Early-Time Excited-State Relaxation Dynamics of Iridium Compounds: Distinct Roles of Electron and Hole Transfer
Excited-state and photophysical properties of Ir-containing complexes have been extensively studied because of their potential applications as organic light-emitting diode emitting materials. However, their early time excited-state relaxation dynamics are less explored computationally. Herein we hav...
Saved in:
Published in | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Vol. 122; no. 25; pp. 5518 - 5532 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
28.06.2018
|
Online Access | Get full text |
Cover
Loading…
Abstract | Excited-state and photophysical properties of Ir-containing complexes have been extensively studied because of their potential applications as organic light-emitting diode emitting materials. However, their early time excited-state relaxation dynamics are less explored computationally. Herein we have employed our recently implemented TDDFT-based generalized surface-hopping dynamics method to simulate excited-state relaxation dynamics of three Ir(III) compounds having distinct ligands. According to our multistate dynamics simulations including five excited singlet states i.e., S n (n = 1–5) and ten excited triplet states, i.e., T n (n = 1–10), we have found that the intersystem crossing (ISC) processes from the S n to T n are very efficient and ultrafast in these three Ir(III) compounds. The corresponding ISC rates are estimated to be 65, 81, and 140 fs, which are reasonably close to the experimentally measured ca. 80, 80, and 110 fs. In addition, the internal conversion (IC) processes within respective singlet and triplet manifolds are also ultrafast. These ultrafast IC and ISC processes are caused by large nonadiabatic and spin–orbit couplings, respectively, as well as small energy gaps. Importantly, although these Ir(III) complexes share similar macroscopic phenomena, i.e., ultrafast IC and ISC, their microscopic excited-state relaxation mechanism and dynamics are qualitatively distinct. Specifically, the dynamical behaviors of electron and hole and their roles are variational in modulating the excited-state relaxation dynamics of these Ir(III) compounds. In other words, the electronic properties of the ligands that are coordinated with the central Ir(III) atom play important roles in regulating the microscopic excited-state relaxation dynamics. These gained insights could be useful for rationally designing Ir(III) compounds with excellent photoluminescence. |
---|---|
AbstractList | Excited-state and photophysical properties of Ir-containing complexes have been extensively studied because of their potential applications as organic light-emitting diode emitting materials. However, their early time excited-state relaxation dynamics are less explored computationally. Herein we have employed our recently implemented TDDFT-based generalized surface-hopping dynamics method to simulate excited-state relaxation dynamics of three Ir(III) compounds having distinct ligands. According to our multistate dynamics simulations including five excited singlet states i.e., S n (n = 1–5) and ten excited triplet states, i.e., T n (n = 1–10), we have found that the intersystem crossing (ISC) processes from the S n to T n are very efficient and ultrafast in these three Ir(III) compounds. The corresponding ISC rates are estimated to be 65, 81, and 140 fs, which are reasonably close to the experimentally measured ca. 80, 80, and 110 fs. In addition, the internal conversion (IC) processes within respective singlet and triplet manifolds are also ultrafast. These ultrafast IC and ISC processes are caused by large nonadiabatic and spin–orbit couplings, respectively, as well as small energy gaps. Importantly, although these Ir(III) complexes share similar macroscopic phenomena, i.e., ultrafast IC and ISC, their microscopic excited-state relaxation mechanism and dynamics are qualitatively distinct. Specifically, the dynamical behaviors of electron and hole and their roles are variational in modulating the excited-state relaxation dynamics of these Ir(III) compounds. In other words, the electronic properties of the ligands that are coordinated with the central Ir(III) atom play important roles in regulating the microscopic excited-state relaxation dynamics. These gained insights could be useful for rationally designing Ir(III) compounds with excellent photoluminescence. Excited-state and photophysical properties of Ir-containing complexes have been extensively studied because of their potential applications as organic light-emitting diode emitting materials. However, their early time excited-state relaxation dynamics are less explored computationally. Herein we have employed our recently implemented TDDFT-based generalized surface-hopping dynamics method to simulate excited-state relaxation dynamics of three Ir(III) compounds having distinct ligands. According to our multistate dynamics simulations including five excited singlet states i.e., S n ( n = 1-5) and ten excited triplet states, i.e., T n ( n = 1-10), we have found that the intersystem crossing (ISC) processes from the S n to T n are very efficient and ultrafast in these three Ir(III) compounds. The corresponding ISC rates are estimated to be 65, 81, and 140 fs, which are reasonably close to the experimentally measured ca. 80, 80, and 110 fs. In addition, the internal conversion (IC) processes within respective singlet and triplet manifolds are also ultrafast. These ultrafast IC and ISC processes are caused by large nonadiabatic and spin-orbit couplings, respectively, as well as small energy gaps. Importantly, although these Ir(III) complexes share similar macroscopic phenomena, i.e., ultrafast IC and ISC, their microscopic excited-state relaxation mechanism and dynamics are qualitatively distinct. Specifically, the dynamical behaviors of electron and hole and their roles are variational in modulating the excited-state relaxation dynamics of these Ir(III) compounds. In other words, the electronic properties of the ligands that are coordinated with the central Ir(III) atom play important roles in regulating the microscopic excited-state relaxation dynamics. These gained insights could be useful for rationally designing Ir(III) compounds with excellent photoluminescence.Excited-state and photophysical properties of Ir-containing complexes have been extensively studied because of their potential applications as organic light-emitting diode emitting materials. However, their early time excited-state relaxation dynamics are less explored computationally. Herein we have employed our recently implemented TDDFT-based generalized surface-hopping dynamics method to simulate excited-state relaxation dynamics of three Ir(III) compounds having distinct ligands. According to our multistate dynamics simulations including five excited singlet states i.e., S n ( n = 1-5) and ten excited triplet states, i.e., T n ( n = 1-10), we have found that the intersystem crossing (ISC) processes from the S n to T n are very efficient and ultrafast in these three Ir(III) compounds. The corresponding ISC rates are estimated to be 65, 81, and 140 fs, which are reasonably close to the experimentally measured ca. 80, 80, and 110 fs. In addition, the internal conversion (IC) processes within respective singlet and triplet manifolds are also ultrafast. These ultrafast IC and ISC processes are caused by large nonadiabatic and spin-orbit couplings, respectively, as well as small energy gaps. Importantly, although these Ir(III) complexes share similar macroscopic phenomena, i.e., ultrafast IC and ISC, their microscopic excited-state relaxation mechanism and dynamics are qualitatively distinct. Specifically, the dynamical behaviors of electron and hole and their roles are variational in modulating the excited-state relaxation dynamics of these Ir(III) compounds. In other words, the electronic properties of the ligands that are coordinated with the central Ir(III) atom play important roles in regulating the microscopic excited-state relaxation dynamics. These gained insights could be useful for rationally designing Ir(III) compounds with excellent photoluminescence. Excited-state and photophysical properties of Ir-containing complexes have been extensively studied because of their potential applications as organic light-emitting diode emitting materials. However, their early time excited-state relaxation dynamics are less explored computationally. Herein we have employed our recently implemented TDDFT-based generalized surface-hopping dynamics method to simulate excited-state relaxation dynamics of three Ir(III) compounds having distinct ligands. According to our multistate dynamics simulations including five excited singlet states i.e., S ( n = 1-5) and ten excited triplet states, i.e., T ( n = 1-10), we have found that the intersystem crossing (ISC) processes from the S to T are very efficient and ultrafast in these three Ir(III) compounds. The corresponding ISC rates are estimated to be 65, 81, and 140 fs, which are reasonably close to the experimentally measured ca. 80, 80, and 110 fs. In addition, the internal conversion (IC) processes within respective singlet and triplet manifolds are also ultrafast. These ultrafast IC and ISC processes are caused by large nonadiabatic and spin-orbit couplings, respectively, as well as small energy gaps. Importantly, although these Ir(III) complexes share similar macroscopic phenomena, i.e., ultrafast IC and ISC, their microscopic excited-state relaxation mechanism and dynamics are qualitatively distinct. Specifically, the dynamical behaviors of electron and hole and their roles are variational in modulating the excited-state relaxation dynamics of these Ir(III) compounds. In other words, the electronic properties of the ligands that are coordinated with the central Ir(III) atom play important roles in regulating the microscopic excited-state relaxation dynamics. These gained insights could be useful for rationally designing Ir(III) compounds with excellent photoluminescence. |
Author | Liu, Xiang-Yang Cui, Ganglong Fang, Wei-Hai Zhang, Ya-Hui |
AuthorAffiliation | Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry Beijing Normal University |
AuthorAffiliation_xml | – name: Beijing Normal University – name: Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry |
Author_xml | – sequence: 1 givenname: Xiang-Yang surname: Liu fullname: Liu, Xiang-Yang – sequence: 2 givenname: Ya-Hui surname: Zhang fullname: Zhang, Ya-Hui – sequence: 3 givenname: Wei-Hai orcidid: 0000-0002-1668-465X surname: Fang fullname: Fang, Wei-Hai – sequence: 4 givenname: Ganglong orcidid: 0000-0002-9752-1659 surname: Cui fullname: Cui, Ganglong email: ganglong.cui@bnu.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29874071$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc9PIyEYhslG46_1vifD0YNTgYGZ4s3U7mpisonbPZNvGEgwM1CBSex_L7b1YqInCDzPly_ve4oOfPAGoV-UzChh9Bp0mj2vNczmHeG1ZD_QCRWMVIJRcVDuZC4r0dTyGJ2m9EwIoTXjR-iYyXnLSUtPUFhCHDbVyo0GL1-1y6av_mXIBj-ZAV4hu-Dx3cbD6HTCweKH6Ho3jXgRxnWYfJ9u8J1L2Xmd8VMYzBZaDkbnWEzwPb4vr3gVwSdr4k90aGFI5nx_nqH_v5erxX31-PfPw-L2sQJOWK5Ezxiveddy1mrataKDedmXC5BdYymXjaRUamIbI5iWxLa2qbUQFijXNSX1GbrczV3H8DKZlNXokjbDAN6EKSlGBG2E4JwW9GKPTt1oerWOboS4UR8hFaDZATqGlKKxquS0TSZHcIOiRL23oUob6r0NtW-jiOST-DH7G-Vqp2x_whR9Selr_A2-3pz5 |
CitedBy_id | crossref_primary_10_1002_chem_202004850 crossref_primary_10_1002_cptc_202000255 crossref_primary_10_1063_5_0225786 crossref_primary_10_1063_5_0248228 crossref_primary_10_1021_acs_jctc_3c00960 crossref_primary_10_1039_C8CP04265A crossref_primary_10_1021_acs_jpcc_0c09464 crossref_primary_10_1039_D0QI01510E crossref_primary_10_1063_5_0134353 crossref_primary_10_1021_jacsau_1c00252 crossref_primary_10_1021_acs_jpca_0c05865 crossref_primary_10_1021_jacs_0c03097 crossref_primary_10_1021_acs_jpca_4c04544 crossref_primary_10_1063_1674_0068_cjcp2110214 crossref_primary_10_1021_acs_jpca_1c10195 crossref_primary_10_1039_D2CP00018K crossref_primary_10_1021_acs_jctc_8b01049 crossref_primary_10_1002_solr_202000719 crossref_primary_10_1039_D2CC01701F crossref_primary_10_1039_C9SC03671G crossref_primary_10_1039_D1DT00783A crossref_primary_10_1021_acs_jpca_4c00803 crossref_primary_10_1039_D0CP05116K crossref_primary_10_1039_D0CP05362G crossref_primary_10_1039_D3CP03517D crossref_primary_10_1039_D1SC02149D crossref_primary_10_1063_1674_0068_cjcp2109162 crossref_primary_10_1039_D2CP03822F crossref_primary_10_1002_cphc_202400631 |
Cites_doi | 10.1016/j.ccr.2011.01.042 10.1021/acs.jpclett.5b02146 10.1039/c2cs35171d 10.1021/acs.jpcc.7b01573 10.1063/1.4723808 10.1021/ar500358q 10.1021/ja00239a060 10.1021/jp312032s 10.1021/ja208496s 10.1002/jcc.1056 10.1016/j.ccr.2014.05.023 10.1021/jp102264q 10.1021/ja3063953 10.1021/jp410576a 10.1103/PhysRevB.33.8822 10.1063/1.4885817 10.1063/1.4894849 10.1021/acs.jpcc.7b06714 10.1016/j.chemphys.2008.10.013 10.1021/ja034537z 10.1063/1.4936864 10.1002/anie.201008146 10.1002/chem.201301291 10.1063/1.4903986 10.1021/jz200474g 10.1063/1.467455 10.1016/j.cplett.2004.06.011 10.1039/C5RA04487A 10.1063/1.2061187 10.1002/jcc.21360 10.1021/ja1029705 10.1021/ja00291a064 10.1021/acs.jpcc.8b00831 10.1002/chem.200600618 10.1016/j.comptc.2014.01.030 10.1016/j.chemphys.2007.01.021 10.1063/1.447334 10.1021/ja411800n 10.1002/jcc.10255 10.1039/b508541a 10.1063/1.467943 10.1021/jp809085h 10.1021/ja408936j 10.1016/j.ccr.2018.01.019 10.1016/j.cplett.2007.11.028 10.1021/acs.jpcc.6b04896 10.1021/cr3004899 10.1063/1.5022760 10.1039/C5RA01404B 10.1021/ja034732d 10.1021/jp302747g 10.1002/(SICI)1097-461X(1996)57:3<281::AID-QUA2>3.0.CO;2-U 10.1016/j.cplett.2014.07.073 10.1039/C4CP01683A 10.1002/jcc.20030 10.1039/C4DT03804E 10.1073/pnas.1014982107 10.1021/jacs.5b13210 10.1080/00268976.2018.1433335 10.1021/acs.chemrev.7b00617 10.1103/PhysRevA.31.1695 10.1021/j100155a026 10.1039/c3tc30206g 10.1021/ar500369r 10.1021/jp013949w 10.1021/ct1007394 10.1021/ja106769w 10.1063/1.3489004 10.1021/jp5046832 10.1039/C3DT52273C 10.1007/b11767107 10.1039/C7SC03905K 10.1002/anie.201410437 10.1021/ja903317w 10.1021/ic051296i 10.1039/C7CP00094D 10.1002/cphc.201100397 10.1002/anie.201201471 10.1039/C4DT01049C 10.1016/j.cplett.2004.01.098 10.1007/128_2015_635 10.1021/ar400263p 10.1039/C5SC03153B 10.1002/jcc.23778 10.1021/acs.jpclett.5b02062 10.1063/1.4707737 10.1021/ja052880t 10.1039/C4CS00110A 10.1063/1.1675788 10.1021/jp3071019 10.1007/s002140050353 10.1039/C3CP53806K 10.1063/1.4913513 10.1021/ic4030712 10.1063/1.3646920 10.1007/BF00533485 10.1039/C6NJ03617A 10.1103/PhysRevA.38.3098 10.1063/1.4943571 10.1021/jp072802n 10.1039/C4RA16269B 10.1021/ja305685v 10.1063/1.1674902 10.1021/ct300307c 10.1063/1.448975 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acs.jpca.8b04392 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5215 |
EndPage | 5532 |
ExternalDocumentID | 29874071 10_1021_acs_jpca_8b04392 a253223310 |
Genre | Journal Article |
GroupedDBID | - .K2 02 123 29L 53G 55A 5VS 7~N 85S 8RP AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ACGFS ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CJ0 CS3 D0L DU5 EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 PZZ RNS ROL TAE TN5 UI2 UKR UPT VF5 VG9 VQA W1F WH7 X YZZ ZHY --- -~X .DC 4.4 AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK XSW YQT ~02 NPM 7X8 |
ID | FETCH-LOGICAL-a402t-5d22434b7427c1b75ba807145a9b6f14969119c0f6e52c90f7f63c55fa14c3103 |
IEDL.DBID | ACS |
ISSN | 1089-5639 1520-5215 |
IngestDate | Fri Jul 11 01:52:34 EDT 2025 Mon Jul 21 05:55:53 EDT 2025 Tue Jul 01 01:11:29 EDT 2025 Thu Apr 24 23:11:25 EDT 2025 Thu Aug 27 13:41:58 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 25 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a402t-5d22434b7427c1b75ba807145a9b6f14969119c0f6e52c90f7f63c55fa14c3103 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9752-1659 0000-0002-1668-465X |
PMID | 29874071 |
PQID | 2051655441 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2051655441 pubmed_primary_29874071 crossref_citationtrail_10_1021_acs_jpca_8b04392 crossref_primary_10_1021_acs_jpca_8b04392 acs_journals_10_1021_acs_jpca_8b04392 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-06-28 |
PublicationDateYYYYMMDD | 2018-06-28 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
PublicationTitleAlternate | J. Phys. Chem. A |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref45/cit45 ref99/cit99 ref3/cit3 ref81/cit81 ref16/cit16 ref52/cit52 ref23/cit23 ref2/cit2 ref77/cit77 ref71/cit71 ref20/cit20 ref48/cit48 ref74/cit74 ref10/cit10 ref35/cit35 ref89/cit89 ref19/cit19 ref93/cit93 ref42/cit42 ref96/cit96 ref107/cit107 ref13/cit13 ref105/cit105 ref61/cit61 ref67/cit67 ref38/cit38 ref64/cit64 ref54/cit54 ref6/cit6 ref18/cit18 ref65/cit65 ref97/cit97 ref101/cit101 ref11/cit11 ref102/cit102 ref29/cit29 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref5/cit5 ref43/cit43 ref80/cit80 ref28/cit28 ref91/cit91 ref55/cit55 ref12/cit12 ref66/cit66 ref22/cit22 ref33/cit33 ref87/cit87 ref106/cit106 ref44/cit44 ref70/cit70 ref98/cit98 ref9/cit9 ref27/cit27 ref63/cit63 ref56/cit56 ref92/cit92 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref34/cit34 Marques M. A. L. (ref90/cit90) 2006 ref37/cit37 ref60/cit60 ref88/cit88 ref17/cit17 ref82/cit82 ref53/cit53 ref21/cit21 ref46/cit46 ref49/cit49 ref75/cit75 ref24/cit24 ref50/cit50 ref78/cit78 ref36/cit36 ref83/cit83 ref79/cit79 ref100/cit100 ref25/cit25 ref103/cit103 ref72/cit72 ref14/cit14 ref57/cit57 ref51/cit51 ref40/cit40 ref68/cit68 ref94/cit94 ref26/cit26 ref73/cit73 ref69/cit69 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref95/cit95 ref108/cit108 ref104/cit104 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref1/cit1 ref7/cit7 |
References_xml | – ident: ref1/cit1 doi: 10.1016/j.ccr.2011.01.042 – ident: ref22/cit22 doi: 10.1021/acs.jpclett.5b02146 – ident: ref108/cit108 – ident: ref3/cit3 doi: 10.1039/c2cs35171d – ident: ref57/cit57 doi: 10.1021/acs.jpcc.7b01573 – ident: ref37/cit37 doi: 10.1063/1.4723808 – ident: ref7/cit7 doi: 10.1021/ar500358q – ident: ref11/cit11 doi: 10.1021/ja00239a060 – ident: ref51/cit51 doi: 10.1021/jp312032s – ident: ref66/cit66 doi: 10.1021/ja208496s – ident: ref106/cit106 doi: 10.1002/jcc.1056 – ident: ref9/cit9 doi: 10.1016/j.ccr.2014.05.023 – ident: ref25/cit25 doi: 10.1021/jp102264q – ident: ref67/cit67 doi: 10.1021/ja3063953 – ident: ref54/cit54 doi: 10.1021/jp410576a – ident: ref95/cit95 doi: 10.1103/PhysRevB.33.8822 – ident: ref79/cit79 doi: 10.1063/1.4885817 – ident: ref58/cit58 doi: 10.1063/1.4894849 – ident: ref46/cit46 doi: 10.1021/acs.jpcc.7b06714 – ident: ref81/cit81 doi: 10.1016/j.chemphys.2008.10.013 – ident: ref14/cit14 doi: 10.1021/ja034537z – ident: ref77/cit77 doi: 10.1063/1.4936864 – ident: ref64/cit64 doi: 10.1002/anie.201008146 – ident: ref50/cit50 doi: 10.1002/chem.201301291 – ident: ref80/cit80 doi: 10.1063/1.4903986 – ident: ref104/cit104 – ident: ref65/cit65 doi: 10.1021/jz200474g – ident: ref60/cit60 doi: 10.1063/1.467455 – ident: ref86/cit86 doi: 10.1016/j.cplett.2004.06.011 – ident: ref53/cit53 doi: 10.1039/C5RA04487A – ident: ref99/cit99 doi: 10.1063/1.2061187 – ident: ref35/cit35 doi: 10.1002/jcc.21360 – ident: ref63/cit63 doi: 10.1021/ja1029705 – ident: ref10/cit10 doi: 10.1021/ja00291a064 – ident: ref45/cit45 doi: 10.1021/acs.jpcc.8b00831 – ident: ref16/cit16 doi: 10.1002/chem.200600618 – ident: ref27/cit27 doi: 10.1016/j.comptc.2014.01.030 – ident: ref33/cit33 doi: 10.1016/j.chemphys.2007.01.021 – ident: ref97/cit97 doi: 10.1063/1.447334 – ident: ref93/cit93 doi: 10.1021/ja411800n – ident: ref102/cit102 doi: 10.1002/jcc.10255 – ident: ref96/cit96 doi: 10.1039/b508541a – ident: ref100/cit100 doi: 10.1063/1.467943 – ident: ref61/cit61 doi: 10.1021/jp809085h – ident: ref68/cit68 doi: 10.1021/ja408936j – ident: ref30/cit30 doi: 10.1016/j.ccr.2018.01.019 – ident: ref20/cit20 doi: 10.1016/j.cplett.2007.11.028 – ident: ref26/cit26 doi: 10.1021/acs.jpcc.6b04896 – ident: ref92/cit92 doi: 10.1021/cr3004899 – ident: ref29/cit29 doi: 10.1063/1.5022760 – ident: ref21/cit21 doi: 10.1039/C5RA01404B – ident: ref13/cit13 doi: 10.1021/ja034732d – ident: ref38/cit38 doi: 10.1021/jp302747g – ident: ref101/cit101 doi: 10.1002/(SICI)1097-461X(1996)57:3<281::AID-QUA2>3.0.CO;2-U – ident: ref41/cit41 doi: 10.1016/j.cplett.2014.07.073 – ident: ref71/cit71 doi: 10.1039/C4CP01683A – ident: ref103/cit103 doi: 10.1002/jcc.20030 – ident: ref49/cit49 doi: 10.1039/C4DT03804E – ident: ref62/cit62 doi: 10.1073/pnas.1014982107 – ident: ref69/cit69 doi: 10.1021/jacs.5b13210 – ident: ref83/cit83 doi: 10.1080/00268976.2018.1433335 – ident: ref31/cit31 doi: 10.1021/acs.chemrev.7b00617 – ident: ref98/cit98 doi: 10.1103/PhysRevA.31.1695 – ident: ref12/cit12 doi: 10.1021/j100155a026 – ident: ref40/cit40 doi: 10.1039/c3tc30206g – ident: ref8/cit8 doi: 10.1021/ar500369r – ident: ref32/cit32 doi: 10.1021/jp013949w – ident: ref74/cit74 doi: 10.1021/ct1007394 – ident: ref2/cit2 doi: 10.1021/ja106769w – ident: ref91/cit91 doi: 10.1063/1.3489004 – ident: ref52/cit52 doi: 10.1021/jp5046832 – ident: ref43/cit43 doi: 10.1039/C3DT52273C – volume-title: Time-dependent Density Functional Theory year: 2006 ident: ref90/cit90 doi: 10.1007/b11767107 – ident: ref47/cit47 doi: 10.1039/C7SC03905K – ident: ref17/cit17 doi: 10.1002/anie.201410437 – ident: ref24/cit24 doi: 10.1021/ja903317w – ident: ref23/cit23 doi: 10.1021/ic051296i – ident: ref73/cit73 doi: 10.1039/C7CP00094D – ident: ref36/cit36 doi: 10.1002/cphc.201100397 – ident: ref105/cit105 – ident: ref4/cit4 doi: 10.1002/anie.201201471 – ident: ref42/cit42 doi: 10.1039/C4DT01049C – ident: ref19/cit19 doi: 10.1016/j.cplett.2004.01.098 – ident: ref28/cit28 doi: 10.1007/128_2015_635 – ident: ref72/cit72 doi: 10.1021/ar400263p – ident: ref48/cit48 doi: 10.1039/C5SC03153B – ident: ref85/cit85 doi: 10.1002/jcc.23778 – ident: ref82/cit82 doi: 10.1021/acs.jpclett.5b02062 – ident: ref76/cit76 doi: 10.1063/1.4707737 – ident: ref15/cit15 doi: 10.1021/ja052880t – ident: ref5/cit5 doi: 10.1039/C4CS00110A – ident: ref59/cit59 doi: 10.1063/1.1675788 – ident: ref39/cit39 doi: 10.1021/jp3071019 – ident: ref107/cit107 doi: 10.1007/s002140050353 – ident: ref6/cit6 doi: 10.1039/C3CP53806K – ident: ref55/cit55 doi: 10.1063/1.4913513 – ident: ref18/cit18 doi: 10.1021/ic4030712 – ident: ref70/cit70 doi: 10.1063/1.3646920 – ident: ref88/cit88 doi: 10.1007/BF00533485 – ident: ref56/cit56 doi: 10.1039/C6NJ03617A – ident: ref94/cit94 doi: 10.1103/PhysRevA.38.3098 – ident: ref78/cit78 doi: 10.1063/1.4943571 – ident: ref34/cit34 doi: 10.1021/jp072802n – ident: ref44/cit44 doi: 10.1039/C4RA16269B – ident: ref75/cit75 doi: 10.1021/ja305685v – ident: ref89/cit89 doi: 10.1063/1.1674902 – ident: ref84/cit84 doi: 10.1021/ct300307c – ident: ref87/cit87 doi: 10.1063/1.448975 |
SSID | ssj0001324 |
Score | 2.4225767 |
Snippet | Excited-state and photophysical properties of Ir-containing complexes have been extensively studied because of their potential applications as organic... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5518 |
Title | Early-Time Excited-State Relaxation Dynamics of Iridium Compounds: Distinct Roles of Electron and Hole Transfer |
URI | http://dx.doi.org/10.1021/acs.jpca.8b04392 https://www.ncbi.nlm.nih.gov/pubmed/29874071 https://www.proquest.com/docview/2051655441 |
Volume | 122 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELUQHODCvpRNRoIDB5fEjZ2GGypFBQkOLFJvke04UlnSqkmliq9nxkmL2CqukW3J9njeTDx-j5Bjl0NEIdLsC8kAb32mrTbM8xInh9TgCf7Qv72Tnafgpiu6nzQ532_wuX-mTF5_HkB639T4jBPc7QKXcIYxDGo9TL0uZFVBWUwfMQGwW11J_jYCApHJvwLRH9GlQ5mrlVKuKHfkhFhc8lIfFbpu3n9SN_5jAqtkuQo26UVpHWtkzmbrZLE10XjbIH3Hb8zwHQhtjw2Gn8yFnxSL5MZu1-hlKVqf035Kr4e9pDd6o-hGUJApP6eX6CUyU9B75IbCRu1KWoeqLKEd-EodIqZ2uEmertqPrQ6rJBiYgsSyYCIBiG8EGhLo0Pg6FFo18cmTUJGWKWRXEpxlZLxUWsFN5KVhKhtGiFT5gUEJsy0yn_Uzu0MowJ7xkwY6iCiQKlAy8ZSw1nBlolTJGjmBlYqrI5TH7nac-7H7CMsXV8tXI2eTfYtNxWOOchqvM3qcTnsMSg6PGW2PJqYQw17g7YnKbH-UxxzclxQo2VYj26WNTEfjESobhv7uP-ewR5Yg8GpiyRlv7pP5YjiyBxDcFPrQWfUHSULyQw |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB6hcmAv7PJY6L4wEhz24DZJY6fZGypFZaEc2FbqLbIdRwJ2U9SkEuLX74yTFu0KKrhatuXHZL6ZeGY-gCPnQ8QRldkXkiPe-lxbbbjnpY4OqROk9EN_eCUH4_DnREzWwF_kwuAiCpypcI_4T9UF_Da13d6jl9_VlM2JWncdbZGAhPqk92upfNG5CquY-pgLRN_6ZfK5GQiPTPEvHr1gZDqwOXsP18tluhiTu9a81C3z-F8Fxzft4wNs1qYnO6lkZQvWbL4NG70F49sOTF21Y05ZIaz_YMgY5c4YZRQy9-DukJ1WFPYFm2bsfHaT3sz_MFIqRM9U_GCnpDNyU7JrqhRFnfo10Q5TecoG2MocPmZ2tgvjs_6oN-A1IQNX6GaWXKQI-J1QozsdGV9HQqsuJUAJFWuZoa8lUXXGxsukFYGJvSzKZMcIkSk_NERo9hEa-TS3-8AQBI2fdkhdxKFUoZKpp4S1JlAmzpRswjGeVFJ_UEXi3soDP3GNeHxJfXxNaC-uLzF1VXMi1_i9YsT35Yj7qqLHir6HC4lI8C7oLUXldjovkgCVmRRE4NaEvUpUlrMFMfEcRv6nV-7hADYGo-Flcnl-dfEZ3qFJ1qVgtKD7BRrlbG6_otlT6m9O0P8CzvL6pA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZT9wwEB4hKlFe6AksPTBSeeiDIcnGzoa31R5ayqGqlIq3yHZsiSu72mSlVX89M052pVYtglfLsXyM55vJjOcD-OJ9iDShMvtCcsTbkGurDQ-C3NMhtaOcfuifncvRZfztSlytgFi8hcFJlDhS6YP4dKsnuWsqDISH1H4zQU-_o-lFJ2reFxS1I8Hu9i6WChgdrLjOq0-5QARuopP_GoEwyZR_YtJ_DE0POMNX8Gs5VZ9ncnswq_SB-f1XFcdnr-U1bDQmKOvWMvMGVmzxFl72Fsxv72Dsqx5zeh3CBnNDRin3Rimj1Lm5P0vWr6nsSzZ27Hh6nV_P7hkpF6JpKo9Yn3RHYSr2gypGUadBQ7jDVJGzEbYyj5POTt_D5XDwszfiDTEDV-huVlzkCPztWKNbnZhQJ0KrDj2EEirV0qHPJVGFpiZw0orIpIFLnGwbIZwKY0PEZpuwWowLuw0MwdCEeZvURhpLFSuZB0pYayJlUqdkC_Zxp7LmYpWZj5lHYeYbcfuyZvtacLg4wsw01c2JZOPukS--Lr-Y1JU9Hum7t5CKDM-CYiqqsONZmUWo1KQgIrcWbNXishwtSonvMAl3nriGXVj73h9mp8fnJx9gHS2zDuWkRZ2PsFpNZ_YTWj-V_uxl_QH7q_0n |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early-Time+Excited-State+Relaxation+Dynamics+of+Iridium+Compounds%3A+Distinct+Roles+of+Electron+and+Hole+Transfer&rft.jtitle=The+journal+of+physical+chemistry.+A%2C+Molecules%2C+spectroscopy%2C+kinetics%2C+environment%2C+%26+general+theory&rft.au=Liu%2C+Xiang-Yang&rft.au=Zhang%2C+Ya-Hui&rft.au=Fang%2C+Wei-Hai&rft.au=Cui%2C+Ganglong&rft.date=2018-06-28&rft.issn=1089-5639&rft.eissn=1520-5215&rft.volume=122&rft.issue=25&rft.spage=5518&rft.epage=5532&rft_id=info:doi/10.1021%2Facs.jpca.8b04392&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_jpca_8b04392 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-5639&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-5639&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-5639&client=summon |