Photoexfoliation Synthesis of 2D Materials

Quantum two-dimensional (2D) materials discovered in the early 21st century have outsmarted existing nanomaterials in various frontiers of applications. Among the preparation of 2D materials, molecular beam epitaxy, atomic layer deposition, and chemical vapor deposition are nonscalable costly method...

Full description

Saved in:
Bibliographic Details
Published inACS materials letters Vol. 4; no. 2; pp. 263 - 270
Main Authors Kumar, Prashant, Dey, Aditya, Roques, Jerome, Assaud, Loic, Franger, Sylvain, Parida, Prakash, Biju, Vasudevanpillai
Format Journal Article
LanguageEnglish
Published American Chemical Society 07.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Quantum two-dimensional (2D) materials discovered in the early 21st century have outsmarted existing nanomaterials in various frontiers of applications. Among the preparation of 2D materials, molecular beam epitaxy, atomic layer deposition, and chemical vapor deposition are nonscalable costly methods, whereas sonochemical and Hummer’s exfoliation methods provide functionalized sheets. Conversely, ultrafast liquid-phase laser processing promises quick delivery of defect-free 2D quantum materials. We report photoexfoliation synthesis of atomic graphene layers, boron nitride (BN), and molybdenum disulfide (MoS2) by the intense KrF laser irradiation into aqueous dispersions of parent material powders in DMF taken in quartz beakers. The number of atomic layers and the lateral size of the sheets gradually decrease with an increase in the laser irradiation duration. Also, the laser fluence becomes the critical control parameter of the lateral size and the number of layers. The average lateral size shrinks from ∼400 nm at 1.5 J/cm2 to 20–30 nm at 4 J/cm2, which accompanies a surge in the ratio of sheets with fewer layers. We correlate the laser processing parameters with the sample size and analyze the molecule-atom-scale interactions. Simulation and DFT calculations suggest the mild out-of-plane thermal expansion of atomic layers followed by solvent intercalation stretches interlayer distance to ∼6.68 Å and thereby lowers the activation energy of exfoliation. The optimum photon fluence at the solvent-assisted condition reduces the activation barrier, enabling us to synthesize 2D crystals in the solution phase. Photoexfoliation synthesis of pure crystals of 2D materials can be promising for next-generation electronic devices.
AbstractList Quantum two-dimensional (2D) materials discovered in the early 21st century have outsmarted existing nanomaterials in various frontiers of applications. Among the preparation of 2D materials, molecular beam epitaxy, atomic layer deposition, and chemical vapor deposition are nonscalable costly methods, whereas sonochemical and Hummer’s exfoliation methods provide functionalized sheets. Conversely, ultrafast liquid-phase laser processing promises quick delivery of defect-free 2D quantum materials. We report photoexfoliation synthesis of atomic graphene layers, boron nitride (BN), and molybdenum disulfide (MoS2) by the intense KrF laser irradiation into aqueous dispersions of parent material powders in DMF taken in quartz beakers. The number of atomic layers and the lateral size of the sheets gradually decrease with an increase in the laser irradiation duration. Also, the laser fluence becomes the critical control parameter of the lateral size and the number of layers. The average lateral size shrinks from ∼400 nm at 1.5 J/cm2 to 20–30 nm at 4 J/cm2, which accompanies a surge in the ratio of sheets with fewer layers. We correlate the laser processing parameters with the sample size and analyze the molecule-atom-scale interactions. Simulation and DFT calculations suggest the mild out-of-plane thermal expansion of atomic layers followed by solvent intercalation stretches interlayer distance to ∼6.68 Å and thereby lowers the activation energy of exfoliation. The optimum photon fluence at the solvent-assisted condition reduces the activation barrier, enabling us to synthesize 2D crystals in the solution phase. Photoexfoliation synthesis of pure crystals of 2D materials can be promising for next-generation electronic devices.
