3D-Printed Submicron Patterns Reveal the Interrelation between Cell Adhesion, Cell Mechanics, and Osteogenesis
The surface topography of implantable devices is of crucial importance for guiding the cascade of events that starts from the initial contact of the cells with the surface and continues until the complete integration of the device in its immediate environment. There is, however, limited quantitative...
Saved in:
Published in | ACS applied materials & interfaces Vol. 13; no. 29; pp. 33767 - 33781 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
28.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The surface topography of implantable devices is of crucial importance for guiding the cascade of events that starts from the initial contact of the cells with the surface and continues until the complete integration of the device in its immediate environment. There is, however, limited quantitative information available regarding the relationships between the different stages of such cascade(s) and how the design of surface topography influences them. We, therefore, used direct laser writing to 3D-print submicron pillars with precisely controlled dimensions and spatial arrangements to perform a systematic study of such relationships. Using single-cell force spectroscopy, we measured the adhesion force and the work of adhesion of the preosteoblast cells residing on the different types of surfaces. Not only the adhesion parameters (after 2–60 s) but also the formation of focal adhesions was strongly dependent on the geometry and arrangement of the pillars: sufficiently tall and dense pillars enhanced both adhesion parameters and the formation of focal adhesions. Our morphological study of the cells (after 24 h) showed that those enhancements were associated with a specific way of cell settlement onto the surface (i.e., “top state”). The cells interacting with tall and dense pillars were also characterized by numerous thick actin stress fibers in the perinuclear region and possibly high internal stresses. Furthermore, living cells with highly organized cytoskeletal networks exhibited greater values of the elastic modulus. The early responses of the cells predicted their late response including matrix mineralization: tall and dense submicron pillars significantly upregulated the expression of osteopontin after 21 days of culture under both osteogenic and nonosteogenic conditions. Our findings paint a detailed picture of at least one possible cascade of events that starts from initial cell adhesion and continues to subsequent cellular functions and eventual matrix mineralization. These observations could inform the future developments of instructive surfaces for medical devices based on physical surface cues and early markers. |
---|---|
AbstractList | The surface topography of implantable devices is of crucial importance for guiding the cascade of events that starts from the initial contact of the cells with the surface and continues until the complete integration of the device in its immediate environment. There is, however, limited quantitative information available regarding the relationships between the different stages of such cascade(s) and how the design of surface topography influences them. We, therefore, used direct laser writing to 3D-print submicron pillars with precisely controlled dimensions and spatial arrangements to perform a systematic study of such relationships. Using single-cell force spectroscopy, we measured the adhesion force and the work of adhesion of the preosteoblast cells residing on the different types of surfaces. Not only the adhesion parameters (after 2–60 s) but also the formation of focal adhesions was strongly dependent on the geometry and arrangement of the pillars: sufficiently tall and dense pillars enhanced both adhesion parameters and the formation of focal adhesions. Our morphological study of the cells (after 24 h) showed that those enhancements were associated with a specific way of cell settlement onto the surface (i.e., “top state”). The cells interacting with tall and dense pillars were also characterized by numerous thick actin stress fibers in the perinuclear region and possibly high internal stresses. Furthermore, living cells with highly organized cytoskeletal networks exhibited greater values of the elastic modulus. The early responses of the cells predicted their late response including matrix mineralization: tall and dense submicron pillars significantly upregulated the expression of osteopontin after 21 days of culture under both osteogenic and nonosteogenic conditions. Our findings paint a detailed picture of at least one possible cascade of events that starts from initial cell adhesion and continues to subsequent cellular functions and eventual matrix mineralization. These observations could inform the future developments of instructive surfaces for medical devices based on physical surface cues and early markers. The surface topography of implantable devices is of crucial importance for guiding the cascade of events that starts from the initial contact of the cells with the surface and continues until the complete integration of the device in its immediate environment. There is, however, limited quantitative information available regarding the relationships between the different stages of such cascade(s) and how the design of surface topography influences them. We, therefore, used direct laser writing to 3D-print submicron pillars with precisely controlled dimensions and spatial arrangements to perform a systematic study of such relationships. Using single-cell force spectroscopy, we measured the adhesion force and the work of adhesion of the preosteoblast cells residing on the different types of surfaces. Not only the adhesion parameters (after 2–60 s) but also the formation of focal adhesions was strongly dependent on the geometry and arrangement of the pillars: sufficiently tall and dense pillars enhanced both adhesion parameters and the formation of focal adhesions. Our morphological study of the cells (after 24 h) showed that those enhancements were associated with a specific way of cell settlement onto the surface (i.e., “top state”). The cells interacting with tall and dense pillars were also characterized by numerous thick actin stress fibers in the perinuclear region and possibly high internal stresses. Furthermore, living cells with highly organized cytoskeletal networks exhibited greater values of the elastic modulus. The early responses of the cells predicted their late response including matrix mineralization: tall and dense submicron pillars significantly upregulated the expression of osteopontin after 21 days of culture under both osteogenic and nonosteogenic conditions. Our findings paint a detailed picture of at least one possible cascade of events that starts from initial cell adhesion and continues to subsequent cellular functions and eventual matrix mineralization. These observations could inform the future developments of instructive surfaces for medical devices based on physical surface cues and early markers. |
Author | Nouri-Goushki, Mahdiyeh Angeloni, Livia Fratila-Apachitei, Lidy E Minneboo, Michelle Boukany, Pouyan E Modaresifar, Khashayar Mirzaali, Mohammad J Ghatkesar, Murali K Zadpoor, Amir A |
AuthorAffiliation | Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering Delft University of Technology (TU Delft) Department of Chemical Engineering Department of Precision and Microsystems Engineering, Faculty of Mechanical, Maritime, and Materials Engineering |
AuthorAffiliation_xml | – name: Delft University of Technology (TU Delft) – name: Department of Chemical Engineering – name: Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering – name: Department of Precision and Microsystems Engineering, Faculty of Mechanical, Maritime, and Materials Engineering |
Author_xml | – sequence: 1 givenname: Mahdiyeh orcidid: 0000-0003-1665-9144 surname: Nouri-Goushki fullname: Nouri-Goushki, Mahdiyeh email: m.nourigoushki@tudelft.nl, mhd.nouri71@gmail.com organization: Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering – sequence: 2 givenname: Livia surname: Angeloni fullname: Angeloni, Livia email: l.angeloni@tudelft.nl organization: Delft University of Technology (TU Delft) – sequence: 3 givenname: Khashayar orcidid: 0000-0002-0391-8541 surname: Modaresifar fullname: Modaresifar, Khashayar organization: Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering – sequence: 4 givenname: Michelle surname: Minneboo fullname: Minneboo, Michelle organization: Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering – sequence: 5 givenname: Pouyan E surname: Boukany fullname: Boukany, Pouyan E organization: Delft University of Technology (TU Delft) – sequence: 6 givenname: Mohammad J orcidid: 0000-0002-5349-6922 surname: Mirzaali fullname: Mirzaali, Mohammad J organization: Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering – sequence: 7 givenname: Murali K surname: Ghatkesar fullname: Ghatkesar, Murali K organization: Delft University of Technology (TU Delft) – sequence: 8 givenname: Lidy E orcidid: 0000-0002-7341-4445 surname: Fratila-Apachitei fullname: Fratila-Apachitei, Lidy E email: E.L.Fratila-Apachitei@tudelft.nl organization: Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering – sequence: 9 givenname: Amir A orcidid: 0000-0003-3234-2112 surname: Zadpoor fullname: Zadpoor, Amir A organization: Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering |
BookMark | eNp1kU1LJDEQhoMofl8957gs9lhJOj3xsiDj-gGK4uo5VKdrnEhP2k0yyv57s_QgePCSSqqeekPVu8c2wxCIsSMBEwFSnKBLuPQT4UA1ZrrBdsVpXVdGarn5ea_rHbaX0gtAoyTobbajaqnBgNllQZ1X99GHTB3_s2qX3sUh8HvMmWJI_IHeCHueF8SvCxMj9Zh9IVrK70SBz6jv-Vm3oFSyx-PzltwCg3fpmGPo-F3KNDxTKEg6YFtz7BMdruM-e7r4_Ti7qm7uLq9nZzcV1iBzhZJQC1WORtSiaQVOZecMkMH2tO0kzOdEri2s1KZtSSitBahOQNOR0Vrts1-j7muZiTpHIUfs7Wv0S4z_7IDefq0Ev7DPw5s1SioBogj8WAvE4e-KUrZLn1yZDgMNq2Sl1tDIKQhZ0MmIltWlFGn--Y0A-98kO5pk1yaVhp9jQ8nbl2EVQ1nFd_AHeSOWRw |
CitedBy_id | crossref_primary_10_1080_10255842_2022_2058875 crossref_primary_10_1016_j_matdes_2022_110663 crossref_primary_10_1016_j_mtbio_2022_100448 crossref_primary_10_1186_s12951_022_01361_5 crossref_primary_10_3390_ma15041346 crossref_primary_10_1039_D2TB02056D crossref_primary_10_1016_j_bioadv_2022_212993 crossref_primary_10_1039_D2BM01499H crossref_primary_10_1007_s12195_023_00766_y crossref_primary_10_1021_acsami_3c14491 crossref_primary_10_1088_1758_5090_ac8dc7 crossref_primary_10_3390_polym15153255 crossref_primary_10_1016_j_actbio_2021_12_001 crossref_primary_10_3390_ijms24076699 crossref_primary_10_1002_smll_202204662 crossref_primary_10_1016_j_actbio_2023_08_006 crossref_primary_10_1016_j_jmrt_2023_01_153 crossref_primary_10_1080_09205063_2022_2088524 crossref_primary_10_1021_acs_chemmater_3c02264 crossref_primary_10_1021_acsnano_3c03385 crossref_primary_10_1007_s10856_023_06760_0 crossref_primary_10_1021_acsami_1c22109 crossref_primary_10_1002_adma_202211702 crossref_primary_10_1002_jbm_a_37454 crossref_primary_10_2139_ssrn_4003814 |
Cites_doi | 10.1016/j.eng.2017.01.014 10.1109/ICSENS.2007.355729 10.1002/jmr.2193 10.1042/bst0320416 10.1038/nmat2013 10.1021/acsnano.5b03157 10.1109/ACC.2014.6859224 10.1002/wnan.1521 10.1002/adhm.201601244 10.1159/000066964 10.1039/b910132m 10.1038/nmat5023 10.1021/nn301654e 10.1073/pnas.1016616108 10.1021/acsami.9b16050 10.1016/j.biomaterials.2008.12.081 10.1073/pnas.1308887110 10.1016/0166-6622(84)80175-4 10.1007/s00709-017-1077-0 10.1016/j.tcb.2012.07.005 10.1038/ncb0402-e91 10.3389/fbioe.2018.00190 10.1002/smll.201905422 10.1016/j.actbio.2016.09.031 10.1039/b804103b 10.1021/acsami.7b17871 10.1016/j.actbio.2009.03.027 10.1091/mbc.e06-09-0777 10.1016/j.actbio.2009.01.007 10.1016/j.bbamcr.2015.05.007 10.1039/c7nr04785a 10.1016/0020-7225(65)90019-4 10.3233/bme-151301 10.1021/nl501248y 10.1186/s13287-018-0798-0 10.1002/(sici)1097-4636(199707)36:1<99::aid-jbm12>3.0.co;2-e 10.1016/j.mex.2014.06.004 10.1073/pnas.94.17.9114 10.1016/j.biomaterials.2012.05.005 10.1073/pnas.0235407100 10.1016/j.bpj.2009.05.010 10.1038/ncomms14347 10.1302/2046-3758.91.bjr-2019-0043.r2 10.1091/mbc.e17-06-0393 10.1016/j.memsci.2018.07.071 10.1529/biophysj.106.089730 10.1002/(sici)1097-4636(200002)49:2<155::aid-jbm2>3.0.co;2-j 10.1039/c6nr09700f 10.3390/nano9121701 10.1073/pnas.1117810109 10.1002/stem.746 10.1073/pnas.0508269103 10.1039/c8cp03538e 10.1002/adma.201903862 10.1088/1361-6528/aad9bf 10.1038/nmat1001 10.1002/jbm.a.34824 10.1016/j.bpj.2011.05.023 10.1016/j.bprint.2019.e00054 10.1016/j.biomaterials.2007.11.009 10.1021/acsbiomaterials.9b01155 10.3390/ma10121344 10.3390/colloids3020048 10.1021/acsnano.9b04808 10.1186/s12951-014-0054-4 10.1016/j.biomaterials.2009.12.051 10.1021/acsami.9b17425 10.1016/j.devcel.2015.11.001 10.1016/j.biomaterials.2011.06.063 10.1016/j.ymeth.2013.01.006 |
ContentType | Journal Article |
Copyright | 2021 The
Authors. Published by American
Chemical Society 2021 The Authors. Published by American Chemical Society 2021 The Authors |
Copyright_xml | – notice: 2021 The Authors. Published by American Chemical Society – notice: 2021 The Authors. Published by American Chemical Society 2021 The Authors |
DBID | AAYXX CITATION 7X8 5PM |
DOI | 10.1021/acsami.1c03687 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 33781 |
ExternalDocumentID | 10_1021_acsami_1c03687 a609202715 |
GrantInformation_xml | – fundername: ; grantid: 707404 – fundername: ; grantid: NA – fundername: ; grantid: 677575 |
GroupedDBID | - .K2 23M 4.4 53G 55A 5GY 5VS 7~N AABXI ABFRP ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ F5P GGK GNL IH9 JG JG~ K2 P2P RNS ROL UI2 VF5 VG9 W1F XKZ --- 5ZA 6J9 AAHBH AAYXX ABJNI ABQRX ADHLV BAANH CITATION CUPRZ 7X8 5PM |
ID | FETCH-LOGICAL-a402t-a2ea513ea561416b1a72dc80e8ab9bd20ffeecb402258bbe1355103d106de8553 |
IEDL.DBID | ACS |
ISSN | 1944-8244 |
IngestDate | Tue Sep 17 21:11:08 EDT 2024 Sat Aug 17 01:39:40 EDT 2024 Fri Aug 23 01:30:39 EDT 2024 Fri Jul 30 07:10:20 EDT 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Keywords | biomaterials surface patterns osteogenic response cell adhesion cell mechanics |
Language | English |
License | Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a402t-a2ea513ea561416b1a72dc80e8ab9bd20ffeecb402258bbe1355103d106de8553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1665-9144 0000-0003-3234-2112 0000-0002-5349-6922 0000-0002-0391-8541 0000-0002-7341-4445 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8323101 |
PMID | 34250808 |
PQID | 2550627012 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8323101 proquest_miscellaneous_2550627012 crossref_primary_10_1021_acsami_1c03687 acs_journals_10_1021_acsami_1c03687 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 GGK W1F ABFRP ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2021-07-28 |
PublicationDateYYYYMMDD | 2021-07-28 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-28 day: 28 |
PublicationDecade | 2020 |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref68/cit68 doi: 10.1016/j.eng.2017.01.014 – ident: ref13/cit13 doi: 10.1109/ICSENS.2007.355729 – ident: ref23/cit23 doi: 10.1002/jmr.2193 – ident: ref41/cit41 doi: 10.1042/bst0320416 – ident: ref6/cit6 doi: 10.1038/nmat2013 – ident: ref19/cit19 doi: 10.1021/acsnano.5b03157 – ident: ref30/cit30 doi: 10.1109/ACC.2014.6859224 – ident: ref49/cit49 doi: 10.1002/wnan.1521 – ident: ref42/cit42 doi: 10.1002/adhm.201601244 – ident: ref35/cit35 doi: 10.1159/000066964 – ident: ref59/cit59 doi: 10.1039/b910132m – ident: ref28/cit28 doi: 10.1038/nmat5023 – ident: ref44/cit44 doi: 10.1021/nn301654e – ident: ref54/cit54 doi: 10.1073/pnas.1016616108 – ident: ref61/cit61 doi: 10.1021/acsami.9b16050 – ident: ref8/cit8 doi: 10.1016/j.biomaterials.2008.12.081 – ident: ref3/cit3 doi: 10.1073/pnas.1308887110 – ident: ref33/cit33 doi: 10.1016/0166-6622(84)80175-4 – ident: ref50/cit50 doi: 10.1007/s00709-017-1077-0 – ident: ref39/cit39 doi: 10.1016/j.tcb.2012.07.005 – ident: ref16/cit16 doi: 10.1038/ncb0402-e91 – ident: ref24/cit24 doi: 10.3389/fbioe.2018.00190 – ident: ref4/cit4 doi: 10.1002/smll.201905422 – ident: ref7/cit7 doi: 10.1016/j.actbio.2016.09.031 – ident: ref69/cit69 doi: 10.1039/b804103b – ident: ref66/cit66 doi: 10.1021/acsami.7b17871 – ident: ref14/cit14 doi: 10.1016/j.actbio.2009.03.027 – ident: ref27/cit27 doi: 10.1091/mbc.e06-09-0777 – ident: ref9/cit9 doi: 10.1016/j.actbio.2009.01.007 – ident: ref56/cit56 doi: 10.1016/j.bbamcr.2015.05.007 – ident: ref21/cit21 doi: 10.1039/c7nr04785a – ident: ref31/cit31 doi: 10.1016/0020-7225(65)90019-4 – ident: ref58/cit58 doi: 10.3233/bme-151301 – ident: ref12/cit12 doi: 10.1021/nl501248y – ident: ref65/cit65 doi: 10.1186/s13287-018-0798-0 – ident: ref34/cit34 doi: 10.1002/(sici)1097-4636(199707)36:1<99::aid-jbm12>3.0.co;2-e – ident: ref32/cit32 doi: 10.1016/j.mex.2014.06.004 – ident: ref15/cit15 doi: 10.1073/pnas.94.17.9114 – ident: ref64/cit64 doi: 10.1016/j.biomaterials.2012.05.005 – ident: ref11/cit11 doi: 10.1073/pnas.0235407100 – ident: ref48/cit48 doi: 10.1016/j.bpj.2009.05.010 – ident: ref51/cit51 doi: 10.1038/ncomms14347 – ident: ref62/cit62 doi: 10.1302/2046-3758.91.bjr-2019-0043.r2 – ident: ref60/cit60 doi: 10.1091/mbc.e17-06-0393 – ident: ref38/cit38 doi: 10.1016/j.memsci.2018.07.071 – ident: ref55/cit55 doi: 10.1529/biophysj.106.089730 – ident: ref67/cit67 doi: 10.1002/(sici)1097-4636(200002)49:2<155::aid-jbm2>3.0.co;2-j – ident: ref45/cit45 doi: 10.1039/c6nr09700f – ident: ref63/cit63 doi: 10.3390/nano9121701 – ident: ref47/cit47 doi: 10.1073/pnas.1117810109 – ident: ref70/cit70 doi: 10.1002/stem.746 – ident: ref53/cit53 doi: 10.1073/pnas.0508269103 – ident: ref43/cit43 doi: 10.1039/c8cp03538e – ident: ref5/cit5 doi: 10.1002/adma.201903862 – ident: ref2/cit2 doi: 10.1088/1361-6528/aad9bf – ident: ref17/cit17 doi: 10.1038/nmat1001 – ident: ref20/cit20 doi: 10.1002/jbm.a.34824 – ident: ref46/cit46 doi: 10.1016/j.bpj.2011.05.023 – ident: ref57/cit57 doi: 10.1016/j.bprint.2019.e00054 – ident: ref1/cit1 doi: 10.1016/j.biomaterials.2007.11.009 – ident: ref26/cit26 doi: 10.1021/acsbiomaterials.9b01155 – ident: ref22/cit22 doi: 10.3390/ma10121344 – ident: ref37/cit37 doi: 10.3390/colloids3020048 – ident: ref52/cit52 doi: 10.1021/acsnano.9b04808 – ident: ref40/cit40 doi: 10.1186/s12951-014-0054-4 – ident: ref18/cit18 doi: 10.1016/j.biomaterials.2009.12.051 – ident: ref25/cit25 doi: 10.1021/acsami.9b17425 – ident: ref29/cit29 doi: 10.1016/j.devcel.2015.11.001 – ident: ref10/cit10 doi: 10.1016/j.biomaterials.2011.06.063 – ident: ref36/cit36 doi: 10.1016/j.ymeth.2013.01.006 |
SSID | ssj0063205 |
Score | 2.5119262 |
Snippet | The surface topography of implantable devices is of crucial importance for guiding the cascade of events that starts from the initial contact of the cells with... The surface topography of implantable devices is of crucial importance for guiding the cascade of events that starts from the initial contact of the cells with... |
SourceID | pubmedcentral proquest crossref acs |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 33767 |
SubjectTerms | Biological and Medical Applications of Materials and Interfaces |
Title | 3D-Printed Submicron Patterns Reveal the Interrelation between Cell Adhesion, Cell Mechanics, and Osteogenesis |
URI | http://dx.doi.org/10.1021/acsami.1c03687 https://search.proquest.com/docview/2550627012 https://pubmed.ncbi.nlm.nih.gov/PMC8323101 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gXODAGzFeCgKJC4ElTdvsiAYTQhpMwCRuVV5lE5ChdePAr8dpO2BMCC6VqqYvJ7Y_x84XhA5lyoWJVUi4rsWEc0aJUKEmUZ3bVEZxWld-cXLrOrrs8KuH8OFrvuNnBp_RU6kzvxUO1WBrRTyL5lgMmuFBUONubHOjgOXFihCRcyLAY43pGafu905IZ5NO6AtZTtZFfnM0zaWC9SjL-Ql9fcnTyWioTvT7NHvjn_-wjBZLtInPiuGxgmasW0UL3zgI15ALzkl74FkjDAYr8uIL9Bxu57SbLsO39g2gJAaYiPPJw0FZPIfLAi_csM_wAtO1ftrtuDhtWb-euKezYyydwTcwkvqP3qj2snXUaV7cNy5JuQkDkRBaDolkVoY0gAM4chopKmNmtKhZIVVdGVZLU2u1grYsFEpZCgCG1gIDoaaxIgyDDVRxfWc3EZZxGgnJQdGN4jIIRSTrAQhEKitSQaMqOgBBJaUSZUmeH2c0KaSXlNKroqNx3yWvBSPHry33x12bgNL4TIh0tj_KEoijPD0zOOcqiif6_PORnnZ78orrdXP6bbCBgInp1r--dhvNM18FA4rAxA6qDAcjuwswZqj28hH8AaZg8Ds |
link.rule.ids | 230,315,783,787,888,2772,27088,27936,27937,57070,57120 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED_x8QA8jI8x0Y2BEUh7wVA7duI-Tt1Q-ShUDCTeIjt2RrXNnZp2D_z1nNMEKGgSvERK4iTO-Xz3O_v8M8CezoWyiZFUZM2ECsEZVUZmNG4Jl-s4yVsmLE7unseda3FyI29m4LBeC4OVKPBNRTmJ_8guwA7xWtgRh2VoclUyC_MyQW0NWKj9oza9ccTLnEUMzAVV6LhqlsYXzwdflBXTvugRYE6nRz7xN0fL0HuoaZlm8utgPDIH2d0zEsc3_MoKvKuwJ_k6UZZVmHF-DZaeMBK-Bx99o71h4JCwBG3Kn5Cu50mvJOH0Bbl0_xBYEgSNpBxKHFapdKRK9yJt9xs_YG9dGITbn5x2XVhd3M-KfaK9JReoV4OfwcT2i3W4Pvp-1e7QaksGqjHQHFHNnZYswgO6dRYbphNuM9V0SpuWsbyZ585lBstyqYxxDOEMa0YWA0_rlJTRB5jzA-82gOgkj5UW2O2tETqSKtatCAWijVO5YnEDdlFQadWlirScLecsnUgvraTXgC91E6Z_J_wc_y25U7dwil0ozIto7wbjIsWoKpA1o6tuQDLV9A-vDCTc03d8_7Yk40aLiAiZfXxVbbdhoXPVPUvPjs9PP8EiD_kx2EW42oS50XDsPiPAGZmtUqnvAbEf-Js |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH9iIKFx2BgMUcbA05B2wVA7duweUVkF46vaQOIW2bEDFeCipt1hfz3PacroEBK7REri2M6z35f93s8AW6YQ2ikrqcibigrBGdVW5jRtCV-YVBUtG5OTT07Tgwvx41Je1nncMRcGO1FiTWW1iR-5-t4VNcIA28Xn8VQclqPY1eoNzEnFeDyvYa_9ayJ-04RXcYvonAuqUXlNkBqffR_1UV5O66O_RuZ0iOQTndN5D-ePva1CTW52RkO7k__5B8jxP39nEd7VNijZG0-aDzDjwxIsPEEmXIaQ7NPuIGJJOIKy5S6G7QXSrcA4Q0l--t9oYBI0Hkm1pDioQ-pIHfZF2v4WG3DXPi7GbY9vT3zMMu7l5TYxwZEznF_9qyhqe-VHuOh8P28f0PpoBmrQ4RxSw72RLMELqneWWmYUd7luem1syzreLArvc4tludTWeoZmDWsmDh1Q57WUyQrMhn7wq0CMKlJtBLK_s8IkUqemlSBBjPW60CxtwFckVFazVplVu-acZWPqZTX1GvBtMozZ_Rin48WSXyajnCErxf0RE3x_VGboXUXQZlTZDVBTw_9YZQTjnn4TetcVKDdKRrSU2dqrersJ8939TnZ8eHr0Cd7yGCaDnMLVOswOByP_Ge2cod2o5vUDlRL7FA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D-Printed+Submicron+Patterns+Reveal+the+Interrelation+between+Cell+Adhesion%2C+Cell+Mechanics%2C+and+Osteogenesis&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Nouri-Goushki%2C+Mahdiyeh&rft.au=Angeloni%2C+Livia&rft.au=Modaresifar%2C+Khashayar&rft.au=Minneboo%2C+Michelle&rft.date=2021-07-28&rft.pub=American+Chemical+Society&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=13&rft.issue=29&rft.spage=33767&rft.epage=33781&rft_id=info:doi/10.1021%2Facsami.1c03687&rft.externalDocID=a609202715 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |