Kinetic Measurements on Single-Molecule Disulfide Bond Cleavage

We use single-molecule force clamp spectroscopy (SMFCS) to explore the reactivity of tris(2-carboxyethyl)phosphine (TCEP), 1, 4-dl-dithiothreitol (DTT) and hydrosulfide anion (HS−) on disulfide bonds within a mechanically stretched polypeptide. The single-bond level bimolecular nucleophilic substitu...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 133; no. 10; pp. 3528 - 3534
Main Authors Liang, Jian, Fernández, Julio M
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 16.03.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We use single-molecule force clamp spectroscopy (SMFCS) to explore the reactivity of tris(2-carboxyethyl)phosphine (TCEP), 1, 4-dl-dithiothreitol (DTT) and hydrosulfide anion (HS−) on disulfide bonds within a mechanically stretched polypeptide. The single-bond level bimolecular nucleophilic substitution (SN2) events are recorded at a series of precisely controlled temperatures so that the Arrhenius kinetic parameters, that is, the height of the activation energy barrier (E a) and the attempting frequency (A) of the chemical reactions, can be determined. The values of A are typically at the order of 107 M−1 s−1, which is far lower than that predicted by the transition-state theory, in which A is given by k B T/h and around 1012 M−1 s−1 at room temperature. Furthermore, E a is derived to be 30−40 kJ/mol, which can be lowered by ∼6−8% with every 100 pN mechanical force applied. The correlation of the A and E a with the molecular structures reveals that the relative magnitude of these two parameters cannot be simply judged from the size of the molecule or the nucleophilicity of the attacking atom. The comparison of the influences on the reaction rate induced by force and temperature indicates an equivalent accelerating effect by every 50 pN or 10 K increment, giving for the first time the relationship between mechanical and thermal effects on a single-molecule SN2 chemical reaction.
AbstractList We use single-molecule force clamp spectroscopy (SMFCS) to explore the reactivity of tris(2-carboxyethyl)phosphine (TCEP), 1, 4-dl-dithiothreitol (DTT) and hydrosulfide anion (HS(-)) on disulfide bonds within a mechanically stretched polypeptide. The single-bond level bimolecular nucleophilic substitution (S(N)2) events are recorded at a series of precisely controlled temperatures so that the Arrhenius kinetic parameters, that is, the height of the activation energy barrier (E(a)) and the attempting frequency (A) of the chemical reactions, can be determined. The values of A are typically at the order of 10(7) M(-1) s(-1), which is far lower than that predicted by the transition-state theory, in which A is given by k(B)T/h and around 10(12) M(-1) s(-1) at room temperature. Furthermore, E(a) is derived to be 30-40 kJ/mol, which can be lowered by ∼6-8% with every 100 pN mechanical force applied. The correlation of the A and E(a) with the molecular structures reveals that the relative magnitude of these two parameters cannot be simply judged from the size of the molecule or the nucleophilicity of the attacking atom. The comparison of the influences on the reaction rate induced by force and temperature indicates an equivalent accelerating effect by every 50 pN or 10 K increment, giving for the first time the relationship between mechanical and thermal effects on a single-molecule S(N)2 chemical reaction.We use single-molecule force clamp spectroscopy (SMFCS) to explore the reactivity of tris(2-carboxyethyl)phosphine (TCEP), 1, 4-dl-dithiothreitol (DTT) and hydrosulfide anion (HS(-)) on disulfide bonds within a mechanically stretched polypeptide. The single-bond level bimolecular nucleophilic substitution (S(N)2) events are recorded at a series of precisely controlled temperatures so that the Arrhenius kinetic parameters, that is, the height of the activation energy barrier (E(a)) and the attempting frequency (A) of the chemical reactions, can be determined. The values of A are typically at the order of 10(7) M(-1) s(-1), which is far lower than that predicted by the transition-state theory, in which A is given by k(B)T/h and around 10(12) M(-1) s(-1) at room temperature. Furthermore, E(a) is derived to be 30-40 kJ/mol, which can be lowered by ∼6-8% with every 100 pN mechanical force applied. The correlation of the A and E(a) with the molecular structures reveals that the relative magnitude of these two parameters cannot be simply judged from the size of the molecule or the nucleophilicity of the attacking atom. The comparison of the influences on the reaction rate induced by force and temperature indicates an equivalent accelerating effect by every 50 pN or 10 K increment, giving for the first time the relationship between mechanical and thermal effects on a single-molecule S(N)2 chemical reaction.
