Kinetic Measurements on Single-Molecule Disulfide Bond Cleavage
We use single-molecule force clamp spectroscopy (SMFCS) to explore the reactivity of tris(2-carboxyethyl)phosphine (TCEP), 1, 4-dl-dithiothreitol (DTT) and hydrosulfide anion (HS−) on disulfide bonds within a mechanically stretched polypeptide. The single-bond level bimolecular nucleophilic substitu...
Saved in:
Published in | Journal of the American Chemical Society Vol. 133; no. 10; pp. 3528 - 3534 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
16.03.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We use single-molecule force clamp spectroscopy (SMFCS) to explore the reactivity of tris(2-carboxyethyl)phosphine (TCEP), 1, 4-dl-dithiothreitol (DTT) and hydrosulfide anion (HS−) on disulfide bonds within a mechanically stretched polypeptide. The single-bond level bimolecular nucleophilic substitution (SN2) events are recorded at a series of precisely controlled temperatures so that the Arrhenius kinetic parameters, that is, the height of the activation energy barrier (E a) and the attempting frequency (A) of the chemical reactions, can be determined. The values of A are typically at the order of 107 M−1 s−1, which is far lower than that predicted by the transition-state theory, in which A is given by k B T/h and around 1012 M−1 s−1 at room temperature. Furthermore, E a is derived to be 30−40 kJ/mol, which can be lowered by ∼6−8% with every 100 pN mechanical force applied. The correlation of the A and E a with the molecular structures reveals that the relative magnitude of these two parameters cannot be simply judged from the size of the molecule or the nucleophilicity of the attacking atom. The comparison of the influences on the reaction rate induced by force and temperature indicates an equivalent accelerating effect by every 50 pN or 10 K increment, giving for the first time the relationship between mechanical and thermal effects on a single-molecule SN2 chemical reaction. |
---|---|
AbstractList | We use single-molecule force clamp spectroscopy (SMFCS) to explore the reactivity of tris(2-carboxyethyl)phosphine (TCEP), 1, 4-dl-dithiothreitol (DTT) and hydrosulfide anion (HS(-)) on disulfide bonds within a mechanically stretched polypeptide. The single-bond level bimolecular nucleophilic substitution (S(N)2) events are recorded at a series of precisely controlled temperatures so that the Arrhenius kinetic parameters, that is, the height of the activation energy barrier (E(a)) and the attempting frequency (A) of the chemical reactions, can be determined. The values of A are typically at the order of 10(7) M(-1) s(-1), which is far lower than that predicted by the transition-state theory, in which A is given by k(B)T/h and around 10(12) M(-1) s(-1) at room temperature. Furthermore, E(a) is derived to be 30-40 kJ/mol, which can be lowered by ∼6-8% with every 100 pN mechanical force applied. The correlation of the A and E(a) with the molecular structures reveals that the relative magnitude of these two parameters cannot be simply judged from the size of the molecule or the nucleophilicity of the attacking atom. The comparison of the influences on the reaction rate induced by force and temperature indicates an equivalent accelerating effect by every 50 pN or 10 K increment, giving for the first time the relationship between mechanical and thermal effects on a single-molecule S(N)2 chemical reaction.We use single-molecule force clamp spectroscopy (SMFCS) to explore the reactivity of tris(2-carboxyethyl)phosphine (TCEP), 1, 4-dl-dithiothreitol (DTT) and hydrosulfide anion (HS(-)) on disulfide bonds within a mechanically stretched polypeptide. The single-bond level bimolecular nucleophilic substitution (S(N)2) events are recorded at a series of precisely controlled temperatures so that the Arrhenius kinetic parameters, that is, the height of the activation energy barrier (E(a)) and the attempting frequency (A) of the chemical reactions, can be determined. The values of A are typically at the order of 10(7) M(-1) s(-1), which is far lower than that predicted by the transition-state theory, in which A is given by k(B)T/h and around 10(12) M(-1) s(-1) at room temperature. Furthermore, E(a) is derived to be 30-40 kJ/mol, which can be lowered by ∼6-8% with every 100 pN mechanical force applied. The correlation of the A and E(a) with the molecular structures reveals that the relative magnitude of these two parameters cannot be simply judged from the size of the molecule or the nucleophilicity of the attacking atom. The comparison of the influences on the reaction rate induced by force and temperature indicates an equivalent accelerating effect by every 50 pN or 10 K increment, giving for the first time the relationship between mechanical and thermal effects on a single-molecule S(N)2 chemical reaction. We use single-molecule force clamp spectroscopy (SMFCS) to explore the reactivity of tris(2-carboxyethyl)phosphine (TCEP), 1, 4-dl-dithiothreitol (DTT) and hydrosulfide anion (HS−) on disulfide bonds within a mechanically stretched polypeptide. The single-bond level bimolecular nucleophilic substitution (SN2) events are recorded at a series of precisely controlled temperatures so that the Arrhenius kinetic parameters, that is, the height of the activation energy barrier (E a) and the attempting frequency (A) of the chemical reactions, can be determined. The values of A are typically at the order of 107 M−1 s−1, which is far lower than that predicted by the transition-state theory, in which A is given by k B T/h and around 1012 M−1 s−1 at room temperature. Furthermore, E a is derived to be 30−40 kJ/mol, which can be lowered by ∼6−8% with every 100 pN mechanical force applied. The correlation of the A and E a with the molecular structures reveals that the relative magnitude of these two parameters cannot be simply judged from the size of the molecule or the nucleophilicity of the attacking atom. The comparison of the influences on the reaction rate induced by force and temperature indicates an equivalent accelerating effect by every 50 pN or 10 K increment, giving for the first time the relationship between mechanical and thermal effects on a single-molecule SN2 chemical reaction. We use single-molecule force clamp spectroscopy (SMFCS) to explore the reactivity of tris(2-carboxyethyl)phosphine (TCEP), 1, 4-DL-dithiothreitol (DTT) and hydrosulfide anion (HS - ) on disulfide bonds within a mechanically stretched polypeptide. The single-bond level bimolecular nucleophilic substitution (S N 2) events are recorded at a series of precisely-controlled temperatures so that the Arrhenius kinetic parameters, i.e. the height of the activation energy barrier ( E a ) and the attempting frequency ( A ) of the chemical reactions, can be determined. The values of A are typically at the order of 10 7 M -1 s -1 , which is far lower than that predicted by the transition-state theory, in which A is given by k B T/h and around 10 12 M -1 s -1 at room temperature. Furthermore, E a is derived to be 30-40 kJ/mol, which can be lowered by ~6-8% with every 100 pN mechanical force applied. The correlation of the A and E a with the molecular structures reveals that the relative magnitude of these two parameters cannot be simply judged from the size of the molecule or the nucleophilicity of the attacking atom. The comparison of the influences on the reaction rate induced by force and temperature indicates an equivalent accelerating effect by every 50 pN or 10 K increment, giving for the first time the relationship between mechanical and thermal effects on a single-molecule S N 2 chemical reaction. We use single-molecule force clamp spectroscopy (SMFCS) to explore the reactivity of tris(2-carboxyethyl)phosphine (TCEP), 1, 4-dl-dithiothreitol (DTT) and hydrosulfide anion (HS(-)) on disulfide bonds within a mechanically stretched polypeptide. The single-bond level bimolecular nucleophilic substitution (S(N)2) events are recorded at a series of precisely controlled temperatures so that the Arrhenius kinetic parameters, that is, the height of the activation energy barrier (E(a)) and the attempting frequency (A) of the chemical reactions, can be determined. The values of A are typically at the order of 10(7) M(-1) s(-1), which is far lower than that predicted by the transition-state theory, in which A is given by k(B)T/h and around 10(12) M(-1) s(-1) at room temperature. Furthermore, E(a) is derived to be 30-40 kJ/mol, which can be lowered by ∼6-8% with every 100 pN mechanical force applied. The correlation of the A and E(a) with the molecular structures reveals that the relative magnitude of these two parameters cannot be simply judged from the size of the molecule or the nucleophilicity of the attacking atom. The comparison of the influences on the reaction rate induced by force and temperature indicates an equivalent accelerating effect by every 50 pN or 10 K increment, giving for the first time the relationship between mechanical and thermal effects on a single-molecule S(N)2 chemical reaction. |
Author | Liang, Jian Fernández, Julio M |
AuthorAffiliation | Columbia University |
AuthorAffiliation_xml | – name: Columbia University |
Author_xml | – sequence: 1 givenname: Jian surname: Liang fullname: Liang, Jian email: jliang@temple.edu, jfernandez@columbia.edu – sequence: 2 givenname: Julio M surname: Fernández fullname: Fernández, Julio M email: jliang@temple.edu, jfernandez@columbia.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21341766$$D View this record in MEDLINE/PubMed |
BookMark | eNptkctOwzAQRS0EgvJY8AMoG4RYhNqO7TgbEJSnaMUCWFvGmRRXrt3GCRJ_T6qWChCr0WjO3Hs1s4s2ffCA0CHBZwRT0p9oggsh2XwD9QinOOWEik3UwxjTNJci20G7MU66llFJttEOJRkjuRA9dPFoPTTWJCPQsa1hCr6JSfDJs_VjB-koODCtg-TaxtZVtoTkKvgyGTjQH3oM-2ir0i7Cwaruodfbm5fBfTp8unsYXA5TzTBrUo4rXkBREkpEIahmtMJVBlCWHIoMG6Yp0ZxXhoq3Uoiiy4yZBFqyHAuZyWwPnS91Z-3bFErTxay1U7PaTnX9qYK26vfE23c1Dh8qy8nCshM4WQnUYd5CbNTURgPOaQ-hjUoKmkvJOO_Io59Wa4_vo3XA6RIwdYixhmqNEKwWD1Hrh3Rs_w9rbKMbGxYprft343i5oU1Uk9DWvrvrP9wXN42YXA |
CitedBy_id | crossref_primary_10_1021_acs_biomac_1c00328 crossref_primary_10_1007_s40544_022_0637_2 crossref_primary_10_1002_anie_201305992 crossref_primary_10_1021_cr300381m crossref_primary_10_1038_s41570_017_0083 crossref_primary_10_1016_j_eurpolymj_2022_111733 crossref_primary_10_1002_chem_202100555 crossref_primary_10_1038_nchem_1676 crossref_primary_10_1038_nprot_2013_056 crossref_primary_10_1007_s00894_021_04959_y crossref_primary_10_1007_s12551_019_00543_0 crossref_primary_10_1021_acs_nanolett_5b03888 crossref_primary_10_1016_j_actbio_2016_07_023 crossref_primary_10_1002_advs_202403949 crossref_primary_10_1039_c2dt30524k crossref_primary_10_1039_C3FD00119A crossref_primary_10_1002_cphc_201200154 crossref_primary_10_1021_acssuschemeng_1c08412 crossref_primary_10_1016_j_molliq_2022_120894 crossref_primary_10_1016_j_bpj_2012_08_025 crossref_primary_10_1016_j_freeradbiomed_2019_12_031 crossref_primary_10_1038_s41467_020_17241_1 crossref_primary_10_1002_anie_201409691 crossref_primary_10_3762_bjoc_14_81 crossref_primary_10_1039_C7CS00820A crossref_primary_10_1146_annurev_biophys_090420_083836 crossref_primary_10_1063_1_4926664 crossref_primary_10_1016_j_polymdegradstab_2016_03_025 crossref_primary_10_1016_j_bios_2020_112535 crossref_primary_10_1074_jbc_M117_784934 crossref_primary_10_1016_j_jcs_2019_05_014 crossref_primary_10_1002_ange_201305992 crossref_primary_10_1074_jbc_M111_264093 crossref_primary_10_1039_D3AY01938A crossref_primary_10_1063_1_4862827 crossref_primary_10_1002_ange_201409691 crossref_primary_10_1039_C5CE00863H crossref_primary_10_1016_j_bpj_2014_06_025 crossref_primary_10_1021_acs_jpcc_9b02739 crossref_primary_10_1021_nn204111w crossref_primary_10_1126_science_aay8224 crossref_primary_10_1021_la403709u crossref_primary_10_1038_nchem_2632 crossref_primary_10_1021_acs_jpcb_1c01818 crossref_primary_10_1002_adfm_202005010 crossref_primary_10_1021_ma401178w crossref_primary_10_1038_s41467_018_05115_6 crossref_primary_10_1021_nn301200k crossref_primary_10_1002_chem_201600866 crossref_primary_10_1021_bi201176q crossref_primary_10_1021_ja207491r crossref_primary_10_1063_1_5001574 |
Cites_doi | 10.1126/science.275.5303.1102 10.1021/nn800497y 10.1021/ja00317a010 10.1021/j100412a074 10.1126/science.1439819 10.1021/jp8051856 10.1126/science.1150238 10.1103/PhysRevLett.78.1667 10.1126/science.1068053 10.1016/S0079-6107(00)00017-1 10.1016/S0301-4622(02)00177-1 10.1038/nature04268 10.1126/science.347575 10.1021/nn900294n 10.1021/ja00322a059 10.1126/science.283.5408.1676 10.1021/ja800180u 10.1038/344524a0 10.1016/j.jmb.2005.09.070 10.1126/science.288.5473.2048 10.1038/35009144 10.1146/annurev.physchem.49.1.441 10.1073/pnas.0400033101 10.1021/la8007365 10.1021/ja077851s 10.1021/jo071271w 10.1002/chem.200801833 10.1021/ja903480j 10.1126/science.276.5315.1109 10.1021/ja1011756 10.1002/1521-3773(20020503)41:9<1546::AID-ANIE1546>3.0.CO;2-U 10.1063/1.1750736 10.1016/S0959-440X(00)00085-3 10.1016/0167-5729(91)90011-L 10.1073/pnas.0511035103 10.1529/biophysj.106.101261 10.1103/PhysRevLett.85.2777 10.1021/ja058516b 10.1038/nchem.207 10.1038/nature06231 |
ContentType | Journal Article |
Copyright | Copyright © 2011 American Chemical Society |
Copyright_xml | – notice: Copyright © 2011 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1021/ja109684q |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 3534 |
ExternalDocumentID | PMC3711696 21341766 10_1021_ja109684q a475843938 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: HL61228 – fundername: NHLBI NIH HHS grantid: HL66030 – fundername: NHLBI NIH HHS grantid: R01 HL061228 – fundername: NHLBI NIH HHS grantid: R01 HL066030 – fundername: National Heart, Lung, and Blood Institute : NHLBI grantid: R01 HL061228-10 || HL – fundername: National Heart, Lung, and Blood Institute : NHLBI grantid: R01 HL066030 || HL – fundername: National Heart, Lung, and Blood Institute : NHLBI grantid: R01 HL066030-10 || HL – fundername: National Heart, Lung, and Blood Institute : NHLBI grantid: R01 HL061228 || HL |
GroupedDBID | - .K2 02 4.4 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TAF TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC AAHBH AAYOK AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 AAYWT CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-a404t-50f59e9d1216962a42f0f3eedd5e930c4a21a55fc26bd669863048e2d47068383 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Thu Aug 21 18:28:36 EDT 2025 Thu Jul 10 23:36:46 EDT 2025 Mon Jul 21 05:56:35 EDT 2025 Thu Apr 24 23:10:52 EDT 2025 Tue Jul 01 02:08:00 EDT 2025 Thu Aug 27 13:42:41 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a404t-50f59e9d1216962a42f0f3eedd5e930c4a21a55fc26bd669863048e2d47068383 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Current address: Department of Biology, Temple University. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3711696 |
PMID | 21341766 |
PQID | 862788455 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3711696 proquest_miscellaneous_862788455 pubmed_primary_21341766 crossref_primary_10_1021_ja109684q crossref_citationtrail_10_1021_ja109684q acs_journals_10_1021_ja109684q |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-03-16 |
PublicationDateYYYYMMDD | 2011-03-16 |
PublicationDate_xml | – month: 03 year: 2011 text: 2011-03-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2011 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Dmitrenko O. (ref38/cit38) 2007; 72 Xie X. S. (ref3/cit3) 1998; 49 Rief M. (ref2/cit2) 1997; 276 Ainavarapu S. R. K. (ref31/cit31) 2008; 130 Yang Y. (ref33/cit33) 2006; 77 Iglesia E. (ref36/cit36) 1986; 90 Hla S.-W. (ref12/cit12) 2000; 85 Fernández I. (ref29/cit29) 2009; 15 Bell G. I. (ref25/cit25) 1978; 200 Mikosch J. (ref28/cit28) 2008; 319 Smith S. B. (ref8/cit8) 1992; 258 Liang J. (ref19/cit19) 2009; 3 Guo S. L. (ref24/cit24) 2010; 132 Eigler D. M. (ref1/cit1) 1990; 344 Sun L. P. (ref27/cit27) 2002; 296 Shaik S. S. (ref40/cit40) 1984; 106 Wiita A. P. (ref17/cit17) 2006; 103 Kneipp K. (ref10/cit10) 1997; 78 Garcia-Manyes S. (ref42/cit42) 2009; 1 Baber A. E. (ref16/cit16) 2008; 2 ref34/cit34 Schlierf M. (ref32/cit32) 2004; 101 Weiss S. (ref4/cit4) 1999; 283 Zhuang X. (ref5/cit5) 2000; 288 Zhdanov V. P. (ref37/cit37) 1991; 12 Nie S. M. (ref11/cit11) 1997; 275 Brown A. E. X. (ref21/cit21) 2007; 92 Laidler K. J. (ref35/cit35) 1940; 8 Strick T. R. (ref9/cit9) 2000; 404 Bustanji Y. (ref20/cit20) 2002; 41 Honciuc A. (ref15/cit15) 2008; 24 Honciuc A. (ref14/cit14) 2009; 113 Ainavarapu S. R. K. (ref26/cit26) 2008; 130 Bustamante C. (ref6/cit6) 2000; 10 Schlierf M. (ref13/cit13) 2005; 354 Chandrasekhar J. (ref39/cit39) 1984; 106 Abbondanzieri E. A. (ref7/cit7) 2005; 438 Wiita A. P. (ref18/cit18) 2007; 450 Carrion-Vazquez M. (ref30/cit30) 2000; 74 Kersey F. R. (ref23/cit23) 2006; 128 Tinoco I. (ref41/cit41) 2002; 101 Peng Q. (ref22/cit22) 2010; 131 |
References_xml | – volume: 275 start-page: 1102 year: 1997 ident: ref11/cit11 publication-title: Science doi: 10.1126/science.275.5303.1102 – volume: 2 start-page: 2385 year: 2008 ident: ref16/cit16 publication-title: ACS Nano doi: 10.1021/nn800497y – volume: 106 start-page: 1227 year: 1984 ident: ref40/cit40 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00317a010 – volume: 77 start-page: 5 year: 2006 ident: ref33/cit33 publication-title: Rev. Sci. Instrum. – volume: 90 start-page: 5272 year: 1986 ident: ref36/cit36 publication-title: J. Phys. Chem. doi: 10.1021/j100412a074 – volume: 258 start-page: 1122 year: 1992 ident: ref8/cit8 publication-title: Science doi: 10.1126/science.1439819 – volume: 113 start-page: 2078 year: 2009 ident: ref14/cit14 publication-title: J. Phys. Chem. C doi: 10.1021/jp8051856 – volume: 319 start-page: 183 year: 2008 ident: ref28/cit28 publication-title: Science doi: 10.1126/science.1150238 – volume: 78 start-page: 1667 year: 1997 ident: ref10/cit10 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.78.1667 – volume: 296 start-page: 875 year: 2002 ident: ref27/cit27 publication-title: Science doi: 10.1126/science.1068053 – volume: 74 start-page: 63 year: 2000 ident: ref30/cit30 publication-title: Prog. Biophys. Mol. Biol. doi: 10.1016/S0079-6107(00)00017-1 – volume: 101 start-page: 513 year: 2002 ident: ref41/cit41 publication-title: Biophys. Chem. doi: 10.1016/S0301-4622(02)00177-1 – volume: 438 start-page: 460 year: 2005 ident: ref7/cit7 publication-title: Nature doi: 10.1038/nature04268 – volume: 200 start-page: 618 year: 1978 ident: ref25/cit25 publication-title: Science doi: 10.1126/science.347575 – volume: 3 start-page: 1628 year: 2009 ident: ref19/cit19 publication-title: ACS Nano doi: 10.1021/nn900294n – volume: 106 start-page: 3049 year: 1984 ident: ref39/cit39 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00322a059 – volume: 283 start-page: 1676 year: 1999 ident: ref4/cit4 publication-title: Science doi: 10.1126/science.283.5408.1676 – volume: 130 start-page: 6479 year: 2008 ident: ref26/cit26 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja800180u – volume: 344 start-page: 524 year: 1990 ident: ref1/cit1 publication-title: Nature doi: 10.1038/344524a0 – ident: ref34/cit34 – volume: 354 start-page: 497 year: 2005 ident: ref13/cit13 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2005.09.070 – volume: 288 start-page: 2048 year: 2000 ident: ref5/cit5 publication-title: Science doi: 10.1126/science.288.5473.2048 – volume: 404 start-page: 901 year: 2000 ident: ref9/cit9 publication-title: Nature doi: 10.1038/35009144 – volume: 49 start-page: 441 year: 1998 ident: ref3/cit3 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.physchem.49.1.441 – volume: 101 start-page: 7299 year: 2004 ident: ref32/cit32 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0400033101 – volume: 24 start-page: 6562 year: 2008 ident: ref15/cit15 publication-title: Langmuir doi: 10.1021/la8007365 – volume: 130 start-page: 436 year: 2008 ident: ref31/cit31 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja077851s – volume: 72 start-page: 8298 year: 2007 ident: ref38/cit38 publication-title: J. Org. Chem. doi: 10.1021/jo071271w – volume: 15 start-page: 2166 year: 2009 ident: ref29/cit29 publication-title: Chem.—Eur. J. doi: 10.1002/chem.200801833 – volume: 131 start-page: 13347 year: 2010 ident: ref22/cit22 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja903480j – volume: 276 start-page: 1109 year: 1997 ident: ref2/cit2 publication-title: Science doi: 10.1126/science.276.5315.1109 – volume: 132 start-page: 9681 year: 2010 ident: ref24/cit24 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1011756 – volume: 41 start-page: 1546 year: 2002 ident: ref20/cit20 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/1521-3773(20020503)41:9<1546::AID-ANIE1546>3.0.CO;2-U – volume: 8 start-page: 659 year: 1940 ident: ref35/cit35 publication-title: J. Chem. Phys. doi: 10.1063/1.1750736 – volume: 10 start-page: 279 year: 2000 ident: ref6/cit6 publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/S0959-440X(00)00085-3 – volume: 12 start-page: 183 year: 1991 ident: ref37/cit37 publication-title: Surf. Sci. Rep. doi: 10.1016/0167-5729(91)90011-L – volume: 103 start-page: 7222 year: 2006 ident: ref17/cit17 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0511035103 – volume: 92 start-page: L39 year: 2007 ident: ref21/cit21 publication-title: Biophys. J. doi: 10.1529/biophysj.106.101261 – volume: 85 start-page: 2777 year: 2000 ident: ref12/cit12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.2777 – volume: 128 start-page: 3886 year: 2006 ident: ref23/cit23 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja058516b – volume: 1 start-page: 236 year: 2009 ident: ref42/cit42 publication-title: Nat. Chem. doi: 10.1038/nchem.207 – volume: 450 start-page: 124 year: 2007 ident: ref18/cit18 publication-title: Nature doi: 10.1038/nature06231 |
SSID | ssj0004281 |
Score | 2.2446342 |
Snippet | We use single-molecule force clamp spectroscopy (SMFCS) to explore the reactivity of tris(2-carboxyethyl)phosphine (TCEP), 1, 4-dl-dithiothreitol (DTT) and... We use single-molecule force clamp spectroscopy (SMFCS) to explore the reactivity of tris(2-carboxyethyl)phosphine (TCEP), 1, 4-DL-dithiothreitol (DTT) and... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3528 |
SubjectTerms | Disulfides - chemistry Dithiothreitol - chemistry Kinetics Phosphines - chemistry Protein Folding Proteins - chemistry Spectrum Analysis - methods |
Title | Kinetic Measurements on Single-Molecule Disulfide Bond Cleavage |
URI | http://dx.doi.org/10.1021/ja109684q https://www.ncbi.nlm.nih.gov/pubmed/21341766 https://www.proquest.com/docview/862788455 https://pubmed.ncbi.nlm.nih.gov/PMC3711696 |
Volume | 133 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LbxMxEB6VcIBLgRZoeERW6YGLo7V3bK9PCCVUFVV6CZV6W-1jVkSNNsAmHPj1jLPZtKEFzp615BnPzjdj-xuAE4oK9DFaqcgbiYUh6aOkkIYQy9wbdFko6E8u7Nklfr4yV3vw7i8n-DrwAymG2Ql-fwAPtWXnDfhnNL15_KgT1WFcl9i4ow-6_WkIPUWzG3ru4Mk_r0XeijOnT2DcvdZpr5dcD1fLfFj8ukve-K8lPIX9Dc4UH9uN8Qz2qD6AR6OuvdshfDhnfMmDYnJTJWzEohZTDmZzkpO2by6J8axZzatZSSK0IBajOWU_-Sf0HC5PP30ZnclNNwWZYYRLaaLKePKl0sp6qzPUVVTFHCJLQz5mk2VaZcZUhbZ5aa1nVbJ3ky7RRTbhRPYF9OpFTUcgMEGv0JVYVYi6zJPCudzYXJPWOUVxHwas7nTjDU26PujWnGh0eujD-84SabHhIg8tMeb3iR5vRb-1BBz3CYnOnCmrMZx5ZDUtVk3KCRsn-WhMH1621t3Osuayc9b2we3YfSsQmLd3R-rZ1zUDd-xUUOKr_63zNTxua9CxVPYN9JY_VvSWQcwyH6w38W81kepq |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB619EAvpYWWLtCthXrgEpQ4Yzs-IbQt2haWCyBxi_KYqKuuskB2e-ivZ5zHPihSe_bEsmfszDf2-BuAL-RnaEPUXkBWeZgp8qwfZZ4ixDy1Ck3iDvRHl3p4gz9u1W1Lk-PewvAgKu6pqi_xl-wCjiYoYLQd4f1LeMUgRLrVfDq4Wr6BlFHQQV0T6bBjEVr91HmgrFr3QH_ByqfZkSvu5myrqVtUD7TOMvl1PJ-lx9mfJxyO_zeTt_CmRZ3itFkm7-AFlduwOeiKve3AyTmjTW4Uo-WZYSWmpbhi1zYhb9RU0SXxdVzNJ8U4J-EKEovBhJLf_Et6Dzdn364HQ6-treAl6OPMU36hLNk8kIG2WiYoC78I2WHmimzIBkxkkChVZFKnudaWNcp7nWSOxtcRh7UfYKOclvQRBEZoAzQ5FgWizNMoMyZVOpUkZUp-2IM-qyFu90YV19feksOOTg89OOoMEmctM7krkDF5TvRwIXrX0HE8JyQ6q8asRncDkpQ0nVcxh28c8qNSPdhtjLzopWa2M1r3wKyZfyHgeLjXW8rxz5qPOzSBU-Lev-b5GTaH16OL-OL75fk-vJbuIUWdA3QAG7OHOX1ieDNL-_W6fgTl6PLI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB61VGq59EFfSwu1UA-9GMXO2I5PCC1d0cJCJYrELUpiR111lYVmt4f--o7zWFhAas-eWPY8MjMe-xuAjz4q0MaoufBWcSyU5zZKCq48osutQpOFA_3xiT48x68X6qJLFMNbGFpETTPVTRE_WPWlKzuEgQAVJCjiTvDqITwK5bqg0fvDs-t3kDIRfbhrEh33SEI3Pw1eqKhXvdCd0PL2DckbLmf0DE6Xi21umvzcXczz3eLPLRzH_9_Nc3jaRZ9sv1WXF_DAVxvwZNg3fXsJe0cUddIgG1-fHdZsVrEzcnFTz8dtN13PDib1YlpOnGehMTEbTn32m35Nr-B89Pn78JB3PRZ4hhHOuYpKZb11QgpttcxQllEZk-N0ytuYBJlJkSlVFlLnTmtLXCWb99KhiXRC6e1rWKtmlX8LDBO0Ao3DskSULk8KY3Klc-mlzH0UD2CbWJF2NlKnTflbUvrR82EAn3qhpEWHUB4aZUzvI91Zkl62sBz3EbFesimxMVRCssrPFnVKaRyl_qjUAN60gl7O0iDcGa0HYFZUYEkQ8LhXR6rJjwaXOzYiMHHzX_v8AI-_HYzS4y8nR-9gvT2kjrnQ72Ft_mvhtyjKmefbjWr_BdzT9U4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kinetic+measurements+on+single-molecule+disulfide+bond+cleavage&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Liang%2C+Jian&rft.au=Fern%C3%A1ndez%2C+Julio+M&rft.date=2011-03-16&rft.eissn=1520-5126&rft.volume=133&rft.issue=10&rft.spage=3528&rft_id=info:doi/10.1021%2Fja109684q&rft_id=info%3Apmid%2F21341766&rft.externalDocID=21341766 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |