Compressed Air Flow within Aquifer Reservoirs of CAES Plants

A model on the air flow within aquifer reservoirs of Compressed Air Energy Storage (CAES) plants was developed. The design of such CAES plants requires knowledge of the reservoir air pressure distribution during both the charging and discharging phases. Also, it must assure air/water interface stabi...

Full description

Saved in:
Bibliographic Details
Published inTransport in porous media Vol. 81; no. 2; pp. 219 - 240
Main Authors Kushnir, R., Ullmann, A., Dayan, A.
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.01.2010
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A model on the air flow within aquifer reservoirs of Compressed Air Energy Storage (CAES) plants was developed. The design of such CAES plants requires knowledge of the reservoir air pressure distribution during both the charging and discharging phases. Also, it must assure air/water interface stability to prevent water suction during discharge. An approximate analytical solution for the pressure variations within the anisotropic reservoir porous space was developed, subject to the Darcy equation and for conditions of partially penetrating wells. Sensitivity analyses were conducted to identify the dominant parameters affecting the well pressure and the critical flow rate (water suction threshold). It is demonstrated that water coning is a factor that could severely limit the discharge air flow rate. A significant diminishment of that limitation and reduction of the pressure fluctuation can be achieved by enlargement of the air layer height and discharge period. Likewise, aquifers with larger horizontal permeability impose less restrictive critical flows. A conclusion on the preferred screen length could not be merely drawn from technological considerations, but should also involve important economic aspects.
AbstractList A model on the air flow within aquifer reservoirs of Compressed Air Energy Storage (CAES) plants was developed. The design of such CAES plants requires knowledge of the reservoir air pressure distribution during both the charging and discharging phases. Also, it must assure air/water interface stability to prevent water suction during discharge. An approximate analytical solution for the pressure variations within the anisotropic reservoir porous space was developed, subject to the Darcy equation and for conditions of partially penetrating wells. Sensitivity analyses were conducted to identify the dominant parameters affecting the well pressure and the critical flow rate (water suction threshold). It is demonstrated that water coning is a factor that could severely limit the discharge air flow rate. A significant diminishment of that limitation and reduction of the pressure fluctuation can be achieved by enlargement of the air layer height and discharge period. Likewise, aquifers with larger horizontal permeability impose less restrictive critical flows. A conclusion on the preferred screen length could not be merely drawn from technological considerations, but should also involve important economic aspects.
Author Dayan, A.
Ullmann, A.
Kushnir, R.
Author_xml – sequence: 1
  givenname: R.
  surname: Kushnir
  fullname: Kushnir, R.
  organization: Department of Fluid Mechanics and Heat Transfer, School of Mechanical Engineering, Tel Aviv University
– sequence: 2
  givenname: A.
  surname: Ullmann
  fullname: Ullmann, A.
  email: ullmann@eng.tau.ac.il
  organization: Department of Fluid Mechanics and Heat Transfer, School of Mechanical Engineering, Tel Aviv University
– sequence: 3
  givenname: A.
  surname: Dayan
  fullname: Dayan, A.
  organization: Department of Fluid Mechanics and Heat Transfer, School of Mechanical Engineering, Tel Aviv University
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22337789$$DView record in Pascal Francis
BookMark eNp9kEtLAzEUhYMoWB8_wN2ACG5Gb5KZPMBNKfUBguJjHWImo5HppOZOlf57U6oIgq7u5vvOPZwdstnH3hNyQOGEAshTpJRVrATQpeZalssNMqK15CUVvNokI6BCl1xTvk12EF8BsqWqETmbxNk8eUTfFOOQivMufhQfYXgJfTF-W4TWp-LOo0_vMSQsYltMxtP74raz_YB7ZKu1Hfr9r7tLHs-nD5PL8vrm4moyvi5tBWwoHReCAW9BSwe1E61qNNQgKulkw56ooN65VmsPqtbVk3bONryh3jtplROa75Ljde48xbeFx8HMAjrf5RI-LtBQISlXlVRVRg9_oa9xkfrczjBWKyoVsDpTR1-URWe7NtneBTTzFGY2LTPJuZRq9ViuOZciYvKtcWGwQ4j9kGzoDAWzWt-s1zd5fbNa3yyzSX-Z3-H_OWztYGb7Z59-uv8tfQI0gpdh
CODEN TPMEEI
CitedBy_id crossref_primary_10_1016_j_energy_2024_132996
crossref_primary_10_1007_s00603_023_03677_6
crossref_primary_10_1007_s10064_024_03887_4
crossref_primary_10_1016_j_est_2021_103483
crossref_primary_10_1016_j_renene_2023_04_019
crossref_primary_10_1016_j_est_2025_115794
crossref_primary_10_1021_acssuschemeng_9b05388
crossref_primary_10_1038_s41598_018_32753_z
crossref_primary_10_1016_j_apenergy_2024_124441
crossref_primary_10_1016_j_est_2024_113202
crossref_primary_10_1016_j_apenergy_2023_122465
crossref_primary_10_1016_j_renene_2023_03_013
crossref_primary_10_1115_1_4005659
crossref_primary_10_1016_j_apenergy_2017_06_030
crossref_primary_10_1016_j_energy_2016_04_003
crossref_primary_10_1016_j_est_2024_114293
crossref_primary_10_1016_j_energy_2022_124646
crossref_primary_10_1016_j_energy_2025_135592
crossref_primary_10_1016_j_apenergy_2020_115044
crossref_primary_10_3390_app14083525
crossref_primary_10_1016_j_apenergy_2017_09_065
crossref_primary_10_1515_revce_2019_0015
crossref_primary_10_1016_j_apenergy_2025_125626
crossref_primary_10_1016_j_ijheatmasstransfer_2012_05_055
crossref_primary_10_1016_j_energy_2022_125987
crossref_primary_10_1016_j_apenergy_2023_121465
crossref_primary_10_1016_j_est_2021_103837
crossref_primary_10_1016_j_est_2024_114100
crossref_primary_10_1002_er_3303
crossref_primary_10_1016_j_est_2021_103279
crossref_primary_10_1007_s11242_019_01353_4
crossref_primary_10_1016_j_apenergy_2021_116513
crossref_primary_10_1016_j_renene_2017_12_091
crossref_primary_10_1144_SP528_2022_74
crossref_primary_10_1016_j_apenergy_2016_08_105
crossref_primary_10_1155_2017_9316506
crossref_primary_10_1016_j_apenergy_2020_115781
crossref_primary_10_1007_s00603_014_0672_z
crossref_primary_10_1080_00207233_2012_663228
crossref_primary_10_1016_j_geoen_2024_213496
crossref_primary_10_1016_j_jclepro_2023_136153
crossref_primary_10_1016_j_est_2024_112149
crossref_primary_10_3390_en8088873
crossref_primary_10_1007_s11242_012_0118_6
crossref_primary_10_1016_j_renene_2019_07_034
crossref_primary_10_1016_j_est_2021_103816
crossref_primary_10_1144_petgeo2016_049
crossref_primary_10_1007_s00603_019_02009_x
crossref_primary_10_1016_j_apenergy_2024_123329
crossref_primary_10_1360_SST_2024_0061
crossref_primary_10_1016_j_jhydrol_2018_12_056
Cites_doi 10.1016/0022-1694(84)90001-5
10.2172/5860735
10.2118/14210-MS
10.2118/15855-PA
10.1002/nag.1610060306
10.2172/6463248
10.1007/s11242-007-9156-x
10.2118/935144-G
10.1016/S0022-1694(96)03217-9
ContentType Journal Article
Copyright Springer Science+Business Media B.V. 2009
2015 INIST-CNRS
Transport in Porous Media is a copyright of Springer, (2009). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media B.V. 2009
– notice: 2015 INIST-CNRS
– notice: Transport in Porous Media is a copyright of Springer, (2009). All Rights Reserved.
DBID AAYXX
CITATION
IQODW
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7SR
8BQ
8FD
JG9
DOI 10.1007/s11242-009-9397-y
DatabaseName CrossRef
Pascal-Francis
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
ProQuest Materials Science Collection
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
ProQuest Central (New)
ProQuest One Academic (New)
Engineering Collection
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database
ProQuest Materials Science Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1573-1634
EndPage 240
ExternalDocumentID 22337789
10_1007_s11242_009_9397_y
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67M
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PDBOC
PF-
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WJK
WK6
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z8M
Z8N
Z8P
Z8Q
Z8S
Z8T
Z8U
Z8W
Z8Z
ZMTXR
~02
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
IQODW
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-a402t-c366203f097c05c6f8d9050647c7d2b161eccf99e08594b9ccad3d1eec7a8c693
IEDL.DBID U2A
ISSN 0169-3913
IngestDate Fri Jul 11 10:01:15 EDT 2025
Fri Jul 25 11:03:04 EDT 2025
Mon Jul 21 09:11:39 EDT 2025
Thu Apr 24 23:06:47 EDT 2025
Tue Jul 01 03:58:11 EDT 2025
Fri Feb 21 02:36:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Partially penetrating well
Water coning
Compressed air energy storage (CAES)
Porous reservoirs
Critical flow rates
models
sensitivity analysis
permeability
air-water interface
reservoirs
suction
air
pressure
storage
transport
water
critical flow
Water conking
aquifers
fluctuations
discharge
porous media
Analytical solution
stability
energy
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a402t-c366203f097c05c6f8d9050647c7d2b161eccf99e08594b9ccad3d1eec7a8c693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2258178025
PQPubID 2043596
PageCount 22
ParticipantIDs proquest_miscellaneous_1671384784
proquest_journals_2258178025
pascalfrancis_primary_22337789
crossref_citationtrail_10_1007_s11242_009_9397_y
crossref_primary_10_1007_s11242_009_9397_y
springer_journals_10_1007_s11242_009_9397_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20100100
2010-1-00
2010
20100101
PublicationDateYYYYMMDD 2010-01-01
PublicationDate_xml – month: 1
  year: 2010
  text: 20100100
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Transport in porous media
PublicationTitleAbbrev Transp Porous Med
PublicationYear 2010
Publisher Springer Netherlands
Springer
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer
– name: Springer Nature B.V
References MuskatM.The Flow of Homogeneous Fluid through Porous Media19371New YorkMcGraw-Hill
MeiriD.KaradiG.M.Simulation of air storage aquifer by finite element modelInt. J. Numer. Anal. Meth. Geomech.19826333935110.1002/nag.1610060306
Wiles, L.E.: Numerical analysis of temperature and flow effects in a dry, two-dimensional, porous media reservoir used for compressed air energy storage, technical report PNL-3047, Pacific Northwest Laboratory (1979)
RuudN.C.KabalaZ.J.Response of a partially penetrating well in a heterogeneous aquifer: integrated well-face flux vs. uniform well-face flux boundary conditionsJ. Hydrol. (Amst.)1997194769410.1016/S0022-1694(96)03217-9
Allen, R.D., Doherty, T.J., Schainker, R.B., Istvan, J.A., Pereira, J.C.: Preliminary results from the pittsfield aquifer field test applicable to commercialization of CAES technology. Intersociety Energy Conversion Engineering Conference, San Francisco, USA, pp. 1081–1090 (1984)
CarslawH.S.JaegerJ.C.Conduction of Heat in Solids19592OxfordOxford University Press
Wiles, L.E., McCann, R.A.: Water coning in porous media reservoirs for compressed air energy storage, technical report PNL-3470, Pacific Northwest Laboratory (1981)
Wheatley, M.J.: An approximate theory of oil/water coning. Paper SPE 14210, SPE 60th annual technical conference and exhibition, Las Vegas, USA (1985)
MuskatM.WyckoffR.D.An approximate theory of water coning in oil productionTrans. AIME1935114144163
Crotogino, F., Mohmeyer, K.U., Scharf, R.: Huntorf CAES: more than 20 years of successful operation. SMRI Spring Meeting, Orlando, USA, pp. 351–357 (2001)
ANR Storage Company: compressed air energy storage in porous media, EPRI Report 2488-10, March (1986)
BraesterC.BearJ.Some hydrodynamics aspects of compressed-air energy storage in aquifersJ. Hydrol. (Amst.)198473201225
KushnirR.UllmannA.DayanA.Steady periodic gas flow around a well of a CAES plantTransp. Porous Media200873112010.1007/s11242-007-9156-x
HoylandL.A.PapatzacosP.SkjaevelandS.M.Critical rate for water coning: correlation and analytical solutionSPE Reserv. Eng.198944495502
9397_CR1
9397_CR2
9397_CR5
9397_CR12
N.C. Ruud (9397_CR11) 1997; 194
9397_CR13
9397_CR14
R. Kushnir (9397_CR7) 2008; 73
L.A. Hoyland (9397_CR6) 1989; 4
C. Braester (9397_CR3) 1984; 73
M. Muskat (9397_CR10) 1935; 114
H.S. Carslaw (9397_CR4) 1959
D. Meiri (9397_CR8) 1982; 6
M. Muskat (9397_CR9) 1937
References_xml – reference: RuudN.C.KabalaZ.J.Response of a partially penetrating well in a heterogeneous aquifer: integrated well-face flux vs. uniform well-face flux boundary conditionsJ. Hydrol. (Amst.)1997194769410.1016/S0022-1694(96)03217-9
– reference: Allen, R.D., Doherty, T.J., Schainker, R.B., Istvan, J.A., Pereira, J.C.: Preliminary results from the pittsfield aquifer field test applicable to commercialization of CAES technology. Intersociety Energy Conversion Engineering Conference, San Francisco, USA, pp. 1081–1090 (1984)
– reference: Wheatley, M.J.: An approximate theory of oil/water coning. Paper SPE 14210, SPE 60th annual technical conference and exhibition, Las Vegas, USA (1985)
– reference: KushnirR.UllmannA.DayanA.Steady periodic gas flow around a well of a CAES plantTransp. Porous Media200873112010.1007/s11242-007-9156-x
– reference: MeiriD.KaradiG.M.Simulation of air storage aquifer by finite element modelInt. J. Numer. Anal. Meth. Geomech.19826333935110.1002/nag.1610060306
– reference: Wiles, L.E., McCann, R.A.: Water coning in porous media reservoirs for compressed air energy storage, technical report PNL-3470, Pacific Northwest Laboratory (1981)
– reference: Wiles, L.E.: Numerical analysis of temperature and flow effects in a dry, two-dimensional, porous media reservoir used for compressed air energy storage, technical report PNL-3047, Pacific Northwest Laboratory (1979)
– reference: BraesterC.BearJ.Some hydrodynamics aspects of compressed-air energy storage in aquifersJ. Hydrol. (Amst.)198473201225
– reference: CarslawH.S.JaegerJ.C.Conduction of Heat in Solids19592OxfordOxford University Press
– reference: HoylandL.A.PapatzacosP.SkjaevelandS.M.Critical rate for water coning: correlation and analytical solutionSPE Reserv. Eng.198944495502
– reference: Crotogino, F., Mohmeyer, K.U., Scharf, R.: Huntorf CAES: more than 20 years of successful operation. SMRI Spring Meeting, Orlando, USA, pp. 351–357 (2001)
– reference: ANR Storage Company: compressed air energy storage in porous media, EPRI Report 2488-10, March (1986)
– reference: MuskatM.The Flow of Homogeneous Fluid through Porous Media19371New YorkMcGraw-Hill
– reference: MuskatM.WyckoffR.D.An approximate theory of water coning in oil productionTrans. AIME1935114144163
– volume: 73
  start-page: 201
  year: 1984
  ident: 9397_CR3
  publication-title: J. Hydrol. (Amst.)
  doi: 10.1016/0022-1694(84)90001-5
– ident: 9397_CR2
– ident: 9397_CR1
– ident: 9397_CR13
  doi: 10.2172/5860735
– ident: 9397_CR12
  doi: 10.2118/14210-MS
– volume-title: Conduction of Heat in Solids
  year: 1959
  ident: 9397_CR4
– volume-title: The Flow of Homogeneous Fluid through Porous Media
  year: 1937
  ident: 9397_CR9
– volume: 4
  start-page: 495
  issue: 4
  year: 1989
  ident: 9397_CR6
  publication-title: SPE Reserv. Eng.
  doi: 10.2118/15855-PA
– volume: 6
  start-page: 339
  issue: 3
  year: 1982
  ident: 9397_CR8
  publication-title: Int. J. Numer. Anal. Meth. Geomech.
  doi: 10.1002/nag.1610060306
– ident: 9397_CR5
– ident: 9397_CR14
  doi: 10.2172/6463248
– volume: 73
  start-page: 1
  issue: 1
  year: 2008
  ident: 9397_CR7
  publication-title: Transp. Porous Media
  doi: 10.1007/s11242-007-9156-x
– volume: 114
  start-page: 144
  year: 1935
  ident: 9397_CR10
  publication-title: Trans. AIME
  doi: 10.2118/935144-G
– volume: 194
  start-page: 76
  year: 1997
  ident: 9397_CR11
  publication-title: J. Hydrol. (Amst.)
  doi: 10.1016/S0022-1694(96)03217-9
SSID ssj0010084
Score 2.1203504
Snippet A model on the air flow within aquifer reservoirs of Compressed Air Energy Storage (CAES) plants was developed. The design of such CAES plants requires...
SourceID proquest
pascalfrancis
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 219
SubjectTerms Air flow
Aquifers
Civil Engineering
Classical and Continuum Physics
Compressed air
Critical flow
Discharge
Earth and Environmental Science
Earth Sciences
Earth, ocean, space
Energy storage
Engineering and environment geology. Geothermics
Enlargement
Exact sciences and technology
Exact solutions
Flow velocity
Geotechnical Engineering & Applied Earth Sciences
Hydrocarbons
Hydrogeology
Hydrology. Hydrogeology
Hydrology/Water Resources
Industrial Chemistry/Chemical Engineering
Interface stability
Mathematical analysis
Mathematical models
Parameter identification
Parameter sensitivity
Pollution, environment geology
Pressure distribution
Reservoirs
Sedimentary rocks
Sensitivity analysis
Stability analysis
Stress concentration
Suction
Variations
Water discharge
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9RAFD5oS1EQ0WoxtZYRfGoZnGRm5wKCrMsuRbCIttC3kEwmsFCS7WZX6b_vObnssoJ9TmYSzpmZc53vA_iUm1KVwQiOsUHGlTcFz4RVXAeZ-9gnylu6O_zjUl9cq-83o5s-4db0bZXDmdge1EXtKUf-GdedjY1FE_11cceJNYqqqz2FxlPYxyPYYvC1_216-fPXpo5AcPEdurfj0sVyqGu2l-fQtCWcigMOjTK_37FMLxZZg0IqO3aLHffzn4ppa4hmr-Bl70Gycafy1_AkVIfwbDIQtx3CQdvV6Zs38IV2e4sOXrDxfMlmt_VfRpnXecXGd2vqamHUerf8U8-XDatLNhlPfzMiMlo1b-F6Nr2aXPCeLoFnGASuuJdaJ0KWwhkvRl6XtnCC8OgMaiDJ0bVDdZXOBcI0U7lD3RWyiEPwJrNeO3kEe1VdhXfU7zTSLglOByNVyHUuHLq3RphMZdp5GYEYRJX6HkucKC1u0y0KMkk3RemmJN30PoKzzZBFB6Tx2MunO_LfjEBnRhpjXQQng0LSftM16XaJRPBx8xiFTzWQrAr1ukljjVE5WmSrIjgfFLmd4r9_dPz4B9_D866tgHIzJ7C3Wq7DB_RWVvlpvyQfAHSj5Gc
  priority: 102
  providerName: ProQuest
Title Compressed Air Flow within Aquifer Reservoirs of CAES Plants
URI https://link.springer.com/article/10.1007/s11242-009-9397-y
https://www.proquest.com/docview/2258178025
https://www.proquest.com/docview/1671384784
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB_6gSiItFUxWo8VfFIWNtnNfoAv8bhrabEU9aA-hWSzgYOS1MtdS_97Z_Nxx4kW-pSH_SD8ZndnZmf2NwAfc1WK0ilG0TfIqLCqoBnTgkrHcxvaSFjt3w5_u5CnM3F2FV_177ibIdt9CEm2J_XmsRuqooj6y3yDSpTe78J-7F13XMSzKFmHDjxDfEfobSg3IR9Cmf-aYksZPb_JGsSl7ApabFmcfwVJW90zPYAXvdFIkk7Kh7DjqiN4Oh5qtR3BkzaR0zYv4Yvf4C0heEGS-YJMr-s74i9b5xVJfq98Igvx2XaL23q-aEhdknEy-UF87aJl8wpm08nP8SntKyTQDP2-JbVcyojxkhllWWxlqQvDPAWdQtCjHK05lFBpjPM0ZiI3KK6CF6FzVmXaSsNfw15VV-6NT3GKpYmckU5x4XKZM4MWrWIqE5k0lgfABqhS29OH-yoW1-mG-NijmyK6qUc3vQ_g03rITced8VDn0Rb-6xFov3CltAngeBBI2u-zBhtjHSqNhlsAH9bNCL4Pe2SVq1dNGkp0xFEJaxHA50GQmyn--0dvH9X7HTzrEgv87cwx7C0XK_ce7ZVlPoJdPT0ZwX5y8ut8gt-vk4vL76N21f4B0qDkOA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9Ki1SQolUxWusK-qIsJtm9_QBFjrPn1X682ELfYrLZwEFJrpc7y_1T_o3OJJc7TrBvfU422Z2ZnZmdmf0NwLtMF7LwOuR4Nki5dDrnaWgkV15kLnKxdIbuDp-dq9Gl_HHVu9qCP91dGCqr7HRio6jzylGM_BPKnYm0QRP9dXLDqWsUZVe7FhqtWJz4xS0e2eovx9-Qv-_jeHh0MRjxZVcBnuJZacadUCoORRFa7cKeU4XJbUiwbRonGmfoAeGqCms9QX_JzOISc5FH3judGqcIfAlV_o4UwtKOMsPvq6wFgdO3WOKWCxuJLovaXNVDQxpzSkVYdAH4YsMOPpqkNbKkaHtpbDi7_-RnG7M3fAx7S3-V9VsBewJbvtyH3UHXJm4fHjQ1pK5-Cp9JtzRY5Dnrj6dseF3dMorzjkvWv5lTDQ2jQr_p72o8rVlVsEH_6Cejtkmz-hlc3gsZn8N2WZX-BVVX9ZSNvVVeC-kzlYUWnWkd6lSmyjoRQNiRKnFL5HJqoHGdrDGXiboJUjch6iaLAD6shkxa2I67Xj7coP9qBLpOQmtjAzjoGJIst3idrAUygLerx0h8yrikpa_mdRIpHQm0_0YG8LFj5PoT_53Ry7t_-AZ2Rxdnp8np8fnJK3jYFjRQVOgAtmfTuX-NftIsO2yEk8Gv-94NfwF1KyAy
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ti9QwEB7OO3wBET0V651nDvykhEubbNLAfSnrLaf3gqAL9620aQoLR7tuu8r9e2e27S4rKvg5L5Rnks6TzOQZgHe5KVXpjeB4Nsi4cqbgmYgV117mLnSRcjG9Hb661udT9flmdNPXOW2GbPchJNm9aSCVpqo9mRflyebhG7qliNPFvkWHyu_uwR7-jUNa1tMoWYcRSC2-E_e2XNpQDmHNP02x5Zgez7MGMSq74hZb7PO3gOnKD02ewpOeQLKks_gz2PHVPjwcD3Xb9uH-KqnTNc_hlDb7Shy8YMlswSa39U9GF6-ziiXfl5TUwijzbvGjni0aVpdsnJx9ZVTHqG1ewHRy9m18zvtqCTzDM2DLndQ6ErIU1jgxcrqMCytIjs6gAaIcmR1aq7TWk6SZyi2arpBF6L0zWey0lS9ht6or_4rSnUbaRt5qb6Tyuc6FRXZrhMlUpq2TAYgBqtT1UuJU0eI23YggE7opopsSuuldAO_XQ-adjsa_Oh9t4b8egVxGGhPbAA4Hg6T9nmuwcRSHJkYSF8DxuhnBpxBIVvl62aShxkM5OuRYBfBhMORmir9-0ev_6v0WHnz5OEkvP11fHMCjLt-ALm0OYbddLP0bpDFtfrRaqr8AXkTnUw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compressed+Air+Flow+within+Aquifer+Reservoirs+of+CAES+Plants&rft.jtitle=Transport+in+porous+media&rft.au=KUSHNIR%2C+R&rft.au=ULLMANN%2C+A&rft.au=DAYAN%2C+A&rft.date=2010&rft.pub=Springer&rft.issn=0169-3913&rft.volume=81&rft.issue=2&rft.spage=219&rft.epage=240&rft_id=info:doi/10.1007%2Fs11242-009-9397-y&rft.externalDBID=n%2Fa&rft.externalDocID=22337789
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-3913&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-3913&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-3913&client=summon