We use single-molecule force clamp spectroscopy (SMFCS) to explore the reactivity of tris(2-carboxyethyl)phosphine (TCEP), 1, 4-dl-dithiothreitol (DTT) and hydrosulfide anion (HS−) on disulfide bonds within a mechanically stretched polypeptide. The single-bond level bimolecular nucleophilic substitution (SN2) events are recorded at a series of precisely controlled temperatures so that the Arrhenius kinetic parameters, that is, the height of the activation energy barrier (E a) and the attempting frequency (A) of the chemical reactions, can be determined. The values of A are typically at the order of 107 M−1 s−1, which is far lower than that predicted by the transition-state theory, in which A is given by k B T/h and around 1012 M−1 s−1 at room temperature. Furthermore, E a is derived to be 30−40 kJ/mol, which can be lowered by ∼6−8% with every 100 pN mechanical force applied. The correlation of the A and E a with the molecular structures reveals that the relative magnitude of these two parameters cannot be simply judged from the size of the molecule or the nucleophilicity of the attacking atom. The comparison of the influences on the reaction rate induced by force and temperature indicates an equivalent accelerating effect by every 50 pN or 10 K increment, giving for the first time the relationship between mechanical and thermal effects on a single-molecule SN2 chemical reaction.
We use single-molecule force clamp spectroscopy (SMFCS) to explore the reactivity of tris(2-carboxyethyl)phosphine (TCEP), 1, 4-DL-dithiothreitol (DTT) and hydrosulfide anion (HS - ) on disulfide bonds within a mechanically stretched polypeptide. The single-bond level bimolecular nucleophilic substitution (S N 2) events are recorded at a series of precisely-controlled temperatures so that the Arrhenius kinetic parameters, i.e. the height of the activation energy barrier ( E a ) and the attempting frequency ( A ) of the chemical reactions, can be determined. The values of A are typically at the order of 10 7 M -1 s -1 , which is far lower than that predicted by the transition-state theory, in which A is given by k B T/h and around 10 12 M -1 s -1 at room temperature. Furthermore, E a is derived to be 30-40 kJ/mol, which can be lowered by ~6-8% with every 100 pN mechanical force applied. The correlation of the A and E a with the molecular structures reveals that the relative magnitude of these two parameters cannot be simply judged from the size of the molecule or the nucleophilicity of the attacking atom. The comparison of the influences on the reaction rate induced by force and temperature indicates an equivalent accelerating effect by every 50 pN or 10 K increment, giving for the first time the relationship between mechanical and thermal effects on a single-molecule S N 2 chemical reaction.
We use single-molecule force clamp spectroscopy (SMFCS) to explore the reactivity of tris(2-carboxyethyl)phosphine (TCEP), 1, 4-dl-dithiothreitol (DTT) and hydrosulfide anion (HS(-)) on disulfide bonds within a mechanically stretched polypeptide. The single-bond level bimolecular nucleophilic substitution (S(N)2) events are recorded at a series of precisely controlled temperatures so that the Arrhenius kinetic parameters, that is, the height of the activation energy barrier (E(a)) and the attempting frequency (A) of the chemical reactions, can be determined. The values of A are typically at the order of 10(7) M(-1) s(-1), which is far lower than that predicted by the transition-state theory, in which A is given by k(B)T/h and around 10(12) M(-1) s(-1) at room temperature. Furthermore, E(a) is derived to be 30-40 kJ/mol, which can be lowered by ∼6-8% with every 100 pN mechanical force applied. The correlation of the A and E(a) with the molecular structures reveals that the relative magnitude of these two parameters cannot be simply judged from the size of the molecule or the nucleophilicity of the attacking atom. The comparison of the influences on the reaction rate induced by force and temperature indicates an equivalent accelerating effect by every 50 pN or 10 K increment, giving for the first time the relationship between mechanical and thermal effects on a single-molecule S(N)2 chemical reaction.
Author Liang, Jian
Fernández, Julio M
AuthorAffiliation Columbia University
AuthorAffiliation_xml – name: Columbia University
Author_xml – sequence: 1
  givenname: Jian
  surname: Liang
  fullname: Liang, Jian
  email: jliang@temple.edu, jfernandez@columbia.edu
– sequence: 2
  givenname: Julio M
  surname: Fernández
  fullname: Fernández, Julio M
  email: jliang@temple.edu, jfernandez@columbia.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21341766$$D View this record in MEDLINE/PubMed
BookMark eNptkctOwzAQRS0EgvJY8AMoG4RYhNqO7TgbEJSnaMUCWFvGmRRXrt3GCRJ_T6qWChCr0WjO3Hs1s4s2ffCA0CHBZwRT0p9oggsh2XwD9QinOOWEik3UwxjTNJci20G7MU66llFJttEOJRkjuRA9dPFoPTTWJCPQsa1hCr6JSfDJs_VjB-koODCtg-TaxtZVtoTkKvgyGTjQH3oM-2ir0i7Cwaruodfbm5fBfTp8unsYXA5TzTBrUo4rXkBREkpEIahmtMJVBlCWHIoMG6Yp0ZxXhoq3Uoiiy4yZBFqyHAuZyWwPnS91Z-3bFErTxay1U7PaTnX9qYK26vfE23c1Dh8qy8nCshM4WQnUYd5CbNTURgPOaQ-hjUoKmkvJOO_Io59Wa4_vo3XA6RIwdYixhmqNEKwWD1Hrh3Rs_w9rbKMbGxYprft343i5oU1Uk9DWvrvrP9wXN42YXA
CitedBy_id crossref_primary_10_1021_acs_biomac_1c00328
crossref_primary_10_1007_s40544_022_0637_2
crossref_primary_10_1002_anie_201305992
crossref_primary_10_1021_cr300381m
crossref_primary_10_1038_s41570_017_0083
crossref_primary_10_1016_j_eurpolymj_2022_111733
crossref_primary_10_1002_chem_202100555
crossref_primary_10_1038_nchem_1676
crossref_primary_10_1038_nprot_2013_056
crossref_primary_10_1007_s00894_021_04959_y
crossref_primary_10_1007_s12551_019_00543_0
crossref_primary_10_1021_acs_nanolett_5b03888
crossref_primary_10_1016_j_actbio_2016_07_023
crossref_primary_10_1002_advs_202403949
crossref_primary_10_1039_c2dt30524k
crossref_primary_10_1039_C3FD00119A
crossref_primary_10_1002_cphc_201200154
crossref_primary_10_1021_acssuschemeng_1c08412
crossref_primary_10_1016_j_molliq_2022_120894
crossref_primary_10_1016_j_bpj_2012_08_025
crossref_primary_10_1016_j_freeradbiomed_2019_12_031
crossref_primary_10_1038_s41467_020_17241_1
crossref_primary_10_1002_anie_201409691
crossref_primary_10_3762_bjoc_14_81
crossref_primary_10_1039_C7CS00820A
crossref_primary_10_1146_annurev_biophys_090420_083836
crossref_primary_10_1063_1_4926664
crossref_primary_10_1016_j_polymdegradstab_2016_03_025
crossref_primary_10_1016_j_bios_2020_112535
crossref_primary_10_1074_jbc_M117_784934
crossref_primary_10_1016_j_jcs_2019_05_014
crossref_primary_10_1002_ange_201305992
crossref_primary_10_1074_jbc_M111_264093
crossref_primary_10_1039_D3AY01938A
crossref_primary_10_1063_1_4862827
crossref_primary_10_1002_ange_201409691
crossref_primary_10_1039_C5CE00863H
crossref_primary_10_1016_j_bpj_2014_06_025
crossref_primary_10_1021_acs_jpcc_9b02739
crossref_primary_10_1021_nn204111w
crossref_primary_10_1126_science_aay8224
crossref_primary_10_1021_la403709u
crossref_primary_10_1038_nchem_2632
crossref_primary_10_1021_acs_jpcb_1c01818
crossref_primary_10_1002_adfm_202005010
crossref_primary_10_1021_ma401178w
crossref_primary_10_1038_s41467_018_05115_6
crossref_primary_10_1021_nn301200k
crossref_primary_10_1002_chem_201600866
crossref_primary_10_1021_bi201176q
crossref_primary_10_1021_ja207491r
crossref_primary_10_1063_1_5001574
Cites_doi 10.1126/science.275.5303.1102
10.1021/nn800497y
10.1021/ja00317a010
10.1021/j100412a074
10.1126/science.1439819
10.1021/jp8051856
10.1126/science.1150238
10.1103/PhysRevLett.78.1667
10.1126/science.1068053
10.1016/S0079-6107(00)00017-1
10.1016/S0301-4622(02)00177-1
10.1038/nature04268
10.1126/science.347575
10.1021/nn900294n
10.1021/ja00322a059
10.1126/science.283.5408.1676
10.1021/ja800180u
10.1038/344524a0
10.1016/j.jmb.2005.09.070
10.1126/science.288.5473.2048
10.1038/35009144
10.1146/annurev.physchem.49.1.441
10.1073/pnas.0400033101
10.1021/la8007365
10.1021/ja077851s
10.1021/jo071271w
10.1002/chem.200801833
10.1021/ja903480j
10.1126/science.276.5315.1109
10.1021/ja1011756
10.1002/1521-3773(20020503)41:9<1546::AID-ANIE1546>3.0.CO;2-U
10.1063/1.1750736
10.1016/S0959-440X(00)00085-3
10.1016/0167-5729(91)90011-L
10.1073/pnas.0511035103
10.1529/biophysj.106.101261
10.1103/PhysRevLett.85.2777
10.1021/ja058516b
10.1038/nchem.207
10.1038/nature06231
ContentType Journal Article
Copyright Copyright © 2011 American Chemical Society
Copyright_xml – notice: Copyright © 2011 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1021/ja109684q
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 3534
ExternalDocumentID PMC3711696
21341766
10_1021_ja109684q
a475843938
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: HL61228
– fundername: NHLBI NIH HHS
  grantid: HL66030
– fundername: NHLBI NIH HHS
  grantid: R01 HL061228
– fundername: NHLBI NIH HHS
  grantid: R01 HL066030
– fundername: National Heart, Lung, and Blood Institute : NHLBI
  grantid: R01 HL061228-10 || HL
– fundername: National Heart, Lung, and Blood Institute : NHLBI
  grantid: R01 HL066030 || HL
– fundername: National Heart, Lung, and Blood Institute : NHLBI
  grantid: R01 HL066030-10 || HL
– fundername: National Heart, Lung, and Blood Institute : NHLBI
  grantid: R01 HL061228 || HL
GroupedDBID -
.K2
02
4.4
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TAF
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
AAHBH
AAYOK
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
AAYWT
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-a404t-50f59e9d1216962a42f0f3eedd5e930c4a21a55fc26bd669863048e2d47068383
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Thu Aug 21 18:28:36 EDT 2025
Thu Jul 10 23:36:46 EDT 2025
Mon Jul 21 05:56:35 EDT 2025
Thu Apr 24 23:10:52 EDT 2025
Tue Jul 01 02:08:00 EDT 2025
Thu Aug 27 13:42:41 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a404t-50f59e9d1216962a42f0f3eedd5e930c4a21a55fc26bd669863048e2d47068383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Current address: Department of Biology, Temple University.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3711696
PMID 21341766
PQID 862788455
PQPubID 23479
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3711696
proquest_miscellaneous_862788455
pubmed_primary_21341766
crossref_primary_10_1021_ja109684q
crossref_citationtrail_10_1021_ja109684q
acs_journals_10_1021_ja109684q
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-03-16
PublicationDateYYYYMMDD 2011-03-16
PublicationDate_xml – month: 03
  year: 2011
  text: 2011-03-16
  day: 16
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2011
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Dmitrenko O. (ref38/cit38) 2007; 72
Xie X. S. (ref3/cit3) 1998; 49
Rief M. (ref2/cit2) 1997; 276
Ainavarapu S. R. K. (ref31/cit31) 2008; 130
Yang Y. (ref33/cit33) 2006; 77
Iglesia E. (ref36/cit36) 1986; 90
Hla S.-W. (ref12/cit12) 2000; 85
Fernández I. (ref29/cit29) 2009; 15
Bell G. I. (ref25/cit25) 1978; 200
Mikosch J. (ref28/cit28) 2008; 319
Smith S. B. (ref8/cit8) 1992; 258
Liang J. (ref19/cit19) 2009; 3
Guo S. L. (ref24/cit24) 2010; 132
Eigler D. M. (ref1/cit1) 1990; 344
Sun L. P. (ref27/cit27) 2002; 296
Shaik S. S. (ref40/cit40) 1984; 106
Wiita A. P. (ref17/cit17) 2006; 103
Kneipp K. (ref10/cit10) 1997; 78
Garcia-Manyes S. (ref42/cit42) 2009; 1
Baber A. E. (ref16/cit16) 2008; 2
ref34/cit34
Schlierf M. (ref32/cit32) 2004; 101
Weiss S. (ref4/cit4) 1999; 283
Zhuang X. (ref5/cit5) 2000; 288
Zhdanov V. P. (ref37/cit37) 1991; 12
Nie S. M. (ref11/cit11) 1997; 275
Brown A. E. X. (ref21/cit21) 2007; 92
Laidler K. J. (ref35/cit35) 1940; 8
Strick T. R. (ref9/cit9) 2000; 404
Bustanji Y. (ref20/cit20) 2002; 41
Honciuc A. (ref15/cit15) 2008; 24
Honciuc A. (ref14/cit14) 2009; 113
Ainavarapu S. R. K. (ref26/cit26) 2008; 130
Bustamante C. (ref6/cit6) 2000; 10
Schlierf M. (ref13/cit13) 2005; 354
Chandrasekhar J. (ref39/cit39) 1984; 106
Abbondanzieri E. A. (ref7/cit7) 2005; 438
Wiita A. P. (ref18/cit18) 2007; 450
Carrion-Vazquez M. (ref30/cit30) 2000; 74
Kersey F. R. (ref23/cit23) 2006; 128
Tinoco I. (ref41/cit41) 2002; 101
Peng Q. (ref22/cit22) 2010; 131
References_xml – volume: 275
  start-page: 1102
  year: 1997
  ident: ref11/cit11
  publication-title: Science
  doi: 10.1126/science.275.5303.1102
– volume: 2
  start-page: 2385
  year: 2008
  ident: ref16/cit16
  publication-title: ACS Nano
  doi: 10.1021/nn800497y
– volume: 106
  start-page: 1227
  year: 1984
  ident: ref40/cit40
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00317a010
– volume: 77
  start-page: 5
  year: 2006
  ident: ref33/cit33
  publication-title: Rev. Sci. Instrum.
– volume: 90
  start-page: 5272
  year: 1986
  ident: ref36/cit36
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100412a074
– volume: 258
  start-page: 1122
  year: 1992
  ident: ref8/cit8
  publication-title: Science
  doi: 10.1126/science.1439819
– volume: 113
  start-page: 2078
  year: 2009
  ident: ref14/cit14
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp8051856
– volume: 319
  start-page: 183
  year: 2008
  ident: ref28/cit28
  publication-title: Science
  doi: 10.1126/science.1150238
– volume: 78
  start-page: 1667
  year: 1997
  ident: ref10/cit10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.78.1667
– volume: 296
  start-page: 875
  year: 2002
  ident: ref27/cit27
  publication-title: Science
  doi: 10.1126/science.1068053
– volume: 74
  start-page: 63
  year: 2000
  ident: ref30/cit30
  publication-title: Prog. Biophys. Mol. Biol.
  doi: 10.1016/S0079-6107(00)00017-1
– volume: 101
  start-page: 513
  year: 2002
  ident: ref41/cit41
  publication-title: Biophys. Chem.
  doi: 10.1016/S0301-4622(02)00177-1
– volume: 438
  start-page: 460
  year: 2005
  ident: ref7/cit7
  publication-title: Nature
  doi: 10.1038/nature04268
– volume: 200
  start-page: 618
  year: 1978
  ident: ref25/cit25
  publication-title: Science
  doi: 10.1126/science.347575
– volume: 3
  start-page: 1628
  year: 2009
  ident: ref19/cit19
  publication-title: ACS Nano
  doi: 10.1021/nn900294n
– volume: 106
  start-page: 3049
  year: 1984
  ident: ref39/cit39
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00322a059
– volume: 283
  start-page: 1676
  year: 1999
  ident: ref4/cit4
  publication-title: Science
  doi: 10.1126/science.283.5408.1676
– volume: 130
  start-page: 6479
  year: 2008
  ident: ref26/cit26
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja800180u
– volume: 344
  start-page: 524
  year: 1990
  ident: ref1/cit1
  publication-title: Nature
  doi: 10.1038/344524a0
– ident: ref34/cit34
– volume: 354
  start-page: 497
  year: 2005
  ident: ref13/cit13
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2005.09.070
– volume: 288
  start-page: 2048
  year: 2000
  ident: ref5/cit5
  publication-title: Science
  doi: 10.1126/science.288.5473.2048
– volume: 404
  start-page: 901
  year: 2000
  ident: ref9/cit9
  publication-title: Nature
  doi: 10.1038/35009144
– volume: 49
  start-page: 441
  year: 1998
  ident: ref3/cit3
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.physchem.49.1.441
– volume: 101
  start-page: 7299
  year: 2004
  ident: ref32/cit32
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0400033101
– volume: 24
  start-page: 6562
  year: 2008
  ident: ref15/cit15
  publication-title: Langmuir
  doi: 10.1021/la8007365
– volume: 130
  start-page: 436
  year: 2008
  ident: ref31/cit31
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja077851s
– volume: 72
  start-page: 8298
  year: 2007
  ident: ref38/cit38
  publication-title: J. Org. Chem.
  doi: 10.1021/jo071271w
– volume: 15
  start-page: 2166
  year: 2009
  ident: ref29/cit29
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.200801833
– volume: 131
  start-page: 13347
  year: 2010
  ident: ref22/cit22
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja903480j
– volume: 276
  start-page: 1109
  year: 1997
  ident: ref2/cit2
  publication-title: Science
  doi: 10.1126/science.276.5315.1109
– volume: 132
  start-page: 9681
  year: 2010
  ident: ref24/cit24
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1011756
– volume: 41
  start-page: 1546
  year: 2002
  ident: ref20/cit20
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/1521-3773(20020503)41:9<1546::AID-ANIE1546>3.0.CO;2-U
– volume: 8
  start-page: 659
  year: 1940
  ident: ref35/cit35
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1750736
– volume: 10
  start-page: 279
  year: 2000
  ident: ref6/cit6
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/S0959-440X(00)00085-3
– volume: 12
  start-page: 183
  year: 1991
  ident: ref37/cit37
  publication-title: Surf. Sci. Rep.
  doi: 10.1016/0167-5729(91)90011-L
– volume: 103
  start-page: 7222
  year: 2006
  ident: ref17/cit17
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0511035103
– volume: 92
  start-page: L39
  year: 2007
  ident: ref21/cit21
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.106.101261
– volume: 85
  start-page: 2777
  year: 2000
  ident: ref12/cit12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.2777
– volume: 128
  start-page: 3886
  year: 2006
  ident: ref23/cit23
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja058516b
– volume: 1
  start-page: 236
  year: 2009
  ident: ref42/cit42
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.207
– volume: 450
  start-page: 124
  year: 2007
  ident: ref18/cit18
  publication-title: Nature
  doi: 10.1038/nature06231
SSID ssj0004281
Score 2.2446342
Snippet We use single-molecule force clamp spectroscopy (SMFCS) to explore the reactivity of tris(2-carboxyethyl)phosphine (TCEP), 1, 4-dl-dithiothreitol (DTT) and...
We use single-molecule force clamp spectroscopy (SMFCS) to explore the reactivity of tris(2-carboxyethyl)phosphine (TCEP), 1, 4-DL-dithiothreitol (DTT) and...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3528
SubjectTerms Disulfides - chemistry
Dithiothreitol - chemistry
Kinetics
Phosphines - chemistry
Protein Folding
Proteins - chemistry
Spectrum Analysis - methods
Title Kinetic Measurements on Single-Molecule Disulfide Bond Cleavage
URI http://dx.doi.org/10.1021/ja109684q
https://www.ncbi.nlm.nih.gov/pubmed/21341766
https://www.proquest.com/docview/862788455
https://pubmed.ncbi.nlm.nih.gov/PMC3711696
Volume 133
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LbxMxEB6VcIBLgRZoeERW6YGLo7V3bK9PCCVUFVV6CZV6W-1jVkSNNsAmHPj1jLPZtKEFzp615BnPzjdj-xuAE4oK9DFaqcgbiYUh6aOkkIYQy9wbdFko6E8u7Nklfr4yV3vw7i8n-DrwAymG2Ql-fwAPtWXnDfhnNL15_KgT1WFcl9i4ow-6_WkIPUWzG3ru4Mk_r0XeijOnT2DcvdZpr5dcD1fLfFj8ukve-K8lPIX9Dc4UH9uN8Qz2qD6AR6OuvdshfDhnfMmDYnJTJWzEohZTDmZzkpO2by6J8axZzatZSSK0IBajOWU_-Sf0HC5PP30ZnclNNwWZYYRLaaLKePKl0sp6qzPUVVTFHCJLQz5mk2VaZcZUhbZ5aa1nVbJ3ky7RRTbhRPYF9OpFTUcgMEGv0JVYVYi6zJPCudzYXJPWOUVxHwas7nTjDU26PujWnGh0eujD-84SabHhIg8tMeb3iR5vRb-1BBz3CYnOnCmrMZx5ZDUtVk3KCRsn-WhMH1621t3Osuayc9b2we3YfSsQmLd3R-rZ1zUDd-xUUOKr_63zNTxua9CxVPYN9JY_VvSWQcwyH6w38W81kepq
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB619EAvpYWWLtCthXrgEpQ4Yzs-IbQt2haWCyBxi_KYqKuuskB2e-ivZ5zHPihSe_bEsmfszDf2-BuAL-RnaEPUXkBWeZgp8qwfZZ4ixDy1Ck3iDvRHl3p4gz9u1W1Lk-PewvAgKu6pqi_xl-wCjiYoYLQd4f1LeMUgRLrVfDq4Wr6BlFHQQV0T6bBjEVr91HmgrFr3QH_ByqfZkSvu5myrqVtUD7TOMvl1PJ-lx9mfJxyO_zeTt_CmRZ3itFkm7-AFlduwOeiKve3AyTmjTW4Uo-WZYSWmpbhi1zYhb9RU0SXxdVzNJ8U4J-EKEovBhJLf_Et6Dzdn364HQ6-treAl6OPMU36hLNk8kIG2WiYoC78I2WHmimzIBkxkkChVZFKnudaWNcp7nWSOxtcRh7UfYKOclvQRBEZoAzQ5FgWizNMoMyZVOpUkZUp-2IM-qyFu90YV19feksOOTg89OOoMEmctM7krkDF5TvRwIXrX0HE8JyQ6q8asRncDkpQ0nVcxh28c8qNSPdhtjLzopWa2M1r3wKyZfyHgeLjXW8rxz5qPOzSBU-Lev-b5GTaH16OL-OL75fk-vJbuIUWdA3QAG7OHOX1ieDNL-_W6fgTl6PLI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB61VGq59EFfSwu1UA-9GMXO2I5PCC1d0cJCJYrELUpiR111lYVmt4f--o7zWFhAas-eWPY8MjMe-xuAjz4q0MaoufBWcSyU5zZKCq48osutQpOFA_3xiT48x68X6qJLFMNbGFpETTPVTRE_WPWlKzuEgQAVJCjiTvDqITwK5bqg0fvDs-t3kDIRfbhrEh33SEI3Pw1eqKhXvdCd0PL2DckbLmf0DE6Xi21umvzcXczz3eLPLRzH_9_Nc3jaRZ9sv1WXF_DAVxvwZNg3fXsJe0cUddIgG1-fHdZsVrEzcnFTz8dtN13PDib1YlpOnGehMTEbTn32m35Nr-B89Pn78JB3PRZ4hhHOuYpKZb11QgpttcxQllEZk-N0ytuYBJlJkSlVFlLnTmtLXCWb99KhiXRC6e1rWKtmlX8LDBO0Ao3DskSULk8KY3Klc-mlzH0UD2CbWJF2NlKnTflbUvrR82EAn3qhpEWHUB4aZUzvI91Zkl62sBz3EbFesimxMVRCssrPFnVKaRyl_qjUAN60gl7O0iDcGa0HYFZUYEkQ8LhXR6rJjwaXOzYiMHHzX_v8AI-_HYzS4y8nR-9gvT2kjrnQ72Ft_mvhtyjKmefbjWr_BdzT9U4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kinetic+measurements+on+single-molecule+disulfide+bond+cleavage&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Liang%2C+Jian&rft.au=Fern%C3%A1ndez%2C+Julio+M&rft.date=2011-03-16&rft.eissn=1520-5126&rft.volume=133&rft.issue=10&rft.spage=3528&rft_id=info:doi/10.1021%2Fja109684q&rft_id=info%3Apmid%2F21341766&rft.externalDocID=21341766
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon