Recommender Systems for Social Tagging Systems
Social Tagging Systems are web applications in which users upload resources (e.g., bookmarks, videos, photos, etc.) and annotate it with a list of freely chosen keywords called tags. This is a grassroots approach to organize a site and help users to find the resources they are interested in. Social...
Saved in:
Main Authors | , , , , , |
---|---|
Format | eBook Book |
Language | English |
Published |
New York
Springer-Verlag
2012
Springer Springer New York Springer US |
Edition | 1. Aufl. |
Series | SpringerBriefs in Electrical and Computer Engineering |
Subjects | |
Online Access | Get full text |
ISBN | 9781461418931 1461418933 |
DOI | 10.1007/978-1-4614-1894-8 |
Cover
Loading…
Abstract | Social Tagging Systems are web applications in which users upload resources (e.g., bookmarks, videos, photos, etc.) and annotate it with a list of freely chosen keywords called tags. This is a grassroots approach to organize a site and help users to find the resources they are interested in. Social tagging systems are open and inherently social; features that have been proven to encourage participation. However, with the large popularity of these systems and the increasing amount of user-contributed content, information overload rapidly becomes an issue. Recommender Systems are well known applications for increasing the level of relevant content over the 'noise' that continuously grows as more and more content becomes available online. In social tagging systems, however, we face new challenges. While in classic recommender systems the mode of recommendation is basically the resource, in social tagging systems there are three possible modes of recommendation: users, resources, or tags. Therefore suitable methods that properly exploit the different dimensions of social tagging systems data are needed. In this book, we survey the most recent and state-of-the-art work about a whole new generation of recommender systems built to serve social tagging systems. The book is divided into self-contained chapters covering the background material on social tagging systems and recommender systems to the more advanced techniques like the ones based on tensor factorization and graph-based models. |
---|---|
AbstractList | Social Tagging Systems are web applications in which users upload resources (e.g., bookmarks, videos, photos, etc.) and annotate it with a list of freely chosen keywords called tags. This is a grassroots approach to organize a site and help users to find the resources they are interested in. Social tagging systems are open and inherently social; features that have been proven to encourage participation. However, with the large popularity of these systems and the increasing amount of user-contributed content, information overload rapidly becomes an issue. Recommender Systems are well known applications for increasing the level of relevant content over the 'noise' that continuously grows as more and more content becomes available online. In social tagging systems, however, we face new challenges. While in classic recommender systems the mode of recommendation is basically the resource, in social tagging systems there are three possible modes of recommendation: users, resources, or tags. Therefore suitable methods that properly exploit the different dimensions of social tagging systems data are needed. In this book, we survey the most recent and state-of-the-art work about a whole new generation of recommender systems built to serve social tagging systems. The book is divided into self-contained chapters covering the background material on social tagging systems and recommender systems to the more advanced techniques like the ones based on tensor factorization and graph-based models. This title surveys the most recent and state-of-the-art work about a whole new generation of recommender systems built to serve social tagging systems. |
Author | Schmidt-Thieme, Lars Balby Marinho, Leandro Stumme, Gerd Rendle, Steffen Symeonidis, Panagiotis Nanopoulos, Alexandros Hotho, Andreas Jäschke, Robert |
Author_xml | – sequence: 1 fullname: Marinho, Leandro Balby – sequence: 2 fullname: Hotho, Andreas – sequence: 3 fullname: Jäschke, Robert – sequence: 4 fullname: Nanopoulos, Alexandros – sequence: 5 fullname: Rendle, Steffen – sequence: 6 fullname: Sc, Lars |
BackLink | https://cir.nii.ac.jp/crid/1130282271678469120$$DView record in CiNii |
BookMark | eNpVkMtOwzAQRY2giFL6AewqhJBYpPXYjh9LqMpDqoQEFVsrD6eEJnGJA6h_j01gUS_GM9fnjsZzio4a2xiEzgFPAWMxU0JGEDEOLAKpWCQP0NhrEJQgyMO9msIAnRIMxGcQs2M0FELEkktCT9DYuXfsDwcsMBui6bPJbF2bJjft5GXnOlO7SWF9brMyqSarZL0um_X_0xkaFEnlzPjvHqHXu8Vq_hAtn-4f5zfLKGGYijgiMTHKYJHGTOREmqzgec5TkxYqZSkwojJJikKknIPkjClexFJiQrlIhMKMjtB13zhxG_Pt3mzVOf1VmdTajdN7v_fsrGfdtvWzmlb3FGAd9hdoDTrwOhh0cFz1jm1rPz6N6_Rv48w0XZtUenE7l5JREsDLHmzKUmdliAAUE0mIAC4k4woI9thFj_mdNbnVfo46aXe6LykhMVP0B9Ibf0w |
ContentType | eBook Book |
Copyright | The Author(s) 2012 |
Copyright_xml | – notice: The Author(s) 2012 |
DBID | 08O RYH |
DEWEY | 006.754 |
DOI | 10.1007/978-1-4614-1894-8 |
DatabaseName | ciando eBooks CiNii Complete |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Library & Information Science Sociology & Social History Computer Science |
EISBN | 9781461418948 1461418941 |
Edition | 1. Aufl. 1 2012 |
ExternalDocumentID | 9781461418948 218035 EBC884328 BB11162424 ciando322549 |
GroupedDBID | 089 08O 0D6 0DA 20A 38. A4J AABBV ABFCV ADWNV AETDV AEZAY ALMA_UNASSIGNED_HOLDINGS AZZ BBABE CZZ IEZ KC MA. MYL NUC PH7 PI1 SAO SBO TGCOT Z7R Z7S Z7U Z7W Z7X Z7Y Z7Z Z81 Z83 Z84 Z87 Z88 -EI 0E8 AAJYQ AAPKO AATVQ ABBUY ABCYT ABFCL ABMNI ACBPT ACDTA ACDUY AEHEY AEJLV AEKFX AFSBW AHNNE AIJHZ AIMOO ATJMZ I4C RYH TPJZQ Z5O Z85 |
ID | FETCH-LOGICAL-a40375-252e9e07b547d28ecf6dd6bebf9b4b1429c82ff7b661864496f58802367a79043 |
ISBN | 9781461418931 1461418933 |
IngestDate | Sun Aug 17 06:50:00 EDT 2025 Tue Jul 29 20:35:25 EDT 2025 Fri May 30 21:59:05 EDT 2025 Thu Jun 26 22:37:14 EDT 2025 Tue Jan 05 19:39:27 EST 2021 |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | Computer Informatik |
LCCN | 2012931154 |
LCCallNum_Ident | QA76.9.D343 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a40375-252e9e07b547d28ecf6dd6bebf9b4b1429c82ff7b661864496f58802367a79043 |
Notes | Includes bibliographical references |
OCLC | 777586823 |
PQID | EBC884328 |
PageCount | 115 |
ParticipantIDs | askewsholts_vlebooks_9781461418948 springer_books_10_1007_978_1_4614_1894_8 proquest_ebookcentral_EBC884328 nii_cinii_1130282271678469120 ciando_primary_ciando322549 |
PublicationCentury | 2000 |
PublicationDate | 2012 c2012 2011-11-29 |
PublicationDateYYYYMMDD | 2012-01-01 2011-11-29 |
PublicationDate_xml | – year: 2012 text: 2012 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: New York, NY – name: Boston, MA |
PublicationSeriesSubtitle | SpringerBriefs in Speech Technology |
PublicationSeriesTitle | SpringerBriefs in Electrical and Computer Engineering |
PublicationSeriesTitleAlternate | SpringerBriefs in Electrical |
PublicationYear | 2012 2011 |
Publisher | Springer-Verlag Springer Springer New York Springer US |
Publisher_xml | – name: Springer-Verlag – name: Springer – name: Springer New York – name: Springer US |
SSID | ssj0000610704 |
Score | 1.8850125 |
Snippet | Social Tagging Systems are web applications in which users upload resources (e.g., bookmarks, videos, photos, etc.) and annotate it with a list of freely... This title surveys the most recent and state-of-the-art work about a whole new generation of recommender systems built to serve social tagging systems. |
SourceID | askewsholts springer proquest nii ciando |
SourceType | Aggregation Database Publisher |
SubjectTerms | Artificial Intelligence Automatic indexing Computer Science Data Mining and Knowledge Discovery Information Systems Applications (incl. Internet) Online social networks Recommender systems (Information filtering) Social media Subject access User-generated content Web sites World Wide Web World Wide Web -- Subject access |
TableOfContents | Intro -- Recommender Systems for Social Tagging Systems -- Preface -- Contents -- Part I Foundations -- Chapter 1 Social Tagging Systems -- 1.1 Introduction -- 1.2 Folksonomies -- 1.3 Tag Clouds -- 1.4 Data Representation -- 1.4.1 Folksonomies as Tensors -- 1.4.2 Folksonomies as Hypergraphs -- 1.5 Recommendation Tasks in STS -- 1.5.1 User Recommendation -- 1.5.2 Resource Recommendation -- 1.5.3 Tag Recommendation -- 1.6 Recommendations in Social Tagging Systems -- 1.6.1 BibSonomy -- 1.6.2 CiteULike -- 1.6.3 Other Systems -- 1.7 Notation -- 1.8 Further Reading -- References -- Chapter 2 Recommender Systems -- 2.1 Rating and Item Prediction -- 2.2 Rating Prediction as Regression Problem -- 2.3 Item Prediction as Ranking Problem -- 2.4 User and Item Attributes -- 2.5 New User and New Item Problems -- 2.6 Context-aware and Multi-Mode Recommendations -- References -- Part II Recommendation Techniques for Social Tagging Systems -- Chapter 3 Baseline Techniques -- 3.1 Constant Models -- 3.1.1 Tag Recommendation -- 3.1.2 User/Tag-aware Recommendation -- 3.1.3 Remarks on Complexity -- 3.2. Projection Matrices -- 3.3 Projection-based Collaborative Filtering -- 3.3.1 Tag Recommendations -- 3.3.2 Tag-aware Recommendations -- 3.3.3 User Recommendations -- 3.3.4 Remarks on Complexity -- 3.4 Further Reading -- References -- Chapter 4 Advanced Techniques -- 4.1 Factorization Models -- 4.1.1 Higher Order Singular Value Decomposition - HOSVD on Tensors -- 4.1.1.1 From SVD to HOSVD -- 4.1.1.2 HOSVD for Recommendations in STS -- 4.1.1.3 Combining HOSVD with Content-based Methods -- 4.1.1.4 Limitations of HOSVD -- 4.1.2 Scalable Factorization Models -- 4.1.2.1 Tucker Decomposition -- 4.1.2.2 Parallel Factor Analysis (PARAFAC) -- 4.1.2.3 Pairwise Interaction Tensor Factorization (PITF) -- 4.1.2.4 Factorization Machines (FM) 4.1.2.5 Relationship of Factorization Models -- 4.1.3 Learning Tag Recommendation Models -- 4.2 Graph-based Models -- 4.2.1 PageRank-based Recommendations in STS -- 4.2.2 Relational Neighbors for Tag Recommendations -- 4.3 Content and Social-Based Models -- 4.3.1 Exploiting the Content of Resources -- 4.3.2 Exploiting Social Relations -- 4.4 Further Reading -- References -- Chapter 5 Offline Evaluation -- 5.1 Evaluation Metrics -- 5.1.1 Precision and Recall -- 5.1.2 Further Measures -- 5.2 Evaluation Protocols -- 5.2.1 LeavePostOut Methodology -- 5.2.2 Time-based Splits -- 5.3 Comparison of Tag Recommenders -- References -- Part III Implementing Recommender Systems for Social Tagging -- Chapter 6 Real World Social Tagging Recommender Systems -- 6.1 Introduction -- 6.2 Challenges and Requirements -- 6.3 The BibSonomy Social Tagging System -- 6.4 Architecture -- 6.4.1 Overview -- 6.4.2 Recommender Interface -- 6.4.3 Logging -- 6.5 Recommender Implementations -- 6.5.1 Meta Recommender -- 6.5.1.1 First Weighted By Second -- 6.5.1.2 Weighted Merging -- 6.5.1.3 Remote Recommender -- 6.5.2 Multiplexing Tag Recommender -- 6.5.3 Example Recommender Implementations -- 6.5.3.1 Most Popular ρ-Mix (MPρ-mix) -- 6.5.3.2 Title Tags Weighted by User Tags (TbyU) -- 6.5.3.3 Other -- 6.6 Further Reading -- References -- Chapter 7 Online Evaluation -- 7.1 Evaluation Setting -- 7.1.1 Metrics and Protocols -- 7.1.2 Preprocessing and Cleansing -- 7.2 Case Study -- 7.2.1 General Results -- 7.2.2 Influence of the `reload' Button -- 7.2.3 Logged `click' Events -- 7.2.4 Average F1-Measure per User -- 7.3 The ECML PKDD Discovery Challenge 2009 -- 7.3.1 Setting -- 7.3.2 Methods -- 7.3.3 Results -- 7.4 Conclusion -- References -- Chapter 8 Conclusions -- 8.1 Summary -- 8.2 Discussion and Outlook -- References |
Title | Recommender Systems for Social Tagging Systems |
URI | http://ebooks.ciando.com/book/index.cfm/bok_id/322549 https://cir.nii.ac.jp/crid/1130282271678469120 https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=884328 http://link.springer.com/10.1007/978-1-4614-1894-8 https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781461418948&uid=none |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELZYeWEvgwGiGwULIYSEPCXpJbYf6VQ0TYOnMe3NshMHqm0ZohnS-PWcHTtJp0kIXqzGsWzLn3u5O_u-I-RtYhKT57ZgZl4KBhJyZnAjsQpVU2ulRhPaxQ5__lIcfYXj8_x8SFrio0tac1D-vjeu5H9QxTrE1UXJ_gOyfadYgb8RXywRYSzvKL_9Y6DSRqPx6spngQtczJ5WIXrAW_3N5x5aj-jIO8qAVfPd-0ZPrHZMBR8W-tLcji1_f4VibPlHz9-GRejSdEOKSkh6r3wcrkSg5YgtGTYFJoaPQX9Fb7FAKeiDR7bIFucoMB5-XB6fnPUOLFQEUFyAD5YLY84jh1acQzxGDky-G2Nuk229vkBJjlK-XaMC4Lw41TV-45vVakPfv3NE7b_8p4_JxEWDPCEPbLNLdmIODBpE4i6ZhcAP-o6GyC4H9_B-r48IwhZdLDTtqFlun5KDEY40gEWxE9rhSAOO8dUzcvZpeXp4xEICC6bB5RZmWZ5ZaRNucuBVJmxZF1VVGGtqacC532QpsrrmpnBpCwBkUefCUfIVXHOZwPw5mTTXjX1BaJWA0XVmoaw08EKaBKys8W8my6zWMpmSN6PlVL8u_WH7Wo3wADEl-90qqx8dl4nqHp1UBzklM1x6rHJl6k60UXtEe5qjjirTDId4HUFRvvdwf1gtF4dCwDzD_t9HrFQ3fGTFxmmoVLmJKDcTJfb-Mtg-eTTs-Zdk0v68sTPU_1rzKuzEP-KyTSA |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Recommender+systems+for+social+tagging+systems&rft.au=Marinho%2C+Leandro+Balby&rft.date=2012-01-01&rft.pub=Springer&rft.isbn=9781461418931&rft_id=info:doi/10.1007%2F978-1-4614-1894-8&rft.externalDocID=BB11162424 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97814614%2F9781461418948.jpg |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fmedia.springernature.com%2Fw306%2Fspringer-static%2Fcover-hires%2Fbook%2F978-1-4614-1894-8 |