCm5ON7yadNKh3XUXMEwhyBJV8YC2sxuwDgzd1BvfEi6-iXTW5e4O_Xl66oQ0ac57--_ziksAoIgvk4y85z-kT947LxweAmT_lRVfIVvb3H_sZbG_wjdjqbnkzmok3xIAwixUpo1G6czHzE-E5bCZG2Jo5dmOoURn6mU4Wav3YjUJmfehqVs0BCbMPQc7EXSysfs928yOEp41mELGeVZ7A2lHitGNAmkw7SUEmXxgP2Ftc8aY9omdTW98BPqLDbiKTdiAGTHTMkro2VTik71tdQiZ7qaxMr5Jr2Bx2fbYcVaDJdIirG6td9NW4fGXJMDsWG2qB4wzWTo_-10ZT7NFLhgD1peLgflFQIW1DPfXaDJXnF9uYny0WyODr--JzdDsgLpA55ecB2q4sNvEBsVtmX9Un8DfUkOS8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQkYAeeJTXQgEjceHgJYljb3LcLru00FZIS6WKS2Q7Y6lim1RN9lBO_Ad-BP-LX8JMHtuCVCq4-hU_xp5vMvZ8jL1yyitQgRSofJ2IHZ2DiQFhI6Os1iaBhr1hb19vH8TvD9XhBaov7ESFLVWNE5929UnuuwgD4RtKNzi_OJzjYeQIjqO1fp08dyTc48l85UAgo7QnyyPfav9q7pJWSDe56nfddAngbBTP7A77vOpyc9_ky3BZ26H7-kc0x_8a0112u4OjfNzKzz12DYoNdnPSs8BtsPULAQvvsx94GJeI2EFsofbL-RxTFyCm9Nb3jE9bSh3X1-YIiDkCTL5rLCzE7BSAt2cItcZL39ffazl6gb9bnLmyCR1xVPz89n2LwisgGOZj748K-kTzA7N9i8FNkfOduuJzuoOP7Y3PffEP2MFs-mmyLTqqB2EQMdZCo5XjpA8R6zttJSTamjR1ca5zGIVe5woslhiB8mEeaDTSIgmpjePApUEqrXzI1oqygMeM-wRFz6rAYG4s8XgxoI2XDvJYSZenA_Ya5zzrtmqVNV74KMwosV-IrFuIAZO9QGSui5lO1B2LK2qJVa2TNmbIFeU3e1k771akyYWJ6BizX66ycfnIoWMKKJdUBtUczpkc_a2MJg7URMUD9qiV41WnpEL4gvbuk3-Ykhfsxse3s2x3Z__DU3YroscgTeTLTbZWny7hGUK02j5vNuMvx-g7sg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanopore-Based+Single-Entity+Electrochemistry+for+the+Label-Free+Monitoring+of+Single-Molecule+Glycoprotein-Boronate+Affinity+Interaction+and+Its+Sensing+Application&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Tang%2C+Haoran&rft.au=Wang%2C+Hao&rft.au=Zhao%2C+Dandan&rft.au=Cao%2C+Mengya&rft.date=2022-04-12&rft.issn=1520-6882&rft.eissn=1520-6882&rft.volume=94&rft.issue=14&rft.spage=5715&rft_id=info:doi/10.1021%2Facs.analchem.2c00860&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon