Vegetated Buffer Strips Can Lead to Increased Release of Phosphorus to Waters: A Biogeochemical Assessment of the Mechanisms
Establishing vegetated buffer strips (VBS) between cropland and watercourses is currently promoted as a principal control of diffuse pollution transport. However, we lack the mechanistic understanding to evaluate P retention in VBS and predict risks of P transport to aquatic ecosystems. We observed...
Saved in:
Published in | Environmental science & technology Vol. 43; no. 6; pp. 1858 - 1863 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
15.03.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Establishing vegetated buffer strips (VBS) between cropland and watercourses is currently promoted as a principal control of diffuse pollution transport. However, we lack the mechanistic understanding to evaluate P retention in VBS and predict risks of P transport to aquatic ecosystems. We observed that VBS establishment led to enhanced rates of soil P cycling, increasing soil P solubility and the potential amount leached to watercourses. Soil in VBS, relative to adjacent fields, had increased inorganic P solubility indices, dissolved organic P, phosphatase enzyme activity, microbial diversity, and biomass P. Small relative increases in the pool of soil P rendered labile had disproportionate effects on the P available for leaching. We propose a mechanism whereby the establishment of VBS on previous agricultural land causes a diversifying plant−microbial system which can access previous immobilized soil P from past fertilization or trapped sediment P. Laboratory experiments suggested that sediment-P inputs to VBS were insufficient alone to increase P solubility without biological cycling. Results show that VBS management may require strategies, for example, harvesting vegetation, to offset biochemical processes that can increase the susceptibility of VBS soil P to move to adjoining streams. |
---|---|
AbstractList | Establishing vegetated buffer strips (VBS) between cropland and watercourses is currently promoted as a principal control of diffuse pollution transport. However, we lack the mechanistic understanding to evaluate P retention in VBS and predict risks of P transport to aquatic ecosystems. We observed that VBS establishment led to enhanced rates of soil P cycling, increasing soil P solubility and the potential amount leached to watercourses. Soil in VBS, relative to adjacent fields, had increased inorganic P solubility indices, dissolved organic P, phosphatase enzyme activity, microbial diversity, and biomass P. Small relative increases in the pool of soil P rendered labile had disproportionate effects on the P available for leaching. We propose a mechanism whereby the establishment of VBS on previous agricultural land causes a diversifying plant−microbial system which can access previous immobilized soil P from past fertilization or trapped sediment P. Laboratory experiments suggested that sediment-P inputs to VBS were insufficient alone to increase P solubility without biological cycling. Results show that VBS management may require strategies, for example, harvesting vegetation, to offset biochemical processes that can increase the susceptibility of VBS soil P to move to adjoining streams. Establishing vegetated buffer strips (VBS) between cropland and watercourses is currently promoted as a principal control of diffuse pollution transport. However, we lackthe mechanistic understanding to evaluate P retention in VBS and predict risks of P transport to aquatic ecosystems. We observed that VBS establishment led to enhanced rates of soil P cycling, increasing soil P solubility and the potential amount leached to watercourses. Soil in VBS, relative to adjacentfields, had increased inorganic P solubility indices, dissolved organic P, phosphatase enzyme activity, microbial diversity, and biomass P. Small relative increases in the pool of soil P rendered labile had disproportionate effects on the P available for leaching. We propose a mechanism whereby the establishment of VBS on previous agricultural land causes a diversifying plant-microbial system which can access previous immobilized soil P from past fertilization or trapped sediment P. Laboratory experiments suggested that sediment-P inputs to VBS were insufficient alone to increase P solubility without biological cycling. Results showthat VBS management may require strategies, for example, harvesting vegetation, to offset biochemical processes that can increase the susceptibility of VBS soil P to move to adjoining streams.Establishing vegetated buffer strips (VBS) between cropland and watercourses is currently promoted as a principal control of diffuse pollution transport. However, we lackthe mechanistic understanding to evaluate P retention in VBS and predict risks of P transport to aquatic ecosystems. We observed that VBS establishment led to enhanced rates of soil P cycling, increasing soil P solubility and the potential amount leached to watercourses. Soil in VBS, relative to adjacentfields, had increased inorganic P solubility indices, dissolved organic P, phosphatase enzyme activity, microbial diversity, and biomass P. Small relative increases in the pool of soil P rendered labile had disproportionate effects on the P available for leaching. We propose a mechanism whereby the establishment of VBS on previous agricultural land causes a diversifying plant-microbial system which can access previous immobilized soil P from past fertilization or trapped sediment P. Laboratory experiments suggested that sediment-P inputs to VBS were insufficient alone to increase P solubility without biological cycling. Results showthat VBS management may require strategies, for example, harvesting vegetation, to offset biochemical processes that can increase the susceptibility of VBS soil P to move to adjoining streams. Establishing vegetated buffer strips (VBS) between cropland and watercourses is currently promoted as a principal control of diffuse pollution transport. However, we lackthe mechanistic understanding to evaluate P retention in VBS and predict risks of P transport to aquatic ecosystems. We observed that VBS establishment led to enhanced rates of soil P cycling, increasing soil P solubility and the potential amount leached to watercourses. Soil in VBS, relative to adjacentfields, had increased inorganic P solubility indices, dissolved organic P, phosphatase enzyme activity, microbial diversity, and biomass P. Small relative increases in the pool of soil P rendered labile had disproportionate effects on the P available for leaching. We propose a mechanism whereby the establishment of VBS on previous agricultural land causes a diversifying plant-microbial system which can access previous immobilized soil P from past fertilization or trapped sediment P. Laboratory experiments suggested that sediment-P inputs to VBS were insufficient alone to increase P solubility without biological cycling. Results showthat VBS management may require strategies, for example, harvesting vegetation, to offset biochemical processes that can increase the susceptibility of VBS soil P to move to adjoining streams. Establishing vegetated buffer strips (VBS) between cropland and watercourses is currently promoted as a principal control of diffuse pollution transport. However, we lack the mechanistic understanding to evaluate P retention in VBS and predict risks of P transport to aquatic ecosystems. We observed that VBS establishment led to enhanced rates of soil P cycling, increasing soil P solubility and the potential amount leached to watercourses. Soil in VBS, relative to adjacent fields, had increased inorganic P solubility indices, dissolved organic P, phosphatase enzyme activity, microbial diversity, and biomass P. Small relative increases in the pool of soil P rendered labile had disproportionate effects on the P available for leaching. We propose a mechanism whereby the establishment of VBS on previous agricultural land causes a diversifying plant - microbial system which can access previous immobilized soil P from past fertilization or trapped sediment P. Laboratory experiments suggested that sediment-P inputs to VBS were insufficient alone to increase P solubility without biological cycling. Results show that VBS management may require strategies, for example, harvesting vegetation, to offset biochemical processes that can increase the susceptibility of VBS soil P to move to adjoining streams. [PUBLICATION ABSTRACT] Establishing vegetated buffer strips (VBS) between cropland and watercourses is currently promoted as a principal control of diffuse pollution transport. However, we lack the mechanistic understanding to evaluate P retention in VBS and predict risks of P transport to aquatic ecosystems. We observed that VBS establishment led to enhanced rates of soil P cycling, increasing soil P solubility and the potential amount leached to watercourses. Soil in VBS, relative to adjacent fields, had increased inorganic P solubility indices, dissolved organic P, phosphatase enzyme activity, microbial diversity, and biomass P. Small relative increases in the pool of soil P rendered labile had disproportionate effects on the P available for leaching. We propose a mechanism whereby the establishment of VBS on previous agricultural land causes a diversifying plant-microbial system which can access previous immobilized soil P from past fertilization or trapped sediment P. Laboratory experiments suggested that sediment-P inputs to VBS were insufficient alone to increase P solubility without biological cycling. Results show that VBS management may require strategies, for example, harvesting vegetation, to offset biochemical processes that can increase the susceptibility of VBS soil P to move to adjoining streams. |
Author | Lumsdon, David G Langan, Simon J Stutter, Marc I |
Author_xml | – sequence: 1 givenname: Marc I surname: Stutter fullname: Stutter, Marc I email: m.stutter@macaulay.ac.uk – sequence: 2 givenname: Simon J surname: Langan fullname: Langan, Simon J – sequence: 3 givenname: David G surname: Lumsdon fullname: Lumsdon, David G |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21246824$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19368183$$D View this record in MEDLINE/PubMed |
BookMark | eNp90ktv1DAQAGALFdFt4cAfQBYSIA6hfsSJw227KlBpEYj3LfI6466rxF48yaESPx5HXVqpIE724ZvRvI7IQYgBCHnM2SvOBD8B1Ewy3sh7ZMGVYIXSih-QBWNcFo2sfhySI8RLxpiQTD8gh5lWmmu5IL--wQWMZoSOnk7OQaKfx-R3SFcm0DWYjo6RngebwGA2n6CfPzQ6-nEbcbeNacKZfM8pEr6mS3rq4wVEu4XBW9PTJSIgDhDGOWjcAn0PdmuCxwEfkvvO9AiP9u8x-frm7MvqXbH-8PZ8tVwXpmRiLMDWAJu6AlU7zWXDaiO1s6zbdKIT0nW162SjNBNGGlfK3KXaMF6WRphGdU4ekxfXeXcp_pwAx3bwaKHvTYA4YVurUpWyqsosn_9XVjUvFW90hk_vwMs4pZC7aPOMc5G1lhk92aNpM0DX7pIfTLpq_4w_g2d7YDAPyyUTrMcbJ7goKy3msl5eO5siYgJ3m4q18wm0NyeQ7ckda31esI9hTMb3_4zYV2Es3rbxt_sNiNy81g |
CODEN | ESTHAG |
CitedBy_id | crossref_primary_10_3390_w10070864 crossref_primary_10_1007_s11270_020_04564_4 crossref_primary_10_1016_j_scitotenv_2017_05_091 crossref_primary_10_3389_fenvs_2024_1340565 crossref_primary_10_2134_jeq2011_0439 crossref_primary_10_1016_j_geodrs_2023_e00689 crossref_primary_10_1016_j_scitotenv_2021_149238 crossref_primary_10_2478_agri_2018_0002 crossref_primary_10_1016_j_scitotenv_2013_08_061 crossref_primary_10_3390_soilsystems5010015 crossref_primary_10_2134_jeq2018_05_0216 crossref_primary_10_5194_hess_18_855_2014 crossref_primary_10_1007_s10661_013_3586_4 crossref_primary_10_1016_j_ecoleng_2016_11_072 crossref_primary_10_2134_jeq2017_11_0422 crossref_primary_10_1016_j_biombioe_2012_09_053 crossref_primary_10_1016_j_scitotenv_2017_02_034 crossref_primary_10_1016_j_watres_2015_07_048 crossref_primary_10_1016_j_scitotenv_2024_174906 crossref_primary_10_1007_s11368_023_03521_y crossref_primary_10_2134_jeq2010_0434 crossref_primary_10_1007_s13280_020_01361_5 crossref_primary_10_1016_j_envsoft_2014_11_002 crossref_primary_10_1002_ldr_3051 crossref_primary_10_1016_j_ecoleng_2012_12_086 crossref_primary_10_3390_ijerph14090968 crossref_primary_10_1080_09064710_2017_1339823 crossref_primary_10_14249_eia_2015_24_5_516 crossref_primary_10_1002_clen_201400591 crossref_primary_10_1016_j_jglr_2020_05_001 crossref_primary_10_1016_j_ecoleng_2018_11_024 crossref_primary_10_1016_j_scitotenv_2017_12_179 crossref_primary_10_1111_j_1475_2743_2012_00443_x crossref_primary_10_3389_fmars_2018_00276 crossref_primary_10_3390_w10101489 crossref_primary_10_1016_j_geoderma_2010_06_003 crossref_primary_10_1016_j_scitotenv_2023_162638 crossref_primary_10_1016_j_chemosphere_2012_10_093 crossref_primary_10_1007_s11270_011_0764_2 crossref_primary_10_1007_s10661_018_7076_6 crossref_primary_10_1002_hyp_10432 crossref_primary_10_1007_s10750_020_04256_4 crossref_primary_10_1007_s11356_024_34383_7 crossref_primary_10_1525_cse_2024_2210963 crossref_primary_10_2134_jeq2010_0441 crossref_primary_10_3389_fenvs_2022_764333 crossref_primary_10_1016_j_ecoleng_2024_107512 crossref_primary_10_1016_j_agwat_2018_03_021 crossref_primary_10_1016_j_scitotenv_2025_178856 crossref_primary_10_1016_j_ecoleng_2024_107354 crossref_primary_10_1002_vzj2_20193 crossref_primary_10_1007_s11356_018_4030_7 crossref_primary_10_1111_j_1365_2427_2012_02748_x crossref_primary_10_1016_j_envres_2023_116434 crossref_primary_10_1007_s11270_013_1602_5 crossref_primary_10_1016_j_agee_2024_109050 crossref_primary_10_1016_j_scitotenv_2018_12_468 crossref_primary_10_29252_jwmr_8_16_157 crossref_primary_10_1016_j_jenvman_2011_11_015 crossref_primary_10_1139_er_2017_0077 crossref_primary_10_3390_w12030617 crossref_primary_10_1016_j_geoderma_2018_12_034 crossref_primary_10_1016_j_watres_2011_03_048 crossref_primary_10_1007_s00374_013_0802_x crossref_primary_10_1080_09593330_2014_881421 crossref_primary_10_1021_acs_est_8b01036 crossref_primary_10_1016_j_ecoleng_2012_02_009 crossref_primary_10_1016_j_rser_2017_01_052 crossref_primary_10_1016_j_jenvman_2023_117646 crossref_primary_10_1016_j_scitotenv_2017_04_028 crossref_primary_10_2134_jeq2010_0456 crossref_primary_10_1631_jzus_B0920101 crossref_primary_10_1007_s13280_014_0615_7 crossref_primary_10_1002_ael2_20084 crossref_primary_10_2134_jeq2010_0537 crossref_primary_10_1007_s10705_015_9748_8 crossref_primary_10_1016_j_envsoft_2016_05_022 crossref_primary_10_1007_s11356_014_3802_y crossref_primary_10_1007_s13762_017_1411_2 crossref_primary_10_1016_j_jenvman_2024_122710 crossref_primary_10_3390_agronomy10040561 crossref_primary_10_1002_hyp_8105 crossref_primary_10_1007_s11368_018_02232_z crossref_primary_10_1080_02626667_2011_630317 crossref_primary_10_1016_j_agwat_2014_10_031 crossref_primary_10_1016_j_apgeochem_2015_12_014 crossref_primary_10_3389_fenvs_2018_00058 crossref_primary_10_1016_j_cosust_2010_09_005 crossref_primary_10_2134_jeq2018_01_0042 crossref_primary_10_2134_jeq2018_04_0129 crossref_primary_10_1016_j_scitotenv_2013_10_050 crossref_primary_10_1007_s11356_018_2225_6 crossref_primary_10_2134_jeq2019_01_0020 crossref_primary_10_2134_jeq2010_0543 crossref_primary_10_1016_j_scitotenv_2013_07_086 |
Cites_doi | 10.1111/j.1475-2743.2007.00115.x 10.1111/j.1365-2389.1955.tb00849.x 10.13031/2013.31033 10.1016/j.ecoleng.2005.01.013 10.1016/j.geoderma.2004.12.011 10.1098/rstb.2001.0837 10.2166/wqrj.2004.042 10.1007/BF00382522 10.2134/jeq2002.1294 10.1016/j.agee.2006.03.029 10.1128/AEM.69.6.3593-3599.2003 10.1057/ukna.2008.20 10.2134/jeq2004.0439 10.1007/BF00210223 10.2134/jeq1995.00472425002400050018x 10.1002/ps.1193 10.1080/15572536.2004.11833063 10.1111/j.1752-1688.2006.tb03819.x 10.1016/j.envpol.2006.06.005 10.1079/9780851998220.0269 10.1016/j.ecoleng.2007.10.010 10.1080/00288233.2006.9513725 10.1016/S0022-1694(98)00272-8 10.2134/jeq2003.6130 10.1007/s00267-004-0271-y 10.2134/jeq2000.00472425002900010019x 10.1016/j.jhydrol.2007.10.048 10.2136/sssaj2001.653753x |
ContentType | Journal Article |
Copyright | Copyright © 2009 American Chemical Society 2009 INIST-CNRS Copyright American Chemical Society Mar 15, 2009 |
Copyright_xml | – notice: Copyright © 2009 American Chemical Society – notice: 2009 INIST-CNRS – notice: Copyright American Chemical Society Mar 15, 2009 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7QH 7TV 7U1 7UA F1W H97 L.G |
DOI | 10.1021/es8030193 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic Aqualine Pollution Abstracts Risk Abstracts Water Resources Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic Risk Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Pollution Abstracts Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts |
DatabaseTitleList | MEDLINE - Academic MEDLINE Biotechnology Research Abstracts Risk Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences Applied Sciences Agriculture |
EISSN | 1520-5851 |
EndPage | 1863 |
ExternalDocumentID | 1663651561 19368183 21246824 10_1021_es8030193 d138457365 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | - .K2 1AW 3R3 4.4 4R4 53G 55A 5GY 5VS 63O 7~N 85S AABXI ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 MS PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT UQL VF5 VG9 VQA W1F WH7 X XFK XZL YZZ --- -DZ -~X ..I .DC 6TJ AAHBH AAYOK AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV ADMHC ADUKH AGXLV AHGAQ CITATION CUPRZ GGK MS~ MW2 XSW ZCA .HR 186 1WB 42X 8WZ A6W ABHMW ACKIV ACRPL ADNMO AETEA AEYZD AGQPQ ANPPW ANTXH IHE IQODW MVM NHB OHT RNS TAE UBC UBX UBY VJK VOH YV5 ZCG ZY4 ~A~ CGR CUY CVF ECM EIF NPM YIN 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7QH 7TV 7U1 7UA F1W H97 L.G |
ID | FETCH-LOGICAL-a402t-ec7eeb76e57f813907a38fc0dbd2d23fd7fd395802a3af430235b0144a2a95df3 |
IEDL.DBID | ACS |
ISSN | 0013-936X |
IngestDate | Thu Jul 10 18:24:25 EDT 2025 Thu Jul 10 17:48:56 EDT 2025 Fri Jul 25 05:55:10 EDT 2025 Wed Feb 19 02:34:51 EST 2025 Mon Jul 21 09:14:53 EDT 2025 Tue Jul 01 02:10:15 EDT 2025 Thu Apr 24 23:11:25 EDT 2025 Thu Aug 27 13:42:21 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Microbial activity Fertilization Solubility Phosphorus Sediments Microbial biomass Transport process Ecosystem Surface water Vegetation Lixiviation Agriculture Stream |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a402t-ec7eeb76e57f813907a38fc0dbd2d23fd7fd395802a3af430235b0144a2a95df3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 19368183 |
PQID | 230139783 |
PQPubID | 45412 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_754543664 proquest_miscellaneous_67145198 proquest_journals_230139783 pubmed_primary_19368183 pascalfrancis_primary_21246824 crossref_primary_10_1021_es8030193 crossref_citationtrail_10_1021_es8030193 acs_journals_10_1021_es8030193 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-03-15 |
PublicationDateYYYYMMDD | 2009-03-15 |
PublicationDate_xml | – month: 03 year: 2009 text: 2009-03-15 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2009 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Margesin R. (ref22/cit22) 1996 Heckrath G. (ref31/cit31) 1995; 24 ref18/cit18 Borggaard O. K. (ref35/cit35) 2005; 127 ref11/cit11 ref16/cit16 Dabney S. M. (ref17/cit17) 2006; 42 Celi L. (ref34/cit34) 2001; 65 Dorioz J. M. (ref7/cit7) 2006; 117 Sharpely A. (ref1/cit1) 1997 ref39/cit39 Stutter M. I. (ref28/cit28) 2008; 350 Tomer M. D. (ref25/cit25) 2007; 62 ref5/cit5 Hickey A. U. (ref6/cit6) 2004; 39 Sobek E. A. (ref38/cit38) 2003; 95 Dillaha T. A. (ref33/cit33) 1989; 32 ref40/cit40 Dodds W. K. (ref27/cit27) 2000; 19 Bardgett R. D. (ref36/cit36) 1996; 22 ref26/cit26 Maguire R. O. (ref32/cit32) 2002; 31 Aye T. M. (ref30/cit30) 2006; 49 Öhlinger R. (ref23/cit23) 1996 ref21/cit21 Chardon W. J. (ref19/cit19) 1996; 46 Uusi-Kämppä J. (ref12/cit12) 2000; 29 Kiedrzyńska E. (ref14/cit14) 2008; 33 Krutz L. J. (ref37/cit37) 2006; 62 Campbell C. D. (ref24/cit24) 2003; 69 Ulèn B. (ref2/cit2) 2007; 23 Bruland G. L. (ref13/cit13) 2006; 171 Uusi-Kämppä J. (ref29/cit29) 2005; 24 ref4/cit4 Kröger R. (ref15/cit15) 2007; 146 Viaud V. (ref9/cit9) 2004; 34 Abu-Zreig M. (ref8/cit8) 2003; 32 Munos-Carpena R. (ref10/cit10) 1999; 214 Kronvang B. (ref3/cit3) 2005; 34 Saunders W. M. H. (ref20/cit20) 1955; 6 |
References_xml | – start-page: 1 volume-title: Phosphorus Loss from Soil to Water year: 1997 ident: ref1/cit1 – volume: 62 start-page: 329 year: 2007 ident: ref25/cit25 publication-title: J. Soil Water Conserv. – volume: 23 start-page: 5 issue: 1 year: 2007 ident: ref2/cit2 publication-title: Soil Use Manage. doi: 10.1111/j.1475-2743.2007.00115.x – ident: ref21/cit21 – ident: ref4/cit4 – volume: 6 start-page: 254 year: 1955 ident: ref20/cit20 publication-title: J. Soil Sci. doi: 10.1111/j.1365-2389.1955.tb00849.x – volume: 32 start-page: 513 year: 1989 ident: ref33/cit33 publication-title: Trans. ASAE doi: 10.13031/2013.31033 – volume: 24 start-page: 491 year: 2005 ident: ref29/cit29 publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2005.01.013 – volume: 127 start-page: 270 year: 2005 ident: ref35/cit35 publication-title: Geoderma doi: 10.1016/j.geoderma.2004.12.011 – ident: ref18/cit18 – ident: ref39/cit39 doi: 10.1098/rstb.2001.0837 – volume: 39 start-page: 311 year: 2004 ident: ref6/cit6 publication-title: Water Qual. Res. J. Canada doi: 10.2166/wqrj.2004.042 – ident: ref11/cit11 – volume: 22 start-page: 261 year: 1996 ident: ref36/cit36 publication-title: Biol. Fert. Soils doi: 10.1007/BF00382522 – volume: 31 start-page: 1294 year: 2002 ident: ref32/cit32 publication-title: J. Environ. Qual. doi: 10.2134/jeq2002.1294 – volume: 117 start-page: 4 year: 2006 ident: ref7/cit7 publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2006.03.029 – volume: 69 start-page: 3593 year: 2003 ident: ref24/cit24 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.69.6.3593-3599.2003 – ident: ref26/cit26 doi: 10.1057/ukna.2008.20 – start-page: 213 volume-title: Methods in Soil Biology year: 1996 ident: ref22/cit22 – ident: ref40/cit40 – volume: 34 start-page: 2129 year: 2005 ident: ref3/cit3 publication-title: J. Environ. Qual. doi: 10.2134/jeq2004.0439 – volume: 46 start-page: 41 year: 1996 ident: ref19/cit19 publication-title: Nutr. Cycl. Agroecosyst. doi: 10.1007/BF00210223 – volume: 24 start-page: 904 year: 1995 ident: ref31/cit31 publication-title: J. Environ. Qual. doi: 10.2134/jeq1995.00472425002400050018x – volume: 62 start-page: 505 year: 2006 ident: ref37/cit37 publication-title: Pest Manage. Sci. doi: 10.1002/ps.1193 – volume: 95 start-page: 590 year: 2003 ident: ref38/cit38 publication-title: Mycologia doi: 10.1080/15572536.2004.11833063 – start-page: 62 volume-title: Methods in Soil Biology year: 1996 ident: ref23/cit23 – volume: 42 start-page: 15 year: 2006 ident: ref17/cit17 publication-title: J. Am. Water Resour. Assoc. doi: 10.1111/j.1752-1688.2006.tb03819.x – volume: 171 start-page: 169 volume-title: Water Air Soil Poll. year: 2006 ident: ref13/cit13 – ident: ref5/cit5 – volume: 19 start-page: 186 volume-title: J. N. Am. Benthol. Soc. year: 2000 ident: ref27/cit27 – volume: 146 start-page: 114 year: 2007 ident: ref15/cit15 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2006.06.005 – ident: ref16/cit16 doi: 10.1079/9780851998220.0269 – volume: 33 start-page: 15 year: 2008 ident: ref14/cit14 publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2007.10.010 – volume: 49 start-page: 349 year: 2006 ident: ref30/cit30 publication-title: New Zeal. J. Agr. Res. doi: 10.1080/00288233.2006.9513725 – volume: 214 start-page: 111 year: 1999 ident: ref10/cit10 publication-title: J. Hydrol. doi: 10.1016/S0022-1694(98)00272-8 – volume: 32 start-page: 613 year: 2003 ident: ref8/cit8 publication-title: J. Environ. Qual. doi: 10.2134/jeq2003.6130 – volume: 34 start-page: 559 year: 2004 ident: ref9/cit9 publication-title: Environ. Manage. doi: 10.1007/s00267-004-0271-y – volume: 29 start-page: 151 year: 2000 ident: ref12/cit12 publication-title: J. Environ. Qual. doi: 10.2134/jeq2000.00472425002900010019x – volume: 350 start-page: 187 year: 2008 ident: ref28/cit28 publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2007.10.048 – volume: 65 start-page: 753 year: 2001 ident: ref34/cit34 publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2001.653753x |
SSID | ssj0002308 |
Score | 2.2984204 |
Snippet | Establishing vegetated buffer strips (VBS) between cropland and watercourses is currently promoted as a principal control of diffuse pollution transport.... |
SourceID | proquest pubmed pascalfrancis crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1858 |
SubjectTerms | Agriculture Applied sciences Aquatic ecosystems Biochemistry Biogeochemistry Environmental Processes Enzyme kinetics Exact sciences and technology Leaching Phosphorus - chemistry Phosphorus content Plants Pollution Pollution control Sediment transport Temperature Water Movements Water Pollutants, Chemical - chemistry Water Pollution, Chemical - prevention & control |
Title | Vegetated Buffer Strips Can Lead to Increased Release of Phosphorus to Waters: A Biogeochemical Assessment of the Mechanisms |
URI | http://dx.doi.org/10.1021/es8030193 https://www.ncbi.nlm.nih.gov/pubmed/19368183 https://www.proquest.com/docview/230139783 https://www.proquest.com/docview/67145198 https://www.proquest.com/docview/754543664 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6VcgEhHoXCUlgs4MAlZWMnscNtu7SqkIoQpbC3yE7stgKSVZ1cED-emc1jW9GFW6SMFcee8XzWPD6A1-iSTBrmk8AqlwaRMipQQptA6FxHCOYio6hQ-OhjcngSfZjH8w14tSaCz8O31iuC7am4ATd5oiTdsKaz4-G4RQytepqCVCTzvn3Q5aHkenJ_xfXcWWiPq-Ba-or1-HLpZw7uwfu-WqdNL_m-29RmN__1d_PGf_3Cfbjb4Uw2bRXjAWzYcgtuX-o-uAXb-6siNxTtrNw_hN9f7SllIdqC7TXEn8KOazxbPJvpkhEnJ6srhgcL5bOjzGf0XPjAKsc-nVV-cVZdNJ5Evmlq3fmOTdneeXVqiZtr2ZyATYd2oDQIISg7slSBfO5_-kdwcrD_ZXYYdCwNgca7Zx3YXFprZGJj6RTiyYnUQrl8UpiCF1y4QrpCpLGacC20i4ikKDZ0j9Ncp3HhxDZsllVpnwDjLjWxlESIXEShRajkQhNSDh4XqRX5CMa4jVlnZT5bBtB5mA3rO4I3_Q5nedfjnKg2flwn-nIQXbSNPa4TGl9Rk0ESHX6UKB6NYKfXm9W0UCMJVysc_mJ4i1ZLoRhd2qrxWSKJITlVI2BrJCRC20gkCX7icauPq2mimiPOEk__txw7cKsNfokgjJ_BZn3R2OeIoWozXtrQHx1XFBg |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1fb9MwED-N8QAI8WcwKIPOQiDxktHY-eMg8dCVTR1bJ8Q26FuwE3ubgKaaUyEQn4SvwpfjLm3SDW3iaRJvkXJOrLPv7nfy-X4AzzAk6cTPOp6RNvECqaUnhdKeUJkKEMwFWtJF4cFu1D8I3g7D4QL8qu_C4CQcfslVh_jz7gL-S-MkofekJqreNt-_YXrmXm-9wbV8zvnmxn6v780YBDyFeVHpmSw2RseRCWMrEet0YiWkzTq5znnOhc1jm4sklB2uhLIBEeiEmnIMxVUS5lbgd6_AVQQ9nBK7bm-v8fII3WXNjpCIaFh3LTo9VYp4mTsT8W6OlUPl2ylrxsWwtgpvm7fhd6OYqqrl89qk1GvZj796Rv6fmrsDt2aomnWnZnAXFsxoCW6c6rW4BMsb8yt9KDrzae4e_PxgDqnm0uRsfUJsMWyvRE_qWE-NGDGQsrJg6Eapeh9l3mOcxgdWWPbuqHDjo-Jk4kjko6JGpa9Yl60fF4eGmMiqVgys2zQ_pUEIuNnA0H3rY_fV3YeDS9HLMiyOipF5CIzbRIdxTPTPeeAbBIbW1z5VHHKRGJG1oI3Lmc58ikurcgHup816tuBFvbHSbNbRnYhFvpwn-rQRHU_bmJwn1D6zOxtJhDdBJHnQgpV6u86nhYZAWYTE4avNW_RRdPCkRqaYuDSKiQ86kS1gF0jECOQDEUX4iwdTM5hPE60LUaV49C91rMK1_v5gJ93Z2t1egevTYz_h-eFjWCxPJuYJosdStyszZvDpsnf_H8Old00 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1bT9RAFD5BTIzGeEHBFV0mRhNfittOL1MTH5aFDYgQIqL7VmfaGSBou2G6MRp_i3_Fv-Y53bYLBuITiW9NeqadzJzLdzJnzgfwHEOSit2052hhYscXSjiCS-VwmUofwZyvBF0U3tkNNw_8t6NgNAe_mrswOAmLX7LVIT5Z9TgzdYcB95W2ghB83JBVb-vv3zBFs2-21nE_X3jecOPDYNOpWQQciblR6eg00lpFoQ4iIxDv9CLJhUl7mcq8zOMmi0zG40D0PMml8YlEJ1CUZ0hPxkFmOH73Glyn40FK7vqD_dbTI3wXDUNCzMNR07no7FQp6qX2XNS7PZYWN8BMmTMuh7ZViBvehd_t4lSVLSerk1Ktpj_-6hv5_67ePbhTo2vWn5rDfZjT-QLcOtNzcQEWN2ZX-1C09m32Afz8qA-p9lJnbG1CrDFsv0SPatlA5oyYSFlZMHSnVMWPMu8xXuMDKwzbOyrs-Kg4nVgS-SSpYelr1mdrx8WhJkayqiUD67dNUGkQAm-2o-ne9bH9ah_CwZWsyyLM50WuHwHzTKxQt4gGOvNdjQDRuMqlykOPx5qnHejilia1b7FJVTbguUm7nx142ShXktad3Ylg5MtFos9a0fG0nclFQt1zGtpKIszxQ-H5HVhuVHY2LTQGyiYEDl9p36KvogMometiYpMwIl7oWHSAXSIRIaD3eRjiL5ampjCbJloYokv--F_LsQI39taHybut3e1luDk9_eOOGzyB-fJ0op8iiCxVt7JkBp-vWvn_AB1PedA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vegetated+Buffer+Strips+Can+Lead+to+Increased+Release+of+Phosphorus+to+Waters%3A+A+Biogeochemical+Assessment+of+the+Mechanisms&rft.jtitle=Environmental+science+%26+technology&rft.au=Stutter%2C+Marc+I&rft.au=Langan%2C+Simon+J&rft.au=Lumsdon%2C+David+G&rft.date=2009-03-15&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=43&rft.issue=6&rft.spage=1858&rft.epage=1863&rft_id=info:doi/10.1021%2Fes8030193&rft.externalDocID=d138457365 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |