Ion−π Interactions in Ligand Design for Anions and Main Group Cations
Interactions between ions and aromatic rings are now a mainstay in the field of supramolecular chemistry. The prototypical cation−π interaction, first characterized in the gas phase, is now well-known as an important contributor to protein structure and enzyme function and as a noncovalent force fou...
Saved in:
Published in | Accounts of chemical research Vol. 46; no. 4; pp. 955 - 966 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
16.04.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Interactions between ions and aromatic rings are now a mainstay in the field of supramolecular chemistry. The prototypical cation−π interaction, first characterized in the gas phase, is now well-known as an important contributor to protein structure and enzyme function and as a noncovalent force found in many synthetic systems. The complementary “anion−π interaction”defined as an electrostatic attraction between an anion positioned over the centroid of an aromatic ringhas recently emerged as another reversible ion−π interaction in supramolecular systems. This type of interaction could offer new selectivity in binding poorly basic, strongly solvated anions and may also affect structure, biological function, and anion transport. This Account describes our group’s efforts in ion−π interactions in two areas. We first describe a series of self-assembled Group 15 (pnictogen)–thiolate complexes, all featuring prominent cation−π interactions between the trivalent pnictogen and an aromatic ring of the ligand. This structural feature appears to stabilize a variety of self-assembled dinuclear macrocycles, dinuclear M2L3 cryptand-analogues, and a tetranuclear As4L2 metallocyclophane. These complexes are all remarkably robust and feature intramolecular cation−π interactions, which suggest that these interactions could be an important feature in ligand design for the Group 15 elements. We also highlight our efforts to characterize the interaction between anions and electron-deficient aromatic rings in solution. Complementary crystallographic and computational studies suggest that off-center weak-σ interactions play the dominant role in stabilizing the anion–arene adducts unless an acidic CH bond is present to participate in favorable CH···anion hydrogen bonds. In solution the weak-σ complexes show downfield shifts of the proton resonances in their NMR spectra. With more polarizable anions such as bromide and iodide, we also observe anion binding by UV/vis spectroscopy. Initial solution studies suggest these reversible interactions are weak in organic solvents, but the Hofmeister bias in anion binding could be mitigated, if not reversed, in the halides using these anion−π type interactions. |
---|---|
AbstractList | Interactions between ions and aromatic rings are now a mainstay in the field of supramolecular chemistry. The prototypical cation-π interaction, first characterized in the gas phase, is now well-known as an important contributor to protein structure and enzyme function and as a noncovalent force found in many synthetic systems. The complementary "anion-π interaction"-defined as an electrostatic attraction between an anion positioned over the centroid of an aromatic ring-has recently emerged as another reversible ion-π interaction in supramolecular systems. This type of interaction could offer new selectivity in binding poorly basic, strongly solvated anions and may also affect structure, biological function, and anion transport. This Account describes our group's efforts in ion-π interactions in two areas. We first describe a series of self-assembled Group 15 (pnictogen)-thiolate complexes, all featuring prominent cation-π interactions between the trivalent pnictogen and an aromatic ring of the ligand. This structural feature appears to stabilize a variety of self-assembled dinuclear macrocycles, dinuclear M2L3 cryptand-analogues, and a tetranuclear As4L2 metallocyclophane. These complexes are all remarkably robust and feature intramolecular cation-π interactions, which suggest that these interactions could be an important feature