Recommender Systems for Social Tagging Systems

Social Tagging Systems are web applications in which users upload resources (e.g., bookmarks, videos, photos, etc.) and annotate it with a list of freely chosen keywords called tags. This is a grassroots approach to organize a site and help users to find the resources they are interested in. Social...

Full description

Saved in:
Bibliographic Details
Main Authors Marinho, Leandro Balby, Hotho, Andreas, Jäschke, Robert, Nanopoulos, Alexandros, Rendle, Steffen, Sc, Lars
Format eBook Book
LanguageEnglish
Published New York Springer-Verlag 2012
Springer
Springer New York
Springer US
Edition1. Aufl.
SeriesSpringerBriefs in Electrical and Computer Engineering
Subjects
Online AccessGet full text
ISBN9781461418931
1461418933
DOI10.1007/978-1-4614-1894-8

Cover

Loading…
Abstract Social Tagging Systems are web applications in which users upload resources (e.g., bookmarks, videos, photos, etc.) and annotate it with a list of freely chosen keywords called tags. This is a grassroots approach to organize a site and help users to find the resources they are interested in. Social tagging systems are open and inherently social; features that have been proven to encourage participation. However, with the large popularity of these systems and the increasing amount of user-contributed content, information overload rapidly becomes an issue. Recommender Systems are well known applications for increasing the level of relevant content over the 'noise' that continuously grows as more and more content becomes available online. In social tagging systems, however, we face new challenges. While in classic recommender systems the mode of recommendation is basically the resource, in social tagging systems there are three possible modes of recommendation: users, resources, or tags. Therefore suitable methods that properly exploit the different dimensions of social tagging systems data are needed. In this book, we survey the most recent and state-of-the-art work about a whole new generation of recommender systems built to serve social tagging systems. The book is divided into self-contained chapters covering the background material on social tagging systems and recommender systems to the more advanced techniques like the ones based on tensor factorization and graph-based models.
AbstractList Social Tagging Systems are web applications in which users upload resources (e.g., bookmarks, videos, photos, etc.) and annotate it with a list of freely chosen keywords called tags. This is a grassroots approach to organize a site and help users to find the resources they are interested in. Social tagging systems are open and inherently social; features that have been proven to encourage participation. However, with the large popularity of these systems and the increasing amount of user-contributed content, information overload rapidly becomes an issue. Recommender Systems are well known applications for increasing the level of relevant content over the 'noise' that continuously grows as more and more content becomes available online. In social tagging systems, however, we face new challenges. While in classic recommender systems the mode of recommendation is basically the resource, in social tagging systems there are three possible modes of recommendation: users, resources, or tags. Therefore suitable methods that properly exploit the different dimensions of social tagging systems data are needed. In this book, we survey the most recent and state-of-the-art work about a whole new generation of recommender systems built to serve social tagging systems. The book is divided into self-contained chapters covering the background material on social tagging systems and recommender systems to the more advanced techniques like the ones based on tensor factorization and graph-based models.
This title surveys the most recent and state-of-the-art work about a whole new generation of recommender systems built to serve social tagging systems.
Author Schmidt-Thieme, Lars
Balby Marinho, Leandro
Stumme, Gerd
Rendle, Steffen
Symeonidis, Panagiotis
Nanopoulos, Alexandros
Hotho, Andreas
Jäschke, Robert
Author_xml – sequence: 1
  fullname: Marinho, Leandro Balby
– sequence: 2
  fullname: Hotho, Andreas
– sequence: 3
  fullname: Jäschke, Robert
– sequence: 4
  fullname: Nanopoulos, Alexandros
– sequence: 5
  fullname: Rendle, Steffen
– sequence: 6
  fullname: Sc, Lars
BackLink https://cir.nii.ac.jp/crid/1130282271678469120$$DView record in CiNii
BookMark eNpVkMtOwzAQRY2giFL6AewqhJBYpPXYjh9LqMpDqoQEFVsrD6eEJnGJA6h_j01gUS_GM9fnjsZzio4a2xiEzgFPAWMxU0JGEDEOLAKpWCQP0NhrEJQgyMO9msIAnRIMxGcQs2M0FELEkktCT9DYuXfsDwcsMBui6bPJbF2bJjft5GXnOlO7SWF9brMyqSarZL0um_X_0xkaFEnlzPjvHqHXu8Vq_hAtn-4f5zfLKGGYijgiMTHKYJHGTOREmqzgec5TkxYqZSkwojJJikKknIPkjClexFJiQrlIhMKMjtB13zhxG_Pt3mzVOf1VmdTajdN7v_fsrGfdtvWzmlb3FGAd9hdoDTrwOhh0cFz1jm1rPz6N6_Rv48w0XZtUenE7l5JREsDLHmzKUmdliAAUE0mIAC4k4woI9thFj_mdNbnVfo46aXe6LykhMVP0B9Ibf0w
ContentType eBook
Book
Copyright The Author(s) 2012
Copyright_xml – notice: The Author(s) 2012
DBID 08O
RYH
DEWEY 006.754
DOI 10.1007/978-1-4614-1894-8
DatabaseName ciando eBooks
CiNii Complete
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Library & Information Science
Sociology & Social History
Computer Science
EISBN 9781461418948
1461418941
Edition 1. Aufl.
1
2012
ExternalDocumentID 9781461418948
218035
EBC884328
BB11162424
ciando322549
GroupedDBID 089
08O
0D6
0DA
20A
38.
A4J
AABBV
ABFCV
ADWNV
AETDV
AEZAY
ALMA_UNASSIGNED_HOLDINGS
AZZ
BBABE
CZZ
IEZ
KC
MA.
MYL
NUC
PH7
PI1
SAO
SBO
TGCOT
Z7R
Z7S
Z7U
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z84
Z87
Z88
-EI
0E8
AAJYQ
AAPKO
AATVQ
ABBUY
ABCYT
ABFCL
ABMNI
ACBPT
ACDTA
ACDUY
AEHEY
AEJLV
AEKFX
AFSBW
AHNNE
AIJHZ
AIMOO
ATJMZ
I4C
RYH
TPJZQ
Z5O
Z85
ID FETCH-LOGICAL-a40375-252e9e07b547d28ecf6dd6bebf9b4b1429c82ff7b661864496f58802367a79043
ISBN 9781461418931
1461418933
IngestDate Sun Aug 17 06:50:00 EDT 2025
Tue Jul 29 20:35:25 EDT 2025
Fri May 30 21:59:05 EDT 2025
Thu Jun 26 22:37:14 EDT 2025
Tue Jan 05 19:39:27 EST 2021
IsPeerReviewed false
IsScholarly false
Keywords Computer Informatik
LCCN 2012931154
LCCallNum_Ident QA76.9.D343
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a40375-252e9e07b547d28ecf6dd6bebf9b4b1429c82ff7b661864496f58802367a79043
Notes Includes bibliographical references
OCLC 777586823
PQID EBC884328
PageCount 115
ParticipantIDs askewsholts_vlebooks_9781461418948
springer_books_10_1007_978_1_4614_1894_8
proquest_ebookcentral_EBC884328
nii_cinii_1130282271678469120
ciando_primary_ciando322549
PublicationCentury 2000
PublicationDate 2012
c2012
2011-11-29
PublicationDateYYYYMMDD 2012-01-01
2011-11-29
PublicationDate_xml – year: 2012
  text: 2012
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: New York, NY
– name: Boston, MA
PublicationSeriesSubtitle SpringerBriefs in Speech Technology
PublicationSeriesTitle SpringerBriefs in Electrical and Computer Engineering
PublicationSeriesTitleAlternate SpringerBriefs in Electrical
PublicationYear 2012
2011
Publisher Springer-Verlag
Springer
Springer New York
Springer US
Publisher_xml – name: Springer-Verlag
– name: Springer
– name: Springer New York
– name: Springer US
SSID ssj0000610704
Score 1.8850125
Snippet Social Tagging Systems are web applications in which users upload resources (e.g., bookmarks, videos, photos, etc.) and annotate it with a list of freely...
This title surveys the most recent and state-of-the-art work about a whole new generation of recommender systems built to serve social tagging systems.
SourceID askewsholts
springer
proquest
nii
ciando
SourceType Aggregation Database
Publisher
SubjectTerms Artificial Intelligence
Automatic indexing
Computer Science
Data Mining and Knowledge Discovery
Information Systems Applications (incl. Internet)
Online social networks
Recommender systems (Information filtering)
Social media
Subject access
User-generated content
Web sites
World Wide Web
World Wide Web -- Subject access
TableOfContents Intro -- Recommender Systems for Social Tagging Systems -- Preface -- Contents -- Part I Foundations -- Chapter 1 Social Tagging Systems -- 1.1 Introduction -- 1.2 Folksonomies -- 1.3 Tag Clouds -- 1.4 Data Representation -- 1.4.1 Folksonomies as Tensors -- 1.4.2 Folksonomies as Hypergraphs -- 1.5 Recommendation Tasks in STS -- 1.5.1 User Recommendation -- 1.5.2 Resource Recommendation -- 1.5.3 Tag Recommendation -- 1.6 Recommendations in Social Tagging Systems -- 1.6.1 BibSonomy -- 1.6.2 CiteULike -- 1.6.3 Other Systems -- 1.7 Notation -- 1.8 Further Reading -- References -- Chapter 2 Recommender Systems -- 2.1 Rating and Item Prediction -- 2.2 Rating Prediction as Regression Problem -- 2.3 Item Prediction as Ranking Problem -- 2.4 User and Item Attributes -- 2.5 New User and New Item Problems -- 2.6 Context-aware and Multi-Mode Recommendations -- References -- Part II Recommendation Techniques for Social Tagging Systems -- Chapter 3 Baseline Techniques -- 3.1 Constant Models -- 3.1.1 Tag Recommendation -- 3.1.2 User/Tag-aware Recommendation -- 3.1.3 Remarks on Complexity -- 3.2. Projection Matrices -- 3.3 Projection-based Collaborative Filtering -- 3.3.1 Tag Recommendations -- 3.3.2 Tag-aware Recommendations -- 3.3.3 User Recommendations -- 3.3.4 Remarks on Complexity -- 3.4 Further Reading -- References -- Chapter 4 Advanced Techniques -- 4.1 Factorization Models -- 4.1.1 Higher Order Singular Value Decomposition - HOSVD on Tensors -- 4.1.1.1 From SVD to HOSVD -- 4.1.1.2 HOSVD for Recommendations in STS -- 4.1.1.3 Combining HOSVD with Content-based Methods -- 4.1.1.4 Limitations of HOSVD -- 4.1.2 Scalable Factorization Models -- 4.1.2.1 Tucker Decomposition -- 4.1.2.2 Parallel Factor Analysis (PARAFAC) -- 4.1.2.3 Pairwise Interaction Tensor Factorization (PITF) -- 4.1.2.4 Factorization Machines (FM)
4.1.2.5 Relationship of Factorization Models -- 4.1.3 Learning Tag Recommendation Models -- 4.2 Graph-based Models -- 4.2.1 PageRank-based Recommendations in STS -- 4.2.2 Relational Neighbors for Tag Recommendations -- 4.3 Content and Social-Based Models -- 4.3.1 Exploiting the Content of Resources -- 4.3.2 Exploiting Social Relations -- 4.4 Further Reading -- References -- Chapter 5 Offline Evaluation -- 5.1 Evaluation Metrics -- 5.1.1 Precision and Recall -- 5.1.2 Further Measures -- 5.2 Evaluation Protocols -- 5.2.1 LeavePostOut Methodology -- 5.2.2 Time-based Splits -- 5.3 Comparison of Tag Recommenders -- References -- Part III Implementing Recommender Systems for Social Tagging -- Chapter 6 Real World Social Tagging Recommender Systems -- 6.1 Introduction -- 6.2 Challenges and Requirements -- 6.3 The BibSonomy Social Tagging System -- 6.4 Architecture -- 6.4.1 Overview -- 6.4.2 Recommender Interface -- 6.4.3 Logging -- 6.5 Recommender Implementations -- 6.5.1 Meta Recommender -- 6.5.1.1 First Weighted By Second -- 6.5.1.2 Weighted Merging -- 6.5.1.3 Remote Recommender -- 6.5.2 Multiplexing Tag Recommender -- 6.5.3 Example Recommender Implementations -- 6.5.3.1 Most Popular ρ-Mix (MPρ-mix) -- 6.5.3.2 Title Tags Weighted by User Tags (TbyU) -- 6.5.3.3 Other -- 6.6 Further Reading -- References -- Chapter 7 Online Evaluation -- 7.1 Evaluation Setting -- 7.1.1 Metrics and Protocols -- 7.1.2 Preprocessing and Cleansing -- 7.2 Case Study -- 7.2.1 General Results -- 7.2.2 Influence of the `reload' Button -- 7.2.3 Logged `click' Events -- 7.2.4 Average F1-Measure per User -- 7.3 The ECML PKDD Discovery Challenge 2009 -- 7.3.1 Setting -- 7.3.2 Methods -- 7.3.3 Results -- 7.4 Conclusion -- References -- Chapter 8 Conclusions -- 8.1 Summary -- 8.2 Discussion and Outlook -- References
Title Recommender Systems for Social Tagging Systems
URI http://ebooks.ciando.com/book/index.cfm/bok_id/322549
https://cir.nii.ac.jp/crid/1130282271678469120
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=884328
http://link.springer.com/10.1007/978-1-4614-1894-8
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781461418948&uid=none
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELZYeWEvgwGiGwULIYSEPCXpJbYf6VQ0TYOnMe3NshMHqm0ZohnS-PWcHTtJp0kIXqzGsWzLn3u5O_u-I-RtYhKT57ZgZl4KBhJyZnAjsQpVU2ulRhPaxQ5__lIcfYXj8_x8SFrio0tac1D-vjeu5H9QxTrE1UXJ_gOyfadYgb8RXywRYSzvKL_9Y6DSRqPx6spngQtczJ5WIXrAW_3N5x5aj-jIO8qAVfPd-0ZPrHZMBR8W-tLcji1_f4VibPlHz9-GRejSdEOKSkh6r3wcrkSg5YgtGTYFJoaPQX9Fb7FAKeiDR7bIFucoMB5-XB6fnPUOLFQEUFyAD5YLY84jh1acQzxGDky-G2Nuk229vkBJjlK-XaMC4Lw41TV-45vVakPfv3NE7b_8p4_JxEWDPCEPbLNLdmIODBpE4i6ZhcAP-o6GyC4H9_B-r48IwhZdLDTtqFlun5KDEY40gEWxE9rhSAOO8dUzcvZpeXp4xEICC6bB5RZmWZ5ZaRNucuBVJmxZF1VVGGtqacC532QpsrrmpnBpCwBkUefCUfIVXHOZwPw5mTTXjX1BaJWA0XVmoaw08EKaBKys8W8my6zWMpmSN6PlVL8u_WH7Wo3wADEl-90qqx8dl4nqHp1UBzklM1x6rHJl6k60UXtEe5qjjirTDId4HUFRvvdwf1gtF4dCwDzD_t9HrFQ3fGTFxmmoVLmJKDcTJfb-Mtg-eTTs-Zdk0v68sTPU_1rzKuzEP-KyTSA
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Recommender+systems+for+social+tagging+systems&rft.au=Marinho%2C+Leandro+Balby&rft.date=2012-01-01&rft.pub=Springer&rft.isbn=9781461418931&rft_id=info:doi/10.1007%2F978-1-4614-1894-8&rft.externalDocID=BB11162424
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97814614%2F9781461418948.jpg
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fmedia.springernature.com%2Fw306%2Fspringer-static%2Fcover-hires%2Fbook%2F978-1-4614-1894-8