Nanofins as a Means of Enhancing Heat Transfer: Leading Order Results
The porous media approach is being adapted to a system of nanoparticles that are attached to a solid surface (a metal wire) embedded into a stagnant fluid, forming by design nanofins around the wire. The analyzed system resembles the Transient Hot Wire experimental method used in evaluating the ther...
Saved in:
Published in | Transport in porous media Vol. 89; no. 2; pp. 165 - 183 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.09.2011
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The porous media approach is being adapted to a system of nanoparticles that are attached to a solid surface (a metal wire) embedded into a stagnant fluid, forming by design nanofins around the wire. The analyzed system resembles the Transient Hot Wire experimental method used in evaluating the thermal conductivity of a fluid or nanofluid suspensions. Since the attachment of the nanoparticles to the wire is done by design (as distinct from uncontrolled agglomeration around the wire), one major objective in such a design is attempting to enhance the heat transfer from the wire. The latter objective is analyzed via a short times approximation of the solution. Preliminary results based on the leading order solution shows that such a heat transfer enhancement is indeed possible and presents major advantages compared to commonly used macro-fins. |
---|---|
AbstractList | The porous media approach is being adapted to a system of nanoparticles that are attached to a solid surface (a metal wire) embedded into a stagnant fluid, forming by design nanofins around the wire. The analyzed system resembles the Transient Hot Wire experimental method used in evaluating the thermal conductivity of a fluid or nanofluid suspensions. Since the attachment of the nanoparticles to the wire is done by design (as distinct from uncontrolled agglomeration around the wire), one major objective in such a design is attempting to enhance the heat transfer from the wire. The latter objective is analyzed via a short times approximation of the solution. Preliminary results based on the leading order solution shows that such a heat transfer enhancement is indeed possible and presents major advantages compared to commonly used macro-fins. |
Author | Vadasz, Peter |
Author_xml | – sequence: 1 givenname: Peter surname: Vadasz fullname: Vadasz, Peter email: peter.vadasz@nau.edu organization: Department of Mechanical Engineering, Northern Arizona University, Faculty of Engineering, University of KZ Natal |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24433475$$DView record in Pascal Francis |
BookMark | eNp9kU1LAzEQhoMoWKs_wNuCCF5WM0madL2J1A-oCqLnMJvM1i1rVpPtwX9vShVBUAgkDM8zvOHdY9uhD8TYIfBT4NycJQChRMkByspoWaotNoKJkSVoqbbZiIOuSlmB3GV7KS05z9ZUjdjsHkPftCEVmE9xR5iffVPMwgsG14ZFcUM4FE8xzxuK58Wc0K_HD9FTLB4prboh7bOdBrtEB1_3mD1fzZ4ub8r5w_Xt5cW8RMXFUFLNceLBa-Uqx2vdkPOIvFbAvdROSuVo6gVpEtJXxnNXa9Gg1F7WAFMjx-xks_ct9u8rSoN9bZOjrsNA_SpZ0AaU0BpkRo9-oct-FUNOZ4WYTMEYw3Wmjr8oTA67Jq4_nexbbF8xflihVA5lJpkzG87FPqVIjXXtgEPbhyFi21ngdl2D3dRgcw12XYNV2YRf5vfy_xyxcVJmw4LiT_a_pU8YL5nE |
CODEN | TPMEEI |
CitedBy_id | crossref_primary_10_1021_ie4042033 crossref_primary_10_1007_s11242_014_0308_5 |
Cites_doi | 10.1016/j.ijthermalsci.2009.06.002 10.1063/1.361498 10.1063/1.1408272 10.1103/PhysRevLett.94.025901 10.1016/j.ijheatmasstransfer.2007.03.017 10.1088/0022-3735/14/12/020 10.1021/i160003a005 10.1098/rspa.1973.0130 10.1016/j.ijheatmasstransfer.2006.05.034 10.1016/j.ijheatmasstransfer.2009.07.023 10.1063/1.2191571 10.1063/1.2189933 10.1016/j.ijheatmasstransfer.2005.01.023 10.1063/1.1756684 10.1115/1.1860567 10.1007/s11242-009-9413-2 10.1016/j.ijheatmasstransfer.2010.01.047 10.1115/1.2175149 10.1063/1.2360378 10.1063/1.1341218 10.1016/j.ijheatmasstransfer.2005.02.005 10.1016/0031-8914(74)90341-3 10.1063/1.2425015 10.1016/j.ijheatmasstransfer.2009.07.024 10.1007/s11242-004-1801-z 10.1088/0022-3735/17/6/002 10.1007/s11242-010-9600-1 10.1098/rspa.1991.0025 10.1023/A:1006649209044 10.1115/1.4001314 10.1007/s11242-009-9452-8 10.1007/BF00502394 10.1186/1556-276X-6-154 10.1063/1.3245330 10.1115/1.1571080 10.1115/1.2825978 10.1016/j.ijheatmasstransfer.2006.02.012 10.1098/rspa.1990.0092 10.1023/B:IJOT.0000038494.22494.04 10.1016/0378-4371(78)90023-7 10.2963/jjtp.7.227 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media B.V. 2011 2015 INIST-CNRS Transport in Porous Media is a copyright of Springer, (2011). All Rights Reserved. |
Copyright_xml | – notice: Springer Science+Business Media B.V. 2011 – notice: 2015 INIST-CNRS – notice: Transport in Porous Media is a copyright of Springer, (2011). All Rights Reserved. |
DBID | AAYXX CITATION IQODW 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7SR 8BQ 8FD JG9 |
DOI | 10.1007/s11242-011-9763-4 |
DatabaseName | CrossRef Pascal-Francis ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef ProQuest Materials Science Collection Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest One Academic ProQuest Central (New) ProQuest One Academic (New) Engineering Collection Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | ProQuest Materials Science Collection Materials Research Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1573-1634 |
EndPage | 183 |
ExternalDocumentID | 24433475 10_1007_s11242_011_9763_4 |
GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67M 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP D1I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PDBOC PF- PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WJK WK6 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z8M Z8N Z8P Z8Q Z8S Z8T Z8U Z8W Z8Z ZMTXR ~02 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ IQODW PQGLB DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-a402t-eb0a5d1d64c9c0b6fecdaa0b410d36c334ce8d2e6e23d97d0cb62fa36d3b11873 |
IEDL.DBID | U2A |
ISSN | 0169-3913 |
IngestDate | Thu Jul 10 22:34:30 EDT 2025 Sat Aug 23 14:42:52 EDT 2025 Mon Jul 21 09:12:45 EDT 2025 Tue Jul 01 03:58:13 EDT 2025 Thu Apr 24 22:56:10 EDT 2025 Fri Feb 21 02:36:15 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Porous media Effective thermal conductivity Nanofins Transient hot wire Nanofluids solution metals transport thermal conductivity porous media heat transfer methodology suspension |
Language | English |
License | http://www.springer.com/tdm CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a402t-eb0a5d1d64c9c0b6fecdaa0b410d36c334ce8d2e6e23d97d0cb62fa36d3b11873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2258177706 |
PQPubID | 2043596 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_1671426613 proquest_journals_2258177706 pascalfrancis_primary_24433475 crossref_citationtrail_10_1007_s11242_011_9763_4 crossref_primary_10_1007_s11242_011_9763_4 springer_journals_10_1007_s11242_011_9763_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-09-01 |
PublicationDateYYYYMMDD | 2011-09-01 |
PublicationDate_xml | – month: 09 year: 2011 text: 2011-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | Transport in porous media |
PublicationTitleAbbrev | Transp Porous Med |
PublicationYear | 2011 |
Publisher | Springer Netherlands Springer Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer – name: Springer Nature B.V |
References | Nield, Kuznetsov (CR31) 2009; 52 Vadasz, Govender (CR46) 2010; 49 Kuznetsov, Nield (CR20) 2010; 83 Putnam, Cahill, Braun, Ge, Shimmin (CR35) 2006; 99 Carslaw, Jaeger (CR7) 1946 Özisik (CR33) 1993 Buongiorno, Venerus (CR6) 2010; 53 Buongiorno, Venerus, Prabhat, McKrell, Townsend, Christianson, Tolmachev, Keblinski, Hu, Alvarado, Bang, Bishnoi, Bonetti, Botz, Cecere (CR5) 2009; 106 De Groot, Kestin, Sookiazian (CR11) 1974; 75 Hammerschmidt, Sabuga (CR14) 2000; 21 Vadasz (CR39) 2005; 48 Martinsons, Levick, Edwards (CR26) 2001; 17 Vadasz (CR42) 2007; 50 Kuznetsov, Nield (CR19) 2010; 81 Vadasz (CR40) 2006; 128 Healy, de Groot, Kestin (CR15) 1976; 82C Rusconi, Rodari, Piazza (CR36) 2006; 89 Vadasz (CR43) 2010; 132 Vadasz (CR44) 2011; 6 Bonnecaze, Brady (CR4) 1991; 432 Assael, Chen, Metaxa, Wakeham (CR1) 2004; 25 Lee, Choi, Li, Eastman (CR22) 1999; 121 Liu, Lin, Tsai, Wang (CR24) 2006; 49 Vadasz (CR37) 2004; 127 Jang, Choi (CR16) 2004; 84 Kuznetsov, Nield (CR21) 2010; 85 Nield, Kuznetsov (CR30) 2009; 52 Das, Putra, Thiesen, Roetzel (CR9) 2003; 125 Venerus, Kabadi, Lee, Perez-Luna (CR47) 2006; 100 Choi, Zhang, Yu, Lockwood, Grulke (CR8) 2001; 79 Li, Peterson (CR23) 2006; 99 Hamilton, Crosser (CR13) 1962; 1 CR28 Nield, Kuznetsov (CR32) 2010; 132 Lu, Lin (CR25) 1996; 79 Davis (CR10) 1986; 7 Vadasz, Govender, Vadasz (CR45) 2005; 48 Bentley (CR2) 1984; 17 Vadasz (CR38) 2005; 59 Kestin, Wakeham (CR18) 1978; 92A Vadasz (CR41) 2006; 49 Masuda, Ebata, Teramae, Hishinuma (CR27) 1993; 7 Eastman, Choi, Li, Yu, Thompson (CR12) 2001; 78 Prasher, Bhattacharya, Phelan (CR34) 2005; 94 Jeffrey (CR17) 1973; 335 Bonnecaze, Brady (CR3) 1990; 430 Nagasaka, Nagashima (CR29) 1981; 14 S. Lee (9763_CR22) 1999; 121 P. Vadasz (9763_CR40) 2006; 128 P. Vadasz (9763_CR43) 2010; 132 D.C. Venerus (9763_CR47) 2006; 100 H. Masuda (9763_CR27) 1993; 7 D.A. Nield (9763_CR30) 2009; 52 S.U.S. Choi (9763_CR8) 2001; 79 J.A. Eastman (9763_CR12) 2001; 78 R. Prasher (9763_CR34) 2005; 94 A.V. Kuznetsov (9763_CR20) 2010; 83 J.J. Vadasz (9763_CR46) 2010; 49 J. Kestin (9763_CR18) 1978; 92A M.N. Özisik (9763_CR33) 1993 P. Vadasz (9763_CR44) 2011; 6 R.T. Bonnecaze (9763_CR4) 1991; 432 P. Vadasz (9763_CR41) 2006; 49 R. Rusconi (9763_CR36) 2006; 89 D.A. Nield (9763_CR32) 2010; 132 R.H. Davis (9763_CR10) 1986; 7 A.V. Kuznetsov (9763_CR19) 2010; 81 9763_CR28 Y. Nagasaka (9763_CR29) 1981; 14 S.A. Putnam (9763_CR35) 2006; 99 J.J. Vadasz (9763_CR45) 2005; 48 S.K. Das (9763_CR9) 2003; 125 J.P. Bentley (9763_CR2) 1984; 17 S.P. Jang (9763_CR16) 2004; 84 M.S. Liu (9763_CR24) 2006; 49 D.J. Jeffrey (9763_CR17) 1973; 335 D.A. Nield (9763_CR31) 2009; 52 S. Lu (9763_CR25) 1996; 79 R.T. Bonnecaze (9763_CR3) 1990; 430 C. Martinsons (9763_CR26) 2001; 17 M.J. Assael (9763_CR1) 2004; 25 J.J. Groot De (9763_CR11) 1974; 75 P. Vadasz (9763_CR37) 2004; 127 J. Buongiorno (9763_CR5) 2009; 106 R.L. Hamilton (9763_CR13) 1962; 1 P. Vadasz (9763_CR38) 2005; 59 C.H. Li (9763_CR23) 2006; 99 U. Hammerschmidt (9763_CR14) 2000; 21 P. Vadasz (9763_CR39) 2005; 48 J.J. Healy (9763_CR15) 1976; 82C P. Vadasz (9763_CR42) 2007; 50 J. Buongiorno (9763_CR6) 2010; 53 H.S. Carslaw (9763_CR7) 1946 A.V. Kuznetsov (9763_CR21) 2010; 85 |
References_xml | – volume: 49 start-page: 235 year: 2010 end-page: 242 ident: CR46 article-title: Thermal wave effects on heat transfer enhancement in nanofluids suspensions publication-title: Int. J. Thermal Sci. doi: 10.1016/j.ijthermalsci.2009.06.002 – volume: 79 start-page: 6761 year: 1996 end-page: 6769 ident: CR25 article-title: Effective conductivity of composites containing aligned spheroidal inclusions of finite conductivity publication-title: J. Appl. Phys. doi: 10.1063/1.361498 – year: 1946 ident: CR7 publication-title: Conduction of Heat in Solids – volume: 79 start-page: 2252 year: 2001 end-page: 2254 ident: CR8 article-title: Anomalous thermal conductivity enhancement in nanotube suspensions publication-title: Appl. Phys. Lett. doi: 10.1063/1.1408272 – volume: 94 start-page: 025901-1/4 year: 2005 ident: CR34 article-title: Thermal conductivity of nanoscale colloidal solutions (nanofluids) publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.025901 – volume: 50 start-page: 4131 year: 2007 end-page: 4140 ident: CR42 article-title: On the paradox of heat conduction in porous media subject to lack of local thermal equilibrium publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2007.03.017 – volume: 14 start-page: 1435 year: 1981 end-page: 1440 ident: CR29 article-title: Absolute measurement of the thermal conductivity of electrically conducting liquids by the transient hot-wire method publication-title: J. Phys. E doi: 10.1088/0022-3735/14/12/020 – year: 1993 ident: CR33 publication-title: Heat conduction – volume: 1 start-page: 187 year: 1962 end-page: 191 ident: CR13 article-title: Thermal conductivity of heterogeneous two-component systems publication-title: IEC Fundam. doi: 10.1021/i160003a005 – volume: 335 start-page: 355 year: 1973 end-page: 367 ident: CR17 article-title: Conduction through a random suspension of spheres publication-title: Proc. R. Soc. Lond. A doi: 10.1098/rspa.1973.0130 – volume: 49 start-page: 4886 year: 2006 end-page: 4892 ident: CR41 article-title: Exclusion of oscillations in heterogeneous and bi-composite media thermal conduction publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2006.05.034 – volume: 82C start-page: 392 year: 1976 end-page: 408 ident: CR15 article-title: The theory of the transient hot-wire method for measuring thermal conductivity publication-title: Physica – volume: 52 start-page: 5796 year: 2009 end-page: 5801 ident: CR31 article-title: Thermal instability in a porous medium layer saturated by a nanofluid publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2009.07.023 – volume: 99 start-page: 084314 year: 2006 ident: CR23 article-title: Experimental investigation of temperature and volume fraction variations of the effective thermal conductivity of nanoparticle suspension (nanofluids) publication-title: J. Appl. Phys. doi: 10.1063/1.2191571 – volume: 99 start-page: 084308-1/6 year: 2006 ident: CR35 article-title: Thermal conductivity of nanoparticle suspensions publication-title: J. Appl. Phys. doi: 10.1063/1.2189933 – volume: 48 start-page: 2673 year: 2005 end-page: 2683 ident: CR45 article-title: Heat transfer enhancement in nanofluids suspensions: possible mechanisms and explanations publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2005.01.023 – volume: 84 start-page: 4316 issue: 21 year: 2004 end-page: 4318 ident: CR16 article-title: Role of Brownian motion in the enhanced thermal conductivity of nanofluids publication-title: Appl. Phys. Lett. doi: 10.1063/1.1756684 – volume: 127 start-page: 307 year: 2004 end-page: 314 ident: CR37 article-title: Absence of oscillations and resonance in porous media dual-phase-lagging fourier heat conduction publication-title: J. Heat Transfer doi: 10.1115/1.1860567 – volume: 81 start-page: 409 year: 2010 end-page: 422 ident: CR19 article-title: Thermal instability in a porous medium layer saturated by a nanofluid: Brinkman model publication-title: Transp. Porous Med. doi: 10.1007/s11242-009-9413-2 – volume: 53 start-page: 2939 year: 2010 end-page: 2940 ident: CR6 article-title: Letter to editor publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2010.01.047 – volume: 128 start-page: 465 year: 2006 end-page: 477 ident: CR40 article-title: Heat conduction in nanofluid suspensions publication-title: J. Heat Transfer doi: 10.1115/1.2175149 – volume: 100 start-page: 094310-1/5 year: 2006 ident: CR47 article-title: Study of thermal transport in nanoparticle suspensions using forced Rayleigh scattering publication-title: J. Appl. Phys. doi: 10.1063/1.2360378 – volume: 78 start-page: 718 year: 2001 end-page: 720 ident: CR12 article-title: Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles publication-title: Appl. Phys. Lett. doi: 10.1063/1.1341218 – volume: 48 start-page: 2822 year: 2005 end-page: 2828 ident: CR39 article-title: Lack of oscillations in dual-phase-lagging heat conduction for a porous slab subject to imposed heat flux and temperature publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2005.02.005 – volume: 75 start-page: 454 year: 1974 end-page: 482 ident: CR11 article-title: Instrument to measure the thermal conductivity of gases publication-title: Physica (Amsterdam) doi: 10.1016/0031-8914(74)90341-3 – volume: 89 start-page: 261916-1/3 year: 2006 ident: CR36 article-title: Optical measurements of the thermal properties of nanofluids publication-title: Appl. Phys. Lett. doi: 10.1063/1.2425015 – volume: 52 start-page: 5792 year: 2009 end-page: 5795 ident: CR30 article-title: The Cheng–Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2009.07.024 – volume: 59 start-page: 341 year: 2005 end-page: 355 ident: CR38 article-title: Explicit conditions for local thermal equilibrium in porous media heat conduction publication-title: Transp. Porous Media doi: 10.1007/s11242-004-1801-z – volume: 17 start-page: 430 year: 1984 end-page: 439 ident: CR2 article-title: Temperature sensor characteristics and measurement system design publication-title: J. Phys. E doi: 10.1088/0022-3735/17/6/002 – volume: 85 start-page: 941 year: 2010 end-page: 951 ident: CR21 article-title: The onset of double-diffusive nanofluid convection in a layer of a saturated porous medium publication-title: Transp. Porous Med doi: 10.1007/s11242-010-9600-1 – volume: 432 start-page: 445 year: 1991 end-page: 465 ident: CR4 article-title: The effective conductivity of random suspensions of spherical particles publication-title: Proc. R. Soc. Lond. A doi: 10.1098/rspa.1991.0025 – volume: 21 start-page: 1255 year: 2000 end-page: 1278 ident: CR14 article-title: Transient hot wire (THW) method: uncertainty assessment publication-title: Int. J. Thermophys. doi: 10.1023/A:1006649209044 – volume: 92A start-page: 102 year: 1978 end-page: 116 ident: CR18 article-title: A contribution to the theory of the transient hot-wire technique for thermal conductivity measurements publication-title: Physica – volume: 132 start-page: 081601-1/7 issue: 8 year: 2010 ident: CR43 article-title: Rendering the transient hot wire experimental method for thermal conductivity estimation to two-phase systems—theoretical leading order results publication-title: J. Heat Transfer doi: 10.1115/1.4001314 – volume: 17 start-page: 114 year: 2001 end-page: 117 ident: CR26 article-title: Precise measurements of thermal diffusivity by photothermal radiometry for semi-infinite targets using accurately determined boundary conditions publication-title: Anal. Sci. – volume: 83 start-page: 425 year: 2010 end-page: 436 ident: CR20 article-title: Effect of local thermal non-equilibrium on the onset of convection in a porous medium layer saturated by a nanofluid publication-title: Transp. Porous Med. doi: 10.1007/s11242-009-9452-8 – volume: 7 start-page: 609 year: 1986 end-page: 620 ident: CR10 article-title: The effective thermal conductivity of a composite material with spherical inclusions publication-title: Int. J. Thermophys. doi: 10.1007/BF00502394 – volume: 6 start-page: 154 year: 2011 ident: CR44 article-title: Heat transfer augmentation in nanofluids via nanofins publication-title: Nanoscale Res. Lett. doi: 10.1186/1556-276X-6-154 – volume: 7 start-page: 227 year: 1993 end-page: 233 ident: CR27 article-title: Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles publication-title: Netsu Bussei – volume: 106 start-page: 094312 year: 2009 ident: CR5 article-title: A benchmark study on thermal conductivity of nanofluids publication-title: J. Appl. Phys. doi: 10.1063/1.3245330 – volume: 125 start-page: 567 year: 2003 end-page: 574 ident: CR9 article-title: Temperature dependence of thermal conductivity enhancement for nanofluids publication-title: J. Heat Transfer doi: 10.1115/1.1571080 – volume: 121 start-page: 280 year: 1999 end-page: 289 ident: CR22 article-title: Measuring thermal conductivity of fluids containing oxide nanoparticles publication-title: ASME J. Heat Transfer doi: 10.1115/1.2825978 – volume: 132 start-page: 052405-1/7 year: 2010 ident: CR32 article-title: The effect of local thermal nonequilibrium on the onset of convection in a nanofluid publication-title: J. Heat Transfer – ident: CR28 – volume: 49 start-page: 3028 year: 2006 end-page: 3033 ident: CR24 article-title: Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2006.02.012 – volume: 430 start-page: 285 year: 1990 end-page: 313 ident: CR3 article-title: A method for determining the effective conductivity of dispersions of particles publication-title: Proc. R. Soc. Lond. A doi: 10.1098/rspa.1990.0092 – volume: 25 start-page: 971 year: 2004 end-page: 985 ident: CR1 article-title: Thermal conductivity of suspensions of carbon nanotubes in water publication-title: Int. J. Thermophys. doi: 10.1023/B:IJOT.0000038494.22494.04 – volume: 25 start-page: 971 year: 2004 ident: 9763_CR1 publication-title: Int. J. Thermophys. doi: 10.1023/B:IJOT.0000038494.22494.04 – volume-title: Heat conduction year: 1993 ident: 9763_CR33 – volume-title: Conduction of Heat in Solids year: 1946 ident: 9763_CR7 – volume: 78 start-page: 718 year: 2001 ident: 9763_CR12 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1341218 – volume: 17 start-page: 114 year: 2001 ident: 9763_CR26 publication-title: Anal. Sci. – volume: 99 start-page: 084308-1/6 year: 2006 ident: 9763_CR35 publication-title: J. Appl. Phys. doi: 10.1063/1.2189933 – volume: 50 start-page: 4131 year: 2007 ident: 9763_CR42 publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2007.03.017 – volume: 79 start-page: 6761 year: 1996 ident: 9763_CR25 publication-title: J. Appl. Phys. doi: 10.1063/1.361498 – volume: 79 start-page: 2252 year: 2001 ident: 9763_CR8 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1408272 – volume: 75 start-page: 454 year: 1974 ident: 9763_CR11 publication-title: Physica (Amsterdam) doi: 10.1016/0031-8914(74)90341-3 – volume: 127 start-page: 307 year: 2004 ident: 9763_CR37 publication-title: J. Heat Transfer doi: 10.1115/1.1860567 – volume: 49 start-page: 4886 year: 2006 ident: 9763_CR41 publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2006.05.034 – volume: 432 start-page: 445 year: 1991 ident: 9763_CR4 publication-title: Proc. R. Soc. Lond. A doi: 10.1098/rspa.1991.0025 – volume: 92A start-page: 102 year: 1978 ident: 9763_CR18 publication-title: Physica doi: 10.1016/0378-4371(78)90023-7 – volume: 85 start-page: 941 year: 2010 ident: 9763_CR21 publication-title: Transp. Porous Med doi: 10.1007/s11242-010-9600-1 – volume: 430 start-page: 285 year: 1990 ident: 9763_CR3 publication-title: Proc. R. Soc. Lond. A doi: 10.1098/rspa.1990.0092 – volume: 52 start-page: 5792 year: 2009 ident: 9763_CR30 publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2009.07.024 – volume: 7 start-page: 609 year: 1986 ident: 9763_CR10 publication-title: Int. J. Thermophys. doi: 10.1007/BF00502394 – volume: 89 start-page: 261916-1/3 year: 2006 ident: 9763_CR36 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2425015 – volume: 125 start-page: 567 year: 2003 ident: 9763_CR9 publication-title: J. Heat Transfer doi: 10.1115/1.1571080 – ident: 9763_CR28 – volume: 99 start-page: 084314 year: 2006 ident: 9763_CR23 publication-title: J. Appl. Phys. doi: 10.1063/1.2191571 – volume: 94 start-page: 025901-1/4 year: 2005 ident: 9763_CR34 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.025901 – volume: 1 start-page: 187 year: 1962 ident: 9763_CR13 publication-title: IEC Fundam. doi: 10.1021/i160003a005 – volume: 81 start-page: 409 year: 2010 ident: 9763_CR19 publication-title: Transp. Porous Med. doi: 10.1007/s11242-009-9413-2 – volume: 53 start-page: 2939 year: 2010 ident: 9763_CR6 publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2010.01.047 – volume: 7 start-page: 227 year: 1993 ident: 9763_CR27 publication-title: Netsu Bussei doi: 10.2963/jjtp.7.227 – volume: 132 start-page: 052405-1/7 year: 2010 ident: 9763_CR32 publication-title: J. Heat Transfer – volume: 106 start-page: 094312 year: 2009 ident: 9763_CR5 publication-title: J. Appl. Phys. doi: 10.1063/1.3245330 – volume: 49 start-page: 3028 year: 2006 ident: 9763_CR24 publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2006.02.012 – volume: 14 start-page: 1435 year: 1981 ident: 9763_CR29 publication-title: J. Phys. E doi: 10.1088/0022-3735/14/12/020 – volume: 49 start-page: 235 year: 2010 ident: 9763_CR46 publication-title: Int. J. Thermal Sci. doi: 10.1016/j.ijthermalsci.2009.06.002 – volume: 100 start-page: 094310-1/5 year: 2006 ident: 9763_CR47 publication-title: J. Appl. Phys. doi: 10.1063/1.2360378 – volume: 82C start-page: 392 year: 1976 ident: 9763_CR15 publication-title: Physica – volume: 48 start-page: 2673 year: 2005 ident: 9763_CR45 publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2005.01.023 – volume: 83 start-page: 425 year: 2010 ident: 9763_CR20 publication-title: Transp. Porous Med. doi: 10.1007/s11242-009-9452-8 – volume: 84 start-page: 4316 issue: 21 year: 2004 ident: 9763_CR16 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1756684 – volume: 335 start-page: 355 year: 1973 ident: 9763_CR17 publication-title: Proc. R. Soc. Lond. A doi: 10.1098/rspa.1973.0130 – volume: 132 start-page: 081601-1/7 issue: 8 year: 2010 ident: 9763_CR43 publication-title: J. Heat Transfer doi: 10.1115/1.4001314 – volume: 6 start-page: 154 year: 2011 ident: 9763_CR44 publication-title: Nanoscale Res. Lett. doi: 10.1186/1556-276X-6-154 – volume: 17 start-page: 430 year: 1984 ident: 9763_CR2 publication-title: J. Phys. E doi: 10.1088/0022-3735/17/6/002 – volume: 128 start-page: 465 year: 2006 ident: 9763_CR40 publication-title: J. Heat Transfer doi: 10.1115/1.2175149 – volume: 52 start-page: 5796 year: 2009 ident: 9763_CR31 publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2009.07.023 – volume: 59 start-page: 341 year: 2005 ident: 9763_CR38 publication-title: Transp. Porous Media doi: 10.1007/s11242-004-1801-z – volume: 121 start-page: 280 year: 1999 ident: 9763_CR22 publication-title: ASME J. Heat Transfer doi: 10.1115/1.2825978 – volume: 48 start-page: 2822 year: 2005 ident: 9763_CR39 publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2005.02.005 – volume: 21 start-page: 1255 year: 2000 ident: 9763_CR14 publication-title: Int. J. Thermophys. doi: 10.1023/A:1006649209044 |
SSID | ssj0010084 |
Score | 1.9358983 |
Snippet | The porous media approach is being adapted to a system of nanoparticles that are attached to a solid surface (a metal wire) embedded into a stagnant fluid,... |
SourceID | proquest pascalfrancis crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 165 |
SubjectTerms | Civil Engineering Classical and Continuum Physics Design engineering Earth and Environmental Science Earth Sciences Earth, ocean, space Engineering and environment geology. Geothermics Exact sciences and technology Fins Fluid dynamics Fluid flow Geotechnical Engineering & Applied Earth Sciences Heat transfer Hydrocarbons Hydrogeology Hydrology. Hydrogeology Hydrology/Water Resources Industrial Chemistry/Chemical Engineering Nanocomposites Nanofluids Nanomaterials Nanoparticles Nanostructure Pollution, environment geology Porous media Sedimentary rocks Solid surfaces Thermal conductivity Wire |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEB-0RRREtCpurSWCT0ow2WSTjS-i5cohtkqx0Lcln_pQ9s7u3f_fyX7ccYKFfdtks5mZnZnMzM4P4B0LPrmqNJTjACptLahxXtKqrhM3QSftc0b37FzNL-W3q-pqDLh1Y1nlpBN7RR0WPsfIP6Lc1VxrzdTn5V-aUaNydnWE0LgP-6iCazx87X-dnf-82OQRcrv4obu3ocJwMeU1-5_n0LTlsgRO0SQLKncs0-Ol7ZBIaUC32HE__8mY9obo9Ck8GT1I8mVg-TO4F9sDeHgyAbcdwIO-qtN3z2GGuhOFp-2IxYucRbRLZJHIrP2TF2x_kzmqYtLbqxRvPpHvQ0k9-ZEbcpKL2K2vV90LuDyd_TqZ0xE3gVo8Da5odMxWgQclvfHMqRR9sJY5yVkQygshfaxDGVUsRTA6MO9UmaxQQbiMPi5ewl67aOMrIEknk4KrY6hKKaKzmvGIg7kro5F1KIBNNGv82FQ8Y1tcN9t2yJnMDZK5yWRuZAHvN1OWQ0eNuwYf7zBiMwO9EtyHrgo4mjjTjF9f12xlpYC3m9vIhZwMsW1crLuGK81770QU8GHi6PYR_32jw7sXfA2PhqhzrkI7gr3VzTq-Qbdl5Y5H2bwFqHLoGg priority: 102 providerName: ProQuest |
Title | Nanofins as a Means of Enhancing Heat Transfer: Leading Order Results |
URI | https://link.springer.com/article/10.1007/s11242-011-9763-4 https://www.proquest.com/docview/2258177706 https://www.proquest.com/docview/1671426613 |
Volume | 89 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9siyhI0aoYrccKPikL2ewmm_XtLLkeaqsUD-pT2E99KLnS3P3_zubjjhNbKATykNlNMjOZmc1vdgbgfepsMHmmKEMCKnTJqTJW0LwsA1NOBmkjont2XswX4stlfjns427HbPcRkuws9XazG7qimEbAKLpQTsUeHORx6Y5KvMimG-ggVojvC3oryhXjI5T5vyl2nNGTa90iX0Lf0GIn4vwHJO18z-wpHA5BI5n2Un4GD3xzBI9Oxl5tR_CwS-S07XOo0FyivjQt0XiQM4-uiCwDqZo_8YbNbzJH60s6FxX8zSfyrc-iJ99jDU5y4dv11ap9AYtZ9fNkTodWCVTjAnBFvUl17pgrhFU2NUXw1mmdGsFSxwvLubC-dJkvfMadki61psiC5oXjJjYc5y9hv1k2_hWQIIMKzpTe5Zng3miZMo_EzGReidIlkI48q-1QRzy2s7iqtxWQI5trZHMd2VyLBD5shlz3RTTuIp7sCGIzAgMRfA-ZJ3A8SqYePri2RrNUMillWiTwbnMZpRDxD9345bqtWSFZF5DwBD6OEt1OcesTvb4X9Rt43P93jnlox7C_uln7txi4rMwE9srZ6QQOpqe_vlZ4_lyd_7iYdOr7F0Bs50M |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9qRSqIaFWM1rqCviiL2ewmmxVEpN55tXcVpIW-pfupDyV3NneI_5R_o7PJ5Y4T7Fshb9mPZGZ2ZnZndn4AL1Nng8kzRRk2oEKXnCpjBc3LMjDlZJA2RnQnx8XoVHw5y8-24E9_FyamVfY6sVXUbmrjGflblLuSSSnT4sPsJ42oUTG62kNodGJx5H__wi1b8_7wE_L3VZYNBycHI7pEFaAa90pz6k2qc8dcIayyqSmCt07r1AiWOl5YzoX1pct84TPulHSpNUUWNC8cNxGbm-O4N-Cm4FzFFVUOP6-iFrE4fVdLXFGuGO-jqO1VPTSkMQmCUXQAOBUbdvDOTDfIktBhaWw4u__EZ1uzN7wHd5f-KvnYCdh92PL1Luwc9DBxu3CrzSG1zQMYoKZGUa0bovEhE49WkEwDGdQ_4oT1dzJCxU9a6xj85Tsy7hL4yddY_pN8883iYt48hNNroecj2K6ntX8MJMiggjOld3kmuDdapsxjY2Yyr0TpEkh7mlV2WcI8ImlcVOviy5HMFZK5imSuRAKvV11mXf2OqxrvbzBi1QN9IPwPmSew13OmWq71plpLZgIvVq-RCzH0oms_XTQVKyRrfSGewJueo-sh_vtFT66e8DnsjE4m42p8eHz0FG53590x_20PtueXC_8MHaa52W-llMD5dS-Lvzz5JWE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BERQJISigppRiJE4gq3bs2HFvVdnVAm1BiJV6i_yEQ5VdNdn_j53HrrYqSEi5ZewkM87MJN_4G4D3xNlgilxhGgUw1yXDyliOi7IMVDkZpE2I7sWlmM35l6viauhz2ozV7iMk2e9pSCxNdXu8dOF4s_EthqVUUkBxDKcM8_vwIHpjmpb1PD9dwwiJLb4n91aYKcpGWPOuKbYC05OlbqKOQt_cYiv7vAWYdnFo-gyeDgkkOu0t_hzu-XoPds_Gvm178LAr6rTNC5hE1xnXTt0gHQ904WNYQouAJvXvdMH6F5pFT4y6cBX8zQk67yvq0bfEx4l--GZ13TYvYT6d_Dyb4aFtAtbxY7DF3hBdOOoEt8oSI4K3TmtiOCWOCcsYt750uRc-Z05JR6wRedBMOGZS83H2CnbqRe33AQUZVHCm9K7IOfNGS0J9FKYm94qXLgMy6qyyA6d4am1xXW3YkJOaq6jmKqm54hl8WA9Z9oQa_xI-2jLEekRMSuJzyCKDw9Ey1fDyNVV0USWVUhKRwbv16WiFhIXo2i9WTUWFpF1ywjL4OFp0M8Vf7-jgv6TfwqPvn6bV-efLr6_hcf87OpWnHcJOe7Pyb2I-05qjbs3-AdUG6l4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanofins+as+a+Means+of+Enhancing+Heat+Transfer%3A+Leading+Order+Results&rft.jtitle=Transport+in+porous+media&rft.au=Vadasz%2C+Peter&rft.date=2011-09-01&rft.issn=0169-3913&rft.eissn=1573-1634&rft.volume=89&rft.issue=2&rft.spage=165&rft.epage=183&rft_id=info:doi/10.1007%2Fs11242-011-9763-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11242_011_9763_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-3913&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-3913&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-3913&client=summon |