in ligand design for the Group 15 elements. We also highlight our efforts to characterize the interaction between anions and electron-deficient aromatic rings in solution. Complementary crystallographic and computational studies suggest that off-center weak-σ interactions play the dominant role in stabilizing the anion-arene adducts unless an acidic CH bond is present to participate in favorable CH···anion hydrogen bonds. In solution the weak-σ complexes show downfield shifts of the proton resonances in their NMR spectra. With more polarizable anions such as bromide and iodide, we also observe anion binding by UV/vis spectroscopy. Initial solution studies suggest these reversible interactions are weak in organic solvents, but the Hofmeister bias in anion binding could be mitigated, if not reversed, in the halides using these anion-π type interactions. Interactions between ions and aromatic rings are now a mainstay in the field of supramolecular chemistry. The prototypical cation-π interaction, first characterized in the gas phase, is now well-known as an important contributor to protein structure and enzyme function and as a noncovalent force found in many synthetic systems. The complementary "anion-π interaction"-defined as an electrostatic attraction between an anion positioned over the centroid of an aromatic ring-has recently emerged as another reversible ion-π interaction in supramolecular systems. This type of interaction could offer new selectivity in binding poorly basic, strongly solvated anions and may also affect structure, biological function, and anion transport. This Account describes our group's efforts in ion-π interactions in two areas. We first describe a series of self-assembled Group 15 (pnictogen)-thiolate complexes, all featuring prominent cation-π interactions between the trivalent pnictogen and an aromatic ring of the ligand. This structural feature appears to stabilize a variety of self-assembled dinuclear macrocycles, dinuclear M2L3 cryptand-analogues, and a tetranuclear As4L2 metallocyclophane. These complexes are all remarkably robust and feature intramolecular cation-π interactions, which suggest that these interactions could be an important feature in ligand design for the Group 15 elements. We also highlight our efforts to characterize the interaction between anions and electron-deficient aromatic rings in solution. Complementary crystallographic and computational studies suggest that off-center weak-σ interactions play the dominant role in stabilizing the anion-arene adducts unless an acidic CH bond is present to participate in favorable CH···anion hydrogen bonds. In solution the weak-σ complexes show downfield shifts of the proton resonances in their NMR spectra. With more polarizable anions such as bromide and iodide, we also observe anion binding by UV/vis spectroscopy. Initial solution studies suggest these reversible interactions are weak in organic solvents, but the Hofmeister bias in anion binding could be mitigated, if not reversed, in the halides using these anion-π type interactions.Interactions between ions and aromatic rings are now a mainstay in the field of supramolecular chemistry. The prototypical cation-π interaction, first characterized in the gas phase, is now well-known as an important contributor to protein structure and enzyme function and as a noncovalent force found in many synthetic systems. The complementary "anion-π interaction"-defined as an electrostatic attraction between an anion positioned over the centroid of an aromatic ring-has recently emerged as another reversible ion-π interaction in supramolecular systems. This type of interaction could offer new selectivity in binding poorly basic, strongly solvated anions and may also affect structure, biological function, and anion transport. This Account describes our group's efforts in ion-π interactions in two areas. We first describe a series of self-assembled Group 15 (pnictogen)-thiolate complexes, all featuring prominent cation-π interactions between the trivalent pnictogen and an aromatic ring of the ligand. This structural feature appears to stabilize a variety of self-assembled dinuclear macrocycles, dinuclear M2L3 cryptand-analogues, and a tetranuclear As4L2 metallocyclophane. These complexes are all remarkably robust and feature intramolecular cation-π interactions, which suggest that these interactions could be an important feature in ligand design for the Group 15 elements. We also highlight our efforts to characterize the interaction between anions and electron-deficient aromatic rings in solution. Complementary crystallographic and computational studies suggest that off-center weak-σ interactions play the dominant role in stabilizing the anion-arene adducts unless an acidic CH bond is present to participate in favorable CH···anion hydrogen bonds. In solution the weak-σ complexes show downfield shifts of the proton resonances in their NMR spectra. With more polarizable anions such as bromide and iodide, we also observe anion binding by UV/vis spectroscopy. Initial solution studies suggest these reversible interactions are weak in organic solvents, but the Hofmeister bias in anion binding could be mitigated, if not reversed, in the halides using these anion-π type interactions. Interactions between ions and aromatic rings are now a mainstay in the field of supramolecular chemistry. The prototypical cation- pi interaction, first characterized in the gas phase, is now well-known as an important contributor to protein structure and enzyme function and as a noncovalent force found in many synthetic systems. The complementary "anion- pi interaction"-defined as an electrostatic attraction between an anion positioned over the centroid of an aromatic ring-has recently emerged as another reversible ion- pi interaction in supramolecular systems. This type of interaction could offer new selectivity in binding poorly basic, strongly solvated anions and may also affect structure, biological function, and anion transport. Interactions between ions and aromatic rings are now a mainstay in the field of supramolecular chemistry. The prototypical cation−π interaction, first characterized in the gas phase, is now well-known as an important contributor to protein structure and enzyme function and as a noncovalent force found in many synthetic systems. The complementary “anion−π interaction”defined as an electrostatic attraction between an anion positioned over the centroid of an aromatic ringhas recently emerged as another reversible ion−π interaction in supramolecular systems. This type of interaction could offer new selectivity in binding poorly basic, strongly solvated anions and may also affect structure, biological function, and anion transport. This Account describes our group’s efforts in ion−π interactions in two areas. We first describe a series of self-assembled Group 15 (pnictogen)–thiolate complexes, all featuring prominent cation−π interactions between the trivalent pnictogen and an aromatic ring of the ligand. This structural feature appears to stabilize a variety of self-assembled dinuclear macrocycles, dinuclear M2L3 cryptand-analogues, and a tetranuclear As4L2 metallocyclophane. These complexes are all remarkably robust and feature intramolecular cation−π interactions, which suggest that these interactions could be an important feature in ligand design for the Group 15 elements. We also highlight our efforts to characterize the interaction between anions and electron-deficient aromatic rings in solution. Complementary crystallographic and computational studies suggest that off-center weak-σ interactions play the dominant role in stabilizing the anion–arene adducts unless an acidic CH bond is present to participate in favorable CH···anion hydrogen bonds. In solution the weak-σ complexes show downfield shifts of the proton resonances in their NMR spectra. With more polarizable anions such as bromide and iodide, we also observe anion binding by UV/vis spectroscopy. Initial solution studies suggest these reversible interactions are weak in organic solvents, but the Hofmeister bias in anion binding could be mitigated, if not reversed, in the halides using these anion−π type interactions. Interactions between ions and aromatic rings are now a mainstay in the field of supramolecular chemistry. The prototypical cation-π interaction, first characterized in the gas phase, is now well known as an important contributor to protein structure, enzyme function, and as a noncovalent force found in many synthetic systems. The complementary “anion-π interaction” – defined as an electrostatic attraction between an anion positioned over the centroid of an aromatic ring – has recently emerged as another reversible ion-π interaction in supramolecular systems. This type of interaction could offer new selectivity in binding poorly basic, strongly solvated anions and may also affect structure, biological function, and anion transport. This Account describes our group’s efforts in ion-π interactions in two areas. We first describe a series of self-assembled Group 15 (pnictogen)-thiolate complexes, all featuring prominent cation-π interactions between the trivalent pnictogen and an aromatic ring of the ligand. This structural feature appears to stabilize a variety of self-assembled dinuclear macrocycles, dinuclear M 2 L 3 cryptand-analogs, and a tetranuclear As 4 L 2 metallocyclophane. These complexes are all remarkably robust and feature intramolecular cation-π interactions, which suggest that these interactions could be an important feature in ligand design for the Group 15 elements. We also highlight our efforts to characterize the interaction between anions and electron-deficient aromatic rings in solution. Complementary crystallographic and computational studies suggest that off-center weak-σ interactions play the dominant role in stabilizing the anion-arene adducts unless an acidic CH bond is present to participate in favorable CH···anion hydrogen bonds. In solution the weak- σ complexes show downfield shifts of the proton resonances in their NMR spectra. With more polarizable anions such as bromide and iodide, we also observe anion binding by UV/Vis spectroscopy. Initial solution studies suggest these reversible interactions are weak in organic solvents, but the Hofmeister bias in anion binding could be mitigated, if not reversed, in the halides using these anion-π type interactions. |
Author | Johnson, Darren W Watt, Michelle M Collins, Mary S |
AuthorAffiliation | University of Oregon |
AuthorAffiliation_xml | – name: University of Oregon |
Author_xml | – sequence: 1 givenname: Michelle M surname: Watt fullname: Watt, Michelle M – sequence: 2 givenname: Mary S surname: Collins fullname: Collins, Mary S – sequence: 3 givenname: Darren W surname: Johnson fullname: Johnson, Darren W email: dwj@uoregon.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22726207$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFuEzEQhi3UiqaFAy-A9oJUDmntsXfXe0GqUmgjBXGBszXxzgZXGzvYu0jceuyZF-MdeBLcpESAKnGyPfPNr_H_H7MDHzwx9kLwM8FBnGOUnAvOV0_YRJTAp0o3-oBNeK7mu4IjdpzSTX6Cquqn7Aighgp4PWHX8-B_3n3_cVvM_UAR7eCCT4XzxcKt0LfFJSW38kUXYnHht7376nvMxFUM46aY4XbkGTvssE_0_OE8YZ_evf04u54uPlzNZxeLKSouh6mQ2pYlKiALRJVWsm06aCsBqEsEpFZWVGFFrbJVs1wSNF3ZcESlRa2gkyfszU53My7X1FryQ8TebKJbY_xmAjrzd8e7z2YVvhqp6kZKnQVOHwRi-DJSGszaJUt9j57CmIyoaw4aRC3_j8oMZiN1mdGXf6613-e30xl4vQNsDClF6vaI4OY-RbNPMbPn_7DWDVub849c_-jEq90E2mRuwhh9zuAR7heXNKsO |
CitedBy_id | crossref_primary_10_1007_s11172_013_0273_0 crossref_primary_10_1107_S2053229625000750 crossref_primary_10_1016_j_mencom_2021_07_011 crossref_primary_10_1002_cphc_201600073 crossref_primary_10_1021_jp500778w crossref_primary_10_1002_chem_201903272 crossref_primary_10_1002_ange_201807751 crossref_primary_10_1021_jacs_2c08591 crossref_primary_10_3390_inorganics5010013 crossref_primary_10_1039_C5RA10487D crossref_primary_10_1021_jp4097869 crossref_primary_10_1039_C5RA24248G crossref_primary_10_1002_jcc_23946 crossref_primary_10_1016_j_poly_2025_117421 crossref_primary_10_1016_j_snb_2015_04_015 crossref_primary_10_1039_C9CP01925A crossref_primary_10_1039_C3CC47093H crossref_primary_10_1039_c2cp42672b crossref_primary_10_1021_jacs_6b04343 crossref_primary_10_1021_acs_biochem_7b00056 crossref_primary_10_1016_j_cclet_2017_08_042 crossref_primary_10_1039_C7DT00134G crossref_primary_10_1039_C4CE00095A crossref_primary_10_1016_j_molstruc_2020_128207 crossref_primary_10_1021_acs_jpca_6b08170 crossref_primary_10_1002_ange_201705223 crossref_primary_10_1002_asia_201300786 crossref_primary_10_1088_1361_648X_ab8253 crossref_primary_10_1039_C3SC53172D crossref_primary_10_1016_j_ccr_2020_213381 crossref_primary_10_1016_j_molliq_2024_126529 crossref_primary_10_3390_molecules23030572 crossref_primary_10_3390_cryst10050354 crossref_primary_10_1002_asia_202000309 crossref_primary_10_1371_journal_pone_0145349 crossref_primary_10_1080_10610278_2015_1072199 crossref_primary_10_1039_C6RA01960A crossref_primary_10_1039_D1CC04105C crossref_primary_10_1021_acs_organomet_5b00442 crossref_primary_10_1002_ange_201915290 crossref_primary_10_1021_cr300222d crossref_primary_10_1021_ct400818v crossref_primary_10_1039_C9SC04860J crossref_primary_10_1016_j_ccr_2013_05_022 crossref_primary_10_1002_anie_201807751 crossref_primary_10_1021_acs_jpca_5b02952 crossref_primary_10_1021_ic401001f crossref_primary_10_1021_acscatal_4c01812 crossref_primary_10_1080_10610278_2014_959013 crossref_primary_10_1080_10610278_2015_1119830 crossref_primary_10_1002_asia_202100920 crossref_primary_10_1002_chem_202002261 crossref_primary_10_1039_C9CP06924K crossref_primary_10_1002_chir_22438 crossref_primary_10_1039_D3AN02154H crossref_primary_10_1016_j_jorganchem_2013_09_029 crossref_primary_10_1080_00268976_2014_948940 crossref_primary_10_1016_j_tet_2015_01_005 crossref_primary_10_1038_srep05528 crossref_primary_10_1021_ja311389z crossref_primary_10_1002_anie_201915290 crossref_primary_10_1039_C4CP01977F crossref_primary_10_1016_j_bbrep_2021_100969 crossref_primary_10_1039_D1DT00771H crossref_primary_10_1016_j_cclet_2022_04_071 crossref_primary_10_1016_j_ica_2017_04_029 crossref_primary_10_1021_acsomega_1c03264 crossref_primary_10_1021_jacs_6b09892 crossref_primary_10_1002_chem_201702818 crossref_primary_10_1080_00268976_2018_1539257 crossref_primary_10_1021_acsomega_4c07702 crossref_primary_10_1039_C5CP00459D crossref_primary_10_1002_ange_201801452 crossref_primary_10_1002_ejic_201600254 crossref_primary_10_1016_j_molstruc_2014_05_064 crossref_primary_10_1021_ja3082473 crossref_primary_10_1021_acs_chemrev_5b00516 crossref_primary_10_1039_C9CC04151F crossref_primary_10_1016_j_ica_2018_06_008 crossref_primary_10_1016_j_poly_2019_06_054 crossref_primary_10_1039_C7CC06155B crossref_primary_10_1039_C7DT04430E crossref_primary_10_1002_anie_201705223 crossref_primary_10_1021_jp500775m crossref_primary_10_1002_ange_202106509 crossref_primary_10_1016_j_comptc_2014_02_003 crossref_primary_10_1039_c3dt51408k crossref_primary_10_1002_ange_201802650 crossref_primary_10_1039_C5DT04381F crossref_primary_10_1039_D0DT01654C crossref_primary_10_1002_cphc_201500314 crossref_primary_10_1002_chem_201304995 crossref_primary_10_1016_j_ijms_2013_05_014 crossref_primary_10_1007_s11696_024_03881_w crossref_primary_10_1021_jacs_3c01849 crossref_primary_10_1021_acs_chemrev_5b00527 crossref_primary_10_1016_j_ccr_2017_01_009 crossref_primary_10_1021_acs_orglett_7b00070 crossref_primary_10_1021_acs_inorgchem_0c03222 crossref_primary_10_1021_acs_langmuir_3c01740 crossref_primary_10_1021_jacs_8b12018 crossref_primary_10_1021_acs_inorgchem_7b02716 crossref_primary_10_1021_jp4046066 crossref_primary_10_1039_C6DT03106D crossref_primary_10_1039_C5CE00795J crossref_primary_10_1039_D2CP03744K crossref_primary_10_1002_anie_201810836 crossref_primary_10_1021_acs_inorgchem_6b01138 crossref_primary_10_1016_j_biopha_2022_113155 crossref_primary_10_1021_jp312755z crossref_primary_10_1007_s00214_018_2298_9 crossref_primary_10_1039_C8DT02110D crossref_primary_10_1039_c3nj00424d crossref_primary_10_1002_asia_202000746 crossref_primary_10_1002_agt2_285 crossref_primary_10_1021_jacs_5b08767 crossref_primary_10_1002_ange_201810836 crossref_primary_10_1016_j_arabjc_2016_08_008 crossref_primary_10_1002_anie_201801452 crossref_primary_10_1002_ejoc_202101346 crossref_primary_10_1002_jssc_202300055 crossref_primary_10_1039_C7DT00188F crossref_primary_10_1038_ncomms4911 crossref_primary_10_1002_cplu_202300350 crossref_primary_10_1039_C2CE26741A crossref_primary_10_1002_anie_202106509 crossref_primary_10_1002_anie_201802650 crossref_primary_10_1016_j_poly_2018_02_009 crossref_primary_10_18502_sjms_v17i3_12125 crossref_primary_10_1039_C4SC04042B |
Cites_doi | 10.1021/cg100444n 10.1021/om900536r 10.1039/c1cc11412c 10.1002/chem.201102786 10.1021/ja8035652 10.1021/ja025693t 10.1002/jlac.19023230205 10.1039/b823236a 10.1039/b305483g 10.1021/om701044e 10.1021/ja00072a042 10.1002/anie.200390319 10.1021/j100304a032 10.1039/b802178c 10.1021/ic050954w 10.1039/b800055g 10.1080/10241220600857710 10.1021/cr9603744 10.1039/c2sc00975g 10.1002/anie.200906460 10.1063/1.451687 10.1021/ic1012186 10.1016/S0009-2614(02)00709-1 10.1002/1521-3773(20020916)41:18<3389::AID-ANIE3389>3.0.CO;2-S 10.1021/cg901552f 10.1002/anie.201100208 10.1002/anie.201104966 10.1039/b926231h 10.1021/ja017449s 10.1039/B511570A 10.1021/ic701290h 10.1021/ja063460m 10.1002/anie.200461011 10.1039/c1dt10817d 10.1039/b927034e |
ContentType | Journal Article |
Copyright | Copyright © 2012 American Chemical Society |
Copyright_xml | – notice: Copyright © 2012 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M 5PM |
DOI | 10.1021/ar300100g |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | MEDLINE MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
DocumentTitleAlternate | Ion−π Interactions in Supramolecular Ion Binding |
EISSN | 1520-4898 |
EndPage | 966 |
ExternalDocumentID | PMC3479338 22726207 10_1021_ar300100g a410065015 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01-GM087398 – fundername: NIGMS NIH HHS grantid: R01 GM087398 – fundername: National Institute of General Medical Sciences : NIGMS grantid: R01 GM087398 || GM |
GroupedDBID | - .K2 02 23M 4.4 53G 55A 5GY 5VS 7~N 85S AABXI ABFLS ABMVS ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DZ EBS ED ED~ EJD F5P GNL IH2 IH9 JG JG~ K2 LG6 P2P RNS ROL TWZ UI2 UPT VF5 VG9 W1F WH7 X YZZ --- -DZ -~X 5ZA 6J9 6P2 AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AFXLT AGXLV AHGAQ CITATION CUPRZ GGK XSW ZCA ~02 CGR CUY CVF ECM EIF NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M 5PM |
ID | FETCH-LOGICAL-a403t-138c55a42ec2ee6843d9f2d612a85a2aed36e6a6ed4c69bbe29f590aa481742f3 |
IEDL.DBID | ACS |
ISSN | 0001-4842 1520-4898 |
IngestDate | Thu Aug 21 18:20:12 EDT 2025 Fri Jul 11 01:20:40 EDT 2025 Thu Jul 10 19:04:11 EDT 2025 Mon Jul 21 05:40:55 EDT 2025 Thu Apr 24 23:08:34 EDT 2025 Tue Jul 01 04:04:08 EDT 2025 Fri Feb 05 20:53:46 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a403t-138c55a42ec2ee6843d9f2d612a85a2aed36e6a6ed4c69bbe29f590aa481742f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 22726207 |
PQID | 1328226285 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3479338 proquest_miscellaneous_1770282173 proquest_miscellaneous_1328226285 pubmed_primary_22726207 crossref_primary_10_1021_ar300100g crossref_citationtrail_10_1021_ar300100g acs_journals_10_1021_ar300100g |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-04-16 |
PublicationDateYYYYMMDD | 2013-04-16 |
PublicationDate_xml | – month: 04 year: 2013 text: 2013-04-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Accounts of chemical research |
PublicationTitleAlternate | Acc. Chem. Res |
PublicationYear | 2013 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Meyer E. A. (ref1/cit1c) 2003; 42 Hay B. P. (ref2/cit2a) 2008 Alkorta I. (ref3/cit3d) 2002; 124 Berryman O. B. (ref24/cit24) 2006 Vickaryous W. J. (ref7/cit7) 2005; 44 Meisenheimer J. (ref20/cit20) 1902; 323 Berryman O. B. (ref2/cit2b) 2009 Zukerman-Schpector J. (ref4/cit4) 2011; 47 Mascal M. (ref3/cit3a) 2002; 124 Carroll C. N. (ref27/cit27a) 2010; 39 Auer A. A. (ref5/cit5) 2009; 28 ref8/cit8 Cangelosi V. M. (ref9/cit9) 2007; 46 Ma J. C. (ref1/cit1a) 1997; 97 Zampella G. (ref19/cit19) 2012; 18 Chowdhury S. (ref21/cit21) 1986; 85 Cangelosi V. M. (ref15/cit15) 2010; 49 Berryman O. B. (ref25/cit25) 2007; 129 Engle J. M. (ref27/cit27b) 2012; 3 Hiraoka K. (ref22/cit22) 1987; 91 Cangelosi V. M. (ref10/cit10) 2008 Vickaryous W. J. (ref6/cit6) 2004; 43 Burford N. (ref16/cit16) 1993; 115 Quinoñero D. (ref3/cit3b) 2002; 359 Frontera A. (ref2/cit2c) 2011; 50 Lindquist N. R. (ref12/cit12) 2010; 46 Pitt M. A. (ref13/cit13a) 2008 Cangelosi V. M. (ref13/cit13b) 2010; 10 Fontenot S. A. (ref18/cit18) 2011; 40 Vargas Jentzsch A. (ref23/cit23) 2011; 50 Gokel G. W. (ref1/cit1b) 2003 Cangelosi V. M. (ref11/cit11) 2010; 10 Cangelosi V. M. (ref17/cit17) 2010; 49 Schier A. (ref1/cit1d) 2008; 27 Vickaryous W. J. (ref14/cit14) 2006; 5 Quinoñero D. (ref3/cit3c) 2002; 41 Berryman O. B. (ref26/cit26) 2008; 130 |
References_xml | – volume: 10 start-page: 3531 year: 2010 ident: ref13/cit13b publication-title: Cryst. Growth Des. doi: 10.1021/cg100444n – volume: 28 start-page: 5405 year: 2009 ident: ref5/cit5 publication-title: Organometallics doi: 10.1021/om900536r – volume: 47 start-page: 7608 year: 2011 ident: ref4/cit4 publication-title: Chem. Commun. doi: 10.1039/c1cc11412c – volume: 18 start-page: 2040 year: 2012 ident: ref19/cit19 publication-title: Chem.—Eur. J. doi: 10.1002/chem.201102786 – volume: 130 start-page: 10895 year: 2008 ident: ref26/cit26 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8035652 – volume: 124 start-page: 8593 year: 2002 ident: ref3/cit3d publication-title: J. Am. Chem. Soc. doi: 10.1021/ja025693t – volume: 323 start-page: 205 year: 1902 ident: ref20/cit20 publication-title: Justus Liebigs Ann. Chem. doi: 10.1002/jlac.19023230205 – start-page: 3143 year: 2009 ident: ref2/cit2b publication-title: Chem. Commun. doi: 10.1039/b823236a – start-page: 2847 year: 2003 ident: ref1/cit1b publication-title: Chem. Commun. doi: 10.1039/b305483g – volume: 27 start-page: 2361 year: 2008 ident: ref1/cit1d publication-title: Organometallics doi: 10.1021/om701044e – volume: 115 start-page: 8829 year: 1993 ident: ref16/cit16 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00072a042 – volume: 42 start-page: 1210 year: 2003 ident: ref1/cit1c publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200390319 – volume: 91 start-page: 5294 year: 1987 ident: ref22/cit22 publication-title: J. Phys. Chem. doi: 10.1021/j100304a032 – start-page: 3447 year: 2008 ident: ref10/cit10 publication-title: Dalton Trans. doi: 10.1039/b802178c – volume: 44 start-page: 9247 year: 2005 ident: ref7/cit7 publication-title: Inorg. Chem. doi: 10.1021/ic050954w – start-page: 2417 year: 2008 ident: ref2/cit2a publication-title: Chem. Commun. doi: 10.1039/b800055g – start-page: 1 year: 2008 ident: ref13/cit13a publication-title: Chem. Commun. – volume: 5 start-page: 51 year: 2006 ident: ref14/cit14 publication-title: Main Group Chem. doi: 10.1080/10241220600857710 – volume: 97 start-page: 1303 year: 1997 ident: ref1/cit1a publication-title: Chem. Rev. doi: 10.1021/cr9603744 – volume: 3 start-page: 1105 year: 2012 ident: ref27/cit27b publication-title: Chem. Sci. doi: 10.1039/c2sc00975g – ident: ref8/cit8 – volume: 49 start-page: 1248 year: 2010 ident: ref15/cit15 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200906460 – volume: 85 start-page: 4989 year: 1986 ident: ref21/cit21 publication-title: J. Chem. Phys. doi: 10.1063/1.451687 – volume: 49 start-page: 9985 year: 2010 ident: ref17/cit17 publication-title: Inorg. Chem. doi: 10.1021/ic1012186 – volume: 359 start-page: 486 year: 2002 ident: ref3/cit3b publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(02)00709-1 – volume: 41 start-page: 3389 year: 2002 ident: ref3/cit3c publication-title: Angew. Chem., Int. Ed. doi: 10.1002/1521-3773(20020916)41:18<3389::AID-ANIE3389>3.0.CO;2-S – volume: 10 start-page: 1471 year: 2010 ident: ref11/cit11 publication-title: Cryst. Growth Des. doi: 10.1021/cg901552f – volume: 50 start-page: 9564 year: 2011 ident: ref2/cit2c publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201100208 – volume: 50 start-page: 11675 year: 2011 ident: ref23/cit23 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201104966 – volume: 39 start-page: 3875 year: 2010 ident: ref27/cit27a publication-title: Chem. Soc. Rev. doi: 10.1039/b926231h – volume: 124 start-page: 6247 year: 2002 ident: ref3/cit3a publication-title: J. Am. Chem. Soc. doi: 10.1021/ja017449s – start-page: 506 year: 2006 ident: ref24/cit24 publication-title: Chem. Commun. doi: 10.1039/B511570A – volume: 46 start-page: 9278 year: 2007 ident: ref9/cit9 publication-title: Inorg. Chem. doi: 10.1021/ic701290h – volume: 129 start-page: 48 year: 2007 ident: ref25/cit25 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja063460m – volume: 43 start-page: 5831 year: 2004 ident: ref6/cit6 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200461011 – volume: 40 start-page: 12125 year: 2011 ident: ref18/cit18 publication-title: Dalton Trans. doi: 10.1039/c1dt10817d – volume: 46 start-page: 3505 year: 2010 ident: ref12/cit12 publication-title: Chem. Commun. doi: 10.1039/b927034e |
SSID | ssj0002467 |
Score | 2.457314 |
Snippet | Interactions between ions and aromatic rings are now a mainstay in the field of supramolecular chemistry. The prototypical cation−π interaction, first... Interactions between ions and aromatic rings are now a mainstay in the field of supramolecular chemistry. The prototypical cation-π interaction, first... Interactions between ions and aromatic rings are now a mainstay in the field of supramolecular chemistry. The prototypical cation- pi interaction, first... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 955 |
SubjectTerms | Anions Anions - chemistry Attraction Binding Binding Sites Cations Cations - chemistry Centroids Design engineering Hydrogen Bonding Ligands Models, Molecular Transport |
Title | Ion−π Interactions in Ligand Design for Anions and Main Group Cations |
URI | http://dx.doi.org/10.1021/ar300100g https://www.ncbi.nlm.nih.gov/pubmed/22726207 https://www.proquest.com/docview/1328226285 https://www.proquest.com/docview/1770282173 https://pubmed.ncbi.nlm.nih.gov/PMC3479338 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwEB5ROLQXWuiDlIJM20Mv2Sa2YzvHVQBtEe2lReIWObazXRV50T4unDj23D_W_9Bfgu1sIpbH9hqPZWU8ib_xzHwD8LGqKp0onsXK1CSmTNexTFIZY2fQCVVMiTpk-X5jgzN6cp6dr8GHRyL4OP0sJ8Q7LsnwCWxgJrj3sPrF9-53iylriDGdX0wFxS190O2p_uhR0-Wj5x6evJsWeeucOX4Oh221TpNe8qs3n1U9dXWfvHHVK7yAzQXORP3GMLZgzdhteFq07d1ewuDL2P77_efvNQqXgk19wxSNLDodDaXV6DDkdiAHalHfhjH_9Kt0EuHCChXNZd8rODs--lEM4kVbhVjShPjm80JlmaTYKGwME5TovMbaQR0pMoml0YQZJpnRbq_yqjI4r7M8kZIK577gmryGdTu2ZgdQnSueOyNwsFJTh10qJUyiCaWZUEymdQT7Tu_l4rOYliHijdOyU0gEn9otKdWClNz3xrh4SPR9J3rZMHE8JHTQ7mvp9OmDH9Ka8dwtTXzCrC8YXSHDuXdBU04ieNPYQrcUxtxz9_MI-JKVdAKep3t5xI5-Br7uUKxLxNv_KWMXnuHQbIPGKXsH67PJ3Ow5yDOr9oPJ3wD4HPxE |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VcigXyj_LTzEIJC5pE9txnAOH1ZZql257oZV6C47tlBUoi5pdVe2JI2eOvAoPwTvwJIydH7qlglMlrvHIdsZjz4w98w3A8zzPTaiTONC2YAEXpghUGKmAokCHXAstCx_luyuG-_zNQXywBN_aXBicRIU9Vf4R_ze6QLShjpjzX8LDJoBy254co3tWvRpt4lq-oHTr9d5gGDQVBALFQ-bqrEsdx4pTq6m1QnJm0oIa1OpKxooqa5iwQglrcFppnluaFnEaKsUlWuq0YNjvFbiKRg91jl1_8LY75SkXNR4nuuNcctqiFp2dqtN4ulrUeH-YseejMc-ot61V-N4xxke1fFifz_J1fXoOM_L_5NwNuN5Y1aRfb4ObsGTLW7AyaIvZ3YbhaFr-_PL1x2fir0DrbI6KTEoynhyq0pBNH8lC0IQn_dK3ua87Cin89RwZ1Febd2D_Un7kLiyX09LeB1KkOklR5NGINhwttVxLGxrGeSy1UFHRgzXkf9YcAlXm3_dplHUL0IOXrSRkuoFgd5VAPl5E-qwj_VTjjlxE9LQVpwz56Z56VGmncxyaufBglx77F5okcQ53lLAe3KtFsBuK0sRVKkh6kCwIZ0fgUMkXW8rJe49O7lOTmXzwL2Y8gZXh3s44G492tx_CNerLjPAgEo9geXY0t4_R2Jvla37XEXh32cL6C-TaX68 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VIgEX_inLTzEIJC5pE9txkgOH1S6rXVoqJKjUW3D8U1agbNXsCsGpx555AF6FR-AdeBLGzo-6pYJTJa7xyHbGY3vGM_MNwNOiKHSokjhQxrKAC20DGUYyoCjQIVdCpdZH-e6I8S5_tRfvrcD3NhcGJ1FhT5V34rtdfaBtgzAQbcpD5myYcL8JotwyXz6jiVa9mAxxPZ9ROnr5bjAOmioCgeQhc7XWUxXHklOjqDEi5Uxnlmq82WUaSyqNZsIIKYzGqWVFYWhm4yyUkqeorVPLsN8LcNG5B51x1x-87U56ykWNyYkmOU85bZGLTk7V3XqqWr71_lBlT0dknrjiRtfgR8ccH9nycWMxLzbU11O4kf8v967D1Ua7Jv16O9yAFVPehMuDtqjdLRhPZuWv428_j4h_Cq2zOioyLcn2dF-Wmgx9RAtBVZ70S9_mvr6WSOGf6cigfuK8Dbvn8iN3YLWcleYuEJupJEPRR2Vac9TYCpWaUDPO41QJGdkerOMa5M1hUOXez0-jvFuAHjxvpSFXDRS7qwjy6SzSJx3pQY0_chbR41akcuSnc_nI0swWODRzYcIuTfYvNEniDO8oYT1Yq8WwG4rSxFUsSHqQLAloR-DQyZdbyukHj1LuU5RZeu9fzHgEl94MR_n2ZGfrPlyhvtoIDyLxAFbnhwvzEHW-ebHuNx6B9-ctq78Bcl5iMg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ion-%CF%80+interactions+in+ligand+design+for+anions+and+main+group+cations&rft.jtitle=Accounts+of+chemical+research&rft.au=Watt%2C+Michelle+M&rft.au=Collins%2C+Mary+S&rft.au=Johnson%2C+Darren+W&rft.date=2013-04-16&rft.eissn=1520-4898&rft.volume=46&rft.issue=4&rft.spage=955&rft_id=info:doi/10.1021%2Far300100g&rft_id=info%3Apmid%2F22726207&rft.externalDocID=22726207 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon |