3D-Printed Submicron Patterns Reveal the Interrelation between Cell Adhesion, Cell Mechanics, and Osteogenesis

The surface topography of implantable devices is of crucial importance for guiding the cascade of events that starts from the initial contact of the cells with the surface and continues until the complete integration of the device in its immediate environment. There is, however, limited quantitative...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 13; no. 29; pp. 33767 - 33781
Main Authors Nouri-Goushki, Mahdiyeh, Angeloni, Livia, Modaresifar, Khashayar, Minneboo, Michelle, Boukany, Pouyan E, Mirzaali, Mohammad J, Ghatkesar, Murali K, Fratila-Apachitei, Lidy E, Zadpoor, Amir A
Format Journal Article
LanguageEnglish
Published American Chemical Society 28.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The surface topography of implantable devices is of crucial importance for guiding the cascade of events that starts from the initial contact of the cells with the surface and continues until the complete integration of the device in its immediate environment. There is, however, limited quantitative information available regarding the relationships between the different stages of such cascade(s) and how the design of surface topography influences them. We, therefore, used direct laser writing to 3D-print submicron pillars with precisely controlled dimensions and spatial arrangements to perform a systematic study of such relationships. Using single-cell force spectroscopy, we measured the adhesion force and the work of adhesion of the preosteoblast cells residing on the different types of surfaces. Not only the adhesion parameters (after 2–60 s) but also the formation of focal adhesions was strongly dependent on the geometry and arrangement of the pillars: sufficiently tall and dense pillars enhanced both adhesion parameters and the formation of focal adhesions. Our morphological study of the cells (after 24 h) showed that those enhancements were associated with a specific way of cell settlement onto the surface (i.e., “top state”). The cells interacting with tall and dense pillars were also characterized by numerous thick actin stress fibers in the perinuclear region and possibly high internal stresses. Furthermore, living cells with highly organized cytoskeletal networks exhibited greater values of the elastic modulus. The early responses of the cells predicted their late response including matrix mineralization: tall and dense submicron pillars significantly upregulated the expression of osteopontin after 21 days of culture under both osteogenic and nonosteogenic conditions. Our findings paint a detailed picture of at least one possible cascade of events that starts from initial cell adhesion and continues to subsequent cellular functions and eventual matrix mineralization. These observations could inform the future developments of instructive surfaces for medical devices based on physical surface cues and early markers.
AbstractList The surface topography of implantable devices is of crucial importance for guiding the cascade of events that starts from the initial contact of the cells with the surface and continues until the complete integration of the device in its immediate environment. There is, however, limited quantitative information available regarding the relationships between the different stages of such cascade(s) and how the design of surface topography influences them. We, therefore, used direct laser writing to 3D-print submicron pillars with precisely controlled dimensions and spatial arrangements to perform a systematic study of such relationships. Using single-cell force spectroscopy, we measured the adhesion force and the work of adhesion of the preosteoblast cells residing on the different types of surfaces. Not only the adhesion parameters (after 2–60 s) but also the formation of focal adhesions was strongly dependent on the geometry and arrangement of the pillars: sufficiently tall and dense pillars enhanced both adhesion parameters and the formation of focal adhesions. Our morphological study of the cells (after 24 h) showed that those enhancements were associated with a specific way of cell settlement onto the surface (i.e., “top state”). The cells interacting with tall and dense pillars were also characterized by numerous thick actin stress fibers in the perinuclear region and possibly high internal stresses. Furthermore, living cells with highly organized cytoskeletal networks exhibited greater values of the elastic modulus. The early responses of the cells predicted their late response including matrix mineralization: tall and dense submicron pillars significantly upregulated the expression of osteopontin after 21 days of culture under both osteogenic and nonosteogenic conditions. Our findings paint a detailed picture of at least one possible cascade of events that starts from initial cell adhesion and continues to subsequent cellular functions and eventual matrix mineralization. These observations could inform the future developments of instructive surfaces for medical devices based on physical surface cues and early markers.
The surface topography of implantable devices is of crucial importance for guiding the cascade of events that starts from the initial contact of the cells with the surface and continues until the complete integration of the device in its immediate environment. There is, however, limited quantitative information available regarding the relationships between the different stages of such cascade(s) and how the design of surface topography influences them. We, therefore, used direct laser writing to 3D-print submicron pillars with precisely controlled dimensions and spatial arrangements to perform a systematic study of such relationships. Using single-cell force spectroscopy, we measured the adhesion force and the work of adhesion of the preosteoblast cells residing on the different types of surfaces. Not only the adhesion parameters (after 2–60 s) but also the formation of focal adhesions was strongly dependent on the geometry and arrangement of the pillars: sufficiently tall and dense pillars enhanced both adhesion parameters and the formation of focal adhesions. Our morphological study of the cells (after 24 h) showed that those enhancements were associated with a specific way of cell settlement onto the surface (i.e., “top state”). The cells interacting with tall and dense pillars were also characterized by numerous thick actin stress fibers in the perinuclear region and possibly high internal stresses. Furthermore, living cells with highly organized cytoskeletal networks exhibited greater values of the elastic modulus. The early responses of the cells predicted their late response including matrix mineralization: tall and dense submicron pillars significantly upregulated the expression of osteopontin after 21 days of culture under both osteogenic and nonosteogenic conditions. Our findings paint a detailed picture of at least one possible cascade of events that starts from initial cell adhesion and continues to subsequent cellular functions and eventual matrix mineralization. These observations could inform the future developments of instructive surfaces for medical devices based on physical surface cues and early markers.
Author Nouri-Goushki, Mahdiyeh
Angeloni, Livia
Fratila-Apachitei, Lidy E
Minneboo, Michelle
Boukany, Pouyan E
Modaresifar, Khashayar
Mirzaali, Mohammad J
Ghatkesar, Murali K
Zadpoor, Amir A
AuthorAffiliation Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering
Delft University of Technology (TU Delft)
Department of Chemical Engineering
Department of Precision and Microsystems Engineering, Faculty of Mechanical, Maritime, and Materials Engineering
AuthorAffiliation_xml – name: Delft University of Technology (TU Delft)
– name: Department of Chemical Engineering
– name: Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering
– name: Department of Precision and Microsystems Engineering, Faculty of Mechanical, Maritime, and Materials Engineering
Author_xml – sequence: 1
  givenname: Mahdiyeh
  orcidid: 0000-0003-1665-9144
  surname: Nouri-Goushki
  fullname: Nouri-Goushki, Mahdiyeh
  email: m.nourigoushki@tudelft.nl, mhd.nouri71@gmail.com
  organization: Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering
– sequence: 2
  givenname: Livia
  surname: Angeloni
  fullname: Angeloni, Livia
  email: l.angeloni@tudelft.nl
  organization: Delft University of Technology (TU Delft)
– sequence: 3
  givenname: Khashayar
  orcidid: 0000-0002-0391-8541
  surname: Modaresifar
  fullname: Modaresifar, Khashayar
  organization: Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering
– sequence: 4
  givenname: Michelle
  surname: Minneboo
  fullname: Minneboo, Michelle
  organization: Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering
– sequence: 5
  givenname: Pouyan E
  surname: Boukany
  fullname: Boukany, Pouyan E
  organization: Delft University of Technology (TU Delft)
– sequence: 6
  givenname: Mohammad J
  orcidid: 0000-0002-5349-6922
  surname: Mirzaali
  fullname: Mirzaali, Mohammad J
  organization: Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering
– sequence: 7
  givenname: Murali K
  surname: Ghatkesar
  fullname: Ghatkesar, Murali K
  organization: Delft University of Technology (TU Delft)
– sequence: 8
  givenname: Lidy E
  orcidid: 0000-0002-7341-4445
  surname: Fratila-Apachitei
  fullname: Fratila-Apachitei, Lidy E
  email: E.L.Fratila-Apachitei@tudelft.nl
  organization: Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering
– sequence: 9
  givenname: Amir A
  orcidid: 0000-0003-3234-2112
  surname: Zadpoor
  fullname: Zadpoor, Amir A
  organization: Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering
BookMark eNp1kU1LJDEQhoMofl8957gs9lhJOj3xsiDj-gGK4uo5VKdrnEhP2k0yyv57s_QgePCSSqqeekPVu8c2wxCIsSMBEwFSnKBLuPQT4UA1ZrrBdsVpXVdGarn5ea_rHbaX0gtAoyTobbajaqnBgNllQZ1X99GHTB3_s2qX3sUh8HvMmWJI_IHeCHueF8SvCxMj9Zh9IVrK70SBz6jv-Vm3oFSyx-PzltwCg3fpmGPo-F3KNDxTKEg6YFtz7BMdruM-e7r4_Ti7qm7uLq9nZzcV1iBzhZJQC1WORtSiaQVOZecMkMH2tO0kzOdEri2s1KZtSSitBahOQNOR0Vrts1-j7muZiTpHIUfs7Wv0S4z_7IDefq0Ev7DPw5s1SioBogj8WAvE4e-KUrZLn1yZDgMNq2Sl1tDIKQhZ0MmIltWlFGn--Y0A-98kO5pk1yaVhp9jQ8nbl2EVQ1nFd_AHeSOWRw
CitedBy_id crossref_primary_10_1080_10255842_2022_2058875
crossref_primary_10_1016_j_matdes_2022_110663
crossref_primary_10_1016_j_mtbio_2022_100448
crossref_primary_10_1186_s12951_022_01361_5
crossref_primary_10_3390_ma15041346
crossref_primary_10_1039_D2TB02056D
crossref_primary_10_1016_j_bioadv_2022_212993
crossref_primary_10_1039_D2BM01499H
crossref_primary_10_1007_s12195_023_00766_y
crossref_primary_10_1021_acsami_3c14491
crossref_primary_10_1088_1758_5090_ac8dc7
crossref_primary_10_3390_polym15153255
crossref_primary_10_1016_j_actbio_2021_12_001
crossref_primary_10_3390_ijms24076699
crossref_primary_10_1002_smll_202204662
crossref_primary_10_1016_j_actbio_2023_08_006
crossref_primary_10_1016_j_jmrt_2023_01_153
crossref_primary_10_1080_09205063_2022_2088524
crossref_primary_10_1021_acs_chemmater_3c02264
crossref_primary_10_1021_acsnano_3c03385
crossref_primary_10_1007_s10856_023_06760_0
crossref_primary_10_1021_acsami_1c22109
crossref_primary_10_1002_adma_202211702
crossref_primary_10_1002_jbm_a_37454
crossref_primary_10_2139_ssrn_4003814
Cites_doi 10.1016/j.eng.2017.01.014
10.1109/ICSENS.2007.355729
10.1002/jmr.2193
10.1042/bst0320416
10.1038/nmat2013
10.1021/acsnano.5b03157
10.1109/ACC.2014.6859224
10.1002/wnan.1521
10.1002/adhm.201601244
10.1159/000066964
10.1039/b910132m
10.1038/nmat5023
10.1021/nn301654e
10.1073/pnas.1016616108
10.1021/acsami.9b16050
10.1016/j.biomaterials.2008.12.081
10.1073/pnas.1308887110
10.1016/0166-6622(84)80175-4
10.1007/s00709-017-1077-0
10.1016/j.tcb.2012.07.005
10.1038/ncb0402-e91
10.3389/fbioe.2018.00190
10.1002/smll.201905422
10.1016/j.actbio.2016.09.031
10.1039/b804103b
10.1021/acsami.7b17871
10.1016/j.actbio.2009.03.027
10.1091/mbc.e06-09-0777
10.1016/j.actbio.2009.01.007
10.1016/j.bbamcr.2015.05.007
10.1039/c7nr04785a
10.1016/0020-7225(65)90019-4
10.3233/bme-151301
10.1021/nl501248y
10.1186/s13287-018-0798-0
10.1002/(sici)1097-4636(199707)36:1<99::aid-jbm12>3.0.co;2-e
10.1016/j.mex.2014.06.004
10.1073/pnas.94.17.9114
10.1016/j.biomaterials.2012.05.005
10.1073/pnas.0235407100
10.1016/j.bpj.2009.05.010
10.1038/ncomms14347
10.1302/2046-3758.91.bjr-2019-0043.r2
10.1091/mbc.e17-06-0393
10.1016/j.memsci.2018.07.071
10.1529/biophysj.106.089730
10.1002/(sici)1097-4636(200002)49:2<155::aid-jbm2>3.0.co;2-j
10.1039/c6nr09700f
10.3390/nano9121701
10.1073/pnas.1117810109
10.1002/stem.746
10.1073/pnas.0508269103
10.1039/c8cp03538e
10.1002/adma.201903862
10.1088/1361-6528/aad9bf
10.1038/nmat1001
10.1002/jbm.a.34824
10.1016/j.bpj.2011.05.023
10.1016/j.bprint.2019.e00054
10.1016/j.biomaterials.2007.11.009
10.1021/acsbiomaterials.9b01155
10.3390/ma10121344
10.3390/colloids3020048
10.1021/acsnano.9b04808
10.1186/s12951-014-0054-4
10.1016/j.biomaterials.2009.12.051
10.1021/acsami.9b17425
10.1016/j.devcel.2015.11.001
10.1016/j.biomaterials.2011.06.063
10.1016/j.ymeth.2013.01.006
ContentType Journal Article
Copyright 2021 The Authors. Published by American Chemical Society
2021 The Authors. Published by American Chemical Society 2021 The Authors
Copyright_xml – notice: 2021 The Authors. Published by American Chemical Society
– notice: 2021 The Authors. Published by American Chemical Society 2021 The Authors
DBID AAYXX
CITATION
7X8
5PM
DOI 10.1021/acsami.1c03687
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 33781
ExternalDocumentID 10_1021_acsami_1c03687
a609202715
GrantInformation_xml – fundername: ;
  grantid: 707404
– fundername: ;
  grantid: NA
– fundername: ;
  grantid: 677575
GroupedDBID -
.K2
23M
4.4
53G
55A
5GY
5VS
7~N
AABXI
ABFRP
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
F5P
GGK
GNL
IH9
JG
JG~
K2
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
5ZA
6J9
AAHBH
AAYXX
ABJNI
ABQRX
ADHLV
BAANH
CITATION
CUPRZ
7X8
5PM
ID FETCH-LOGICAL-a402t-a2ea513ea561416b1a72dc80e8ab9bd20ffeecb402258bbe1355103d106de8553
IEDL.DBID ACS
ISSN 1944-8244
IngestDate Tue Sep 17 21:11:08 EDT 2024
Sat Aug 17 01:39:40 EDT 2024
Fri Aug 23 01:30:39 EDT 2024
Fri Jul 30 07:10:20 EDT 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 29
Keywords biomaterials
surface patterns
osteogenic response
cell adhesion
cell mechanics
Language English
License Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a402t-a2ea513ea561416b1a72dc80e8ab9bd20ffeecb402258bbe1355103d106de8553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1665-9144
0000-0003-3234-2112
0000-0002-5349-6922
0000-0002-0391-8541
0000-0002-7341-4445
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8323101
PMID 34250808
PQID 2550627012
PQPubID 23479
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8323101
proquest_miscellaneous_2550627012
crossref_primary_10_1021_acsami_1c03687
acs_journals_10_1021_acsami_1c03687
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
GGK
W1F
ABFRP
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2021-07-28
PublicationDateYYYYMMDD 2021-07-28
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-28
  day: 28
PublicationDecade 2020
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref68/cit68
  doi: 10.1016/j.eng.2017.01.014
– ident: ref13/cit13
  doi: 10.1109/ICSENS.2007.355729
– ident: ref23/cit23
  doi: 10.1002/jmr.2193
– ident: ref41/cit41
  doi: 10.1042/bst0320416
– ident: ref6/cit6
  doi: 10.1038/nmat2013
– ident: ref19/cit19
  doi: 10.1021/acsnano.5b03157
– ident: ref30/cit30
  doi: 10.1109/ACC.2014.6859224
– ident: ref49/cit49
  doi: 10.1002/wnan.1521
– ident: ref42/cit42
  doi: 10.1002/adhm.201601244
– ident: ref35/cit35
  doi: 10.1159/000066964
– ident: ref59/cit59
  doi: 10.1039/b910132m
– ident: ref28/cit28
  doi: 10.1038/nmat5023
– ident: ref44/cit44
  doi: 10.1021/nn301654e
– ident: ref54/cit54
  doi: 10.1073/pnas.1016616108
– ident: ref61/cit61
  doi: 10.1021/acsami.9b16050
– ident: ref8/cit8
  doi: 10.1016/j.biomaterials.2008.12.081
– ident: ref3/cit3
  doi: 10.1073/pnas.1308887110
– ident: ref33/cit33
  doi: 10.1016/0166-6622(84)80175-4
– ident: ref50/cit50
  doi: 10.1007/s00709-017-1077-0
– ident: ref39/cit39
  doi: 10.1016/j.tcb.2012.07.005
– ident: ref16/cit16
  doi: 10.1038/ncb0402-e91
– ident: ref24/cit24
  doi: 10.3389/fbioe.2018.00190
– ident: ref4/cit4
  doi: 10.1002/smll.201905422
– ident: ref7/cit7
  doi: 10.1016/j.actbio.2016.09.031
– ident: ref69/cit69
  doi: 10.1039/b804103b
– ident: ref66/cit66
  doi: 10.1021/acsami.7b17871
– ident: ref14/cit14
  doi: 10.1016/j.actbio.2009.03.027
– ident: ref27/cit27
  doi: 10.1091/mbc.e06-09-0777
– ident: ref9/cit9
  doi: 10.1016/j.actbio.2009.01.007
– ident: ref56/cit56
  doi: 10.1016/j.bbamcr.2015.05.007
– ident: ref21/cit21
  doi: 10.1039/c7nr04785a
– ident: ref31/cit31
  doi: 10.1016/0020-7225(65)90019-4
– ident: ref58/cit58
  doi: 10.3233/bme-151301
– ident: ref12/cit12
  doi: 10.1021/nl501248y
– ident: ref65/cit65
  doi: 10.1186/s13287-018-0798-0
– ident: ref34/cit34
  doi: 10.1002/(sici)1097-4636(199707)36:1<99::aid-jbm12>3.0.co;2-e
– ident: ref32/cit32
  doi: 10.1016/j.mex.2014.06.004
– ident: ref15/cit15
  doi: 10.1073/pnas.94.17.9114
– ident: ref64/cit64
  doi: 10.1016/j.biomaterials.2012.05.005
– ident: ref11/cit11
  doi: 10.1073/pnas.0235407100
– ident: ref48/cit48
  doi: 10.1016/j.bpj.2009.05.010
– ident: ref51/cit51
  doi: 10.1038/ncomms14347
– ident: ref62/cit62
  doi: 10.1302/2046-3758.91.bjr-2019-0043.r2
– ident: ref60/cit60
  doi: 10.1091/mbc.e17-06-0393
– ident: ref38/cit38
  doi: 10.1016/j.memsci.2018.07.071
– ident: ref55/cit55
  doi: 10.1529/biophysj.106.089730
– ident: ref67/cit67
  doi: 10.1002/(sici)1097-4636(200002)49:2<155::aid-jbm2>3.0.co;2-j
– ident: ref45/cit45
  doi: 10.1039/c6nr09700f
– ident: ref63/cit63
  doi: 10.3390/nano9121701
– ident: ref47/cit47
  doi: 10.1073/pnas.1117810109
– ident: ref70/cit70
  doi: 10.1002/stem.746
– ident: ref53/cit53
  doi: 10.1073/pnas.0508269103
– ident: ref43/cit43
  doi: 10.1039/c8cp03538e
– ident: ref5/cit5
  doi: 10.1002/adma.201903862
– ident: ref2/cit2
  doi: 10.1088/1361-6528/aad9bf
– ident: ref17/cit17
  doi: 10.1038/nmat1001
– ident: ref20/cit20
  doi: 10.1002/jbm.a.34824
– ident: ref46/cit46
  doi: 10.1016/j.bpj.2011.05.023
– ident: ref57/cit57
  doi: 10.1016/j.bprint.2019.e00054
– ident: ref1/cit1
  doi: 10.1016/j.biomaterials.2007.11.009
– ident: ref26/cit26
  doi: 10.1021/acsbiomaterials.9b01155
– ident: ref22/cit22
  doi: 10.3390/ma10121344
– ident: ref37/cit37
  doi: 10.3390/colloids3020048
– ident: ref52/cit52
  doi: 10.1021/acsnano.9b04808
– ident: ref40/cit40
  doi: 10.1186/s12951-014-0054-4
– ident: ref18/cit18
  doi: 10.1016/j.biomaterials.2009.12.051
– ident: ref25/cit25
  doi: 10.1021/acsami.9b17425
– ident: ref29/cit29
  doi: 10.1016/j.devcel.2015.11.001
– ident: ref10/cit10
  doi: 10.1016/j.biomaterials.2011.06.063
– ident: ref36/cit36
  doi: 10.1016/j.ymeth.2013.01.006
SSID ssj0063205
Score 2.5119262
Snippet The surface topography of implantable devices is of crucial importance for guiding the cascade of events that starts from the initial contact of the cells with...
The surface topography of implantable devices is of crucial importance for guiding the cascade of events that starts from the initial contact of the cells with...
SourceID pubmedcentral
proquest
crossref
acs
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 33767
SubjectTerms Biological and Medical Applications of Materials and Interfaces
Title 3D-Printed Submicron Patterns Reveal the Interrelation between Cell Adhesion, Cell Mechanics, and Osteogenesis
URI http://dx.doi.org/10.1021/acsami.1c03687
https://search.proquest.com/docview/2550627012
https://pubmed.ncbi.nlm.nih.gov/PMC8323101
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gXODAGzFeCgKJC4ElTdvsiAYTQhpMwCRuVV5lE5ChdePAr8dpO2BMCC6VqqYvJ7Y_x84XhA5lyoWJVUi4rsWEc0aJUKEmUZ3bVEZxWld-cXLrOrrs8KuH8OFrvuNnBp_RU6kzvxUO1WBrRTyL5lgMmuFBUONubHOjgOXFihCRcyLAY43pGafu905IZ5NO6AtZTtZFfnM0zaWC9SjL-Ql9fcnTyWioTvT7NHvjn_-wjBZLtInPiuGxgmasW0UL3zgI15ALzkl74FkjDAYr8uIL9Bxu57SbLsO39g2gJAaYiPPJw0FZPIfLAi_csM_wAtO1ftrtuDhtWb-euKezYyydwTcwkvqP3qj2snXUaV7cNy5JuQkDkRBaDolkVoY0gAM4chopKmNmtKhZIVVdGVZLU2u1grYsFEpZCgCG1gIDoaaxIgyDDVRxfWc3EZZxGgnJQdGN4jIIRSTrAQhEKitSQaMqOgBBJaUSZUmeH2c0KaSXlNKroqNx3yWvBSPHry33x12bgNL4TIh0tj_KEoijPD0zOOcqiif6_PORnnZ78orrdXP6bbCBgInp1r--dhvNM18FA4rAxA6qDAcjuwswZqj28hH8AaZg8Ds
link.rule.ids 230,315,783,787,888,2772,27088,27936,27937,57070,57120
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED_x8QA8jI8x0Y2BEUh7wVA7duI-Tt1Q-ShUDCTeIjt2RrXNnZp2D_z1nNMEKGgSvERK4iTO-Xz3O_v8M8CezoWyiZFUZM2ECsEZVUZmNG4Jl-s4yVsmLE7unseda3FyI29m4LBeC4OVKPBNRTmJ_8guwA7xWtgRh2VoclUyC_MyQW0NWKj9oza9ccTLnEUMzAVV6LhqlsYXzwdflBXTvugRYE6nRz7xN0fL0HuoaZlm8utgPDIH2d0zEsc3_MoKvKuwJ_k6UZZVmHF-DZaeMBK-Bx99o71h4JCwBG3Kn5Cu50mvJOH0Bbl0_xBYEgSNpBxKHFapdKRK9yJt9xs_YG9dGITbn5x2XVhd3M-KfaK9JReoV4OfwcT2i3W4Pvp-1e7QaksGqjHQHFHNnZYswgO6dRYbphNuM9V0SpuWsbyZ585lBstyqYxxDOEMa0YWA0_rlJTRB5jzA-82gOgkj5UW2O2tETqSKtatCAWijVO5YnEDdlFQadWlirScLecsnUgvraTXgC91E6Z_J_wc_y25U7dwil0ozIto7wbjIsWoKpA1o6tuQDLV9A-vDCTc03d8_7Yk40aLiAiZfXxVbbdhoXPVPUvPjs9PP8EiD_kx2EW42oS50XDsPiPAGZmtUqnvAbEf-Js
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH9iIKFx2BgMUcbA05B2wVA7duweUVkF46vaQOIW2bEDFeCipt1hfz3PacroEBK7REri2M6z35f93s8AW6YQ2ikrqcibigrBGdVW5jRtCV-YVBUtG5OTT07Tgwvx41Je1nncMRcGO1FiTWW1iR-5-t4VNcIA28Xn8VQclqPY1eoNzEnFeDyvYa_9ayJ-04RXcYvonAuqUXlNkBqffR_1UV5O66O_RuZ0iOQTndN5D-ePva1CTW52RkO7k__5B8jxP39nEd7VNijZG0-aDzDjwxIsPEEmXIaQ7NPuIGJJOIKy5S6G7QXSrcA4Q0l--t9oYBI0Hkm1pDioQ-pIHfZF2v4WG3DXPi7GbY9vT3zMMu7l5TYxwZEznF_9qyhqe-VHuOh8P28f0PpoBmrQ4RxSw72RLMELqneWWmYUd7luem1syzreLArvc4tludTWeoZmDWsmDh1Q57WUyQrMhn7wq0CMKlJtBLK_s8IkUqemlSBBjPW60CxtwFckVFazVplVu-acZWPqZTX1GvBtMozZ_Rin48WSXyajnCErxf0RE3x_VGboXUXQZlTZDVBTw_9YZQTjnn4TetcVKDdKRrSU2dqrersJ8939TnZ8eHr0Cd7yGCaDnMLVOswOByP_Ge2cod2o5vUDlRL7FA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D-Printed+Submicron+Patterns+Reveal+the+Interrelation+between+Cell+Adhesion%2C+Cell+Mechanics%2C+and+Osteogenesis&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Nouri-Goushki%2C+Mahdiyeh&rft.au=Angeloni%2C+Livia&rft.au=Modaresifar%2C+Khashayar&rft.au=Minneboo%2C+Michelle&rft.date=2021-07-28&rft.pub=American+Chemical+Society&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=13&rft.issue=29&rft.spage=33767&rft.epage=33781&rft_id=info:doi/10.1021%2Facsami.1c03687&rft.externalDocID=a609202715
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon