The Second Coordination Sphere of FIH Controls Hydroxylation

The factor inhibiting HIF (FIH) is a proximate oxygen sensor for human cells, hydroxylating Asn803 within the α-subunit of the hypoxia inducible factor (HIF). FIH is an α-ketoglutatrate (αKG)-dependent, non-heme Fe(II) dioxygenase, in which Fe(II) is coordinated by a (His2Asp) facial triad, αKG, and...

Full description

Saved in:
Bibliographic Details
Published inBiochemistry (Easton) Vol. 50; no. 21; pp. 4733 - 4740
Main Authors Saban, Evren, Chen, Yuan-Han, A. Hangasky, John, Y. Taabazuing, Cornelius, Holmes, Breanne E, Knapp, Michael J
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 31.05.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The factor inhibiting HIF (FIH) is a proximate oxygen sensor for human cells, hydroxylating Asn803 within the α-subunit of the hypoxia inducible factor (HIF). FIH is an α-ketoglutatrate (αKG)-dependent, non-heme Fe(II) dioxygenase, in which Fe(II) is coordinated by a (His2Asp) facial triad, αKG, and H2O. Hydrogen bonding among the facial triad, the HIF-Asn803 side chain, and various second-sphere residues suggests a functional role for the second coordination sphere in tuning the chemistry of the Fe(II) center. Point mutants of FIH were prepared to test the functional role of the αKG-centered (Asn205 and Asn294) or HIF-Asn803-centered (Arg238 and Gln239) second-sphere residues. The second sphere was tested for local effects on priming Fe(II) to react with O2, oxidative decarboxylation, and substrate positioning. Steady-sate kinetics were used to test for overall catalytic effects; autohydroxylation rates were used to test for priming and positioning, and electronic spectroscopy was used to assess the primary coordination sphere and the electrophilicity of αKG. Asn205 → Ala and Asn294 → Ala mutants exhibited diminished rates of steady-state turnover, while minimally affecting autohydroxylation, consistent with impaired oxidative decarboxylation. Blue-shifted metal to ligand charge transfer transitions for (Fe+αKG)FIH indicated that these point mutations destabilized the π* orbitals of αKG, further supporting a slowed rate of oxidative decarboxylation. The Arg238 → Met mutant exhibited steady-state rates too low to measure and diminished product yields, suggesting impaired substrate positioning or priming; the Arg238 → Met mutant was capable of O2 activation for the autohydroxylation reaction. The Gln239 → Asn mutant exhibited significantly slowed steady-state kinetics and diminished product yields, suggesting impaired substrate positioning or priming. As HIF binding to the Gln239 → Asn mutant stimulated autohydroxylation, it is more likely that this point mutant simply mispositions the HIF-Asn803 side chain. This work combines kinetics and spectroscopy to show that these second-sphere hydrogen bonds play roles in promoting oxidative decarboxylation, priming Fe(II) to bind O2, and positioning HIF-Asn803.
AbstractList The factor inhibiting HIF (FIH) is a proximate oxygen sensor for human cells, hydroxylating Asn(803) within the α-subunit of the hypoxia inducible factor (HIF). FIH is an α-ketoglutatrate (αKG)-dependent, non-heme Fe(II) dioxygenase, in which Fe(II) is coordinated by a (His(2)Asp) facial triad, αKG, and H(2)O. Hydrogen bonding among the facial triad, the HIF-Asn(803) side chain, and various second-sphere residues suggests a functional role for the second coordination sphere in tuning the chemistry of the Fe(II) center. Point mutants of FIH were prepared to test the functional role of the αKG-centered (Asn(205) and Asn(294)) or HIF-Asn(803)-centered (Arg(238) and Gln(239)) second-sphere residues. The second sphere was tested for local effects on priming Fe(II) to react with O(2), oxidative decarboxylation, and substrate positioning. Steady-sate kinetics were used to test for overall catalytic effects; autohydroxylation rates were used to test for priming and positioning, and electronic spectroscopy was used to assess the primary coordination sphere and the electrophilicity of αKG. Asn(205) → Ala and Asn(294) → Ala mutants exhibited diminished rates of steady-state turnover, while minimally affecting autohydroxylation, consistent with impaired oxidative decarboxylation. Blue-shifted metal to ligand charge transfer transitions for (Fe+αKG)FIH indicated that these point mutations destabilized the π* orbitals of αKG, further supporting a slowed rate of oxidative decarboxylation. The Arg(238) → Met mutant exhibited steady-state rates too low to measure and diminished product yields, suggesting impaired substrate positioning or priming; the Arg(238) → Met mutant was capable of O(2) activation for the autohydroxylation reaction. The Gln(239) → Asn mutant exhibited significantly slowed steady-state kinetics and diminished product yields, suggesting impaired substrate positioning or priming. As HIF binding to the Gln(239) → Asn mutant stimulated autohydroxylation, it is more likely that this point mutant simply mispositions the HIF-Asn(803) side chain. This work combines kinetics and spectroscopy to show that these second-sphere hydrogen bonds play roles in promoting oxidative decarboxylation, priming Fe(II) to bind O(2), and positioning HIF-Asn(803).
The factor inhibiting HIF (FIH) is a proximate oxygen sensor for human cells, hydroxylating Asn803 within the α-subunit of the hypoxia inducible factor (HIF). FIH is an α-ketoglutatrate (αKG)-dependent, non-heme Fe(II) dioxygenase, in which Fe(II) is coordinated by a (His2Asp) facial triad, αKG, and H2O. Hydrogen bonding among the facial triad, the HIF-Asn803 side chain, and various second-sphere residues suggests a functional role for the second coordination sphere in tuning the chemistry of the Fe(II) center. Point mutants of FIH were prepared to test the functional role of the αKG-centered (Asn205 and Asn294) or HIF-Asn803-centered (Arg238 and Gln239) second-sphere residues. The second sphere was tested for local effects on priming Fe(II) to react with O2, oxidative decarboxylation, and substrate positioning. Steady-sate kinetics were used to test for overall catalytic effects; autohydroxylation rates were used to test for priming and positioning, and electronic spectroscopy was used to assess the primary coordination sphere and the electrophilicity of αKG. Asn205 → Ala and Asn294 → Ala mutants exhibited diminished rates of steady-state turnover, while minimally affecting autohydroxylation, consistent with impaired oxidative decarboxylation. Blue-shifted metal to ligand charge transfer transitions for (Fe+αKG)FIH indicated that these point mutations destabilized the π* orbitals of αKG, further supporting a slowed rate of oxidative decarboxylation. The Arg238 → Met mutant exhibited steady-state rates too low to measure and diminished product yields, suggesting impaired substrate positioning or priming; the Arg238 → Met mutant was capable of O2 activation for the autohydroxylation reaction. The Gln239 → Asn mutant exhibited significantly slowed steady-state kinetics and diminished product yields, suggesting impaired substrate positioning or priming. As HIF binding to the Gln239 → Asn mutant stimulated autohydroxylation, it is more likely that this point mutant simply mispositions the HIF-Asn803 side chain. This work combines kinetics and spectroscopy to show that these second-sphere hydrogen bonds play roles in promoting oxidative decarboxylation, priming Fe(II) to bind O2, and positioning HIF-Asn803.
The factor inhibiting HIF (FIH) is a proximate oxygen sensor for human cells, hydroxylating Asn(803) within the α-subunit of the hypoxia inducible factor (HIF). FIH is an α-ketoglutatrate (αKG)-dependent, non-heme Fe(II) dioxygenase, in which Fe(II) is coordinated by a (His(2)Asp) facial triad, αKG, and H(2)O. Hydrogen bonding among the facial triad, the HIF-Asn(803) side chain, and various second-sphere residues suggests a functional role for the second coordination sphere in tuning the chemistry of the Fe(II) center. Point mutants of FIH were prepared to test the functional role of the αKG-centered (Asn(205) and Asn(294)) or HIF-Asn(803)-centered (Arg(238) and Gln(239)) second-sphere residues. The second sphere was tested for local effects on priming Fe(II) to react with O(2), oxidative decarboxylation, and substrate positioning. Steady-sate kinetics were used to test for overall catalytic effects; autohydroxylation rates were used to test for priming and positioning, and electronic spectroscopy was used to assess the primary coordination sphere and the electrophilicity of αKG. Asn(205) → Ala and Asn(294) → Ala mutants exhibited diminished rates of steady-state turnover, while minimally affecting autohydroxylation, consistent with impaired oxidative decarboxylation. Blue-shifted metal to ligand charge transfer transitions for (Fe+αKG)FIH indicated that these point mutations destabilized the π* orbitals of αKG, further supporting a slowed rate of oxidative decarboxylation. The Arg(238) → Met mutant exhibited steady-state rates too low to measure and diminished product yields, suggesting impaired substrate positioning or priming; the Arg(238) → Met mutant was capable of O(2) activation for the autohydroxylation reaction. The Gln(239) → Asn mutant exhibited significantly slowed steady-state kinetics and diminished product yields, suggesting impaired substrate positioning or priming. As HIF binding to the Gln(239) → Asn mutant stimulated autohydroxylation, it is more likely that this point mutant simply mispositions the HIF-Asn(803) side chain. This work combines kinetics and spectroscopy to show that these second-sphere hydrogen bonds play roles in promoting oxidative decarboxylation, priming Fe(II) to bind O(2), and positioning HIF-Asn(803).The factor inhibiting HIF (FIH) is a proximate oxygen sensor for human cells, hydroxylating Asn(803) within the α-subunit of the hypoxia inducible factor (HIF). FIH is an α-ketoglutatrate (αKG)-dependent, non-heme Fe(II) dioxygenase, in which Fe(II) is coordinated by a (His(2)Asp) facial triad, αKG, and H(2)O. Hydrogen bonding among the facial triad, the HIF-Asn(803) side chain, and various second-sphere residues suggests a functional role for the second coordination sphere in tuning the chemistry of the Fe(II) center. Point mutants of FIH were prepared to test the functional role of the αKG-centered (Asn(205) and Asn(294)) or HIF-Asn(803)-centered (Arg(238) and Gln(239)) second-sphere residues. The second sphere was tested for local effects on priming Fe(II) to react with O(2), oxidative decarboxylation, and substrate positioning. Steady-sate kinetics were used to test for overall catalytic effects; autohydroxylation rates were used to test for priming and positioning, and electronic spectroscopy was used to assess the primary coordination sphere and the electrophilicity of αKG. Asn(205) → Ala and Asn(294) → Ala mutants exhibited diminished rates of steady-state turnover, while minimally affecting autohydroxylation, consistent with impaired oxidative decarboxylation. Blue-shifted metal to ligand charge transfer transitions for (Fe+αKG)FIH indicated that these point mutations destabilized the π* orbitals of αKG, further supporting a slowed rate of oxidative decarboxylation. The Arg(238) → Met mutant exhibited steady-state rates too low to measure and diminished product yields, suggesting impaired substrate positioning or priming; the Arg(238) → Met mutant was capable of O(2) activation for the autohydroxylation reaction. The Gln(239) → Asn mutant exhibited significantly slowed steady-state kinetics and diminished product yields, suggesting impaired substrate positioning or priming. As HIF binding to the Gln(239) → Asn mutant stimulated autohydroxylation, it is more likely that this point mutant simply mispositions the HIF-Asn(803) side chain. This work combines kinetics and spectroscopy to show that these second-sphere hydrogen bonds play roles in promoting oxidative decarboxylation, priming Fe(II) to bind O(2), and positioning HIF-Asn(803).
The factor inhibiting HIF (FIH) is a proximate oxygen sensor for human cells, hydroxylating Asn 803 within the α subunit of the hypoxia inducible factor (HIF). FIH is an α-ketoglutatrate (αKG) dependent, non-heme Fe(II) dioxygenase, in which Fe(II) is coordinated by a (His 2 Asp) facial triad, αKG, and H 2 O. Hydrogen bonding between the facial triad, the HIF-Asn 803 sidechain, and various second-sphere residues suggests a functional role for the second coordination sphere in tuning the chemistry of the Fe(II) center. Point mutants of FIH were prepared to test the functional role of the αKG-centered (Asn 205 , Asn 294 ) or HIF-Asn 803 centered (Arg 238 , Gln 239 ) second-sphere residues. The second sphere was tested for local effects on priming Fe(II) to react with O 2 , oxidative decarboxylation, and substrate positioning. Steady-sate kinetics were used to test for overall catalytic effects, autohydroxylation rates were used to test for priming and positioning, and electronic spectroscopy was used to assess the primary coordination sphere and the electrophilicity of αKG. Asn 205 →Ala and Asn 294 →Ala exhibited diminished rates of steady-state turnover, while minimally affecting autohydroxylation, consistent with impaired oxidative decarboxylation. Blue shifted MLCT transitions for (Fe+αKG)FIH indicated that these point mutations destabilized the π* orbitals of αKG, further supporting a slowed rate of oxidative decarboxylation. The Arg 238 →Met mutant exhibited steady-state rates too low to measure and diminished product yields, suggesting impaired substrate positioning or priming; Arg 238 →Met was capable of O 2 -activation for the autohydroxylation reaction. The Gln 239 →Asn mutant exhibited significantly slowed steady-state kinetics and diminished product yields, suggesting impaired substrate positioning or priming. As HIF binding to Gln 239 →Asn stimulated autohydroxylation, it is more likely that this point mutant simply mis-positions the HIF-Asn 803 sidechain. The present work combines kinetics and spectroscopy to show that these second sphere hydrogen bonds play roles in promoting oxidative decarboxylation, priming Fe(II) to bind O 2 , and positioning HIF-Asn 803 .
Author Saban, Evren
Chen, Yuan-Han
Knapp, Michael J
A. Hangasky, John
Holmes, Breanne E
Y. Taabazuing, Cornelius
AuthorAffiliation Department of Chemistry
Program in Molecular and Cellular Biology
University of Massachusetts
AuthorAffiliation_xml – name: University of Massachusetts
– name: Department of Chemistry
– name: Program in Molecular and Cellular Biology
– name: 2 Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, 01003
– name: 1 Department of Chemistry, University of Massachusetts, Amherst, MA, 01003
Author_xml – sequence: 1
  givenname: Evren
  surname: Saban
  fullname: Saban, Evren
– sequence: 2
  givenname: Yuan-Han
  surname: Chen
  fullname: Chen, Yuan-Han
– sequence: 3
  givenname: John
  surname: A. Hangasky
  fullname: A. Hangasky, John
– sequence: 4
  givenname: Cornelius
  surname: Y. Taabazuing
  fullname: Y. Taabazuing, Cornelius
– sequence: 5
  givenname: Breanne E
  surname: Holmes
  fullname: Holmes, Breanne E
– sequence: 6
  givenname: Michael J
  surname: Knapp
  fullname: Knapp, Michael J
  email: mknapp@chem.umass.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21456582$$D View this record in MEDLINE/PubMed
BookMark eNptkUtLAzEUhYMoWh8L_4DMRsTF2CSTZDIgghS1hYILdR0yScZGpklNpmL_vbEvVFwdwv3uOeHcQ7DrvDMAnCJ4hSBG_domgQR3O6CHKIY5qSq6C3oQQpbjisEDcBjjW3oSWJJ9cIARoYxy3APXzxOTPRnlnc4G3gdtneysd9nTbGKCyXyT3Y-GaeS64NuYDRc6-M9Fu4SOwV4j22hO1noEXu7vngfDfPz4MBrcjnNJIOnyWissqSlLTUhZ8YpozZmum4KxWhGF64ZySWta8BLzhhSqqQ1FSHOYREtdHIGble9sXk-NViZ9RrZiFuxUhoXw0orfE2cn4tV_iAIVnJQ4GVysDYJ_n5vYiamNyrStdMbPo-CMM0xSdYk8-xm1zdg0loD-ClDBxxhMI5Ttlm2kZNsKBMX3TcT2Jmnj8s_GxvQ_9nzFShXFm58Hl3r9h_sCuaqYcg
CitedBy_id crossref_primary_10_1021_acs_biochem_3c00231
crossref_primary_10_1021_bi3015482
crossref_primary_10_1021_bi501246v
crossref_primary_10_1038_s41589_021_00944_x
crossref_primary_10_1016_j_ica_2020_119559
crossref_primary_10_1021_acscatal_3c02531
crossref_primary_10_1016_j_jinorgbio_2016_10_007
crossref_primary_10_1021_ic502658p
crossref_primary_10_1021_bi500703s
crossref_primary_10_1016_j_jinorgbio_2013_12_010
crossref_primary_10_1021_ja312571m
crossref_primary_10_1021_jacs_4c15153
crossref_primary_10_1016_j_jinorgbio_2012_03_002
crossref_primary_10_1016_j_ccr_2021_214358
crossref_primary_10_1021_bi300229y
crossref_primary_10_1093_mtomcs_mfab056
crossref_primary_10_1021_acs_inorgchem_1c01754
crossref_primary_10_1021_acs_biochem_2c00115
crossref_primary_10_1021_acs_biochem_5b01003
crossref_primary_10_1021_acs_inorgchem_1c00468
crossref_primary_10_1021_acs_biochem_6b00635
crossref_primary_10_1021_acs_inorgchem_0c03441
crossref_primary_10_1021_acs_biochem_9b00619
crossref_primary_10_1039_c3mt20153h
Cites_doi 10.1074/jbc.M210385200
10.1042/BJ20061151
10.1016/0003-9861(74)90298-7
10.1021/ja039113j
10.1039/b810957e
10.1021/bi048746n
10.1042/bj20021162
10.1021/ja983534x
10.1021/ja909416z
10.1038/nchembio863
10.1021/bi0507579
10.1016/S1359-6446(04)03202-7
10.1111/j.1432-1033.1997.t01-1-00625.x
10.1021/ja004025+
10.1152/physiol.00001.2004
10.1016/j.jinorgbio.2008.07.018
10.1021/ja037400h
10.1021/bi991796l
10.1016/j.jinorgbio.2011.01.007
10.1021/bi002893d
10.1126/science.1066373
10.1021/cr9900275
10.1006/abio.1997.2236
10.1074/jbc.M901790200
10.1074/jbc.M312254200
10.1111/j.1742-4658.2010.07804.x
10.1021/bi9912746
10.1089/ars.2009.2711
10.1021/ja972408a
10.1039/b809099h
10.1080/10409230490440541
10.1021/bi030011f
10.1074/jbc.C200644200
10.1074/jbc.M313614200
10.1021/ja964449x
10.1016/j.jinorgbio.2007.03.018
10.1073/pnas.202614999
10.1021/ja028867f
10.1016/0022-5193(82)90320-4
10.1021/ar700237u
ContentType Journal Article
Copyright Copyright © 2011 American Chemical Society
Copyright_xml – notice: Copyright © 2011 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1021/bi102042t
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1520-4995
EndPage 4740
ExternalDocumentID PMC3138472
21456582
10_1021_bi102042t
a149481386
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation Supported by National Institutes of Health Grant R01-GM077413.
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01-GM077413
– fundername: NIGMS NIH HHS
  grantid: T32 GM008515
– fundername: NIGMS NIH HHS
  grantid: R01 GM077413
GroupedDBID -
.K2
02
23N
3O-
4.4
53G
55
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABOCM
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
AJYGW
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
KM
L7B
LG6
P2P
ROL
TN5
UI2
VF5
VG9
VQA
W1F
WH7
X
X7M
YZZ
ZA5
---
-DZ
-~X
.55
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
XSW
ZCA
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-a404t-bdc2a5e77d4479894dd86dbf366bc4c2bf58a5b538728f43cfbe511d80e51dad3
IEDL.DBID ACS
ISSN 0006-2960
1520-4995
IngestDate Thu Aug 21 18:20:47 EDT 2025
Fri Jul 11 01:53:24 EDT 2025
Mon Jul 21 06:04:03 EDT 2025
Thu Apr 24 22:59:11 EDT 2025
Tue Jul 01 02:05:55 EDT 2025
Thu Aug 27 13:43:10 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a404t-bdc2a5e77d4479894dd86dbf366bc4c2bf58a5b538728f43cfbe511d80e51dad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3138472
PMID 21456582
PQID 868624152
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3138472
proquest_miscellaneous_868624152
pubmed_primary_21456582
crossref_citationtrail_10_1021_bi102042t
crossref_primary_10_1021_bi102042t
acs_journals_10_1021_bi102042t
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-05-31
PublicationDateYYYYMMDD 2011-05-31
PublicationDate_xml – month: 05
  year: 2011
  text: 2011-05-31
  day: 31
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biochemistry (Easton)
PublicationTitleAlternate Biochemistry
PublicationYear 2011
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Ozer A. (ref2/cit2) 2007; 3
Solomon E. I. (ref10/cit10) 2000; 100
Nagel S. (ref8/cit8) 2010; 12
Koivunen P. (ref30/cit30) 2004; 279
Hegg E. L. (ref36/cit36) 1999; 38
Zhou J. (ref19/cit19) 2001; 123
Dann C. E. (ref11/cit11) 2002; 99
Mehn M. P. (ref41/cit41) 2003; 125
Bleijlevens B. (ref35/cit35) 2007; 101
Walsh C. T. (ref20/cit20) 1979
Chen Y. H. (ref23/cit23) 2008; 102
Plotnikov V. V. (ref24/cit24) 1997; 250
Zhou J. (ref33/cit33) 1998; 120
Ehrismann D. (ref29/cit29) 2007; 401
Hendrich M. P. (ref44/cit44) 2010
Bruick R. K. (ref1/cit1) 2001; 294
Miller A. F. (ref16/cit16) 2008; 41
Chen Y. H. (ref28/cit28) 2008
Hewitson K. S. (ref7/cit7) 2004; 9
Pavel E. G. (ref18/cit18) 1998; 120
Semenza G. L. (ref3/cit3) 2004; 19
Mole D. R. (ref4/cit4) 2009; 284
Price J. C. (ref39/cit39) 2003; 125
Peisach J. (ref34/cit34) 1974; 165
Lee C. (ref13/cit13) 2003; 278
Proshlyakov D. A. (ref22/cit22) 2004; 126
Martell A. E. (ref27/cit27) 1974
(ref25/cit25) 2010
Tomchick D. R. (ref15/cit15) 2001; 40
Shook R. L. (ref14/cit14) 2008
Mills S. A. (ref26/cit26) 2005; 44
Hanauske-Abel H. M. (ref6/cit6) 1982; 94
McNeill L. A. (ref5/cit5) 2002; 367
Grzyska P. K. (ref38/cit38) 2005; 44
Elkins J. M. (ref12/cit12) 2003; 278
Flashman E. (ref40/cit40) 2010; 277
Ryle M. J. (ref32/cit32) 1999; 38
Saban E. (ref43/cit43) 2011; 105
Hausinger R. P. (ref9/cit9) 2004; 39
Whiting A. K. (ref37/cit37) 1997; 119
McCusker K. P. (ref42/cit42) 2010; 132
Linke S. (ref31/cit31) 2004; 279
Hegg E. L. (ref17/cit17) 1997; 250
Price J. C. (ref21/cit21) 2003; 42
References_xml – volume: 278
  start-page: 7558
  year: 2003
  ident: ref13/cit13
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M210385200
– volume: 401
  start-page: 227
  year: 2007
  ident: ref29/cit29
  publication-title: Biochem. J.
  doi: 10.1042/BJ20061151
– volume-title: Enzymatic Reaction Mechanisms
  year: 1979
  ident: ref20/cit20
– volume: 165
  start-page: 691
  year: 1974
  ident: ref34/cit34
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(74)90298-7
– volume: 126
  start-page: 1022
  year: 2004
  ident: ref22/cit22
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja039113j
– start-page: 6095
  year: 2008
  ident: ref14/cit14
  publication-title: Chem. Commun.,
  doi: 10.1039/b810957e
– volume: 44
  start-page: 3845
  year: 2005
  ident: ref38/cit38
  publication-title: Biochemistry
  doi: 10.1021/bi048746n
– volume: 367
  start-page: 571
  year: 2002
  ident: ref5/cit5
  publication-title: Biochem. J.
  doi: 10.1042/bj20021162
– volume: 120
  start-page: 13539
  year: 1998
  ident: ref33/cit33
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja983534x
– volume: 132
  start-page: 5114
  year: 2010
  ident: ref42/cit42
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja909416z
– volume: 3
  start-page: 144
  year: 2007
  ident: ref2/cit2
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio863
– volume-title: Spincount
  year: 2010
  ident: ref44/cit44
– volume: 44
  start-page: 13553
  year: 2005
  ident: ref26/cit26
  publication-title: Biochemistry
  doi: 10.1021/bi0507579
– volume: 9
  start-page: 704
  year: 2004
  ident: ref7/cit7
  publication-title: Drug Discovery Today
  doi: 10.1016/S1359-6446(04)03202-7
– volume: 250
  start-page: 625
  year: 1997
  ident: ref17/cit17
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1997.t01-1-00625.x
– volume: 123
  start-page: 7388
  year: 2001
  ident: ref19/cit19
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja004025+
– volume: 19
  start-page: 176
  year: 2004
  ident: ref3/cit3
  publication-title: Physiology
  doi: 10.1152/physiol.00001.2004
– volume: 102
  start-page: 2120
  year: 2008
  ident: ref23/cit23
  publication-title: J. Inorg. Biochem.
  doi: 10.1016/j.jinorgbio.2008.07.018
– volume: 125
  start-page: 13008
  year: 2003
  ident: ref39/cit39
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja037400h
– volume: 38
  start-page: 16714
  year: 1999
  ident: ref36/cit36
  publication-title: Biochemistry
  doi: 10.1021/bi991796l
– volume: 105
  start-page: 630
  year: 2011
  ident: ref43/cit43
  publication-title: J. Inorg. Biochem.
  doi: 10.1016/j.jinorgbio.2011.01.007
– volume: 40
  start-page: 7509
  year: 2001
  ident: ref15/cit15
  publication-title: Biochemistry
  doi: 10.1021/bi002893d
– volume: 294
  start-page: 1337
  year: 2001
  ident: ref1/cit1
  publication-title: Science
  doi: 10.1126/science.1066373
– volume: 100
  start-page: 235
  year: 2000
  ident: ref10/cit10
  publication-title: Chem. Rev.
  doi: 10.1021/cr9900275
– volume: 250
  start-page: 237
  year: 1997
  ident: ref24/cit24
  publication-title: Anal. Biochem.
  doi: 10.1006/abio.1997.2236
– volume: 284
  start-page: 16767
  year: 2009
  ident: ref4/cit4
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M901790200
– volume: 279
  start-page: 9899
  year: 2004
  ident: ref30/cit30
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M312254200
– volume: 277
  start-page: 4089
  year: 2010
  ident: ref40/cit40
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2010.07804.x
– volume: 38
  start-page: 15278
  year: 1999
  ident: ref32/cit32
  publication-title: Biochemistry
  doi: 10.1021/bi9912746
– volume: 12
  start-page: 481
  year: 2010
  ident: ref8/cit8
  publication-title: Antioxid. Redox Signaling
  doi: 10.1089/ars.2009.2711
– volume: 120
  start-page: 743
  year: 1998
  ident: ref18/cit18
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja972408a
– start-page: 4768
  year: 2008
  ident: ref28/cit28
  publication-title: Chem. Commun.,
  doi: 10.1039/b809099h
– volume: 39
  start-page: 21
  year: 2004
  ident: ref9/cit9
  publication-title: Crit. Rev. Biochem. Mol. Biol.
  doi: 10.1080/10409230490440541
– volume: 42
  start-page: 7497
  year: 2003
  ident: ref21/cit21
  publication-title: Biochemistry
  doi: 10.1021/bi030011f
– volume: 278
  start-page: 1802
  year: 2003
  ident: ref12/cit12
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C200644200
– volume: 279
  start-page: 14391
  year: 2004
  ident: ref31/cit31
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M313614200
– volume: 119
  start-page: 3413
  year: 1997
  ident: ref37/cit37
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja964449x
– volume: 101
  start-page: 1043
  year: 2007
  ident: ref35/cit35
  publication-title: J. Inorg. Biochem.
  doi: 10.1016/j.jinorgbio.2007.03.018
– volume: 99
  start-page: 15351
  year: 2002
  ident: ref11/cit11
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.202614999
– volume: 125
  start-page: 7828
  year: 2003
  ident: ref41/cit41
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja028867f
– volume-title: Critical Stability Constants
  year: 1974
  ident: ref27/cit27
– volume: 94
  start-page: 421
  year: 1982
  ident: ref6/cit6
  publication-title: J. Theor. Biol.
  doi: 10.1016/0022-5193(82)90320-4
– volume-title: Origin
  year: 2010
  ident: ref25/cit25
– volume: 41
  start-page: 501
  year: 2008
  ident: ref16/cit16
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar700237u
SSID ssj0004074
Score 2.155846
Snippet The factor inhibiting HIF (FIH) is a proximate oxygen sensor for human cells, hydroxylating Asn803 within the α-subunit of the hypoxia inducible factor (HIF)....
The factor inhibiting HIF (FIH) is a proximate oxygen sensor for human cells, hydroxylating Asn(803) within the α-subunit of the hypoxia inducible factor...
The factor inhibiting HIF (FIH) is a proximate oxygen sensor for human cells, hydroxylating Asn 803 within the α subunit of the hypoxia inducible factor (HIF)....
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4733
SubjectTerms Animals
Calorimetry, Differential Scanning
Electron Spin Resonance Spectroscopy
Hydroxylation
Mice
Mixed Function Oxygenases - chemistry
Mixed Function Oxygenases - physiology
Models, Molecular
Point Mutation
Recombinant Proteins - chemistry
Recombinant Proteins - metabolism
Spectrophotometry, Ultraviolet
Title The Second Coordination Sphere of FIH Controls Hydroxylation
URI http://dx.doi.org/10.1021/bi102042t
https://www.ncbi.nlm.nih.gov/pubmed/21456582
https://www.proquest.com/docview/868624152
https://pubmed.ncbi.nlm.nih.gov/PMC3138472
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT-MwEB4Be1guPMqrvGSxaMUl0DhO4kpcqkBVkNhLQeIW-SkqIEU0PZRfzziPLoWye8rBYyv2TDLf2DOfAY59FVCjfN-Tym97TIShh5Ft29OBZYLFUirhaodv_kS9O3Z9H94vwK9vTvCpfyYHvivgpPki_KARj12E1Un6f4sfWxXVMobGFPF4TR_0satzPWo063q-4MnPaZEf_Ex3FS7qap0yveTxdJzLU_X2lbzxX1NYg5UKZ5JOaRjrsGCyBmx0MoyxnyfkNykyP4st9Qb8TOpb3zbgHO2G9F2UrEkyxMh0UG4Xkr7jHzBkaEn3qkeSMsN9RHoT7d60zKjbhLvu5W3S86obFjzBWiz3pFZUhCaONWOxo2LXmkda2iCKpGKKShtyEUr8KcaUWxYoKw0iNM1b-NBCB1uwlA0zswPEUkQGCC-4jVHHUVtobjkOEjJjVMhsEw5RBWn1hYzS4vCb-ul0bZpwUmsnVRU_ubsm42me6NFU9KUk5ZgnRGoVp7iG7hxEZGY4HqW8qIpB4NKE7VLj01EcbztiMmyJZ2xhKuDYuGdbssFDwcod-AF6err7v3nuwXK5L-0yEPZhKX8dmwMENrk8LAz7HSPj8so
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB4t7AEuvB_ltRZarfYSaBznUYlLFVGF5XEpSNwiP0UFpIikh_LrGTtpoSwSnHLwxLI9k8w39sxngN--DKiWvu8J6Xc8xsPQw8i246nAMM5iISS3tcOXV1F2w_7dhrcNTY6thcFBlNhT6Q7x39gF_GMx8G0dJ63m4CeCEGoDrW7af6uBbDeMyxghU4TlExah969aDyTLWQ_0H6z8mB35zt30lut7i9xAXZbJ_dGoEkfy5QOH4_dmsgJLDeok3dpMVuGHLtZgvVtgxP04Jn-IywN1G-xrsJBO7oBbhxO0ItK3MbMi6RDj1EG9eUj6lo1Ak6EhvbOMpHW-e0mysbIDrvPrNuCmd3qdZl5z34LHWZtVnlCS8lDHsWIstsTsSiWREiaIIiGZpMKECQ8F_iJjmhgWSCM04jWVtPGhuAo2Yb4YFnobiKGIExBsJCZGjUcdrhKTYCch01qGzLTgAJcmb76XMndH4dTPp2vTgr8TJeWyYSu3l2Y8fCZ6OBV9qik6PhMiE03nuIb2VIQXejgq88TVyCCMacFWrfhpL5bFHREatsQzJjEVsNzcsy3F4M5xdAd-gH6f7nw1z1-wkF1fXuQXZ1fnu7BY71jb3IQ9mK-eR3ofIU8lDpytvwKunvsr
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED9tRdr2AqyMrcA6a5qmvaQ0jvNRiZcqW9XCxiZ1lXiL_CkqWFqR9KH89ZyTNNAOCZ7y4Ivl-Ozc73x3PwN8caVHtXRdR0i35zDu-w56tj1HeYZxFgohua0d_nUeDCfs9MK_qBxFWwuDg8iwp6wI4ttdPVemYhhwj8XUtbWcNH8JWzZcZ52tfjy-r4PsVqzL6CVThOYrJqGHr1orJLN1K_QftNzMkHxgcgY78LsebJFpctVZ5KIjbzd4HJ__NbuwXaFP0i-Xy1t4odMm7PVT9Lz_LclXUuSDFgftTXgdr-6C24MTXE1kbH1nReIZ-qvT8hCRjC0rgSYzQwajIYnLvPeMDJfKDrrMs3sHk8GPv_HQqe5dcDjrstwRSlLu6zBUjIWWoF2pKFDCeEEgJJNUGD_ivsBfZUgjwzxphEbcpqIuPhRX3j400lmqPwAxFPECgo7IhKj5oMdVZCLsxGdaS5-ZFrRxepJq32RJERKnblLPTQu-rRSVyIq13F6ecf2Y6OdadF5SdTwmRFbaTnAObXSEp3q2yJKoqJVBONOC96Xy614smzsiNWwJ15ZFLWA5utdb0ullwdXtuR7af3rw1Hd-gld_vg-Sn6Pzs0N4Ux5c2xSFI2jkNwv9EZFPLtrFcr8D2yf9rg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+second+coordination+sphere+of+FIH+controls+hydroxylation&rft.jtitle=Biochemistry+%28Easton%29&rft.au=Saban%2C+Evren&rft.au=Chen%2C+Yuan-Han&rft.au=Hangasky%2C+John&rft.au=Taabazuing%2C+Cornelius&rft.date=2011-05-31&rft.issn=0006-2960&rft.eissn=1520-4995&rft.volume=50&rft.issue=21&rft.spage=4733&rft.epage=4740&rft_id=info:doi/10.1021%2Fbi102042t&rft_id=info%3Apmid%2F21456582&rft.externalDocID=PMC3138472
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2960&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2960&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2960&client=summon