Author Franger, Sylvain
Biju, Vasudevanpillai
Parida, Prakash
Kumar, Prashant
Dey, Aditya
Assaud, Loic
Roques, Jerome
AuthorAffiliation Institut de Physique Nucléaire d’Orsay, CNRS-IN2P3
Institute of Molecular Chemistry and Materials
Research Institute for Electronic Science
Institut de Chimie Moleculaire et des Materiaux d’Orsay, ICMMO
School of Engineering
Universite Paris-Saclay
Department of Physics
Université Paris-Sud
AuthorAffiliation_xml – name: Institute of Molecular Chemistry and Materials
– name: Universite Paris-Saclay
– name: School of Engineering
– name: Department of Physics
– name: Institut de Physique Nucléaire d’Orsay, CNRS-IN2P3
– name: Research Institute for Electronic Science
– name: Institut de Chimie Moleculaire et des Materiaux d’Orsay, ICMMO
– name: Université Paris-Sud
Author_xml – sequence: 1
  givenname: Prashant
  surname: Kumar
  fullname: Kumar, Prashant
  email: prashant.kumar@newcastle.edu.au
  organization: School of Engineering
– sequence: 2
  givenname: Aditya
  surname: Dey
  fullname: Dey, Aditya
  organization: Department of Physics
– sequence: 3
  givenname: Jerome
  surname: Roques
  fullname: Roques, Jerome
  organization: Institut de Physique Nucléaire d’Orsay, CNRS-IN2P3
– sequence: 4
  givenname: Loic
  surname: Assaud
  fullname: Assaud, Loic
  organization: Institute of Molecular Chemistry and Materials
– sequence: 5
  givenname: Sylvain
  surname: Franger
  fullname: Franger, Sylvain
  organization: Universite Paris-Saclay
– sequence: 6
  givenname: Prakash
  surname: Parida
  fullname: Parida, Prakash
  organization: Department of Physics
– sequence: 7
  givenname: Vasudevanpillai
  orcidid: 0000-0003-3650-9637
  surname: Biju
  fullname: Biju, Vasudevanpillai
  email: biju@es.hokudai.ac.jp
  organization: Research Institute for Electronic Science
BackLink https://hal.science/hal-03541500$$DView record in HAL
BookMark eNqNkEFLAzEQhYNUsNb-h70qbE2yye7mIpRqrVBRUM9hmk1oynYjSRT7701tFelFT28Y3vdmeKeo17lOI5QRPCKYkktQYQ1RewttaHWMI6IwLjk5Qn1aFiJnohK9X_MJGoawwjixJRGM9dHF49JFpz-May1E67rsadPFpQ42ZM5k9Dq7_z5who5NEj3c6wC9TG-eJ7N8_nB7NxnPc2CYxbyqFdeVrpRgvGpoA4QJswDgBW0oaUzNjSnAGCyA6gYztkhPV5SquuZKl6oYoPNd7hJa-ertGvxGOrByNp7L7Q4XnBGO8TtJ3nrnVd6F4LX5AQiW24rkYUVyX1FCrw5QZeNXBdGDbf8TwHYBySFX7s13yfE39gkNwIj0
CitedBy_id crossref_primary_10_1007_s00894_024_06001_3
crossref_primary_10_1007_s00894_024_06041_9
crossref_primary_10_1021_acsami_4c22462
crossref_primary_10_1002_adma_202403881
crossref_primary_10_1016_j_rinp_2025_108211
crossref_primary_10_1002_smll_202407160
crossref_primary_10_1002_advs_202202695
crossref_primary_10_1002_eng2_12787
crossref_primary_10_1016_j_mser_2025_100937
crossref_primary_10_1002_cphc_202300447
crossref_primary_10_1039_D3MA00134B
crossref_primary_10_1002_advs_202207426
crossref_primary_10_1002_smll_202407763
crossref_primary_10_1007_s10904_024_03333_8
crossref_primary_10_1557_s43578_022_00655_6
crossref_primary_10_1021_acsaenm_2c00259
crossref_primary_10_1088_2053_1583_ad9dfc
crossref_primary_10_1021_acs_jpclett_3c02791
crossref_primary_10_1021_acsami_3c19101
crossref_primary_10_1016_j_commatsci_2024_113273
crossref_primary_10_1021_acs_jpclett_2c03275
crossref_primary_10_1186_s40580_022_00317_7
crossref_primary_10_1002_smll_202404337
crossref_primary_10_1002_qua_27484
crossref_primary_10_1016_j_ceramint_2024_06_198
crossref_primary_10_1007_s40820_022_00976_5
crossref_primary_10_1142_S0217979225501085
crossref_primary_10_1016_j_cej_2022_138447
crossref_primary_10_1007_s00894_024_06121_w
crossref_primary_10_1007_s10825_024_02222_0
crossref_primary_10_1039_D4LF00239C
crossref_primary_10_1021_acs_jpcc_2c06693
crossref_primary_10_1557_s43578_022_00814_9
Cites_doi 10.1073/pnas.0502848102
10.1126/science.1171245
10.1002/macp.201100451
10.1038/nmat1849
10.1002/zaac.201200283
10.1016/j.apsusc.2015.05.116
10.1039/C1RA00403D
10.1038/nnano.2014.85
10.1002/adom.201600201
10.1126/science.1194975
10.1021/jp5123147
10.1002/adom.202001830
10.1016/j.ssc.2012.04.005
10.1002/adma.202000531
10.1126/science.aad1080
10.1002/adma.201900353
10.1038/s41565-018-0134-y
10.1021/acsnano.5b04628
10.1039/C9CC05455C
10.1103/PhysRevLett.108.235502
10.1038/nature11458
10.1038/nnano.2014.214
10.1016/j.ssc.2010.07.017
10.1073/pnas.1019542108
10.1002/adma.201900597
10.1016/j.carbon.2007.02.034
10.1016/j.ssi.2020.115371
10.1038/s41578-019-0136-x
10.1088/1367-2630/16/9/095002
10.1039/C5CC04890G
10.1021/nl0717715
10.1021/nl5045988
10.1039/c1nr10137d
10.1126/science.1102896
10.1142/S0219581X11008824
10.1038/nature07872
10.1021/acs.jpcc.6b02524
10.1039/c3ra41149d
10.1039/C5NR04810A
10.1038/s41586-019-1573-9
10.1103/PhysRevB.85.033402
10.1103/PhysRevLett.104.208302
10.1002/smll.201703346
10.7452/lapl.201210033
10.1021/jp001460h
10.1002/andp.201900017
10.2533/chimia.2012.941
10.1039/C4TC00849A
10.1038/nmat2382
10.1021/acsnano.9b06394
ContentType Journal Article
Copyright 2022 American Chemical Society
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2022 American Chemical Society
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
DOI 10.1021/acsmaterialslett.1c00651
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 2639-4979
EndPage 270
ExternalDocumentID oai_HAL_hal_03541500v1
10_1021_acsmaterialslett_1c00651
c893948917
GroupedDBID ACS
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
EBS
GGK
VF5
VG9
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
BAANH
CITATION
CUPRZ
M~E
1XC
EJD
ID FETCH-LOGICAL-a404t-78c5e7e7c9457d2da149fbaa532d21df85ff3aff09a2ed044b1c0722c885ce6c3
IEDL.DBID ACS
ISSN 2639-4979
IngestDate Fri May 09 12:24:04 EDT 2025
Tue Jul 01 04:21:53 EDT 2025
Thu Apr 24 22:57:59 EDT 2025
Wed Feb 09 03:11:00 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a404t-78c5e7e7c9457d2da149fbaa532d21df85ff3aff09a2ed044b1c0722c885ce6c3
ORCID 0000-0003-3650-9637
0000-0002-2280-7986
PageCount 8
ParticipantIDs hal_primary_oai_HAL_hal_03541500v1
crossref_primary_10_1021_acsmaterialslett_1c00651
crossref_citationtrail_10_1021_acsmaterialslett_1c00651
acs_journals_10_1021_acsmaterialslett_1c00651
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-07
PublicationDateYYYYMMDD 2022-02-07
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-07
  day: 07
PublicationDecade 2020
PublicationTitle ACS materials letters
PublicationTitleAlternate ACS Materials Lett
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref3/cit3
  doi: 10.1073/pnas.0502848102
– ident: ref30/cit30
  doi: 10.1126/science.1171245
– ident: ref43/cit43
  doi: 10.1002/macp.201100451
– ident: ref1/cit1
  doi: 10.1038/nmat1849
– ident: ref39/cit39
  doi: 10.1002/zaac.201200283
– ident: ref15/cit15
  doi: 10.1016/j.apsusc.2015.05.116
– ident: ref46/cit46
  doi: 10.1039/C1RA00403D
– ident: ref9/cit9
  doi: 10.1038/nnano.2014.85
– ident: ref22/cit22
  doi: 10.1002/adom.201600201
– ident: ref33/cit33
  doi: 10.1126/science.1194975
– ident: ref23/cit23
  doi: 10.1021/jp5123147
– ident: ref24/cit24
  doi: 10.1002/adom.202001830
– ident: ref28/cit28
  doi: 10.1016/j.ssc.2012.04.005
– ident: ref8/cit8
  doi: 10.1002/adma.202000531
– ident: ref6/cit6
  doi: 10.1126/science.aad1080
– ident: ref7/cit7
  doi: 10.1002/adma.201900353
– ident: ref14/cit14
  doi: 10.1038/s41565-018-0134-y
– ident: ref18/cit18
  doi: 10.1021/acsnano.5b04628
– ident: ref50/cit50
  doi: 10.1039/C9CC05455C
– ident: ref48/cit48
  doi: 10.1103/PhysRevLett.108.235502
– ident: ref2/cit2
  doi: 10.1038/nature11458
– ident: ref16/cit16
  doi: 10.1038/nnano.2014.214
– ident: ref44/cit44
  doi: 10.1016/j.ssc.2010.07.017
– ident: ref45/cit45
  doi: 10.1073/pnas.1019542108
– ident: ref17/cit17
  doi: 10.1002/adma.201900597
– ident: ref31/cit31
  doi: 10.1016/j.carbon.2007.02.034
– ident: ref25/cit25
  doi: 10.1016/j.ssi.2020.115371
– ident: ref5/cit5
  doi: 10.1038/s41578-019-0136-x
– ident: ref11/cit11
  doi: 10.1088/1367-2630/16/9/095002
– ident: ref21/cit21
  doi: 10.1039/C5CC04890G
– ident: ref32/cit32
  doi: 10.1021/nl0717715
– ident: ref19/cit19
  doi: 10.1021/nl5045988
– ident: ref35/cit35
  doi: 10.1039/c1nr10137d
– ident: ref26/cit26
  doi: 10.1126/science.1102896
– ident: ref42/cit42
  doi: 10.1142/S0219581X11008824
– ident: ref34/cit34
  doi: 10.1038/nature07872
– ident: ref36/cit36
  doi: 10.1021/acs.jpcc.6b02524
– ident: ref40/cit40
  doi: 10.1039/c3ra41149d
– ident: ref20/cit20
  doi: 10.1039/C5NR04810A
– ident: ref4/cit4
  doi: 10.1038/s41586-019-1573-9
– ident: ref47/cit47
  doi: 10.1103/PhysRevB.85.033402
– ident: ref49/cit49
  doi: 10.1103/PhysRevLett.104.208302
– ident: ref12/cit12
  doi: 10.1002/smll.201703346
– ident: ref37/cit37
  doi: 10.7452/lapl.201210033
– ident: ref41/cit41
  doi: 10.1021/jp001460h
– ident: ref10/cit10
  doi: 10.1002/andp.201900017
– ident: ref38/cit38
  doi: 10.2533/chimia.2012.941
– ident: ref29/cit29
  doi: 10.1039/C4TC00849A
– ident: ref27/cit27
  doi: 10.1038/nmat2382
– ident: ref13/cit13
  doi: 10.1021/acsnano.9b06394
SSID ssj0002161944
Score 2.345402
Snippet Quantum two-dimensional (2D) materials discovered in the early 21st century have outsmarted existing nanomaterials in various frontiers of applications. Among...
SourceID hal
crossref
acs
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 263
SubjectTerms Physics
Title Photoexfoliation Synthesis of 2D Materials
URI http://dx.doi.org/10.1021/acsmaterialslett.1c00651
https://hal.science/hal-03541500
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LSsNAcKn1ogffYn0RxJOQus9sciy1pYgVoRZ6C5vNLhVLIiYV9eC3u5ukxQdKe8lhySyZmZ3MzM4LgPOYmN9h5DFXMVuSo1DgCsSVkXgcUKIiGhe5Of1brzek1yM2qgH8RwQfo0shM2O7lewwqORNJK3eNB7PKvaMLFtzqD2Y36tgZP1yG0zGHikGqAVVAs9_m1ndJLNvumllPLtaLVRNd7Ms_8uKDoU2w-SxOc2jpnz_3b9xCSy2wEZleTqt8qhsg5pKdsD6l36Eu-DibpzmqXrV6aTkmDN4S4yFmD1kTqodfOX0Z7vvgWG3c9_uudUwBVdQSHOX-5IprrgMKOMxjoVxjXQkBCM4xijWPtOaCK1hILCKIaWR-UKOsfR9JpUnyT6oJ2miDoATSwOKoCSQCuprKjxCdEAY1B5HAkYN4Bp0w0oYsrCIc2MU_qRBWNGgAfiM7KGsOpPbARmTBSDRHPKp7M6xAMyZ4ez8ddteu9e6Ce0aJMzYMxC-oMMlUTgCa9jWRdh0bn4M6vnzVJ0YayWPTovjaZ79j84n-KrpmQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LTsMwLOJxAA68EeNZIU5IHXk27XECpgEbQgIkxKVK00RDTCuiBQFfj9N1A3ZAwDWqLTt2ajt2bIT2Uwa_wyQQvhHuSY4hka-INHDiacSZSXha1uZ0LoLWDT-7FbdfRn0BETlgyssk_md3AXIIa-DCDaQCHBV1op35hMBnGnwS6pS7cXQ1ul6hxIXnLqdMA1bOUYuqOp6fkDkTpfNvJmqyO7xhLS1OcwHdjWgtC00e6s9FUtfvY20c_8XMIpqv_FCvMVCcJTRh-sto7kt3whV0cNnNisy82qw3kJ939dYHfzG_z73MevTY6wyxr6Kb5sn1UcuvRiv4imNe-DLUwkgjdcSFTGmqIFCyiVKC0ZSS1IbCWqasxZGiJsWcJ0ChpFSHodAm0GwNTfWzvllHXqoBlGDNMFc8tFwFjNmICWwDSRROasgHduPqaORxmfWmJB7fg7jagxqSw92PddWn3I3L6P0CkowgHwe9On4BswcCHn3umm23Gu3YrWEmwLvB-IVs_JGFXTTTuu604_bpxfkmmqXuxYQr9JZbaKp4ejbb4McUyU6psR-j3PDJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA86QfTBb_HbIj4Jnfls2sehjqmbCFPwraT5YOJoxXai_vUmbTd0D6K-hl64y-V6l9zldwAcK2J_h0nAfM3ckxyNIl8grq3F44gSnVBV1ub0boLOPb16YA91bY57C2OZyO1MeZnEd1b9rEyNMIBO7bgN4yrNWKmKJpLOhdrDz5zL3rkN3jrrT65YMHJHdJdXxgEpe6lFdS3PT5M5NyXzb25qdjC-ZS29Tnu5aq1a8lsWmzw1R0XSlB9TUI7_FmgFLNXxqNeqNtAqmNHpGlj8glK4Dk5uB1mR6TeTDSs9ev331MaN-WPuZcbD515vPPsGuG9f3J11_LrFgi8opIXPQ8k011xGlHGFlbAHJpMIwQhWGCkTMmOIMAZGAmsFKU0shxxjGYZM6kCSTdBIs1RvAU9JS4qgJJAKGhoqAkJMRBg0AUcCJtvAt-LGtYnkcZn9xiieXoO4XoNtwMcaiGWNV-7aZgx_QYkmlM8VZscvaI6skiefO9DtTqsbuzFImI1yIHxFO38U4RDM35634-7lzfUuWMDu4YSr9-Z7oFG8jPS-DWeK5KDctJ9eDvNM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photoexfoliation+Synthesis+of+2D+Materials&rft.jtitle=ACS+materials+letters&rft.au=Kumar%2C+Prashant&rft.au=Dey%2C+Aditya&rft.au=Roques%2C+Jerome&rft.au=Assaud%2C+Loic&rft.date=2022-02-07&rft.issn=2639-4979&rft.eissn=2639-4979&rft.volume=4&rft.issue=2&rft.spage=263&rft.epage=270&rft_id=info:doi/10.1021%2Facsmaterialslett.1c00651&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsmaterialslett_1c00651
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2639-4979&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2639-4979&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2639-4979&client=summon