Nanofins as a Means of Enhancing Heat Transfer: Leading Order Results

The porous media approach is being adapted to a system of nanoparticles that are attached to a solid surface (a metal wire) embedded into a stagnant fluid, forming by design nanofins around the wire. The analyzed system resembles the Transient Hot Wire experimental method used in evaluating the ther...

Full description

Saved in:
Bibliographic Details
Published inTransport in porous media Vol. 89; no. 2; pp. 165 - 183
Main Author Vadasz, Peter
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.09.2011
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The porous media approach is being adapted to a system of nanoparticles that are attached to a solid surface (a metal wire) embedded into a stagnant fluid, forming by design nanofins around the wire. The analyzed system resembles the Transient Hot Wire experimental method used in evaluating the thermal conductivity of a fluid or nanofluid suspensions. Since the attachment of the nanoparticles to the wire is done by design (as distinct from uncontrolled agglomeration around the wire), one major objective in such a design is attempting to enhance the heat transfer from the wire. The latter objective is analyzed via a short times approximation of the solution. Preliminary results based on the leading order solution shows that such a heat transfer enhancement is indeed possible and presents major advantages compared to commonly used macro-fins.
AbstractList The porous media approach is being adapted to a system of nanoparticles that are attached to a solid surface (a metal wire) embedded into a stagnant fluid, forming by design nanofins around the wire. The analyzed system resembles the Transient Hot Wire experimental method used in evaluating the thermal conductivity of a fluid or nanofluid suspensions. Since the attachment of the nanoparticles to the wire is done by design (as distinct from uncontrolled agglomeration around the wire), one major objective in such a design is attempting to enhance the heat transfer from the wire. The latter objective is analyzed via a short times approximation of the solution. Preliminary results based on the leading order solution shows that such a heat transfer enhancement is indeed possible and presents major advantages compared to commonly used macro-fins.
Author Vadasz, Peter
Author_xml – sequence: 1
  givenname: Peter
  surname: Vadasz
  fullname: Vadasz, Peter
  email: peter.vadasz@nau.edu
  organization: Department of Mechanical Engineering, Northern Arizona University, Faculty of Engineering, University of KZ Natal
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24433475$$DView record in Pascal Francis
BookMark eNp9kU1LAzEQhoMoWKs_wNuCCF5WM0madL2J1A-oCqLnMJvM1i1rVpPtwX9vShVBUAgkDM8zvOHdY9uhD8TYIfBT4NycJQChRMkByspoWaotNoKJkSVoqbbZiIOuSlmB3GV7KS05z9ZUjdjsHkPftCEVmE9xR5iffVPMwgsG14ZFcUM4FE8xzxuK58Wc0K_HD9FTLB4prboh7bOdBrtEB1_3mD1fzZ4ub8r5w_Xt5cW8RMXFUFLNceLBa-Uqx2vdkPOIvFbAvdROSuVo6gVpEtJXxnNXa9Gg1F7WAFMjx-xks_ct9u8rSoN9bZOjrsNA_SpZ0AaU0BpkRo9-oct-FUNOZ4WYTMEYw3Wmjr8oTA67Jq4_nexbbF8xflihVA5lJpkzG87FPqVIjXXtgEPbhyFi21ngdl2D3dRgcw12XYNV2YRf5vfy_xyxcVJmw4LiT_a_pU8YL5nE
CODEN TPMEEI
CitedBy_id crossref_primary_10_1021_ie4042033
crossref_primary_10_1007_s11242_014_0308_5
Cites_doi 10.1016/j.ijthermalsci.2009.06.002
10.1063/1.361498
10.1063/1.1408272
10.1103/PhysRevLett.94.025901
10.1016/j.ijheatmasstransfer.2007.03.017
10.1088/0022-3735/14/12/020
10.1021/i160003a005
10.1098/rspa.1973.0130
10.1016/j.ijheatmasstransfer.2006.05.034
10.1016/j.ijheatmasstransfer.2009.07.023
10.1063/1.2191571
10.1063/1.2189933
10.1016/j.ijheatmasstransfer.2005.01.023
10.1063/1.1756684
10.1115/1.1860567
10.1007/s11242-009-9413-2
10.1016/j.ijheatmasstransfer.2010.01.047
10.1115/1.2175149
10.1063/1.2360378
10.1063/1.1341218
10.1016/j.ijheatmasstransfer.2005.02.005
10.1016/0031-8914(74)90341-3
10.1063/1.2425015
10.1016/j.ijheatmasstransfer.2009.07.024
10.1007/s11242-004-1801-z
10.1088/0022-3735/17/6/002
10.1007/s11242-010-9600-1
10.1098/rspa.1991.0025
10.1023/A:1006649209044
10.1115/1.4001314
10.1007/s11242-009-9452-8
10.1007/BF00502394
10.1186/1556-276X-6-154
10.1063/1.3245330
10.1115/1.1571080
10.1115/1.2825978
10.1016/j.ijheatmasstransfer.2006.02.012
10.1098/rspa.1990.0092
10.1023/B:IJOT.0000038494.22494.04
10.1016/0378-4371(78)90023-7
10.2963/jjtp.7.227
ContentType Journal Article
Copyright Springer Science+Business Media B.V. 2011
2015 INIST-CNRS
Transport in Porous Media is a copyright of Springer, (2011). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media B.V. 2011
– notice: 2015 INIST-CNRS
– notice: Transport in Porous Media is a copyright of Springer, (2011). All Rights Reserved.
DBID AAYXX
CITATION
IQODW
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7SR
8BQ
8FD
JG9
DOI 10.1007/s11242-011-9763-4
DatabaseName CrossRef
Pascal-Francis
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
ProQuest Materials Science Collection
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
ProQuest Central (New)
ProQuest One Academic (New)
Engineering Collection
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
ProQuest Materials Science Collection
Materials Research Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1573-1634
EndPage 183
ExternalDocumentID 24433475
10_1007_s11242_011_9763_4
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67M
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PDBOC
PF-
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WJK
WK6
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z8M
Z8N
Z8P
Z8Q
Z8S
Z8T
Z8U
Z8W
Z8Z
ZMTXR
~02
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
IQODW
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-a402t-eb0a5d1d64c9c0b6fecdaa0b410d36c334ce8d2e6e23d97d0cb62fa36d3b11873
IEDL.DBID U2A
ISSN 0169-3913
IngestDate Thu Jul 10 22:34:30 EDT 2025
Sat Aug 23 14:42:52 EDT 2025
Mon Jul 21 09:12:45 EDT 2025
Tue Jul 01 03:58:13 EDT 2025
Thu Apr 24 22:56:10 EDT 2025
Fri Feb 21 02:36:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Porous media
Effective thermal conductivity
Nanofins
Transient hot wire
Nanofluids
solution
metals
transport
thermal conductivity
porous media
heat transfer
methodology
suspension
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a402t-eb0a5d1d64c9c0b6fecdaa0b410d36c334ce8d2e6e23d97d0cb62fa36d3b11873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2258177706
PQPubID 2043596
PageCount 19
ParticipantIDs proquest_miscellaneous_1671426613
proquest_journals_2258177706
pascalfrancis_primary_24433475
crossref_citationtrail_10_1007_s11242_011_9763_4
crossref_primary_10_1007_s11242_011_9763_4
springer_journals_10_1007_s11242_011_9763_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-09-01
PublicationDateYYYYMMDD 2011-09-01
PublicationDate_xml – month: 09
  year: 2011
  text: 2011-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Transport in porous media
PublicationTitleAbbrev Transp Porous Med
PublicationYear 2011
Publisher Springer Netherlands
Springer
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer
– name: Springer Nature B.V
References Nield, Kuznetsov (CR31) 2009; 52
Vadasz, Govender (CR46) 2010; 49
Kuznetsov, Nield (CR20) 2010; 83
Putnam, Cahill, Braun, Ge, Shimmin (CR35) 2006; 99
Carslaw, Jaeger (CR7) 1946
Özisik (CR33) 1993
Buongiorno, Venerus (CR6) 2010; 53
Buongiorno, Venerus, Prabhat, McKrell, Townsend, Christianson, Tolmachev, Keblinski, Hu, Alvarado, Bang, Bishnoi, Bonetti, Botz, Cecere (CR5) 2009; 106
De Groot, Kestin, Sookiazian (CR11) 1974; 75
Hammerschmidt, Sabuga (CR14) 2000; 21
Vadasz (CR39) 2005; 48
Martinsons, Levick, Edwards (CR26) 2001; 17
Vadasz (CR42) 2007; 50
Kuznetsov, Nield (CR19) 2010; 81
Vadasz (CR40) 2006; 128
Healy, de Groot, Kestin (CR15) 1976; 82C
Rusconi, Rodari, Piazza (CR36) 2006; 89
Vadasz (CR43) 2010; 132
Vadasz (CR44) 2011; 6
Bonnecaze, Brady (CR4) 1991; 432
Assael, Chen, Metaxa, Wakeham (CR1) 2004; 25
Lee, Choi, Li, Eastman (CR22) 1999; 121
Liu, Lin, Tsai, Wang (CR24) 2006; 49
Vadasz (CR37) 2004; 127
Jang, Choi (CR16) 2004; 84
Kuznetsov, Nield (CR21) 2010; 85
Nield, Kuznetsov (CR30) 2009; 52
Das, Putra, Thiesen, Roetzel (CR9) 2003; 125
Venerus, Kabadi, Lee, Perez-Luna (CR47) 2006; 100
Choi, Zhang, Yu, Lockwood, Grulke (CR8) 2001; 79
Li, Peterson (CR23) 2006; 99
Hamilton, Crosser (CR13) 1962; 1
CR28
Nield, Kuznetsov (CR32) 2010; 132
Lu, Lin (CR25) 1996; 79
Davis (CR10) 1986; 7
Vadasz, Govender, Vadasz (CR45) 2005; 48
Bentley (CR2) 1984; 17
Vadasz (CR38) 2005; 59
Kestin, Wakeham (CR18) 1978; 92A
Vadasz (CR41) 2006; 49
Masuda, Ebata, Teramae, Hishinuma (CR27) 1993; 7
Eastman, Choi, Li, Yu, Thompson (CR12) 2001; 78
Prasher, Bhattacharya, Phelan (CR34) 2005; 94
Jeffrey (CR17) 1973; 335
Bonnecaze, Brady (CR3) 1990; 430
Nagasaka, Nagashima (CR29) 1981; 14
S. Lee (9763_CR22) 1999; 121
P. Vadasz (9763_CR40) 2006; 128
P. Vadasz (9763_CR43) 2010; 132
D.C. Venerus (9763_CR47) 2006; 100
H. Masuda (9763_CR27) 1993; 7
D.A. Nield (9763_CR30) 2009; 52
S.U.S. Choi (9763_CR8) 2001; 79
J.A. Eastman (9763_CR12) 2001; 78
R. Prasher (9763_CR34) 2005; 94
A.V. Kuznetsov (9763_CR20) 2010; 83
J.J. Vadasz (9763_CR46) 2010; 49
J. Kestin (9763_CR18) 1978; 92A
M.N. Özisik (9763_CR33) 1993
P. Vadasz (9763_CR44) 2011; 6
R.T. Bonnecaze (9763_CR4) 1991; 432
P. Vadasz (9763_CR41) 2006; 49
R. Rusconi (9763_CR36) 2006; 89
D.A. Nield (9763_CR32) 2010; 132
R.H. Davis (9763_CR10) 1986; 7
A.V. Kuznetsov (9763_CR19) 2010; 81
9763_CR28
Y. Nagasaka (9763_CR29) 1981; 14
S.A. Putnam (9763_CR35) 2006; 99
J.J. Vadasz (9763_CR45) 2005; 48
S.K. Das (9763_CR9) 2003; 125
J.P. Bentley (9763_CR2) 1984; 17
S.P. Jang (9763_CR16) 2004; 84
M.S. Liu (9763_CR24) 2006; 49
D.J. Jeffrey (9763_CR17) 1973; 335
D.A. Nield (9763_CR31) 2009; 52
S. Lu (9763_CR25) 1996; 79
R.T. Bonnecaze (9763_CR3) 1990; 430
C. Martinsons (9763_CR26) 2001; 17
M.J. Assael (9763_CR1) 2004; 25
J.J. Groot De (9763_CR11) 1974; 75
P. Vadasz (9763_CR37) 2004; 127
J. Buongiorno (9763_CR5) 2009; 106
R.L. Hamilton (9763_CR13) 1962; 1
P. Vadasz (9763_CR38) 2005; 59
C.H. Li (9763_CR23) 2006; 99
U. Hammerschmidt (9763_CR14) 2000; 21
P. Vadasz (9763_CR39) 2005; 48
J.J. Healy (9763_CR15) 1976; 82C
P. Vadasz (9763_CR42) 2007; 50
J. Buongiorno (9763_CR6) 2010; 53
H.S. Carslaw (9763_CR7) 1946
A.V. Kuznetsov (9763_CR21) 2010; 85
References_xml – volume: 49
  start-page: 235
  year: 2010
  end-page: 242
  ident: CR46
  article-title: Thermal wave effects on heat transfer enhancement in nanofluids suspensions
  publication-title: Int. J. Thermal Sci.
  doi: 10.1016/j.ijthermalsci.2009.06.002
– volume: 79
  start-page: 6761
  year: 1996
  end-page: 6769
  ident: CR25
  article-title: Effective conductivity of composites containing aligned spheroidal inclusions of finite conductivity
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.361498
– year: 1946
  ident: CR7
  publication-title: Conduction of Heat in Solids
– volume: 79
  start-page: 2252
  year: 2001
  end-page: 2254
  ident: CR8
  article-title: Anomalous thermal conductivity enhancement in nanotube suspensions
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1408272
– volume: 94
  start-page: 025901-1/4
  year: 2005
  ident: CR34
  article-title: Thermal conductivity of nanoscale colloidal solutions (nanofluids)
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.025901
– volume: 50
  start-page: 4131
  year: 2007
  end-page: 4140
  ident: CR42
  article-title: On the paradox of heat conduction in porous media subject to lack of local thermal equilibrium
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2007.03.017
– volume: 14
  start-page: 1435
  year: 1981
  end-page: 1440
  ident: CR29
  article-title: Absolute measurement of the thermal conductivity of electrically conducting liquids by the transient hot-wire method
  publication-title: J. Phys. E
  doi: 10.1088/0022-3735/14/12/020
– year: 1993
  ident: CR33
  publication-title: Heat conduction
– volume: 1
  start-page: 187
  year: 1962
  end-page: 191
  ident: CR13
  article-title: Thermal conductivity of heterogeneous two-component systems
  publication-title: IEC Fundam.
  doi: 10.1021/i160003a005
– volume: 335
  start-page: 355
  year: 1973
  end-page: 367
  ident: CR17
  article-title: Conduction through a random suspension of spheres
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.1973.0130
– volume: 49
  start-page: 4886
  year: 2006
  end-page: 4892
  ident: CR41
  article-title: Exclusion of oscillations in heterogeneous and bi-composite media thermal conduction
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2006.05.034
– volume: 82C
  start-page: 392
  year: 1976
  end-page: 408
  ident: CR15
  article-title: The theory of the transient hot-wire method for measuring thermal conductivity
  publication-title: Physica
– volume: 52
  start-page: 5796
  year: 2009
  end-page: 5801
  ident: CR31
  article-title: Thermal instability in a porous medium layer saturated by a nanofluid
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2009.07.023
– volume: 99
  start-page: 084314
  year: 2006
  ident: CR23
  article-title: Experimental investigation of temperature and volume fraction variations of the effective thermal conductivity of nanoparticle suspension (nanofluids)
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2191571
– volume: 99
  start-page: 084308-1/6
  year: 2006
  ident: CR35
  article-title: Thermal conductivity of nanoparticle suspensions
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2189933
– volume: 48
  start-page: 2673
  year: 2005
  end-page: 2683
  ident: CR45
  article-title: Heat transfer enhancement in nanofluids suspensions: possible mechanisms and explanations
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2005.01.023
– volume: 84
  start-page: 4316
  issue: 21
  year: 2004
  end-page: 4318
  ident: CR16
  article-title: Role of Brownian motion in the enhanced thermal conductivity of nanofluids
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1756684
– volume: 127
  start-page: 307
  year: 2004
  end-page: 314
  ident: CR37
  article-title: Absence of oscillations and resonance in porous media dual-phase-lagging fourier heat conduction
  publication-title: J. Heat Transfer
  doi: 10.1115/1.1860567
– volume: 81
  start-page: 409
  year: 2010
  end-page: 422
  ident: CR19
  article-title: Thermal instability in a porous medium layer saturated by a nanofluid: Brinkman model
  publication-title: Transp. Porous Med.
  doi: 10.1007/s11242-009-9413-2
– volume: 53
  start-page: 2939
  year: 2010
  end-page: 2940
  ident: CR6
  article-title: Letter to editor
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2010.01.047
– volume: 128
  start-page: 465
  year: 2006
  end-page: 477
  ident: CR40
  article-title: Heat conduction in nanofluid suspensions
  publication-title: J. Heat Transfer
  doi: 10.1115/1.2175149
– volume: 100
  start-page: 094310-1/5
  year: 2006
  ident: CR47
  article-title: Study of thermal transport in nanoparticle suspensions using forced Rayleigh scattering
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2360378
– volume: 78
  start-page: 718
  year: 2001
  end-page: 720
  ident: CR12
  article-title: Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1341218
– volume: 48
  start-page: 2822
  year: 2005
  end-page: 2828
  ident: CR39
  article-title: Lack of oscillations in dual-phase-lagging heat conduction for a porous slab subject to imposed heat flux and temperature
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2005.02.005
– volume: 75
  start-page: 454
  year: 1974
  end-page: 482
  ident: CR11
  article-title: Instrument to measure the thermal conductivity of gases
  publication-title: Physica (Amsterdam)
  doi: 10.1016/0031-8914(74)90341-3
– volume: 89
  start-page: 261916-1/3
  year: 2006
  ident: CR36
  article-title: Optical measurements of the thermal properties of nanofluids
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2425015
– volume: 52
  start-page: 5792
  year: 2009
  end-page: 5795
  ident: CR30
  article-title: The Cheng–Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2009.07.024
– volume: 59
  start-page: 341
  year: 2005
  end-page: 355
  ident: CR38
  article-title: Explicit conditions for local thermal equilibrium in porous media heat conduction
  publication-title: Transp. Porous Media
  doi: 10.1007/s11242-004-1801-z
– volume: 17
  start-page: 430
  year: 1984
  end-page: 439
  ident: CR2
  article-title: Temperature sensor characteristics and measurement system design
  publication-title: J. Phys. E
  doi: 10.1088/0022-3735/17/6/002
– volume: 85
  start-page: 941
  year: 2010
  end-page: 951
  ident: CR21
  article-title: The onset of double-diffusive nanofluid convection in a layer of a saturated porous medium
  publication-title: Transp. Porous Med
  doi: 10.1007/s11242-010-9600-1
– volume: 432
  start-page: 445
  year: 1991
  end-page: 465
  ident: CR4
  article-title: The effective conductivity of random suspensions of spherical particles
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.1991.0025
– volume: 21
  start-page: 1255
  year: 2000
  end-page: 1278
  ident: CR14
  article-title: Transient hot wire (THW) method: uncertainty assessment
  publication-title: Int. J. Thermophys.
  doi: 10.1023/A:1006649209044
– volume: 92A
  start-page: 102
  year: 1978
  end-page: 116
  ident: CR18
  article-title: A contribution to the theory of the transient hot-wire technique for thermal conductivity measurements
  publication-title: Physica
– volume: 132
  start-page: 081601-1/7
  issue: 8
  year: 2010
  ident: CR43
  article-title: Rendering the transient hot wire experimental method for thermal conductivity estimation to two-phase systems—theoretical leading order results
  publication-title: J. Heat Transfer
  doi: 10.1115/1.4001314
– volume: 17
  start-page: 114
  year: 2001
  end-page: 117
  ident: CR26
  article-title: Precise measurements of thermal diffusivity by photothermal radiometry for semi-infinite targets using accurately determined boundary conditions
  publication-title: Anal. Sci.
– volume: 83
  start-page: 425
  year: 2010
  end-page: 436
  ident: CR20
  article-title: Effect of local thermal non-equilibrium on the onset of convection in a porous medium layer saturated by a nanofluid
  publication-title: Transp. Porous Med.
  doi: 10.1007/s11242-009-9452-8
– volume: 7
  start-page: 609
  year: 1986
  end-page: 620
  ident: CR10
  article-title: The effective thermal conductivity of a composite material with spherical inclusions
  publication-title: Int. J. Thermophys.
  doi: 10.1007/BF00502394
– volume: 6
  start-page: 154
  year: 2011
  ident: CR44
  article-title: Heat transfer augmentation in nanofluids via nanofins
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-6-154
– volume: 7
  start-page: 227
  year: 1993
  end-page: 233
  ident: CR27
  article-title: Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles
  publication-title: Netsu Bussei
– volume: 106
  start-page: 094312
  year: 2009
  ident: CR5
  article-title: A benchmark study on thermal conductivity of nanofluids
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3245330
– volume: 125
  start-page: 567
  year: 2003
  end-page: 574
  ident: CR9
  article-title: Temperature dependence of thermal conductivity enhancement for nanofluids
  publication-title: J. Heat Transfer
  doi: 10.1115/1.1571080
– volume: 121
  start-page: 280
  year: 1999
  end-page: 289
  ident: CR22
  article-title: Measuring thermal conductivity of fluids containing oxide nanoparticles
  publication-title: ASME J. Heat Transfer
  doi: 10.1115/1.2825978
– volume: 132
  start-page: 052405-1/7
  year: 2010
  ident: CR32
  article-title: The effect of local thermal nonequilibrium on the onset of convection in a nanofluid
  publication-title: J. Heat Transfer
– ident: CR28
– volume: 49
  start-page: 3028
  year: 2006
  end-page: 3033
  ident: CR24
  article-title: Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2006.02.012
– volume: 430
  start-page: 285
  year: 1990
  end-page: 313
  ident: CR3
  article-title: A method for determining the effective conductivity of dispersions of particles
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.1990.0092
– volume: 25
  start-page: 971
  year: 2004
  end-page: 985
  ident: CR1
  article-title: Thermal conductivity of suspensions of carbon nanotubes in water
  publication-title: Int. J. Thermophys.
  doi: 10.1023/B:IJOT.0000038494.22494.04
– volume: 25
  start-page: 971
  year: 2004
  ident: 9763_CR1
  publication-title: Int. J. Thermophys.
  doi: 10.1023/B:IJOT.0000038494.22494.04
– volume-title: Heat conduction
  year: 1993
  ident: 9763_CR33
– volume-title: Conduction of Heat in Solids
  year: 1946
  ident: 9763_CR7
– volume: 78
  start-page: 718
  year: 2001
  ident: 9763_CR12
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1341218
– volume: 17
  start-page: 114
  year: 2001
  ident: 9763_CR26
  publication-title: Anal. Sci.
– volume: 99
  start-page: 084308-1/6
  year: 2006
  ident: 9763_CR35
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2189933
– volume: 50
  start-page: 4131
  year: 2007
  ident: 9763_CR42
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2007.03.017
– volume: 79
  start-page: 6761
  year: 1996
  ident: 9763_CR25
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.361498
– volume: 79
  start-page: 2252
  year: 2001
  ident: 9763_CR8
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1408272
– volume: 75
  start-page: 454
  year: 1974
  ident: 9763_CR11
  publication-title: Physica (Amsterdam)
  doi: 10.1016/0031-8914(74)90341-3
– volume: 127
  start-page: 307
  year: 2004
  ident: 9763_CR37
  publication-title: J. Heat Transfer
  doi: 10.1115/1.1860567
– volume: 49
  start-page: 4886
  year: 2006
  ident: 9763_CR41
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2006.05.034
– volume: 432
  start-page: 445
  year: 1991
  ident: 9763_CR4
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.1991.0025
– volume: 92A
  start-page: 102
  year: 1978
  ident: 9763_CR18
  publication-title: Physica
  doi: 10.1016/0378-4371(78)90023-7
– volume: 85
  start-page: 941
  year: 2010
  ident: 9763_CR21
  publication-title: Transp. Porous Med
  doi: 10.1007/s11242-010-9600-1
– volume: 430
  start-page: 285
  year: 1990
  ident: 9763_CR3
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.1990.0092
– volume: 52
  start-page: 5792
  year: 2009
  ident: 9763_CR30
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2009.07.024
– volume: 7
  start-page: 609
  year: 1986
  ident: 9763_CR10
  publication-title: Int. J. Thermophys.
  doi: 10.1007/BF00502394
– volume: 89
  start-page: 261916-1/3
  year: 2006
  ident: 9763_CR36
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2425015
– volume: 125
  start-page: 567
  year: 2003
  ident: 9763_CR9
  publication-title: J. Heat Transfer
  doi: 10.1115/1.1571080
– ident: 9763_CR28
– volume: 99
  start-page: 084314
  year: 2006
  ident: 9763_CR23
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2191571
– volume: 94
  start-page: 025901-1/4
  year: 2005
  ident: 9763_CR34
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.025901
– volume: 1
  start-page: 187
  year: 1962
  ident: 9763_CR13
  publication-title: IEC Fundam.
  doi: 10.1021/i160003a005
– volume: 81
  start-page: 409
  year: 2010
  ident: 9763_CR19
  publication-title: Transp. Porous Med.
  doi: 10.1007/s11242-009-9413-2
– volume: 53
  start-page: 2939
  year: 2010
  ident: 9763_CR6
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2010.01.047
– volume: 7
  start-page: 227
  year: 1993
  ident: 9763_CR27
  publication-title: Netsu Bussei
  doi: 10.2963/jjtp.7.227
– volume: 132
  start-page: 052405-1/7
  year: 2010
  ident: 9763_CR32
  publication-title: J. Heat Transfer
– volume: 106
  start-page: 094312
  year: 2009
  ident: 9763_CR5
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3245330
– volume: 49
  start-page: 3028
  year: 2006
  ident: 9763_CR24
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2006.02.012
– volume: 14
  start-page: 1435
  year: 1981
  ident: 9763_CR29
  publication-title: J. Phys. E
  doi: 10.1088/0022-3735/14/12/020
– volume: 49
  start-page: 235
  year: 2010
  ident: 9763_CR46
  publication-title: Int. J. Thermal Sci.
  doi: 10.1016/j.ijthermalsci.2009.06.002
– volume: 100
  start-page: 094310-1/5
  year: 2006
  ident: 9763_CR47
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2360378
– volume: 82C
  start-page: 392
  year: 1976
  ident: 9763_CR15
  publication-title: Physica
– volume: 48
  start-page: 2673
  year: 2005
  ident: 9763_CR45
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2005.01.023
– volume: 83
  start-page: 425
  year: 2010
  ident: 9763_CR20
  publication-title: Transp. Porous Med.
  doi: 10.1007/s11242-009-9452-8
– volume: 84
  start-page: 4316
  issue: 21
  year: 2004
  ident: 9763_CR16
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1756684
– volume: 335
  start-page: 355
  year: 1973
  ident: 9763_CR17
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.1973.0130
– volume: 132
  start-page: 081601-1/7
  issue: 8
  year: 2010
  ident: 9763_CR43
  publication-title: J. Heat Transfer
  doi: 10.1115/1.4001314
– volume: 6
  start-page: 154
  year: 2011
  ident: 9763_CR44
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-6-154
– volume: 17
  start-page: 430
  year: 1984
  ident: 9763_CR2
  publication-title: J. Phys. E
  doi: 10.1088/0022-3735/17/6/002
– volume: 128
  start-page: 465
  year: 2006
  ident: 9763_CR40
  publication-title: J. Heat Transfer
  doi: 10.1115/1.2175149
– volume: 52
  start-page: 5796
  year: 2009
  ident: 9763_CR31
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2009.07.023
– volume: 59
  start-page: 341
  year: 2005
  ident: 9763_CR38
  publication-title: Transp. Porous Media
  doi: 10.1007/s11242-004-1801-z
– volume: 121
  start-page: 280
  year: 1999
  ident: 9763_CR22
  publication-title: ASME J. Heat Transfer
  doi: 10.1115/1.2825978
– volume: 48
  start-page: 2822
  year: 2005
  ident: 9763_CR39
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2005.02.005
– volume: 21
  start-page: 1255
  year: 2000
  ident: 9763_CR14
  publication-title: Int. J. Thermophys.
  doi: 10.1023/A:1006649209044
SSID ssj0010084
Score 1.9358983
Snippet The porous media approach is being adapted to a system of nanoparticles that are attached to a solid surface (a metal wire) embedded into a stagnant fluid,...
SourceID proquest
pascalfrancis
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 165
SubjectTerms Civil Engineering
Classical and Continuum Physics
Design engineering
Earth and Environmental Science
Earth Sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Exact sciences and technology
Fins
Fluid dynamics
Fluid flow
Geotechnical Engineering & Applied Earth Sciences
Heat transfer
Hydrocarbons
Hydrogeology
Hydrology. Hydrogeology
Hydrology/Water Resources
Industrial Chemistry/Chemical Engineering
Nanocomposites
Nanofluids
Nanomaterials
Nanoparticles
Nanostructure
Pollution, environment geology
Porous media
Sedimentary rocks
Solid surfaces
Thermal conductivity
Wire
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEB-0RRREtCpurSWCT0ow2WSTjS-i5cohtkqx0Lcln_pQ9s7u3f_fyX7ccYKFfdtks5mZnZnMzM4P4B0LPrmqNJTjACptLahxXtKqrhM3QSftc0b37FzNL-W3q-pqDLh1Y1nlpBN7RR0WPsfIP6Lc1VxrzdTn5V-aUaNydnWE0LgP-6iCazx87X-dnf-82OQRcrv4obu3ocJwMeU1-5_n0LTlsgRO0SQLKncs0-Ol7ZBIaUC32HE__8mY9obo9Ck8GT1I8mVg-TO4F9sDeHgyAbcdwIO-qtN3z2GGuhOFp-2IxYucRbRLZJHIrP2TF2x_kzmqYtLbqxRvPpHvQ0k9-ZEbcpKL2K2vV90LuDyd_TqZ0xE3gVo8Da5odMxWgQclvfHMqRR9sJY5yVkQygshfaxDGVUsRTA6MO9UmaxQQbiMPi5ewl67aOMrIEknk4KrY6hKKaKzmvGIg7kro5F1KIBNNGv82FQ8Y1tcN9t2yJnMDZK5yWRuZAHvN1OWQ0eNuwYf7zBiMwO9EtyHrgo4mjjTjF9f12xlpYC3m9vIhZwMsW1crLuGK81770QU8GHi6PYR_32jw7sXfA2PhqhzrkI7gr3VzTq-Qbdl5Y5H2bwFqHLoGg
  priority: 102
  providerName: ProQuest
Title Nanofins as a Means of Enhancing Heat Transfer: Leading Order Results
URI https://link.springer.com/article/10.1007/s11242-011-9763-4
https://www.proquest.com/docview/2258177706
https://www.proquest.com/docview/1671426613
Volume 89
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9siyhI0aoYrccKPikL2ewmm_XtLLkeaqsUD-pT2E99KLnS3P3_zubjjhNbKATykNlNMjOZmc1vdgbgfepsMHmmKEMCKnTJqTJW0LwsA1NOBmkjont2XswX4stlfjns427HbPcRkuws9XazG7qimEbAKLpQTsUeHORx6Y5KvMimG-ggVojvC3oryhXjI5T5vyl2nNGTa90iX0Lf0GIn4vwHJO18z-wpHA5BI5n2Un4GD3xzBI9Oxl5tR_CwS-S07XOo0FyivjQt0XiQM4-uiCwDqZo_8YbNbzJH60s6FxX8zSfyrc-iJ99jDU5y4dv11ap9AYtZ9fNkTodWCVTjAnBFvUl17pgrhFU2NUXw1mmdGsFSxwvLubC-dJkvfMadki61psiC5oXjJjYc5y9hv1k2_hWQIIMKzpTe5Zng3miZMo_EzGReidIlkI48q-1QRzy2s7iqtxWQI5trZHMd2VyLBD5shlz3RTTuIp7sCGIzAgMRfA-ZJ3A8SqYePri2RrNUMillWiTwbnMZpRDxD9345bqtWSFZF5DwBD6OEt1OcesTvb4X9Rt43P93jnlox7C_uln7txi4rMwE9srZ6QQOpqe_vlZ4_lyd_7iYdOr7F0Bs50M
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9qRSqIaFWM1rqCviiL2ewmmxVEpN55tXcVpIW-pfupDyV3NneI_5R_o7PJ5Y4T7Fshb9mPZGZ2ZnZndn4AL1Nng8kzRRk2oEKXnCpjBc3LMjDlZJA2RnQnx8XoVHw5y8-24E9_FyamVfY6sVXUbmrjGflblLuSSSnT4sPsJ42oUTG62kNodGJx5H__wi1b8_7wE_L3VZYNBycHI7pEFaAa90pz6k2qc8dcIayyqSmCt07r1AiWOl5YzoX1pct84TPulHSpNUUWNC8cNxGbm-O4N-Cm4FzFFVUOP6-iFrE4fVdLXFGuGO-jqO1VPTSkMQmCUXQAOBUbdvDOTDfIktBhaWw4u__EZ1uzN7wHd5f-KvnYCdh92PL1Luwc9DBxu3CrzSG1zQMYoKZGUa0bovEhE49WkEwDGdQ_4oT1dzJCxU9a6xj85Tsy7hL4yddY_pN8883iYt48hNNroecj2K6ntX8MJMiggjOld3kmuDdapsxjY2Yyr0TpEkh7mlV2WcI8ImlcVOviy5HMFZK5imSuRAKvV11mXf2OqxrvbzBi1QN9IPwPmSew13OmWq71plpLZgIvVq-RCzH0oms_XTQVKyRrfSGewJueo-sh_vtFT66e8DnsjE4m42p8eHz0FG53590x_20PtueXC_8MHaa52W-llMD5dS-Lvzz5JWE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BERQJISigppRiJE4gq3bs2HFvVdnVAm1BiJV6i_yEQ5VdNdn_j53HrrYqSEi5ZewkM87MJN_4G4D3xNlgilxhGgUw1yXDyliOi7IMVDkZpE2I7sWlmM35l6viauhz2ozV7iMk2e9pSCxNdXu8dOF4s_EthqVUUkBxDKcM8_vwIHpjmpb1PD9dwwiJLb4n91aYKcpGWPOuKbYC05OlbqKOQt_cYiv7vAWYdnFo-gyeDgkkOu0t_hzu-XoPds_Gvm178LAr6rTNC5hE1xnXTt0gHQ904WNYQouAJvXvdMH6F5pFT4y6cBX8zQk67yvq0bfEx4l--GZ13TYvYT6d_Dyb4aFtAtbxY7DF3hBdOOoEt8oSI4K3TmtiOCWOCcsYt750uRc-Z05JR6wRedBMOGZS83H2CnbqRe33AQUZVHCm9K7IOfNGS0J9FKYm94qXLgMy6qyyA6d4am1xXW3YkJOaq6jmKqm54hl8WA9Z9oQa_xI-2jLEekRMSuJzyCKDw9Ey1fDyNVV0USWVUhKRwbv16WiFhIXo2i9WTUWFpF1ywjL4OFp0M8Vf7-jgv6TfwqPvn6bV-efLr6_hcf87OpWnHcJOe7Pyb2I-05qjbs3-AdUG6l4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanofins+as+a+Means+of+Enhancing+Heat+Transfer%3A+Leading+Order+Results&rft.jtitle=Transport+in+porous+media&rft.au=Vadasz%2C+Peter&rft.date=2011-09-01&rft.issn=0169-3913&rft.eissn=1573-1634&rft.volume=89&rft.issue=2&rft.spage=165&rft.epage=183&rft_id=info:doi/10.1007%2Fs11242-011-9763-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11242_011_9763_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-3913&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-3913&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-3913&client=summon