Photoexfoliation Synthesis of 2D Materials
Quantum two-dimensional (2D) materials discovered in the early 21st century have outsmarted existing nanomaterials in various frontiers of applications. Among the preparation of 2D materials, molecular beam epitaxy, atomic layer deposition, and chemical vapor deposition are nonscalable costly method...
Saved in:
Published in | ACS materials letters Vol. 4; no. 2; pp. 263 - 270 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
07.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Quantum two-dimensional (2D) materials discovered in the early 21st century have outsmarted existing nanomaterials in various frontiers of applications. Among the preparation of 2D materials, molecular beam epitaxy, atomic layer deposition, and chemical vapor deposition are nonscalable costly methods, whereas sonochemical and Hummer’s exfoliation methods provide functionalized sheets. Conversely, ultrafast liquid-phase laser processing promises quick delivery of defect-free 2D quantum materials. We report photoexfoliation synthesis of atomic graphene layers, boron nitride (BN), and molybdenum disulfide (MoS2) by the intense KrF laser irradiation into aqueous dispersions of parent material powders in DMF taken in quartz beakers. The number of atomic layers and the lateral size of the sheets gradually decrease with an increase in the laser irradiation duration. Also, the laser fluence becomes the critical control parameter of the lateral size and the number of layers. The average lateral size shrinks from ∼400 nm at 1.5 J/cm2 to 20–30 nm at 4 J/cm2, which accompanies a surge in the ratio of sheets with fewer layers. We correlate the laser processing parameters with the sample size and analyze the molecule-atom-scale interactions. Simulation and DFT calculations suggest the mild out-of-plane thermal expansion of atomic layers followed by solvent intercalation stretches interlayer distance to ∼6.68 Å and thereby lowers the activation energy of exfoliation. The optimum photon fluence at the solvent-assisted condition reduces the activation barrier, enabling us to synthesize 2D crystals in the solution phase. Photoexfoliation synthesis of pure crystals of 2D materials can be promising for next-generation electronic devices. |
---|---|
AbstractList | Quantum two-dimensional (2D) materials discovered in the early 21st century have outsmarted existing nanomaterials in various frontiers of applications. Among the preparation of 2D materials, molecular beam epitaxy, atomic layer deposition, and chemical vapor deposition are nonscalable costly methods, whereas sonochemical and Hummer’s exfoliation methods provide functionalized sheets. Conversely, ultrafast liquid-phase laser processing promises quick delivery of defect-free 2D quantum materials. We report photoexfoliation synthesis of atomic graphene layers, boron nitride (BN), and molybdenum disulfide (MoS2) by the intense KrF laser irradiation into aqueous dispersions of parent material powders in DMF taken in quartz beakers. The number of atomic layers and the lateral size of the sheets gradually decrease with an increase in the laser irradiation duration. Also, the laser fluence becomes the critical control parameter of the lateral size and the number of layers. The average lateral size shrinks from ∼400 nm at 1.5 J/cm2 to 20–30 nm at 4 J/cm2, which accompanies a surge in the ratio of sheets with fewer layers. We correlate the laser processing parameters with the sample size and analyze the molecule-atom-scale interactions. Simulation and DFT calculations suggest the mild out-of-plane thermal expansion of atomic layers followed by solvent intercalation stretches interlayer distance to ∼6.68 Å and thereby lowers the activation energy of exfoliation. The optimum photon fluence at the solvent-assisted condition reduces the activation barrier, enabling us to synthesize 2D crystals in the solution phase. Photoexfoliation synthesis of pure crystals of 2D materials can be promising for next-generation electronic devices. |
Author | Franger, Sylvain Biju, Vasudevanpillai Parida, Prakash Kumar, Prashant Dey, Aditya Assaud, Loic Roques, Jerome |
AuthorAffiliation | Institut de Physique Nucléaire d’Orsay, CNRS-IN2P3 Institute of Molecular Chemistry and Materials Research Institute for Electronic Science Institut de Chimie Moleculaire et des Materiaux d’Orsay, ICMMO School of Engineering Universite Paris-Saclay Department of Physics Université Paris-Sud |
AuthorAffiliation_xml | – name: Institute of Molecular Chemistry and Materials – name: Universite Paris-Saclay – name: School of Engineering – name: Department of Physics – name: Institut de Physique Nucléaire d’Orsay, CNRS-IN2P3 – name: Research Institute for Electronic Science – name: Institut de Chimie Moleculaire et des Materiaux d’Orsay, ICMMO – name: Université Paris-Sud |
Author_xml | – sequence: 1 givenname: Prashant surname: Kumar fullname: Kumar, Prashant email: prashant.kumar@newcastle.edu.au organization: School of Engineering – sequence: 2 givenname: Aditya surname: Dey fullname: Dey, Aditya organization: Department of Physics – sequence: 3 givenname: Jerome surname: Roques fullname: Roques, Jerome organization: Institut de Physique Nucléaire d’Orsay, CNRS-IN2P3 – sequence: 4 givenname: Loic surname: Assaud fullname: Assaud, Loic organization: Institute of Molecular Chemistry and Materials – sequence: 5 givenname: Sylvain surname: Franger fullname: Franger, Sylvain organization: Universite Paris-Saclay – sequence: 6 givenname: Prakash surname: Parida fullname: Parida, Prakash organization: Department of Physics – sequence: 7 givenname: Vasudevanpillai orcidid: 0000-0003-3650-9637 surname: Biju fullname: Biju, Vasudevanpillai email: biju@es.hokudai.ac.jp organization: Research Institute for Electronic Science |
BackLink | https://hal.science/hal-03541500$$DView record in HAL |
BookMark | eNqNkEFLAzEQhYNUsNb-h70qbE2yye7mIpRqrVBRUM9hmk1oynYjSRT7701tFelFT28Y3vdmeKeo17lOI5QRPCKYkktQYQ1RewttaHWMI6IwLjk5Qn1aFiJnohK9X_MJGoawwjixJRGM9dHF49JFpz-May1E67rsadPFpQ42ZM5k9Dq7_z5who5NEj3c6wC9TG-eJ7N8_nB7NxnPc2CYxbyqFdeVrpRgvGpoA4QJswDgBW0oaUzNjSnAGCyA6gYztkhPV5SquuZKl6oYoPNd7hJa-ertGvxGOrByNp7L7Q4XnBGO8TtJ3nrnVd6F4LX5AQiW24rkYUVyX1FCrw5QZeNXBdGDbf8TwHYBySFX7s13yfE39gkNwIj0 |
CitedBy_id | crossref_primary_10_1007_s00894_024_06001_3 crossref_primary_10_1007_s00894_024_06041_9 crossref_primary_10_1021_acsami_4c22462 crossref_primary_10_1002_adma_202403881 crossref_primary_10_1016_j_rinp_2025_108211 crossref_primary_10_1002_smll_202407160 crossref_primary_10_1002_advs_202202695 crossref_primary_10_1002_eng2_12787 crossref_primary_10_1016_j_mser_2025_100937 crossref_primary_10_1002_cphc_202300447 crossref_primary_10_1039_D3MA00134B crossref_primary_10_1002_advs_202207426 crossref_primary_10_1002_smll_202407763 crossref_primary_10_1007_s10904_024_03333_8 crossref_primary_10_1557_s43578_022_00655_6 crossref_primary_10_1021_acsaenm_2c00259 crossref_primary_10_1088_2053_1583_ad9dfc crossref_primary_10_1021_acs_jpclett_3c02791 crossref_primary_10_1021_acsami_3c19101 crossref_primary_10_1016_j_commatsci_2024_113273 crossref_primary_10_1021_acs_jpclett_2c03275 crossref_primary_10_1186_s40580_022_00317_7 crossref_primary_10_1002_smll_202404337 crossref_primary_10_1002_qua_27484 crossref_primary_10_1016_j_ceramint_2024_06_198 crossref_primary_10_1007_s40820_022_00976_5 crossref_primary_10_1142_S0217979225501085 crossref_primary_10_1016_j_cej_2022_138447 crossref_primary_10_1007_s00894_024_06121_w crossref_primary_10_1007_s10825_024_02222_0 crossref_primary_10_1039_D4LF00239C crossref_primary_10_1021_acs_jpcc_2c06693 crossref_primary_10_1557_s43578_022_00814_9 |
Cites_doi | 10.1073/pnas.0502848102 10.1126/science.1171245 10.1002/macp.201100451 10.1038/nmat1849 10.1002/zaac.201200283 10.1016/j.apsusc.2015.05.116 10.1039/C1RA00403D 10.1038/nnano.2014.85 10.1002/adom.201600201 10.1126/science.1194975 10.1021/jp5123147 10.1002/adom.202001830 10.1016/j.ssc.2012.04.005 10.1002/adma.202000531 10.1126/science.aad1080 10.1002/adma.201900353 10.1038/s41565-018-0134-y 10.1021/acsnano.5b04628 10.1039/C9CC05455C 10.1103/PhysRevLett.108.235502 10.1038/nature11458 10.1038/nnano.2014.214 10.1016/j.ssc.2010.07.017 10.1073/pnas.1019542108 10.1002/adma.201900597 10.1016/j.carbon.2007.02.034 10.1016/j.ssi.2020.115371 10.1038/s41578-019-0136-x 10.1088/1367-2630/16/9/095002 10.1039/C5CC04890G 10.1021/nl0717715 10.1021/nl5045988 10.1039/c1nr10137d 10.1126/science.1102896 10.1142/S0219581X11008824 10.1038/nature07872 10.1021/acs.jpcc.6b02524 10.1039/c3ra41149d 10.1039/C5NR04810A 10.1038/s41586-019-1573-9 10.1103/PhysRevB.85.033402 10.1103/PhysRevLett.104.208302 10.1002/smll.201703346 10.7452/lapl.201210033 10.1021/jp001460h 10.1002/andp.201900017 10.2533/chimia.2012.941 10.1039/C4TC00849A 10.1038/nmat2382 10.1021/acsnano.9b06394 |
ContentType | Journal Article |
Copyright | 2022 American Chemical Society Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2022 American Chemical Society – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC |
DOI | 10.1021/acsmaterialslett.1c00651 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 2639-4979 |
EndPage | 270 |
ExternalDocumentID | oai_HAL_hal_03541500v1 10_1021_acsmaterialslett_1c00651 c893948917 |
GroupedDBID | ACS AHGAQ ALMA_UNASSIGNED_HOLDINGS EBS GGK VF5 VG9 AAYXX ABBLG ABJNI ABLBI ABQRX BAANH CITATION CUPRZ M~E 1XC EJD |
ID | FETCH-LOGICAL-a404t-78c5e7e7c9457d2da149fbaa532d21df85ff3aff09a2ed044b1c0722c885ce6c3 |
IEDL.DBID | ACS |
ISSN | 2639-4979 |
IngestDate | Fri May 09 12:24:04 EDT 2025 Tue Jul 01 04:21:53 EDT 2025 Thu Apr 24 22:57:59 EDT 2025 Wed Feb 09 03:11:00 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a404t-78c5e7e7c9457d2da149fbaa532d21df85ff3aff09a2ed044b1c0722c885ce6c3 |
ORCID | 0000-0003-3650-9637 0000-0002-2280-7986 |
PageCount | 8 |
ParticipantIDs | hal_primary_oai_HAL_hal_03541500v1 crossref_primary_10_1021_acsmaterialslett_1c00651 crossref_citationtrail_10_1021_acsmaterialslett_1c00651 acs_journals_10_1021_acsmaterialslett_1c00651 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-07 |
PublicationDateYYYYMMDD | 2022-02-07 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-07 day: 07 |
PublicationDecade | 2020 |
PublicationTitle | ACS materials letters |
PublicationTitleAlternate | ACS Materials Lett |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref3/cit3 doi: 10.1073/pnas.0502848102 – ident: ref30/cit30 doi: 10.1126/science.1171245 – ident: ref43/cit43 doi: 10.1002/macp.201100451 – ident: ref1/cit1 doi: 10.1038/nmat1849 – ident: ref39/cit39 doi: 10.1002/zaac.201200283 – ident: ref15/cit15 doi: 10.1016/j.apsusc.2015.05.116 – ident: ref46/cit46 doi: 10.1039/C1RA00403D – ident: ref9/cit9 doi: 10.1038/nnano.2014.85 – ident: ref22/cit22 doi: 10.1002/adom.201600201 – ident: ref33/cit33 doi: 10.1126/science.1194975 – ident: ref23/cit23 doi: 10.1021/jp5123147 – ident: ref24/cit24 doi: 10.1002/adom.202001830 – ident: ref28/cit28 doi: 10.1016/j.ssc.2012.04.005 – ident: ref8/cit8 doi: 10.1002/adma.202000531 – ident: ref6/cit6 doi: 10.1126/science.aad1080 – ident: ref7/cit7 doi: 10.1002/adma.201900353 – ident: ref14/cit14 doi: 10.1038/s41565-018-0134-y – ident: ref18/cit18 doi: 10.1021/acsnano.5b04628 – ident: ref50/cit50 doi: 10.1039/C9CC05455C – ident: ref48/cit48 doi: 10.1103/PhysRevLett.108.235502 – ident: ref2/cit2 doi: 10.1038/nature11458 – ident: ref16/cit16 doi: 10.1038/nnano.2014.214 – ident: ref44/cit44 doi: 10.1016/j.ssc.2010.07.017 – ident: ref45/cit45 doi: 10.1073/pnas.1019542108 – ident: ref17/cit17 doi: 10.1002/adma.201900597 – ident: ref31/cit31 doi: 10.1016/j.carbon.2007.02.034 – ident: ref25/cit25 doi: 10.1016/j.ssi.2020.115371 – ident: ref5/cit5 doi: 10.1038/s41578-019-0136-x – ident: ref11/cit11 doi: 10.1088/1367-2630/16/9/095002 – ident: ref21/cit21 doi: 10.1039/C5CC04890G – ident: ref32/cit32 doi: 10.1021/nl0717715 – ident: ref19/cit19 doi: 10.1021/nl5045988 – ident: ref35/cit35 doi: 10.1039/c1nr10137d – ident: ref26/cit26 doi: 10.1126/science.1102896 – ident: ref42/cit42 doi: 10.1142/S0219581X11008824 – ident: ref34/cit34 doi: 10.1038/nature07872 – ident: ref36/cit36 doi: 10.1021/acs.jpcc.6b02524 – ident: ref40/cit40 doi: 10.1039/c3ra41149d – ident: ref20/cit20 doi: 10.1039/C5NR04810A – ident: ref4/cit4 doi: 10.1038/s41586-019-1573-9 – ident: ref47/cit47 doi: 10.1103/PhysRevB.85.033402 – ident: ref49/cit49 doi: 10.1103/PhysRevLett.104.208302 – ident: ref12/cit12 doi: 10.1002/smll.201703346 – ident: ref37/cit37 doi: 10.7452/lapl.201210033 – ident: ref41/cit41 doi: 10.1021/jp001460h – ident: ref10/cit10 doi: 10.1002/andp.201900017 – ident: ref38/cit38 doi: 10.2533/chimia.2012.941 – ident: ref29/cit29 doi: 10.1039/C4TC00849A – ident: ref27/cit27 doi: 10.1038/nmat2382 – ident: ref13/cit13 doi: 10.1021/acsnano.9b06394 |
SSID | ssj0002161944 |
Score | 2.345402 |
Snippet | Quantum two-dimensional (2D) materials discovered in the early 21st century have outsmarted existing nanomaterials in various frontiers of applications. Among... |
SourceID | hal crossref acs |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 263 |
SubjectTerms | Physics |
Title | Photoexfoliation Synthesis of 2D Materials |
URI | http://dx.doi.org/10.1021/acsmaterialslett.1c00651 https://hal.science/hal-03541500 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LSsNAcKn1ogffYn0RxJOQus9sciy1pYgVoRZ6C5vNLhVLIiYV9eC3u5ukxQdKe8lhySyZmZ3MzM4LgPOYmN9h5DFXMVuSo1DgCsSVkXgcUKIiGhe5Of1brzek1yM2qgH8RwQfo0shM2O7lewwqORNJK3eNB7PKvaMLFtzqD2Y36tgZP1yG0zGHikGqAVVAs9_m1ndJLNvumllPLtaLVRNd7Ms_8uKDoU2w-SxOc2jpnz_3b9xCSy2wEZleTqt8qhsg5pKdsD6l36Eu-DibpzmqXrV6aTkmDN4S4yFmD1kTqodfOX0Z7vvgWG3c9_uudUwBVdQSHOX-5IprrgMKOMxjoVxjXQkBCM4xijWPtOaCK1hILCKIaWR-UKOsfR9JpUnyT6oJ2miDoATSwOKoCSQCuprKjxCdEAY1B5HAkYN4Bp0w0oYsrCIc2MU_qRBWNGgAfiM7KGsOpPbARmTBSDRHPKp7M6xAMyZ4ez8ddteu9e6Ce0aJMzYMxC-oMMlUTgCa9jWRdh0bn4M6vnzVJ0YayWPTovjaZ79j84n-KrpmQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LTsMwLOJxAA68EeNZIU5IHXk27XECpgEbQgIkxKVK00RDTCuiBQFfj9N1A3ZAwDWqLTt2ajt2bIT2Uwa_wyQQvhHuSY4hka-INHDiacSZSXha1uZ0LoLWDT-7FbdfRn0BETlgyssk_md3AXIIa-DCDaQCHBV1op35hMBnGnwS6pS7cXQ1ul6hxIXnLqdMA1bOUYuqOp6fkDkTpfNvJmqyO7xhLS1OcwHdjWgtC00e6s9FUtfvY20c_8XMIpqv_FCvMVCcJTRh-sto7kt3whV0cNnNisy82qw3kJ939dYHfzG_z73MevTY6wyxr6Kb5sn1UcuvRiv4imNe-DLUwkgjdcSFTGmqIFCyiVKC0ZSS1IbCWqasxZGiJsWcJ0ChpFSHodAm0GwNTfWzvllHXqoBlGDNMFc8tFwFjNmICWwDSRROasgHduPqaORxmfWmJB7fg7jagxqSw92PddWn3I3L6P0CkowgHwe9On4BswcCHn3umm23Gu3YrWEmwLvB-IVs_JGFXTTTuu604_bpxfkmmqXuxYQr9JZbaKp4ejbb4McUyU6psR-j3PDJ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA86QfTBb_HbIj4Jnfls2sehjqmbCFPwraT5YOJoxXai_vUmbTd0D6K-hl64y-V6l9zldwAcK2J_h0nAfM3ckxyNIl8grq3F44gSnVBV1ub0boLOPb16YA91bY57C2OZyO1MeZnEd1b9rEyNMIBO7bgN4yrNWKmKJpLOhdrDz5zL3rkN3jrrT65YMHJHdJdXxgEpe6lFdS3PT5M5NyXzb25qdjC-ZS29Tnu5aq1a8lsWmzw1R0XSlB9TUI7_FmgFLNXxqNeqNtAqmNHpGlj8glK4Dk5uB1mR6TeTDSs9ev331MaN-WPuZcbD515vPPsGuG9f3J11_LrFgi8opIXPQ8k011xGlHGFlbAHJpMIwQhWGCkTMmOIMAZGAmsFKU0shxxjGYZM6kCSTdBIs1RvAU9JS4qgJJAKGhoqAkJMRBg0AUcCJtvAt-LGtYnkcZn9xiieXoO4XoNtwMcaiGWNV-7aZgx_QYkmlM8VZscvaI6skiefO9DtTqsbuzFImI1yIHxFO38U4RDM35634-7lzfUuWMDu4YSr9-Z7oFG8jPS-DWeK5KDctJ9eDvNM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photoexfoliation+Synthesis+of+2D+Materials&rft.jtitle=ACS+materials+letters&rft.au=Kumar%2C+Prashant&rft.au=Dey%2C+Aditya&rft.au=Roques%2C+Jerome&rft.au=Assaud%2C+Loic&rft.date=2022-02-07&rft.issn=2639-4979&rft.eissn=2639-4979&rft.volume=4&rft.issue=2&rft.spage=263&rft.epage=270&rft_id=info:doi/10.1021%2Facsmaterialslett.1c00651&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsmaterialslett_1c00651 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2639-4979&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2639-4979&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2639-4979&client=summon |