Ion−π Interactions in Ligand Design for Anions and Main Group Cations

Interactions between ions and aromatic rings are now a mainstay in the field of supramolecular chemistry. The prototypical cation−π interaction, first characterized in the gas phase, is now well-known as an important contributor to protein structure and enzyme function and as a noncovalent force fou...

Full description

Saved in:
Bibliographic Details
Published inAccounts of chemical research Vol. 46; no. 4; pp. 955 - 966
Main Authors Watt, Michelle M, Collins, Mary S, Johnson, Darren W
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 16.04.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Interactions between ions and aromatic rings are now a mainstay in the field of supramolecular chemistry. The prototypical cation−π interaction, first characterized in the gas phase, is now well-known as an important contributor to protein structure and enzyme function and as a noncovalent force found in many synthetic systems. The complementary “anion−π interaction”defined as an electrostatic attraction between an anion positioned over the centroid of an aromatic ringhas recently emerged as another reversible ion−π interaction in supramolecular systems. This type of interaction could offer new selectivity in binding poorly basic, strongly solvated anions and may also affect structure, biological function, and anion transport. This Account describes our group’s efforts in ion−π interactions in two areas. We first describe a series of self-assembled Group 15 (pnictogen)–thiolate complexes, all featuring prominent cation−π interactions between the trivalent pnictogen and an aromatic ring of the ligand. This structural feature appears to stabilize a variety of self-assembled dinuclear macrocycles, dinuclear M2L3 cryptand-analogues, and a tetranuclear As4L2 metallocyclophane. These complexes are all remarkably robust and feature intramolecular cation−π interactions, which suggest that these interactions could be an important feature in ligand design for the Group 15 elements. We also highlight our efforts to characterize the interaction between anions and electron-deficient aromatic rings in solution. Complementary crystallographic and computational studies suggest that off-center weak-σ interactions play the dominant role in stabilizing the anion–arene adducts unless an acidic CH bond is present to participate in favorable CH···anion hydrogen bonds. In solution the weak-σ complexes show downfield shifts of the proton resonances in their NMR spectra. With more polarizable anions such as bromide and iodide, we also observe anion binding by UV/vis spectroscopy. Initial solution studies suggest these reversible interactions are weak in organic solvents, but the Hofmeister bias in anion binding could be mitigated, if not reversed, in the halides using these anion−π type interactions.
AbstractList Interactions between ions and aromatic rings are now a mainstay in the field of supramolecular chemistry. The prototypical cation-π interaction, first characterized in the gas phase, is now well-known as an important contributor to protein structure and enzyme function and as a noncovalent force found in many synthetic systems. The complementary "anion-π interaction"-defined as an electrostatic attraction between an anion positioned over the centroid of an aromatic ring-has recently emerged as another reversible ion-π interaction in supramolecular systems. This type of interaction could offer new selectivity in binding poorly basic, strongly solvated anions and may also affect structure, biological function, and anion transport. This Account describes our group's efforts in ion-π interactions in two areas. We first describe a series of self-assembled Group 15 (pnictogen)-thiolate complexes, all featuring prominent cation-π interactions between the trivalent pnictogen and an aromatic ring of the ligand. This structural feature appears to stabilize a variety of self-assembled dinuclear macrocycles, dinuclear M2L3 cryptand-analogues, and a tetranuclear As4L2 metallocyclophane. These complexes are all remarkably robust and feature intramolecular cation-π interactions, which suggest that these interactions could be an important feature in ligand design for the Group 15 elements. We also highlight our efforts to characterize the interaction between anions and electron-deficient aromatic rings in solution. Complementary crystallographic and computational studies suggest that off-center weak-σ interactions play the dominant role in stabilizing the anion-arene adducts unless an acidic CH bond is present to participate in favorable CH···anion hydrogen bonds. In solution the weak-σ complexes show downfield shifts of the proton resonances in their NMR spectra. With more polarizable anions such as bromide and iodide, we also observe anion binding by UV/vis spectroscopy. Initial solution studies suggest these reversible interactions are weak in organic solvents, but the Hofmeister bias in anion binding could be mitigated, if not reversed, in the halides using these anion-π type interactions.
Interactions between ions and aromatic rings are now a mainstay in the field of supramolecular chemistry. The prototypical cation-π interaction, first characterized in the gas phase, is now well-known as an important contributor to protein structure and enzyme function and as a noncovalent force found in many synthetic systems. The complementary "anion-π interaction"-defined as an electrostatic attraction between an anion positioned over the centroid of an aromatic ring-has recently emerged as another reversible ion-π interaction in supramolecular systems. This type of interaction could offer new selectivity in binding poorly basic, strongly solvated anions and may also affect structure, biological function, and anion transport. This Account describes our group's efforts in ion-π interactions in two areas. We first describe a series of self-assembled Group 15 (pnictogen)-thiolate complexes, all featuring prominent cation-π interactions between the trivalent pnictogen and an aromatic ring of the ligand. This structural feature appears to stabilize a variety of self-assembled dinuclear macrocycles, dinuclear M2L3 cryptand-analogues, and a tetranuclear As4L2 metallocyclophane. These complexes are all remarkably robust and feature intramolecular cation-π interactions, which suggest that these interactions could be an important feature in ligand design for the Group 15 elements. We also highlight our efforts to characterize the interaction between anions and electron-deficient aromatic rings in solution. Complementary crystallographic and computational studies suggest that off-center weak-σ interactions play the dominant role in stabilizing the anion-arene adducts unless an acidic CH bond is present to participate in favorable CH···anion hydrogen bonds. In solution the weak-σ complexes show downfield shifts of the proton resonances in their NMR spectra. With more polarizable anions such as bromide and iodide, we also observe anion binding by UV/vis spectroscopy. Initial solution studies suggest these reversible interactions are weak in organic solvents, but the Hofmeister bias in anion binding could be mitigated, if not reversed, in the halides using these anion-π type interactions.Interactions between ions and aromatic rings are now a mainstay in the field of supramolecular chemistry. The prototypical cation-π interaction, first characterized in the gas phase, is now well-known as an important contributor to protein structure and enzyme function and as a noncovalent force found in many synthetic systems. The complementary "anion-π interaction"-defined as an electrostatic attraction between an anion positioned over the centroid of an aromatic ring-has recently emerged as another reversible ion-π interaction in supramolecular systems. This type of interaction could offer new selectivity in binding poorly basic, strongly solvated anions and may also affect structure, biological function, and anion transport. This Account describes our group's efforts in ion-π interactions in two areas. We first describe a series of self-assembled Group 15 (pnictogen)-thiolate complexes, all featuring prominent cation-π interactions between the trivalent pnictogen and an aromatic ring of the ligand. This structural feature appears to stabilize a variety of self-assembled dinuclear macrocycles, dinuclear M2L3 cryptand-analogues, and a tetranuclear As4L2 metallocyclophane. These complexes are all remarkably robust and feature intramolecular cation-π interactions, which suggest that these interactions could be an important feature in ligand design for the Group 15 elements. We also highlight our efforts to characterize the interaction between anions and electron-deficient aromatic rings in solution. Complementary crystallographic and computational studies suggest that off-center weak-σ interactions play the dominant role in stabilizing the anion-arene adducts unless an acidic CH bond is present to participate in favorable CH···anion hydrogen bonds. In solution the weak-σ complexes show downfield shifts of the proton resonances in their NMR spectra. With more polarizable anions such as bromide and iodide, we also observe anion binding by UV/vis spectroscopy. Initial solution studies suggest these reversible interactions are weak in organic solvents, but the Hofmeister bias in anion binding could be mitigated, if not reversed, in the halides using these anion-π type interactions.
Interactions between ions and aromatic rings are now a mainstay in the field of supramolecular chemistry. The prototypical cation- pi interaction, first characterized in the gas phase, is now well-known as an important contributor to protein structure and enzyme function and as a noncovalent force found in many synthetic systems. The complementary "anion- pi interaction"-defined as an electrostatic attraction between an anion positioned over the centroid of an aromatic ring-has recently emerged as another reversible ion- pi interaction in supramolecular systems. This type of interaction could offer new selectivity in binding poorly basic, strongly solvated anions and may also affect structure, biological function, and anion transport.
Interactions between ions and aromatic rings are now a mainstay in the field of supramolecular chemistry. The prototypical cation−π interaction, first characterized in the gas phase, is now well-known as an important contributor to protein structure and enzyme function and as a noncovalent force found in many synthetic systems. The complementary “anion−π interaction”defined as an electrostatic attraction between an anion positioned over the centroid of an aromatic ringhas recently emerged as another reversible ion−π interaction in supramolecular systems. This type of interaction could offer new selectivity in binding poorly basic, strongly solvated anions and may also affect structure, biological function, and anion transport. This Account describes our group’s efforts in ion−π interactions in two areas. We first describe a series of self-assembled Group 15 (pnictogen)–thiolate complexes, all featuring prominent cation−π interactions between the trivalent pnictogen and an aromatic ring of the ligand. This structural feature appears to stabilize a variety of self-assembled dinuclear macrocycles, dinuclear M2L3 cryptand-analogues, and a tetranuclear As4L2 metallocyclophane. These complexes are all remarkably robust and feature intramolecular cation−π interactions, which suggest that these interactions could be an important feature in ligand design for the Group 15 elements. We also highlight our efforts to characterize the interaction between anions and electron-deficient aromatic rings in solution. Complementary crystallographic and computational studies suggest that off-center weak-σ interactions play the dominant role in stabilizing the anion–arene adducts unless an acidic CH bond is present to participate in favorable CH···anion hydrogen bonds. In solution the weak-σ complexes show downfield shifts of the proton resonances in their NMR spectra. With more polarizable anions such as bromide and iodide, we also observe anion binding by UV/vis spectroscopy. Initial solution studies suggest these reversible interactions are weak in organic solvents, but the Hofmeister bias in anion binding could be mitigated, if not reversed, in the halides using these anion−π type interactions.
Interactions between ions and aromatic rings are now a mainstay in the field of supramolecular chemistry. The prototypical cation-π interaction, first characterized in the gas phase, is now well known as an important contributor to protein structure, enzyme function, and as a noncovalent force found in many synthetic systems. The complementary “anion-π interaction” – defined as an electrostatic attraction between an anion positioned over the centroid of an aromatic ring – has recently emerged as another reversible ion-π interaction in supramolecular systems. This type of interaction could offer new selectivity in binding poorly basic, strongly solvated anions and may also affect structure, biological function, and anion transport. This Account describes our group’s efforts in ion-π interactions in two areas. We first describe a series of self-assembled Group 15 (pnictogen)-thiolate complexes, all featuring prominent cation-π interactions between the trivalent pnictogen and an aromatic ring of the ligand. This structural feature appears to stabilize a variety of self-assembled dinuclear macrocycles, dinuclear M 2 L 3 cryptand-analogs, and a tetranuclear As 4 L 2 metallocyclophane. These complexes are all remarkably robust and feature intramolecular cation-π interactions, which suggest that these interactions could be an important feature in ligand design for the Group 15 elements. We also highlight our efforts to characterize the interaction between anions and electron-deficient aromatic rings in solution. Complementary crystallographic and computational studies suggest that off-center weak-σ interactions play the dominant role in stabilizing the anion-arene adducts unless an acidic CH bond is present to participate in favorable CH···anion hydrogen bonds. In solution the weak- σ complexes show downfield shifts of the proton resonances in their NMR spectra. With more polarizable anions such as bromide and iodide, we also observe anion binding by UV/Vis spectroscopy. Initial solution studies suggest these reversible interactions are weak in organic solvents, but the Hofmeister bias in anion binding could be mitigated, if not reversed, in the halides using these anion-π type interactions.
Author Johnson, Darren W
Watt, Michelle M
Collins, Mary S
AuthorAffiliation University of Oregon
AuthorAffiliation_xml – name: University of Oregon
Author_xml – sequence: 1
  givenname: Michelle M
  surname: Watt
  fullname: Watt, Michelle M
– sequence: 2
  givenname: Mary S
  surname: Collins
  fullname: Collins, Mary S
– sequence: 3
  givenname: Darren W
  surname: Johnson
  fullname: Johnson, Darren W
  email: dwj@uoregon.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22726207$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFuEzEQhi3UiqaFAy-A9oJUDmntsXfXe0GqUmgjBXGBszXxzgZXGzvYu0jceuyZF-MdeBLcpESAKnGyPfPNr_H_H7MDHzwx9kLwM8FBnGOUnAvOV0_YRJTAp0o3-oBNeK7mu4IjdpzSTX6Cquqn7Aighgp4PWHX8-B_3n3_cVvM_UAR7eCCT4XzxcKt0LfFJSW38kUXYnHht7376nvMxFUM46aY4XbkGTvssE_0_OE8YZ_evf04u54uPlzNZxeLKSouh6mQ2pYlKiALRJVWsm06aCsBqEsEpFZWVGFFrbJVs1wSNF3ZcESlRa2gkyfszU53My7X1FryQ8TebKJbY_xmAjrzd8e7z2YVvhqp6kZKnQVOHwRi-DJSGszaJUt9j57CmIyoaw4aRC3_j8oMZiN1mdGXf6613-e30xl4vQNsDClF6vaI4OY-RbNPMbPn_7DWDVub849c_-jEq90E2mRuwhh9zuAR7heXNKsO
CitedBy_id crossref_primary_10_1007_s11172_013_0273_0
crossref_primary_10_1107_S2053229625000750
crossref_primary_10_1016_j_mencom_2021_07_011
crossref_primary_10_1002_cphc_201600073
crossref_primary_10_1021_jp500778w
crossref_primary_10_1002_chem_201903272
crossref_primary_10_1002_ange_201807751
crossref_primary_10_1021_jacs_2c08591
crossref_primary_10_3390_inorganics5010013
crossref_primary_10_1039_C5RA10487D
crossref_primary_10_1021_jp4097869
crossref_primary_10_1039_C5RA24248G
crossref_primary_10_1002_jcc_23946
crossref_primary_10_1016_j_poly_2025_117421
crossref_primary_10_1016_j_snb_2015_04_015
crossref_primary_10_1039_C9CP01925A
crossref_primary_10_1039_C3CC47093H
crossref_primary_10_1039_c2cp42672b
crossref_primary_10_1021_jacs_6b04343
crossref_primary_10_1021_acs_biochem_7b00056
crossref_primary_10_1016_j_cclet_2017_08_042
crossref_primary_10_1039_C7DT00134G
crossref_primary_10_1039_C4CE00095A
crossref_primary_10_1016_j_molstruc_2020_128207
crossref_primary_10_1021_acs_jpca_6b08170
crossref_primary_10_1002_ange_201705223
crossref_primary_10_1002_asia_201300786
crossref_primary_10_1088_1361_648X_ab8253
crossref_primary_10_1039_C3SC53172D
crossref_primary_10_1016_j_ccr_2020_213381
crossref_primary_10_1016_j_molliq_2024_126529
crossref_primary_10_3390_molecules23030572
crossref_primary_10_3390_cryst10050354
crossref_primary_10_1002_asia_202000309
crossref_primary_10_1371_journal_pone_0145349
crossref_primary_10_1080_10610278_2015_1072199
crossref_primary_10_1039_C6RA01960A
crossref_primary_10_1039_D1CC04105C
crossref_primary_10_1021_acs_organomet_5b00442
crossref_primary_10_1002_ange_201915290
crossref_primary_10_1021_cr300222d
crossref_primary_10_1021_ct400818v
crossref_primary_10_1039_C9SC04860J
crossref_primary_10_1016_j_ccr_2013_05_022
crossref_primary_10_1002_anie_201807751
crossref_primary_10_1021_acs_jpca_5b02952
crossref_primary_10_1021_ic401001f
crossref_primary_10_1021_acscatal_4c01812
crossref_primary_10_1080_10610278_2014_959013
crossref_primary_10_1080_10610278_2015_1119830
crossref_primary_10_1002_asia_202100920
crossref_primary_10_1002_chem_202002261
crossref_primary_10_1039_C9CP06924K
crossref_primary_10_1002_chir_22438
crossref_primary_10_1039_D3AN02154H
crossref_primary_10_1016_j_jorganchem_2013_09_029
crossref_primary_10_1080_00268976_2014_948940
crossref_primary_10_1016_j_tet_2015_01_005
crossref_primary_10_1038_srep05528
crossref_primary_10_1021_ja311389z
crossref_primary_10_1002_anie_201915290
crossref_primary_10_1039_C4CP01977F
crossref_primary_10_1016_j_bbrep_2021_100969
crossref_primary_10_1039_D1DT00771H
crossref_primary_10_1016_j_cclet_2022_04_071
crossref_primary_10_1016_j_ica_2017_04_029
crossref_primary_10_1021_acsomega_1c03264
crossref_primary_10_1021_jacs_6b09892
crossref_primary_10_1002_chem_201702818
crossref_primary_10_1080_00268976_2018_1539257
crossref_primary_10_1021_acsomega_4c07702
crossref_primary_10_1039_C5CP00459D
crossref_primary_10_1002_ange_201801452
crossref_primary_10_1002_ejic_201600254
crossref_primary_10_1016_j_molstruc_2014_05_064
crossref_primary_10_1021_ja3082473
crossref_primary_10_1021_acs_chemrev_5b00516
crossref_primary_10_1039_C9CC04151F
crossref_primary_10_1016_j_ica_2018_06_008
crossref_primary_10_1016_j_poly_2019_06_054
crossref_primary_10_1039_C7CC06155B
crossref_primary_10_1039_C7DT04430E
crossref_primary_10_1002_anie_201705223
crossref_primary_10_1021_jp500775m
crossref_primary_10_1002_ange_202106509
crossref_primary_10_1016_j_comptc_2014_02_003
crossref_primary_10_1039_c3dt51408k
crossref_primary_10_1002_ange_201802650
crossref_primary_10_1039_C5DT04381F
crossref_primary_10_1039_D0DT01654C
crossref_primary_10_1002_cphc_201500314
crossref_primary_10_1002_chem_201304995
crossref_primary_10_1016_j_ijms_2013_05_014
crossref_primary_10_1007_s11696_024_03881_w
crossref_primary_10_1021_jacs_3c01849
crossref_primary_10_1021_acs_chemrev_5b00527
crossref_primary_10_1016_j_ccr_2017_01_009
crossref_primary_10_1021_acs_orglett_7b00070
crossref_primary_10_1021_acs_inorgchem_0c03222
crossref_primary_10_1021_acs_langmuir_3c01740
crossref_primary_10_1021_jacs_8b12018
crossref_primary_10_1021_acs_inorgchem_7b02716
crossref_primary_10_1021_jp4046066
crossref_primary_10_1039_C6DT03106D
crossref_primary_10_1039_C5CE00795J
crossref_primary_10_1039_D2CP03744K
crossref_primary_10_1002_anie_201810836
crossref_primary_10_1021_acs_inorgchem_6b01138
crossref_primary_10_1016_j_biopha_2022_113155
crossref_primary_10_1021_jp312755z
crossref_primary_10_1007_s00214_018_2298_9
crossref_primary_10_1039_C8DT02110D
crossref_primary_10_1039_c3nj00424d
crossref_primary_10_1002_asia_202000746
crossref_primary_10_1002_agt2_285
crossref_primary_10_1021_jacs_5b08767
crossref_primary_10_1002_ange_201810836
crossref_primary_10_1016_j_arabjc_2016_08_008
crossref_primary_10_1002_anie_201801452
crossref_primary_10_1002_ejoc_202101346
crossref_primary_10_1002_jssc_202300055
crossref_primary_10_1039_C7DT00188F
crossref_primary_10_1038_ncomms4911
crossref_primary_10_1002_cplu_202300350
crossref_primary_10_1039_C2CE26741A
crossref_primary_10_1002_anie_202106509
crossref_primary_10_1002_anie_201802650
crossref_primary_10_1016_j_poly_2018_02_009
crossref_primary_10_18502_sjms_v17i3_12125
crossref_primary_10_1039_C4SC04042B
Cites_doi 10.1021/cg100444n
10.1021/om900536r
10.1039/c1cc11412c
10.1002/chem.201102786
10.1021/ja8035652
10.1021/ja025693t
10.1002/jlac.19023230205
10.1039/b823236a
10.1039/b305483g
10.1021/om701044e
10.1021/ja00072a042
10.1002/anie.200390319
10.1021/j100304a032
10.1039/b802178c
10.1021/ic050954w
10.1039/b800055g
10.1080/10241220600857710
10.1021/cr9603744
10.1039/c2sc00975g
10.1002/anie.200906460
10.1063/1.451687
10.1021/ic1012186
10.1016/S0009-2614(02)00709-1
10.1002/1521-3773(20020916)41:18<3389::AID-ANIE3389>3.0.CO;2-S
10.1021/cg901552f
10.1002/anie.201100208
10.1002/anie.201104966
10.1039/b926231h
10.1021/ja017449s
10.1039/B511570A
10.1021/ic701290h
10.1021/ja063460m
10.1002/anie.200461011
10.1039/c1dt10817d
10.1039/b927034e
ContentType Journal Article
Copyright Copyright © 2012 American Chemical Society
Copyright_xml – notice: Copyright © 2012 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
5PM
DOI 10.1021/ar300100g
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList MEDLINE
MEDLINE - Academic
Materials Research Database


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
DocumentTitleAlternate Ion−π Interactions in Supramolecular Ion Binding
EISSN 1520-4898
EndPage 966
ExternalDocumentID PMC3479338
22726207
10_1021_ar300100g
a410065015
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01-GM087398
– fundername: NIGMS NIH HHS
  grantid: R01 GM087398
– fundername: National Institute of General Medical Sciences : NIGMS
  grantid: R01 GM087398 || GM
GroupedDBID -
.K2
02
23M
4.4
53G
55A
5GY
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH2
IH9
JG
JG~
K2
LG6
P2P
RNS
ROL
TWZ
UI2
UPT
VF5
VG9
W1F
WH7
X
YZZ
---
-DZ
-~X
5ZA
6J9
6P2
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AFXLT
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
XSW
ZCA
~02
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
5PM
ID FETCH-LOGICAL-a403t-138c55a42ec2ee6843d9f2d612a85a2aed36e6a6ed4c69bbe29f590aa481742f3
IEDL.DBID ACS
ISSN 0001-4842
1520-4898
IngestDate Thu Aug 21 18:20:12 EDT 2025
Fri Jul 11 01:20:40 EDT 2025
Thu Jul 10 19:04:11 EDT 2025
Mon Jul 21 05:40:55 EDT 2025
Thu Apr 24 23:08:34 EDT 2025
Tue Jul 01 04:04:08 EDT 2025
Fri Feb 05 20:53:46 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a403t-138c55a42ec2ee6843d9f2d612a85a2aed36e6a6ed4c69bbe29f590aa481742f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22726207
PQID 1328226285
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3479338
proquest_miscellaneous_1770282173
proquest_miscellaneous_1328226285
pubmed_primary_22726207
crossref_primary_10_1021_ar300100g
crossref_citationtrail_10_1021_ar300100g
acs_journals_10_1021_ar300100g
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-04-16
PublicationDateYYYYMMDD 2013-04-16
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-04-16
  day: 16
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Accounts of chemical research
PublicationTitleAlternate Acc. Chem. Res
PublicationYear 2013
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Meyer E. A. (ref1/cit1c) 2003; 42
Hay B. P. (ref2/cit2a) 2008
Alkorta I. (ref3/cit3d) 2002; 124
Berryman O. B. (ref24/cit24) 2006
Vickaryous W. J. (ref7/cit7) 2005; 44
Meisenheimer J. (ref20/cit20) 1902; 323
Berryman O. B. (ref2/cit2b) 2009
Zukerman-Schpector J. (ref4/cit4) 2011; 47
Mascal M. (ref3/cit3a) 2002; 124
Carroll C. N. (ref27/cit27a) 2010; 39
Auer A. A. (ref5/cit5) 2009; 28
ref8/cit8
Cangelosi V. M. (ref9/cit9) 2007; 46
Ma J. C. (ref1/cit1a) 1997; 97
Zampella G. (ref19/cit19) 2012; 18
Chowdhury S. (ref21/cit21) 1986; 85
Cangelosi V. M. (ref15/cit15) 2010; 49
Berryman O. B. (ref25/cit25) 2007; 129
Engle J. M. (ref27/cit27b) 2012; 3
Hiraoka K. (ref22/cit22) 1987; 91
Cangelosi V. M. (ref10/cit10) 2008
Vickaryous W. J. (ref6/cit6) 2004; 43
Burford N. (ref16/cit16) 1993; 115
Quinoñero D. (ref3/cit3b) 2002; 359
Frontera A. (ref2/cit2c) 2011; 50
Lindquist N. R. (ref12/cit12) 2010; 46
Pitt M. A. (ref13/cit13a) 2008
Cangelosi V. M. (ref13/cit13b) 2010; 10
Fontenot S. A. (ref18/cit18) 2011; 40
Vargas Jentzsch A. (ref23/cit23) 2011; 50
Gokel G. W. (ref1/cit1b) 2003
Cangelosi V. M. (ref11/cit11) 2010; 10
Cangelosi V. M. (ref17/cit17) 2010; 49
Schier A. (ref1/cit1d) 2008; 27
Vickaryous W. J. (ref14/cit14) 2006; 5
Quinoñero D. (ref3/cit3c) 2002; 41
Berryman O. B. (ref26/cit26) 2008; 130
References_xml – volume: 10
  start-page: 3531
  year: 2010
  ident: ref13/cit13b
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg100444n
– volume: 28
  start-page: 5405
  year: 2009
  ident: ref5/cit5
  publication-title: Organometallics
  doi: 10.1021/om900536r
– volume: 47
  start-page: 7608
  year: 2011
  ident: ref4/cit4
  publication-title: Chem. Commun.
  doi: 10.1039/c1cc11412c
– volume: 18
  start-page: 2040
  year: 2012
  ident: ref19/cit19
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.201102786
– volume: 130
  start-page: 10895
  year: 2008
  ident: ref26/cit26
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8035652
– volume: 124
  start-page: 8593
  year: 2002
  ident: ref3/cit3d
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja025693t
– volume: 323
  start-page: 205
  year: 1902
  ident: ref20/cit20
  publication-title: Justus Liebigs Ann. Chem.
  doi: 10.1002/jlac.19023230205
– start-page: 3143
  year: 2009
  ident: ref2/cit2b
  publication-title: Chem. Commun.
  doi: 10.1039/b823236a
– start-page: 2847
  year: 2003
  ident: ref1/cit1b
  publication-title: Chem. Commun.
  doi: 10.1039/b305483g
– volume: 27
  start-page: 2361
  year: 2008
  ident: ref1/cit1d
  publication-title: Organometallics
  doi: 10.1021/om701044e
– volume: 115
  start-page: 8829
  year: 1993
  ident: ref16/cit16
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00072a042
– volume: 42
  start-page: 1210
  year: 2003
  ident: ref1/cit1c
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200390319
– volume: 91
  start-page: 5294
  year: 1987
  ident: ref22/cit22
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100304a032
– start-page: 3447
  year: 2008
  ident: ref10/cit10
  publication-title: Dalton Trans.
  doi: 10.1039/b802178c
– volume: 44
  start-page: 9247
  year: 2005
  ident: ref7/cit7
  publication-title: Inorg. Chem.
  doi: 10.1021/ic050954w
– start-page: 2417
  year: 2008
  ident: ref2/cit2a
  publication-title: Chem. Commun.
  doi: 10.1039/b800055g
– start-page: 1
  year: 2008
  ident: ref13/cit13a
  publication-title: Chem. Commun.
– volume: 5
  start-page: 51
  year: 2006
  ident: ref14/cit14
  publication-title: Main Group Chem.
  doi: 10.1080/10241220600857710
– volume: 97
  start-page: 1303
  year: 1997
  ident: ref1/cit1a
  publication-title: Chem. Rev.
  doi: 10.1021/cr9603744
– volume: 3
  start-page: 1105
  year: 2012
  ident: ref27/cit27b
  publication-title: Chem. Sci.
  doi: 10.1039/c2sc00975g
– ident: ref8/cit8
– volume: 49
  start-page: 1248
  year: 2010
  ident: ref15/cit15
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200906460
– volume: 85
  start-page: 4989
  year: 1986
  ident: ref21/cit21
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.451687
– volume: 49
  start-page: 9985
  year: 2010
  ident: ref17/cit17
  publication-title: Inorg. Chem.
  doi: 10.1021/ic1012186
– volume: 359
  start-page: 486
  year: 2002
  ident: ref3/cit3b
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(02)00709-1
– volume: 41
  start-page: 3389
  year: 2002
  ident: ref3/cit3c
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/1521-3773(20020916)41:18<3389::AID-ANIE3389>3.0.CO;2-S
– volume: 10
  start-page: 1471
  year: 2010
  ident: ref11/cit11
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg901552f
– volume: 50
  start-page: 9564
  year: 2011
  ident: ref2/cit2c
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201100208
– volume: 50
  start-page: 11675
  year: 2011
  ident: ref23/cit23
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201104966
– volume: 39
  start-page: 3875
  year: 2010
  ident: ref27/cit27a
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b926231h
– volume: 124
  start-page: 6247
  year: 2002
  ident: ref3/cit3a
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja017449s
– start-page: 506
  year: 2006
  ident: ref24/cit24
  publication-title: Chem. Commun.
  doi: 10.1039/B511570A
– volume: 46
  start-page: 9278
  year: 2007
  ident: ref9/cit9
  publication-title: Inorg. Chem.
  doi: 10.1021/ic701290h
– volume: 129
  start-page: 48
  year: 2007
  ident: ref25/cit25
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja063460m
– volume: 43
  start-page: 5831
  year: 2004
  ident: ref6/cit6
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200461011
– volume: 40
  start-page: 12125
  year: 2011
  ident: ref18/cit18
  publication-title: Dalton Trans.
  doi: 10.1039/c1dt10817d
– volume: 46
  start-page: 3505
  year: 2010
  ident: ref12/cit12
  publication-title: Chem. Commun.
  doi: 10.1039/b927034e
SSID ssj0002467
Score 2.457314
Snippet Interactions between ions and aromatic rings are now a mainstay in the field of supramolecular chemistry. The prototypical cation−π interaction, first...
Interactions between ions and aromatic rings are now a mainstay in the field of supramolecular chemistry. The prototypical cation-π interaction, first...
Interactions between ions and aromatic rings are now a mainstay in the field of supramolecular chemistry. The prototypical cation- pi interaction, first...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 955
SubjectTerms Anions
Anions - chemistry
Attraction
Binding
Binding Sites
Cations
Cations - chemistry
Centroids
Design engineering
Hydrogen Bonding
Ligands
Models, Molecular
Transport
Title Ion−π Interactions in Ligand Design for Anions and Main Group Cations
URI http://dx.doi.org/10.1021/ar300100g
https://www.ncbi.nlm.nih.gov/pubmed/22726207
https://www.proquest.com/docview/1328226285
https://www.proquest.com/docview/1770282173
https://pubmed.ncbi.nlm.nih.gov/PMC3479338
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwEB5ROLQXWuiDlIJM20Mv2Sa2YzvHVQBtEe2lReIWObazXRV50T4unDj23D_W_9Bfgu1sIpbH9hqPZWU8ib_xzHwD8LGqKp0onsXK1CSmTNexTFIZY2fQCVVMiTpk-X5jgzN6cp6dr8GHRyL4OP0sJ8Q7LsnwCWxgJrj3sPrF9-53iylriDGdX0wFxS190O2p_uhR0-Wj5x6evJsWeeucOX4Oh221TpNe8qs3n1U9dXWfvHHVK7yAzQXORP3GMLZgzdhteFq07d1ewuDL2P77_efvNQqXgk19wxSNLDodDaXV6DDkdiAHalHfhjH_9Kt0EuHCChXNZd8rODs--lEM4kVbhVjShPjm80JlmaTYKGwME5TovMbaQR0pMoml0YQZJpnRbq_yqjI4r7M8kZIK577gmryGdTu2ZgdQnSueOyNwsFJTh10qJUyiCaWZUEymdQT7Tu_l4rOYliHijdOyU0gEn9otKdWClNz3xrh4SPR9J3rZMHE8JHTQ7mvp9OmDH9Ka8dwtTXzCrC8YXSHDuXdBU04ieNPYQrcUxtxz9_MI-JKVdAKep3t5xI5-Br7uUKxLxNv_KWMXnuHQbIPGKXsH67PJ3Ow5yDOr9oPJ3wD4HPxE
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VcigXyj_LTzEIJC5pE9txnAOH1ZZql257oZV6C47tlBUoi5pdVe2JI2eOvAoPwTvwJIydH7qlglMlrvHIdsZjz4w98w3A8zzPTaiTONC2YAEXpghUGKmAokCHXAstCx_luyuG-_zNQXywBN_aXBicRIU9Vf4R_ze6QLShjpjzX8LDJoBy254co3tWvRpt4lq-oHTr9d5gGDQVBALFQ-bqrEsdx4pTq6m1QnJm0oIa1OpKxooqa5iwQglrcFppnluaFnEaKsUlWuq0YNjvFbiKRg91jl1_8LY75SkXNR4nuuNcctqiFp2dqtN4ulrUeH-YseejMc-ot61V-N4xxke1fFifz_J1fXoOM_L_5NwNuN5Y1aRfb4ObsGTLW7AyaIvZ3YbhaFr-_PL1x2fir0DrbI6KTEoynhyq0pBNH8lC0IQn_dK3ua87Cin89RwZ1Febd2D_Un7kLiyX09LeB1KkOklR5NGINhwttVxLGxrGeSy1UFHRgzXkf9YcAlXm3_dplHUL0IOXrSRkuoFgd5VAPl5E-qwj_VTjjlxE9LQVpwz56Z56VGmncxyaufBglx77F5okcQ53lLAe3KtFsBuK0sRVKkh6kCwIZ0fgUMkXW8rJe49O7lOTmXzwL2Y8gZXh3s44G492tx_CNerLjPAgEo9geXY0t4_R2Jvla37XEXh32cL6C-TaX68
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VIgEX_inLTzEIJC5pE9txkgOH1S6rXVoqJKjUW3D8U1agbNXsCsGpx555AF6FR-AdeBLGzo-6pYJTJa7xyHbGY3vGM_MNwNOiKHSokjhQxrKAC20DGUYyoCjQIVdCpdZH-e6I8S5_tRfvrcD3NhcGJ1FhT5V34rtdfaBtgzAQbcpD5myYcL8JotwyXz6jiVa9mAxxPZ9ROnr5bjAOmioCgeQhc7XWUxXHklOjqDEi5Uxnlmq82WUaSyqNZsIIKYzGqWVFYWhm4yyUkqeorVPLsN8LcNG5B51x1x-87U56ykWNyYkmOU85bZGLTk7V3XqqWr71_lBlT0dknrjiRtfgR8ccH9nycWMxLzbU11O4kf8v967D1Ua7Jv16O9yAFVPehMuDtqjdLRhPZuWv428_j4h_Cq2zOioyLcn2dF-Wmgx9RAtBVZ70S9_mvr6WSOGf6cigfuK8Dbvn8iN3YLWcleYuEJupJEPRR2Vac9TYCpWaUDPO41QJGdkerOMa5M1hUOXez0-jvFuAHjxvpSFXDRS7qwjy6SzSJx3pQY0_chbR41akcuSnc_nI0swWODRzYcIuTfYvNEniDO8oYT1Yq8WwG4rSxFUsSHqQLAloR-DQyZdbyukHj1LuU5RZeu9fzHgEl94MR_n2ZGfrPlyhvtoIDyLxAFbnhwvzEHW-ebHuNx6B9-ctq78Bcl5iMg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ion-%CF%80+interactions+in+ligand+design+for+anions+and+main+group+cations&rft.jtitle=Accounts+of+chemical+research&rft.au=Watt%2C+Michelle+M&rft.au=Collins%2C+Mary+S&rft.au=Johnson%2C+Darren+W&rft.date=2013-04-16&rft.eissn=1520-4898&rft.volume=46&rft.issue=4&rft.spage=955&rft_id=info:doi/10.1021%2Far300100g&rft_id=info%3Apmid%2F22726207&rft.externalDocID=22726207
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon