Vegetated Buffer Strips Can Lead to Increased Release of Phosphorus to Waters: A Biogeochemical Assessment of the Mechanisms

Establishing vegetated buffer strips (VBS) between cropland and watercourses is currently promoted as a principal control of diffuse pollution transport. However, we lack the mechanistic understanding to evaluate P retention in VBS and predict risks of P transport to aquatic ecosystems. We observed...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 43; no. 6; pp. 1858 - 1863
Main Authors Stutter, Marc I, Langan, Simon J, Lumsdon, David G
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 15.03.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Establishing vegetated buffer strips (VBS) between cropland and watercourses is currently promoted as a principal control of diffuse pollution transport. However, we lack the mechanistic understanding to evaluate P retention in VBS and predict risks of P transport to aquatic ecosystems. We observed that VBS establishment led to enhanced rates of soil P cycling, increasing soil P solubility and the potential amount leached to watercourses. Soil in VBS, relative to adjacent fields, had increased inorganic P solubility indices, dissolved organic P, phosphatase enzyme activity, microbial diversity, and biomass P. Small relative increases in the pool of soil P rendered labile had disproportionate effects on the P available for leaching. We propose a mechanism whereby the establishment of VBS on previous agricultural land causes a diversifying plant−microbial system which can access previous immobilized soil P from past fertilization or trapped sediment P. Laboratory experiments suggested that sediment-P inputs to VBS were insufficient alone to increase P solubility without biological cycling. Results show that VBS management may require strategies, for example, harvesting vegetation, to offset biochemical processes that can increase the susceptibility of VBS soil P to move to adjoining streams.
AbstractList Establishing vegetated buffer strips (VBS) between cropland and watercourses is currently promoted as a principal control of diffuse pollution transport. However, we lack the mechanistic understanding to evaluate P retention in VBS and predict risks of P transport to aquatic ecosystems. We observed that VBS establishment led to enhanced rates of soil P cycling, increasing soil P solubility and the potential amount leached to watercourses. Soil in VBS, relative to adjacent fields, had increased inorganic P solubility indices, dissolved organic P, phosphatase enzyme activity, microbial diversity, and biomass P. Small relative increases in the pool of soil P rendered labile had disproportionate effects on the P available for leaching. We propose a mechanism whereby the establishment of VBS on previous agricultural land causes a diversifying plant−microbial system which can access previous immobilized soil P from past fertilization or trapped sediment P. Laboratory experiments suggested that sediment-P inputs to VBS were insufficient alone to increase P solubility without biological cycling. Results show that VBS management may require strategies, for example, harvesting vegetation, to offset biochemical processes that can increase the susceptibility of VBS soil P to move to adjoining streams.
Establishing vegetated buffer strips (VBS) between cropland and watercourses is currently promoted as a principal control of diffuse pollution transport. However, we lackthe mechanistic understanding to evaluate P retention in VBS and predict risks of P transport to aquatic ecosystems. We observed that VBS establishment led to enhanced rates of soil P cycling, increasing soil P solubility and the potential amount leached to watercourses. Soil in VBS, relative to adjacentfields, had increased inorganic P solubility indices, dissolved organic P, phosphatase enzyme activity, microbial diversity, and biomass P. Small relative increases in the pool of soil P rendered labile had disproportionate effects on the P available for leaching. We propose a mechanism whereby the establishment of VBS on previous agricultural land causes a diversifying plant-microbial system which can access previous immobilized soil P from past fertilization or trapped sediment P. Laboratory experiments suggested that sediment-P inputs to VBS were insufficient alone to increase P solubility without biological cycling. Results showthat VBS management may require strategies, for example, harvesting vegetation, to offset biochemical processes that can increase the susceptibility of VBS soil P to move to adjoining streams.Establishing vegetated buffer strips (VBS) between cropland and watercourses is currently promoted as a principal control of diffuse pollution transport. However, we lackthe mechanistic understanding to evaluate P retention in VBS and predict risks of P transport to aquatic ecosystems. We observed that VBS establishment led to enhanced rates of soil P cycling, increasing soil P solubility and the potential amount leached to watercourses. Soil in VBS, relative to adjacentfields, had increased inorganic P solubility indices, dissolved organic P, phosphatase enzyme activity, microbial diversity, and biomass P. Small relative increases in the pool of soil P rendered labile had disproportionate effects on the P available for leaching. We propose a mechanism whereby the establishment of VBS on previous agricultural land causes a diversifying plant-microbial system which can access previous immobilized soil P from past fertilization or trapped sediment P. Laboratory experiments suggested that sediment-P inputs to VBS were insufficient alone to increase P solubility without biological cycling. Results showthat VBS management may require strategies, for example, harvesting vegetation, to offset biochemical processes that can increase the susceptibility of VBS soil P to move to adjoining streams.
Establishing vegetated buffer strips (VBS) between cropland and watercourses is currently promoted as a principal control of diffuse pollution transport. However, we lackthe mechanistic understanding to evaluate P retention in VBS and predict risks of P transport to aquatic ecosystems. We observed that VBS establishment led to enhanced rates of soil P cycling, increasing soil P solubility and the potential amount leached to watercourses. Soil in VBS, relative to adjacentfields, had increased inorganic P solubility indices, dissolved organic P, phosphatase enzyme activity, microbial diversity, and biomass P. Small relative increases in the pool of soil P rendered labile had disproportionate effects on the P available for leaching. We propose a mechanism whereby the establishment of VBS on previous agricultural land causes a diversifying plant-microbial system which can access previous immobilized soil P from past fertilization or trapped sediment P. Laboratory experiments suggested that sediment-P inputs to VBS were insufficient alone to increase P solubility without biological cycling. Results showthat VBS management may require strategies, for example, harvesting vegetation, to offset biochemical processes that can increase the susceptibility of VBS soil P to move to adjoining streams.
Establishing vegetated buffer strips (VBS) between cropland and watercourses is currently promoted as a principal control of diffuse pollution transport. However, we lack the mechanistic understanding to evaluate P retention in VBS and predict risks of P transport to aquatic ecosystems. We observed that VBS establishment led to enhanced rates of soil P cycling, increasing soil P solubility and the potential amount leached to watercourses. Soil in VBS, relative to adjacent fields, had increased inorganic P solubility indices, dissolved organic P, phosphatase enzyme activity, microbial diversity, and biomass P. Small relative increases in the pool of soil P rendered labile had disproportionate effects on the P available for leaching. We propose a mechanism whereby the establishment of VBS on previous agricultural land causes a diversifying plant - microbial system which can access previous immobilized soil P from past fertilization or trapped sediment P. Laboratory experiments suggested that sediment-P inputs to VBS were insufficient alone to increase P solubility without biological cycling. Results show that VBS management may require strategies, for example, harvesting vegetation, to offset biochemical processes that can increase the susceptibility of VBS soil P to move to adjoining streams. [PUBLICATION ABSTRACT]
Establishing vegetated buffer strips (VBS) between cropland and watercourses is currently promoted as a principal control of diffuse pollution transport. However, we lack the mechanistic understanding to evaluate P retention in VBS and predict risks of P transport to aquatic ecosystems. We observed that VBS establishment led to enhanced rates of soil P cycling, increasing soil P solubility and the potential amount leached to watercourses. Soil in VBS, relative to adjacent fields, had increased inorganic P solubility indices, dissolved organic P, phosphatase enzyme activity, microbial diversity, and biomass P. Small relative increases in the pool of soil P rendered labile had disproportionate effects on the P available for leaching. We propose a mechanism whereby the establishment of VBS on previous agricultural land causes a diversifying plant-microbial system which can access previous immobilized soil P from past fertilization or trapped sediment P. Laboratory experiments suggested that sediment-P inputs to VBS were insufficient alone to increase P solubility without biological cycling. Results show that VBS management may require strategies, for example, harvesting vegetation, to offset biochemical processes that can increase the susceptibility of VBS soil P to move to adjoining streams.
Author Lumsdon, David G
Langan, Simon J
Stutter, Marc I
Author_xml – sequence: 1
  givenname: Marc I
  surname: Stutter
  fullname: Stutter, Marc I
  email: m.stutter@macaulay.ac.uk
– sequence: 2
  givenname: Simon J
  surname: Langan
  fullname: Langan, Simon J
– sequence: 3
  givenname: David G
  surname: Lumsdon
  fullname: Lumsdon, David G
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21246824$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19368183$$D View this record in MEDLINE/PubMed
BookMark eNp90ktv1DAQAGALFdFt4cAfQBYSIA6hfsSJw227KlBpEYj3LfI6466rxF48yaESPx5HXVqpIE724ZvRvI7IQYgBCHnM2SvOBD8B1Ewy3sh7ZMGVYIXSih-QBWNcFo2sfhySI8RLxpiQTD8gh5lWmmu5IL--wQWMZoSOnk7OQaKfx-R3SFcm0DWYjo6RngebwGA2n6CfPzQ6-nEbcbeNacKZfM8pEr6mS3rq4wVEu4XBW9PTJSIgDhDGOWjcAn0PdmuCxwEfkvvO9AiP9u8x-frm7MvqXbH-8PZ8tVwXpmRiLMDWAJu6AlU7zWXDaiO1s6zbdKIT0nW162SjNBNGGlfK3KXaMF6WRphGdU4ekxfXeXcp_pwAx3bwaKHvTYA4YVurUpWyqsosn_9XVjUvFW90hk_vwMs4pZC7aPOMc5G1lhk92aNpM0DX7pIfTLpq_4w_g2d7YDAPyyUTrMcbJ7goKy3msl5eO5siYgJ3m4q18wm0NyeQ7ckda31esI9hTMb3_4zYV2Es3rbxt_sNiNy81g
CODEN ESTHAG
CitedBy_id crossref_primary_10_3390_w10070864
crossref_primary_10_1007_s11270_020_04564_4
crossref_primary_10_1016_j_scitotenv_2017_05_091
crossref_primary_10_3389_fenvs_2024_1340565
crossref_primary_10_2134_jeq2011_0439
crossref_primary_10_1016_j_geodrs_2023_e00689
crossref_primary_10_1016_j_scitotenv_2021_149238
crossref_primary_10_2478_agri_2018_0002
crossref_primary_10_1016_j_scitotenv_2013_08_061
crossref_primary_10_3390_soilsystems5010015
crossref_primary_10_2134_jeq2018_05_0216
crossref_primary_10_5194_hess_18_855_2014
crossref_primary_10_1007_s10661_013_3586_4
crossref_primary_10_1016_j_ecoleng_2016_11_072
crossref_primary_10_2134_jeq2017_11_0422
crossref_primary_10_1016_j_biombioe_2012_09_053
crossref_primary_10_1016_j_scitotenv_2017_02_034
crossref_primary_10_1016_j_watres_2015_07_048
crossref_primary_10_1016_j_scitotenv_2024_174906
crossref_primary_10_1007_s11368_023_03521_y
crossref_primary_10_2134_jeq2010_0434
crossref_primary_10_1007_s13280_020_01361_5
crossref_primary_10_1016_j_envsoft_2014_11_002
crossref_primary_10_1002_ldr_3051
crossref_primary_10_1016_j_ecoleng_2012_12_086
crossref_primary_10_3390_ijerph14090968
crossref_primary_10_1080_09064710_2017_1339823
crossref_primary_10_14249_eia_2015_24_5_516
crossref_primary_10_1002_clen_201400591
crossref_primary_10_1016_j_jglr_2020_05_001
crossref_primary_10_1016_j_ecoleng_2018_11_024
crossref_primary_10_1016_j_scitotenv_2017_12_179
crossref_primary_10_1111_j_1475_2743_2012_00443_x
crossref_primary_10_3389_fmars_2018_00276
crossref_primary_10_3390_w10101489
crossref_primary_10_1016_j_geoderma_2010_06_003
crossref_primary_10_1016_j_scitotenv_2023_162638
crossref_primary_10_1016_j_chemosphere_2012_10_093
crossref_primary_10_1007_s11270_011_0764_2
crossref_primary_10_1007_s10661_018_7076_6
crossref_primary_10_1002_hyp_10432
crossref_primary_10_1007_s10750_020_04256_4
crossref_primary_10_1007_s11356_024_34383_7
crossref_primary_10_1525_cse_2024_2210963
crossref_primary_10_2134_jeq2010_0441
crossref_primary_10_3389_fenvs_2022_764333
crossref_primary_10_1016_j_ecoleng_2024_107512
crossref_primary_10_1016_j_agwat_2018_03_021
crossref_primary_10_1016_j_scitotenv_2025_178856
crossref_primary_10_1016_j_ecoleng_2024_107354
crossref_primary_10_1002_vzj2_20193
crossref_primary_10_1007_s11356_018_4030_7
crossref_primary_10_1111_j_1365_2427_2012_02748_x
crossref_primary_10_1016_j_envres_2023_116434
crossref_primary_10_1007_s11270_013_1602_5
crossref_primary_10_1016_j_agee_2024_109050
crossref_primary_10_1016_j_scitotenv_2018_12_468
crossref_primary_10_29252_jwmr_8_16_157
crossref_primary_10_1016_j_jenvman_2011_11_015
crossref_primary_10_1139_er_2017_0077
crossref_primary_10_3390_w12030617
crossref_primary_10_1016_j_geoderma_2018_12_034
crossref_primary_10_1016_j_watres_2011_03_048
crossref_primary_10_1007_s00374_013_0802_x
crossref_primary_10_1080_09593330_2014_881421
crossref_primary_10_1021_acs_est_8b01036
crossref_primary_10_1016_j_ecoleng_2012_02_009
crossref_primary_10_1016_j_rser_2017_01_052
crossref_primary_10_1016_j_jenvman_2023_117646
crossref_primary_10_1016_j_scitotenv_2017_04_028
crossref_primary_10_2134_jeq2010_0456
crossref_primary_10_1631_jzus_B0920101
crossref_primary_10_1007_s13280_014_0615_7
crossref_primary_10_1002_ael2_20084
crossref_primary_10_2134_jeq2010_0537
crossref_primary_10_1007_s10705_015_9748_8
crossref_primary_10_1016_j_envsoft_2016_05_022
crossref_primary_10_1007_s11356_014_3802_y
crossref_primary_10_1007_s13762_017_1411_2
crossref_primary_10_1016_j_jenvman_2024_122710
crossref_primary_10_3390_agronomy10040561
crossref_primary_10_1002_hyp_8105
crossref_primary_10_1007_s11368_018_02232_z
crossref_primary_10_1080_02626667_2011_630317
crossref_primary_10_1016_j_agwat_2014_10_031
crossref_primary_10_1016_j_apgeochem_2015_12_014
crossref_primary_10_3389_fenvs_2018_00058
crossref_primary_10_1016_j_cosust_2010_09_005
crossref_primary_10_2134_jeq2018_01_0042
crossref_primary_10_2134_jeq2018_04_0129
crossref_primary_10_1016_j_scitotenv_2013_10_050
crossref_primary_10_1007_s11356_018_2225_6
crossref_primary_10_2134_jeq2019_01_0020
crossref_primary_10_2134_jeq2010_0543
crossref_primary_10_1016_j_scitotenv_2013_07_086
Cites_doi 10.1111/j.1475-2743.2007.00115.x
10.1111/j.1365-2389.1955.tb00849.x
10.13031/2013.31033
10.1016/j.ecoleng.2005.01.013
10.1016/j.geoderma.2004.12.011
10.1098/rstb.2001.0837
10.2166/wqrj.2004.042
10.1007/BF00382522
10.2134/jeq2002.1294
10.1016/j.agee.2006.03.029
10.1128/AEM.69.6.3593-3599.2003
10.1057/ukna.2008.20
10.2134/jeq2004.0439
10.1007/BF00210223
10.2134/jeq1995.00472425002400050018x
10.1002/ps.1193
10.1080/15572536.2004.11833063
10.1111/j.1752-1688.2006.tb03819.x
10.1016/j.envpol.2006.06.005
10.1079/9780851998220.0269
10.1016/j.ecoleng.2007.10.010
10.1080/00288233.2006.9513725
10.1016/S0022-1694(98)00272-8
10.2134/jeq2003.6130
10.1007/s00267-004-0271-y
10.2134/jeq2000.00472425002900010019x
10.1016/j.jhydrol.2007.10.048
10.2136/sssaj2001.653753x
ContentType Journal Article
Copyright Copyright © 2009 American Chemical Society
2009 INIST-CNRS
Copyright American Chemical Society Mar 15, 2009
Copyright_xml – notice: Copyright © 2009 American Chemical Society
– notice: 2009 INIST-CNRS
– notice: Copyright American Chemical Society Mar 15, 2009
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7QH
7TV
7U1
7UA
F1W
H97
L.G
DOI 10.1021/es8030193
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
Aqualine
Pollution Abstracts
Risk Abstracts
Water Resources Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
Risk Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Pollution Abstracts
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Biotechnology Research Abstracts
Risk Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Applied Sciences
Agriculture
EISSN 1520-5851
EndPage 1863
ExternalDocumentID 1663651561
19368183
21246824
10_1021_es8030193
d138457365
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID -
.K2
1AW
3R3
4.4
4R4
53G
55A
5GY
5VS
63O
7~N
85S
AABXI
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
MS
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
UQL
VF5
VG9
VQA
W1F
WH7
X
XFK
XZL
YZZ
---
-DZ
-~X
..I
.DC
6TJ
AAHBH
AAYOK
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
ADMHC
ADUKH
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
MS~
MW2
XSW
ZCA
.HR
186
1WB
42X
8WZ
A6W
ABHMW
ACKIV
ACRPL
ADNMO
AETEA
AEYZD
AGQPQ
ANPPW
ANTXH
IHE
IQODW
MVM
NHB
OHT
RNS
TAE
UBC
UBX
UBY
VJK
VOH
YV5
ZCG
ZY4
~A~
CGR
CUY
CVF
ECM
EIF
NPM
YIN
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7QH
7TV
7U1
7UA
F1W
H97
L.G
ID FETCH-LOGICAL-a402t-ec7eeb76e57f813907a38fc0dbd2d23fd7fd395802a3af430235b0144a2a95df3
IEDL.DBID ACS
ISSN 0013-936X
IngestDate Thu Jul 10 18:24:25 EDT 2025
Thu Jul 10 17:48:56 EDT 2025
Fri Jul 25 05:55:10 EDT 2025
Wed Feb 19 02:34:51 EST 2025
Mon Jul 21 09:14:53 EDT 2025
Tue Jul 01 02:10:15 EDT 2025
Thu Apr 24 23:11:25 EDT 2025
Thu Aug 27 13:42:21 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Microbial activity
Fertilization
Solubility
Phosphorus
Sediments
Microbial biomass
Transport process
Ecosystem
Surface water
Vegetation
Lixiviation
Agriculture
Stream
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a402t-ec7eeb76e57f813907a38fc0dbd2d23fd7fd395802a3af430235b0144a2a95df3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 19368183
PQID 230139783
PQPubID 45412
PageCount 6
ParticipantIDs proquest_miscellaneous_754543664
proquest_miscellaneous_67145198
proquest_journals_230139783
pubmed_primary_19368183
pascalfrancis_primary_21246824
crossref_primary_10_1021_es8030193
crossref_citationtrail_10_1021_es8030193
acs_journals_10_1021_es8030193
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-03-15
PublicationDateYYYYMMDD 2009-03-15
PublicationDate_xml – month: 03
  year: 2009
  text: 2009-03-15
  day: 15
PublicationDecade 2000
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2009
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Margesin R. (ref22/cit22) 1996
Heckrath G. (ref31/cit31) 1995; 24
ref18/cit18
Borggaard O. K. (ref35/cit35) 2005; 127
ref11/cit11
ref16/cit16
Dabney S. M. (ref17/cit17) 2006; 42
Celi L. (ref34/cit34) 2001; 65
Dorioz J. M. (ref7/cit7) 2006; 117
Sharpely A. (ref1/cit1) 1997
ref39/cit39
Stutter M. I. (ref28/cit28) 2008; 350
Tomer M. D. (ref25/cit25) 2007; 62
ref5/cit5
Hickey A. U. (ref6/cit6) 2004; 39
Sobek E. A. (ref38/cit38) 2003; 95
Dillaha T. A. (ref33/cit33) 1989; 32
ref40/cit40
Dodds W. K. (ref27/cit27) 2000; 19
Bardgett R. D. (ref36/cit36) 1996; 22
ref26/cit26
Maguire R. O. (ref32/cit32) 2002; 31
Aye T. M. (ref30/cit30) 2006; 49
Öhlinger R. (ref23/cit23) 1996
ref21/cit21
Chardon W. J. (ref19/cit19) 1996; 46
Uusi-Kämppä J. (ref12/cit12) 2000; 29
Kiedrzyńska E. (ref14/cit14) 2008; 33
Krutz L. J. (ref37/cit37) 2006; 62
Campbell C. D. (ref24/cit24) 2003; 69
Ulèn B. (ref2/cit2) 2007; 23
Bruland G. L. (ref13/cit13) 2006; 171
Uusi-Kämppä J. (ref29/cit29) 2005; 24
ref4/cit4
Kröger R. (ref15/cit15) 2007; 146
Viaud V. (ref9/cit9) 2004; 34
Abu-Zreig M. (ref8/cit8) 2003; 32
Munos-Carpena R. (ref10/cit10) 1999; 214
Kronvang B. (ref3/cit3) 2005; 34
Saunders W. M. H. (ref20/cit20) 1955; 6
References_xml – start-page: 1
  volume-title: Phosphorus Loss from Soil to Water
  year: 1997
  ident: ref1/cit1
– volume: 62
  start-page: 329
  year: 2007
  ident: ref25/cit25
  publication-title: J. Soil Water Conserv.
– volume: 23
  start-page: 5
  issue: 1
  year: 2007
  ident: ref2/cit2
  publication-title: Soil Use Manage.
  doi: 10.1111/j.1475-2743.2007.00115.x
– ident: ref21/cit21
– ident: ref4/cit4
– volume: 6
  start-page: 254
  year: 1955
  ident: ref20/cit20
  publication-title: J. Soil Sci.
  doi: 10.1111/j.1365-2389.1955.tb00849.x
– volume: 32
  start-page: 513
  year: 1989
  ident: ref33/cit33
  publication-title: Trans. ASAE
  doi: 10.13031/2013.31033
– volume: 24
  start-page: 491
  year: 2005
  ident: ref29/cit29
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2005.01.013
– volume: 127
  start-page: 270
  year: 2005
  ident: ref35/cit35
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2004.12.011
– ident: ref18/cit18
– ident: ref39/cit39
  doi: 10.1098/rstb.2001.0837
– volume: 39
  start-page: 311
  year: 2004
  ident: ref6/cit6
  publication-title: Water Qual. Res. J. Canada
  doi: 10.2166/wqrj.2004.042
– ident: ref11/cit11
– volume: 22
  start-page: 261
  year: 1996
  ident: ref36/cit36
  publication-title: Biol. Fert. Soils
  doi: 10.1007/BF00382522
– volume: 31
  start-page: 1294
  year: 2002
  ident: ref32/cit32
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2002.1294
– volume: 117
  start-page: 4
  year: 2006
  ident: ref7/cit7
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2006.03.029
– volume: 69
  start-page: 3593
  year: 2003
  ident: ref24/cit24
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.69.6.3593-3599.2003
– ident: ref26/cit26
  doi: 10.1057/ukna.2008.20
– start-page: 213
  volume-title: Methods in Soil Biology
  year: 1996
  ident: ref22/cit22
– ident: ref40/cit40
– volume: 34
  start-page: 2129
  year: 2005
  ident: ref3/cit3
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2004.0439
– volume: 46
  start-page: 41
  year: 1996
  ident: ref19/cit19
  publication-title: Nutr. Cycl. Agroecosyst.
  doi: 10.1007/BF00210223
– volume: 24
  start-page: 904
  year: 1995
  ident: ref31/cit31
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq1995.00472425002400050018x
– volume: 62
  start-page: 505
  year: 2006
  ident: ref37/cit37
  publication-title: Pest Manage. Sci.
  doi: 10.1002/ps.1193
– volume: 95
  start-page: 590
  year: 2003
  ident: ref38/cit38
  publication-title: Mycologia
  doi: 10.1080/15572536.2004.11833063
– start-page: 62
  volume-title: Methods in Soil Biology
  year: 1996
  ident: ref23/cit23
– volume: 42
  start-page: 15
  year: 2006
  ident: ref17/cit17
  publication-title: J. Am. Water Resour. Assoc.
  doi: 10.1111/j.1752-1688.2006.tb03819.x
– volume: 171
  start-page: 169
  volume-title: Water Air Soil Poll.
  year: 2006
  ident: ref13/cit13
– ident: ref5/cit5
– volume: 19
  start-page: 186
  volume-title: J. N. Am. Benthol. Soc.
  year: 2000
  ident: ref27/cit27
– volume: 146
  start-page: 114
  year: 2007
  ident: ref15/cit15
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2006.06.005
– ident: ref16/cit16
  doi: 10.1079/9780851998220.0269
– volume: 33
  start-page: 15
  year: 2008
  ident: ref14/cit14
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2007.10.010
– volume: 49
  start-page: 349
  year: 2006
  ident: ref30/cit30
  publication-title: New Zeal. J. Agr. Res.
  doi: 10.1080/00288233.2006.9513725
– volume: 214
  start-page: 111
  year: 1999
  ident: ref10/cit10
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(98)00272-8
– volume: 32
  start-page: 613
  year: 2003
  ident: ref8/cit8
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2003.6130
– volume: 34
  start-page: 559
  year: 2004
  ident: ref9/cit9
  publication-title: Environ. Manage.
  doi: 10.1007/s00267-004-0271-y
– volume: 29
  start-page: 151
  year: 2000
  ident: ref12/cit12
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2000.00472425002900010019x
– volume: 350
  start-page: 187
  year: 2008
  ident: ref28/cit28
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2007.10.048
– volume: 65
  start-page: 753
  year: 2001
  ident: ref34/cit34
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2001.653753x
SSID ssj0002308
Score 2.2984204
Snippet Establishing vegetated buffer strips (VBS) between cropland and watercourses is currently promoted as a principal control of diffuse pollution transport....
SourceID proquest
pubmed
pascalfrancis
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1858
SubjectTerms Agriculture
Applied sciences
Aquatic ecosystems
Biochemistry
Biogeochemistry
Environmental Processes
Enzyme kinetics
Exact sciences and technology
Leaching
Phosphorus - chemistry
Phosphorus content
Plants
Pollution
Pollution control
Sediment transport
Temperature
Water Movements
Water Pollutants, Chemical - chemistry
Water Pollution, Chemical - prevention & control
Title Vegetated Buffer Strips Can Lead to Increased Release of Phosphorus to Waters: A Biogeochemical Assessment of the Mechanisms
URI http://dx.doi.org/10.1021/es8030193
https://www.ncbi.nlm.nih.gov/pubmed/19368183
https://www.proquest.com/docview/230139783
https://www.proquest.com/docview/67145198
https://www.proquest.com/docview/754543664
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6VcgEhHoXCUlgs4MAlZWMnscNtu7SqkIoQpbC3yE7stgKSVZ1cED-emc1jW9GFW6SMFcee8XzWPD6A1-iSTBrmk8AqlwaRMipQQptA6FxHCOYio6hQ-OhjcngSfZjH8w14tSaCz8O31iuC7am4ATd5oiTdsKaz4-G4RQytepqCVCTzvn3Q5aHkenJ_xfXcWWiPq-Ba-or1-HLpZw7uwfu-WqdNL_m-29RmN__1d_PGf_3Cfbjb4Uw2bRXjAWzYcgtuX-o-uAXb-6siNxTtrNw_hN9f7SllIdqC7TXEn8KOazxbPJvpkhEnJ6srhgcL5bOjzGf0XPjAKsc-nVV-cVZdNJ5Evmlq3fmOTdneeXVqiZtr2ZyATYd2oDQIISg7slSBfO5_-kdwcrD_ZXYYdCwNgca7Zx3YXFprZGJj6RTiyYnUQrl8UpiCF1y4QrpCpLGacC20i4ikKDZ0j9Ncp3HhxDZsllVpnwDjLjWxlESIXEShRajkQhNSDh4XqRX5CMa4jVlnZT5bBtB5mA3rO4I3_Q5nedfjnKg2flwn-nIQXbSNPa4TGl9Rk0ESHX6UKB6NYKfXm9W0UCMJVysc_mJ4i1ZLoRhd2qrxWSKJITlVI2BrJCRC20gkCX7icauPq2mimiPOEk__txw7cKsNfokgjJ_BZn3R2OeIoWozXtrQHx1XFBg
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1fb9MwED-N8QAI8WcwKIPOQiDxktHY-eMg8dCVTR1bJ8Q26FuwE3ubgKaaUyEQn4SvwpfjLm3SDW3iaRJvkXJOrLPv7nfy-X4AzzAk6cTPOp6RNvECqaUnhdKeUJkKEMwFWtJF4cFu1D8I3g7D4QL8qu_C4CQcfslVh_jz7gL-S-MkofekJqreNt-_YXrmXm-9wbV8zvnmxn6v780YBDyFeVHpmSw2RseRCWMrEet0YiWkzTq5znnOhc1jm4sklB2uhLIBEeiEmnIMxVUS5lbgd6_AVQQ9nBK7bm-v8fII3WXNjpCIaFh3LTo9VYp4mTsT8W6OlUPl2ylrxsWwtgpvm7fhd6OYqqrl89qk1GvZj796Rv6fmrsDt2aomnWnZnAXFsxoCW6c6rW4BMsb8yt9KDrzae4e_PxgDqnm0uRsfUJsMWyvRE_qWE-NGDGQsrJg6Eapeh9l3mOcxgdWWPbuqHDjo-Jk4kjko6JGpa9Yl60fF4eGmMiqVgys2zQ_pUEIuNnA0H3rY_fV3YeDS9HLMiyOipF5CIzbRIdxTPTPeeAbBIbW1z5VHHKRGJG1oI3Lmc58ikurcgHup816tuBFvbHSbNbRnYhFvpwn-rQRHU_bmJwn1D6zOxtJhDdBJHnQgpV6u86nhYZAWYTE4avNW_RRdPCkRqaYuDSKiQ86kS1gF0jECOQDEUX4iwdTM5hPE60LUaV49C91rMK1_v5gJ93Z2t1egevTYz_h-eFjWCxPJuYJosdStyszZvDpsnf_H8Old00
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1bT9RAFD5BTIzGeEHBFV0mRhNfittOL1MTH5aFDYgQIqL7VmfaGSBou2G6MRp_i3_Fv-Y53bYLBuITiW9NeqadzJzLdzJnzgfwHEOSit2052hhYscXSjiCS-VwmUofwZyvBF0U3tkNNw_8t6NgNAe_mrswOAmLX7LVIT5Z9TgzdYcB95W2ghB83JBVb-vv3zBFs2-21nE_X3jecOPDYNOpWQQciblR6eg00lpFoQ4iIxDv9CLJhUl7mcq8zOMmi0zG40D0PMml8YlEJ1CUZ0hPxkFmOH73Glyn40FK7vqD_dbTI3wXDUNCzMNR07no7FQp6qX2XNS7PZYWN8BMmTMuh7ZViBvehd_t4lSVLSerk1Ktpj_-6hv5_67ePbhTo2vWn5rDfZjT-QLcOtNzcQEWN2ZX-1C09m32Afz8qA-p9lJnbG1CrDFsv0SPatlA5oyYSFlZMHSnVMWPMu8xXuMDKwzbOyrs-Kg4nVgS-SSpYelr1mdrx8WhJkayqiUD67dNUGkQAm-2o-ne9bH9ah_CwZWsyyLM50WuHwHzTKxQt4gGOvNdjQDRuMqlykOPx5qnHejilia1b7FJVTbguUm7nx142ShXktad3Ylg5MtFos9a0fG0nclFQt1zGtpKIszxQ-H5HVhuVHY2LTQGyiYEDl9p36KvogMometiYpMwIl7oWHSAXSIRIaD3eRjiL5ampjCbJloYokv--F_LsQI39taHybut3e1luDk9_eOOGzyB-fJ0op8iiCxVt7JkBp-vWvn_AB1PedA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vegetated+Buffer+Strips+Can+Lead+to+Increased+Release+of+Phosphorus+to+Waters%3A+A+Biogeochemical+Assessment+of+the+Mechanisms&rft.jtitle=Environmental+science+%26+technology&rft.au=Stutter%2C+Marc+I&rft.au=Langan%2C+Simon+J&rft.au=Lumsdon%2C+David+G&rft.date=2009-03-15&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=43&rft.issue=6&rft.spage=1858&rft.epage=1863&rft_id=info:doi/10.1021%2Fes8030193&rft.externalDocID=d138457365
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon