Early-Time Excited-State Relaxation Dynamics of Iridium Compounds: Distinct Roles of Electron and Hole Transfer

Excited-state and photophysical properties of Ir-containing complexes have been extensively studied because of their potential applications as organic light-emitting diode emitting materials. However, their early time excited-state relaxation dynamics are less explored computationally. Herein we hav...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Vol. 122; no. 25; pp. 5518 - 5532
Main Authors Liu, Xiang-Yang, Zhang, Ya-Hui, Fang, Wei-Hai, Cui, Ganglong
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 28.06.2018
Online AccessGet full text

Cover

Loading…
Abstract Excited-state and photophysical properties of Ir-containing complexes have been extensively studied because of their potential applications as organic light-emitting diode emitting materials. However, their early time excited-state relaxation dynamics are less explored computationally. Herein we have employed our recently implemented TDDFT-based generalized surface-hopping dynamics method to simulate excited-state relaxation dynamics of three Ir­(III) compounds having distinct ligands. According to our multistate dynamics simulations including five excited singlet states i.e., S n (n = 1–5) and ten excited triplet states, i.e., T n (n = 1–10), we have found that the intersystem crossing (ISC) processes from the S n to T n are very efficient and ultrafast in these three Ir­(III) compounds. The corresponding ISC rates are estimated to be 65, 81, and 140 fs, which are reasonably close to the experimentally measured ca. 80, 80, and 110 fs. In addition, the internal conversion (IC) processes within respective singlet and triplet manifolds are also ultrafast. These ultrafast IC and ISC processes are caused by large nonadiabatic and spin–orbit couplings, respectively, as well as small energy gaps. Importantly, although these Ir­(III) complexes share similar macroscopic phenomena, i.e., ultrafast IC and ISC, their microscopic excited-state relaxation mechanism and dynamics are qualitatively distinct. Specifically, the dynamical behaviors of electron and hole and their roles are variational in modulating the excited-state relaxation dynamics of these Ir­(III) compounds. In other words, the electronic properties of the ligands that are coordinated with the central Ir­(III) atom play important roles in regulating the microscopic excited-state relaxation dynamics. These gained insights could be useful for rationally designing Ir­(III) compounds with excellent photoluminescence.
AbstractList Excited-state and photophysical properties of Ir-containing complexes have been extensively studied because of their potential applications as organic light-emitting diode emitting materials. However, their early time excited-state relaxation dynamics are less explored computationally. Herein we have employed our recently implemented TDDFT-based generalized surface-hopping dynamics method to simulate excited-state relaxation dynamics of three Ir­(III) compounds having distinct ligands. According to our multistate dynamics simulations including five excited singlet states i.e., S n (n = 1–5) and ten excited triplet states, i.e., T n (n = 1–10), we have found that the intersystem crossing (ISC) processes from the S n to T n are very efficient and ultrafast in these three Ir­(III) compounds. The corresponding ISC rates are estimated to be 65, 81, and 140 fs, which are reasonably close to the experimentally measured ca. 80, 80, and 110 fs. In addition, the internal conversion (IC) processes within respective singlet and triplet manifolds are also ultrafast. These ultrafast IC and ISC processes are caused by large nonadiabatic and spin–orbit couplings, respectively, as well as small energy gaps. Importantly, although these Ir­(III) complexes share similar macroscopic phenomena, i.e., ultrafast IC and ISC, their microscopic excited-state relaxation mechanism and dynamics are qualitatively distinct. Specifically, the dynamical behaviors of electron and hole and their roles are variational in modulating the excited-state relaxation dynamics of these Ir­(III) compounds. In other words, the electronic properties of the ligands that are coordinated with the central Ir­(III) atom play important roles in regulating the microscopic excited-state relaxation dynamics. These gained insights could be useful for rationally designing Ir­(III) compounds with excellent photoluminescence.
Excited-state and photophysical properties of Ir-containing complexes have been extensively studied because of their potential applications as organic light-emitting diode emitting materials. However, their early time excited-state relaxation dynamics are less explored computationally. Herein we have employed our recently implemented TDDFT-based generalized surface-hopping dynamics method to simulate excited-state relaxation dynamics of three Ir(III) compounds having distinct ligands. According to our multistate dynamics simulations including five excited singlet states i.e., S n ( n = 1-5) and ten excited triplet states, i.e., T n ( n = 1-10), we have found that the intersystem crossing (ISC) processes from the S n to T n are very efficient and ultrafast in these three Ir(III) compounds. The corresponding ISC rates are estimated to be 65, 81, and 140 fs, which are reasonably close to the experimentally measured ca. 80, 80, and 110 fs. In addition, the internal conversion (IC) processes within respective singlet and triplet manifolds are also ultrafast. These ultrafast IC and ISC processes are caused by large nonadiabatic and spin-orbit couplings, respectively, as well as small energy gaps. Importantly, although these Ir(III) complexes share similar macroscopic phenomena, i.e., ultrafast IC and ISC, their microscopic excited-state relaxation mechanism and dynamics are qualitatively distinct. Specifically, the dynamical behaviors of electron and hole and their roles are variational in modulating the excited-state relaxation dynamics of these Ir(III) compounds. In other words, the electronic properties of the ligands that are coordinated with the central Ir(III) atom play important roles in regulating the microscopic excited-state relaxation dynamics. These gained insights could be useful for rationally designing Ir(III) compounds with excellent photoluminescence.Excited-state and photophysical properties of Ir-containing complexes have been extensively studied because of their potential applications as organic light-emitting diode emitting materials. However, their early time excited-state relaxation dynamics are less explored computationally. Herein we have employed our recently implemented TDDFT-based generalized surface-hopping dynamics method to simulate excited-state relaxation dynamics of three Ir(III) compounds having distinct ligands. According to our multistate dynamics simulations including five excited singlet states i.e., S n ( n = 1-5) and ten excited triplet states, i.e., T n ( n = 1-10), we have found that the intersystem crossing (ISC) processes from the S n to T n are very efficient and ultrafast in these three Ir(III) compounds. The corresponding ISC rates are estimated to be 65, 81, and 140 fs, which are reasonably close to the experimentally measured ca. 80, 80, and 110 fs. In addition, the internal conversion (IC) processes within respective singlet and triplet manifolds are also ultrafast. These ultrafast IC and ISC processes are caused by large nonadiabatic and spin-orbit couplings, respectively, as well as small energy gaps. Importantly, although these Ir(III) complexes share similar macroscopic phenomena, i.e., ultrafast IC and ISC, their microscopic excited-state relaxation mechanism and dynamics are qualitatively distinct. Specifically, the dynamical behaviors of electron and hole and their roles are variational in modulating the excited-state relaxation dynamics of these Ir(III) compounds. In other words, the electronic properties of the ligands that are coordinated with the central Ir(III) atom play important roles in regulating the microscopic excited-state relaxation dynamics. These gained insights could be useful for rationally designing Ir(III) compounds with excellent photoluminescence.
Excited-state and photophysical properties of Ir-containing complexes have been extensively studied because of their potential applications as organic light-emitting diode emitting materials. However, their early time excited-state relaxation dynamics are less explored computationally. Herein we have employed our recently implemented TDDFT-based generalized surface-hopping dynamics method to simulate excited-state relaxation dynamics of three Ir(III) compounds having distinct ligands. According to our multistate dynamics simulations including five excited singlet states i.e., S ( n = 1-5) and ten excited triplet states, i.e., T ( n = 1-10), we have found that the intersystem crossing (ISC) processes from the S to T are very efficient and ultrafast in these three Ir(III) compounds. The corresponding ISC rates are estimated to be 65, 81, and 140 fs, which are reasonably close to the experimentally measured ca. 80, 80, and 110 fs. In addition, the internal conversion (IC) processes within respective singlet and triplet manifolds are also ultrafast. These ultrafast IC and ISC processes are caused by large nonadiabatic and spin-orbit couplings, respectively, as well as small energy gaps. Importantly, although these Ir(III) complexes share similar macroscopic phenomena, i.e., ultrafast IC and ISC, their microscopic excited-state relaxation mechanism and dynamics are qualitatively distinct. Specifically, the dynamical behaviors of electron and hole and their roles are variational in modulating the excited-state relaxation dynamics of these Ir(III) compounds. In other words, the electronic properties of the ligands that are coordinated with the central Ir(III) atom play important roles in regulating the microscopic excited-state relaxation dynamics. These gained insights could be useful for rationally designing Ir(III) compounds with excellent photoluminescence.
Author Liu, Xiang-Yang
Cui, Ganglong
Fang, Wei-Hai
Zhang, Ya-Hui
AuthorAffiliation Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry
Beijing Normal University
AuthorAffiliation_xml – name: Beijing Normal University
– name: Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry
Author_xml – sequence: 1
  givenname: Xiang-Yang
  surname: Liu
  fullname: Liu, Xiang-Yang
– sequence: 2
  givenname: Ya-Hui
  surname: Zhang
  fullname: Zhang, Ya-Hui
– sequence: 3
  givenname: Wei-Hai
  orcidid: 0000-0002-1668-465X
  surname: Fang
  fullname: Fang, Wei-Hai
– sequence: 4
  givenname: Ganglong
  orcidid: 0000-0002-9752-1659
  surname: Cui
  fullname: Cui, Ganglong
  email: ganglong.cui@bnu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29874071$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9PIyEYhslG46_1vifD0YNTgYGZ4s3U7mpisonbPZNvGEgwM1CBSex_L7b1YqInCDzPly_ve4oOfPAGoV-UzChh9Bp0mj2vNczmHeG1ZD_QCRWMVIJRcVDuZC4r0dTyGJ2m9EwIoTXjR-iYyXnLSUtPUFhCHDbVyo0GL1-1y6av_mXIBj-ZAV4hu-Dx3cbD6HTCweKH6Ho3jXgRxnWYfJ9u8J1L2Xmd8VMYzBZaDkbnWEzwPb4vr3gVwSdr4k90aGFI5nx_nqH_v5erxX31-PfPw-L2sQJOWK5Ezxiveddy1mrataKDedmXC5BdYymXjaRUamIbI5iWxLa2qbUQFijXNSX1GbrczV3H8DKZlNXokjbDAN6EKSlGBG2E4JwW9GKPTt1oerWOboS4UR8hFaDZATqGlKKxquS0TSZHcIOiRL23oUob6r0NtW-jiOST-DH7G-Vqp2x_whR9Selr_A2-3pz5
CitedBy_id crossref_primary_10_1002_chem_202004850
crossref_primary_10_1002_cptc_202000255
crossref_primary_10_1063_5_0225786
crossref_primary_10_1063_5_0248228
crossref_primary_10_1021_acs_jctc_3c00960
crossref_primary_10_1039_C8CP04265A
crossref_primary_10_1021_acs_jpcc_0c09464
crossref_primary_10_1039_D0QI01510E
crossref_primary_10_1063_5_0134353
crossref_primary_10_1021_jacsau_1c00252
crossref_primary_10_1021_acs_jpca_0c05865
crossref_primary_10_1021_jacs_0c03097
crossref_primary_10_1021_acs_jpca_4c04544
crossref_primary_10_1063_1674_0068_cjcp2110214
crossref_primary_10_1021_acs_jpca_1c10195
crossref_primary_10_1039_D2CP00018K
crossref_primary_10_1021_acs_jctc_8b01049
crossref_primary_10_1002_solr_202000719
crossref_primary_10_1039_D2CC01701F
crossref_primary_10_1039_C9SC03671G
crossref_primary_10_1039_D1DT00783A
crossref_primary_10_1021_acs_jpca_4c00803
crossref_primary_10_1039_D0CP05116K
crossref_primary_10_1039_D0CP05362G
crossref_primary_10_1039_D3CP03517D
crossref_primary_10_1039_D1SC02149D
crossref_primary_10_1063_1674_0068_cjcp2109162
crossref_primary_10_1039_D2CP03822F
crossref_primary_10_1002_cphc_202400631
Cites_doi 10.1016/j.ccr.2011.01.042
10.1021/acs.jpclett.5b02146
10.1039/c2cs35171d
10.1021/acs.jpcc.7b01573
10.1063/1.4723808
10.1021/ar500358q
10.1021/ja00239a060
10.1021/jp312032s
10.1021/ja208496s
10.1002/jcc.1056
10.1016/j.ccr.2014.05.023
10.1021/jp102264q
10.1021/ja3063953
10.1021/jp410576a
10.1103/PhysRevB.33.8822
10.1063/1.4885817
10.1063/1.4894849
10.1021/acs.jpcc.7b06714
10.1016/j.chemphys.2008.10.013
10.1021/ja034537z
10.1063/1.4936864
10.1002/anie.201008146
10.1002/chem.201301291
10.1063/1.4903986
10.1021/jz200474g
10.1063/1.467455
10.1016/j.cplett.2004.06.011
10.1039/C5RA04487A
10.1063/1.2061187
10.1002/jcc.21360
10.1021/ja1029705
10.1021/ja00291a064
10.1021/acs.jpcc.8b00831
10.1002/chem.200600618
10.1016/j.comptc.2014.01.030
10.1016/j.chemphys.2007.01.021
10.1063/1.447334
10.1021/ja411800n
10.1002/jcc.10255
10.1039/b508541a
10.1063/1.467943
10.1021/jp809085h
10.1021/ja408936j
10.1016/j.ccr.2018.01.019
10.1016/j.cplett.2007.11.028
10.1021/acs.jpcc.6b04896
10.1021/cr3004899
10.1063/1.5022760
10.1039/C5RA01404B
10.1021/ja034732d
10.1021/jp302747g
10.1002/(SICI)1097-461X(1996)57:3<281::AID-QUA2>3.0.CO;2-U
10.1016/j.cplett.2014.07.073
10.1039/C4CP01683A
10.1002/jcc.20030
10.1039/C4DT03804E
10.1073/pnas.1014982107
10.1021/jacs.5b13210
10.1080/00268976.2018.1433335
10.1021/acs.chemrev.7b00617
10.1103/PhysRevA.31.1695
10.1021/j100155a026
10.1039/c3tc30206g
10.1021/ar500369r
10.1021/jp013949w
10.1021/ct1007394
10.1021/ja106769w
10.1063/1.3489004
10.1021/jp5046832
10.1039/C3DT52273C
10.1007/b11767107
10.1039/C7SC03905K
10.1002/anie.201410437
10.1021/ja903317w
10.1021/ic051296i
10.1039/C7CP00094D
10.1002/cphc.201100397
10.1002/anie.201201471
10.1039/C4DT01049C
10.1016/j.cplett.2004.01.098
10.1007/128_2015_635
10.1021/ar400263p
10.1039/C5SC03153B
10.1002/jcc.23778
10.1021/acs.jpclett.5b02062
10.1063/1.4707737
10.1021/ja052880t
10.1039/C4CS00110A
10.1063/1.1675788
10.1021/jp3071019
10.1007/s002140050353
10.1039/C3CP53806K
10.1063/1.4913513
10.1021/ic4030712
10.1063/1.3646920
10.1007/BF00533485
10.1039/C6NJ03617A
10.1103/PhysRevA.38.3098
10.1063/1.4943571
10.1021/jp072802n
10.1039/C4RA16269B
10.1021/ja305685v
10.1063/1.1674902
10.1021/ct300307c
10.1063/1.448975
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acs.jpca.8b04392
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5215
EndPage 5532
ExternalDocumentID 29874071
10_1021_acs_jpca_8b04392
a253223310
Genre Journal Article
GroupedDBID -
.K2
02
123
29L
53G
55A
5VS
7~N
85S
8RP
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ACGFS
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CJ0
CS3
D0L
DU5
EBS
ED
ED~
EJD
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
PZZ
RNS
ROL
TAE
TN5
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
YZZ
ZHY
---
-~X
.DC
4.4
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
XSW
YQT
~02
NPM
7X8
ID FETCH-LOGICAL-a402t-5d22434b7427c1b75ba807145a9b6f14969119c0f6e52c90f7f63c55fa14c3103
IEDL.DBID ACS
ISSN 1089-5639
1520-5215
IngestDate Fri Jul 11 01:52:34 EDT 2025
Mon Jul 21 05:55:53 EDT 2025
Tue Jul 01 01:11:29 EDT 2025
Thu Apr 24 23:11:25 EDT 2025
Thu Aug 27 13:41:58 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 25
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a402t-5d22434b7427c1b75ba807145a9b6f14969119c0f6e52c90f7f63c55fa14c3103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9752-1659
0000-0002-1668-465X
PMID 29874071
PQID 2051655441
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_2051655441
pubmed_primary_29874071
crossref_citationtrail_10_1021_acs_jpca_8b04392
crossref_primary_10_1021_acs_jpca_8b04392
acs_journals_10_1021_acs_jpca_8b04392
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-06-28
PublicationDateYYYYMMDD 2018-06-28
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-28
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
PublicationTitleAlternate J. Phys. Chem. A
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
ref52/cit52
ref23/cit23
ref2/cit2
ref77/cit77
ref71/cit71
ref20/cit20
ref48/cit48
ref74/cit74
ref10/cit10
ref35/cit35
ref89/cit89
ref19/cit19
ref93/cit93
ref42/cit42
ref96/cit96
ref107/cit107
ref13/cit13
ref105/cit105
ref61/cit61
ref67/cit67
ref38/cit38
ref64/cit64
ref54/cit54
ref6/cit6
ref18/cit18
ref65/cit65
ref97/cit97
ref101/cit101
ref11/cit11
ref102/cit102
ref29/cit29
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref5/cit5
ref43/cit43
ref80/cit80
ref28/cit28
ref91/cit91
ref55/cit55
ref12/cit12
ref66/cit66
ref22/cit22
ref33/cit33
ref87/cit87
ref106/cit106
ref44/cit44
ref70/cit70
ref98/cit98
ref9/cit9
ref27/cit27
ref63/cit63
ref56/cit56
ref92/cit92
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref34/cit34
Marques M. A. L. (ref90/cit90) 2006
ref37/cit37
ref60/cit60
ref88/cit88
ref17/cit17
ref82/cit82
ref53/cit53
ref21/cit21
ref46/cit46
ref49/cit49
ref75/cit75
ref24/cit24
ref50/cit50
ref78/cit78
ref36/cit36
ref83/cit83
ref79/cit79
ref100/cit100
ref25/cit25
ref103/cit103
ref72/cit72
ref14/cit14
ref57/cit57
ref51/cit51
ref40/cit40
ref68/cit68
ref94/cit94
ref26/cit26
ref73/cit73
ref69/cit69
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref95/cit95
ref108/cit108
ref104/cit104
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref1/cit1
ref7/cit7
References_xml – ident: ref1/cit1
  doi: 10.1016/j.ccr.2011.01.042
– ident: ref22/cit22
  doi: 10.1021/acs.jpclett.5b02146
– ident: ref108/cit108
– ident: ref3/cit3
  doi: 10.1039/c2cs35171d
– ident: ref57/cit57
  doi: 10.1021/acs.jpcc.7b01573
– ident: ref37/cit37
  doi: 10.1063/1.4723808
– ident: ref7/cit7
  doi: 10.1021/ar500358q
– ident: ref11/cit11
  doi: 10.1021/ja00239a060
– ident: ref51/cit51
  doi: 10.1021/jp312032s
– ident: ref66/cit66
  doi: 10.1021/ja208496s
– ident: ref106/cit106
  doi: 10.1002/jcc.1056
– ident: ref9/cit9
  doi: 10.1016/j.ccr.2014.05.023
– ident: ref25/cit25
  doi: 10.1021/jp102264q
– ident: ref67/cit67
  doi: 10.1021/ja3063953
– ident: ref54/cit54
  doi: 10.1021/jp410576a
– ident: ref95/cit95
  doi: 10.1103/PhysRevB.33.8822
– ident: ref79/cit79
  doi: 10.1063/1.4885817
– ident: ref58/cit58
  doi: 10.1063/1.4894849
– ident: ref46/cit46
  doi: 10.1021/acs.jpcc.7b06714
– ident: ref81/cit81
  doi: 10.1016/j.chemphys.2008.10.013
– ident: ref14/cit14
  doi: 10.1021/ja034537z
– ident: ref77/cit77
  doi: 10.1063/1.4936864
– ident: ref64/cit64
  doi: 10.1002/anie.201008146
– ident: ref50/cit50
  doi: 10.1002/chem.201301291
– ident: ref80/cit80
  doi: 10.1063/1.4903986
– ident: ref104/cit104
– ident: ref65/cit65
  doi: 10.1021/jz200474g
– ident: ref60/cit60
  doi: 10.1063/1.467455
– ident: ref86/cit86
  doi: 10.1016/j.cplett.2004.06.011
– ident: ref53/cit53
  doi: 10.1039/C5RA04487A
– ident: ref99/cit99
  doi: 10.1063/1.2061187
– ident: ref35/cit35
  doi: 10.1002/jcc.21360
– ident: ref63/cit63
  doi: 10.1021/ja1029705
– ident: ref10/cit10
  doi: 10.1021/ja00291a064
– ident: ref45/cit45
  doi: 10.1021/acs.jpcc.8b00831
– ident: ref16/cit16
  doi: 10.1002/chem.200600618
– ident: ref27/cit27
  doi: 10.1016/j.comptc.2014.01.030
– ident: ref33/cit33
  doi: 10.1016/j.chemphys.2007.01.021
– ident: ref97/cit97
  doi: 10.1063/1.447334
– ident: ref93/cit93
  doi: 10.1021/ja411800n
– ident: ref102/cit102
  doi: 10.1002/jcc.10255
– ident: ref96/cit96
  doi: 10.1039/b508541a
– ident: ref100/cit100
  doi: 10.1063/1.467943
– ident: ref61/cit61
  doi: 10.1021/jp809085h
– ident: ref68/cit68
  doi: 10.1021/ja408936j
– ident: ref30/cit30
  doi: 10.1016/j.ccr.2018.01.019
– ident: ref20/cit20
  doi: 10.1016/j.cplett.2007.11.028
– ident: ref26/cit26
  doi: 10.1021/acs.jpcc.6b04896
– ident: ref92/cit92
  doi: 10.1021/cr3004899
– ident: ref29/cit29
  doi: 10.1063/1.5022760
– ident: ref21/cit21
  doi: 10.1039/C5RA01404B
– ident: ref13/cit13
  doi: 10.1021/ja034732d
– ident: ref38/cit38
  doi: 10.1021/jp302747g
– ident: ref101/cit101
  doi: 10.1002/(SICI)1097-461X(1996)57:3<281::AID-QUA2>3.0.CO;2-U
– ident: ref41/cit41
  doi: 10.1016/j.cplett.2014.07.073
– ident: ref71/cit71
  doi: 10.1039/C4CP01683A
– ident: ref103/cit103
  doi: 10.1002/jcc.20030
– ident: ref49/cit49
  doi: 10.1039/C4DT03804E
– ident: ref62/cit62
  doi: 10.1073/pnas.1014982107
– ident: ref69/cit69
  doi: 10.1021/jacs.5b13210
– ident: ref83/cit83
  doi: 10.1080/00268976.2018.1433335
– ident: ref31/cit31
  doi: 10.1021/acs.chemrev.7b00617
– ident: ref98/cit98
  doi: 10.1103/PhysRevA.31.1695
– ident: ref12/cit12
  doi: 10.1021/j100155a026
– ident: ref40/cit40
  doi: 10.1039/c3tc30206g
– ident: ref8/cit8
  doi: 10.1021/ar500369r
– ident: ref32/cit32
  doi: 10.1021/jp013949w
– ident: ref74/cit74
  doi: 10.1021/ct1007394
– ident: ref2/cit2
  doi: 10.1021/ja106769w
– ident: ref91/cit91
  doi: 10.1063/1.3489004
– ident: ref52/cit52
  doi: 10.1021/jp5046832
– ident: ref43/cit43
  doi: 10.1039/C3DT52273C
– volume-title: Time-dependent Density Functional Theory
  year: 2006
  ident: ref90/cit90
  doi: 10.1007/b11767107
– ident: ref47/cit47
  doi: 10.1039/C7SC03905K
– ident: ref17/cit17
  doi: 10.1002/anie.201410437
– ident: ref24/cit24
  doi: 10.1021/ja903317w
– ident: ref23/cit23
  doi: 10.1021/ic051296i
– ident: ref73/cit73
  doi: 10.1039/C7CP00094D
– ident: ref36/cit36
  doi: 10.1002/cphc.201100397
– ident: ref105/cit105
– ident: ref4/cit4
  doi: 10.1002/anie.201201471
– ident: ref42/cit42
  doi: 10.1039/C4DT01049C
– ident: ref19/cit19
  doi: 10.1016/j.cplett.2004.01.098
– ident: ref28/cit28
  doi: 10.1007/128_2015_635
– ident: ref72/cit72
  doi: 10.1021/ar400263p
– ident: ref48/cit48
  doi: 10.1039/C5SC03153B
– ident: ref85/cit85
  doi: 10.1002/jcc.23778
– ident: ref82/cit82
  doi: 10.1021/acs.jpclett.5b02062
– ident: ref76/cit76
  doi: 10.1063/1.4707737
– ident: ref15/cit15
  doi: 10.1021/ja052880t
– ident: ref5/cit5
  doi: 10.1039/C4CS00110A
– ident: ref59/cit59
  doi: 10.1063/1.1675788
– ident: ref39/cit39
  doi: 10.1021/jp3071019
– ident: ref107/cit107
  doi: 10.1007/s002140050353
– ident: ref6/cit6
  doi: 10.1039/C3CP53806K
– ident: ref55/cit55
  doi: 10.1063/1.4913513
– ident: ref18/cit18
  doi: 10.1021/ic4030712
– ident: ref70/cit70
  doi: 10.1063/1.3646920
– ident: ref88/cit88
  doi: 10.1007/BF00533485
– ident: ref56/cit56
  doi: 10.1039/C6NJ03617A
– ident: ref94/cit94
  doi: 10.1103/PhysRevA.38.3098
– ident: ref78/cit78
  doi: 10.1063/1.4943571
– ident: ref34/cit34
  doi: 10.1021/jp072802n
– ident: ref44/cit44
  doi: 10.1039/C4RA16269B
– ident: ref75/cit75
  doi: 10.1021/ja305685v
– ident: ref89/cit89
  doi: 10.1063/1.1674902
– ident: ref84/cit84
  doi: 10.1021/ct300307c
– ident: ref87/cit87
  doi: 10.1063/1.448975
SSID ssj0001324
Score 2.4225767
Snippet Excited-state and photophysical properties of Ir-containing complexes have been extensively studied because of their potential applications as organic...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5518
Title Early-Time Excited-State Relaxation Dynamics of Iridium Compounds: Distinct Roles of Electron and Hole Transfer
URI http://dx.doi.org/10.1021/acs.jpca.8b04392
https://www.ncbi.nlm.nih.gov/pubmed/29874071
https://www.proquest.com/docview/2051655441
Volume 122
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELUQHODCvpRNRoIDB5fEjZ2GGypFBQkOLFJvke04UlnSqkmliq9nxkmL2CqukW3J9njeTDx-j5Bjl0NEIdLsC8kAb32mrTbM8xInh9TgCf7Qv72Tnafgpiu6nzQ532_wuX-mTF5_HkB639T4jBPc7QKXcIYxDGo9TL0uZFVBWUwfMQGwW11J_jYCApHJvwLRH9GlQ5mrlVKuKHfkhFhc8lIfFbpu3n9SN_5jAqtkuQo26UVpHWtkzmbrZLE10XjbIH3Hb8zwHQhtjw2Gn8yFnxSL5MZu1-hlKVqf035Kr4e9pDd6o-hGUJApP6eX6CUyU9B75IbCRu1KWoeqLKEd-EodIqZ2uEmertqPrQ6rJBiYgsSyYCIBiG8EGhLo0Pg6FFo18cmTUJGWKWRXEpxlZLxUWsFN5KVhKhtGiFT5gUEJsy0yn_Uzu0MowJ7xkwY6iCiQKlAy8ZSw1nBlolTJGjmBlYqrI5TH7nac-7H7CMsXV8tXI2eTfYtNxWOOchqvM3qcTnsMSg6PGW2PJqYQw17g7YnKbH-UxxzclxQo2VYj26WNTEfjESobhv7uP-ewR5Yg8GpiyRlv7pP5YjiyBxDcFPrQWfUHSULyQw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB6hcmAv7PJY6L4wEhz24DZJY6fZGypFZaEc2FbqLbIdRwJ2U9SkEuLX74yTFu0KKrhatuXHZL6ZeGY-gCPnQ8QRldkXkiPe-lxbbbjnpY4OqROk9EN_eCUH4_DnREzWwF_kwuAiCpypcI_4T9UF_Da13d6jl9_VlM2JWncdbZGAhPqk92upfNG5CquY-pgLRN_6ZfK5GQiPTPEvHr1gZDqwOXsP18tluhiTu9a81C3z-F8Fxzft4wNs1qYnO6lkZQvWbL4NG70F49sOTF21Y05ZIaz_YMgY5c4YZRQy9-DukJ1WFPYFm2bsfHaT3sz_MFIqRM9U_GCnpDNyU7JrqhRFnfo10Q5TecoG2MocPmZ2tgvjs_6oN-A1IQNX6GaWXKQI-J1QozsdGV9HQqsuJUAJFWuZoa8lUXXGxsukFYGJvSzKZMcIkSk_NERo9hEa-TS3-8AQBI2fdkhdxKFUoZKpp4S1JlAmzpRswjGeVFJ_UEXi3soDP3GNeHxJfXxNaC-uLzF1VXMi1_i9YsT35Yj7qqLHir6HC4lI8C7oLUXldjovkgCVmRRE4NaEvUpUlrMFMfEcRv6nV-7hADYGo-Flcnl-dfEZ3qFJ1qVgtKD7BRrlbG6_otlT6m9O0P8CzvL6pA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZT9wwEB4hKlFe6AksPTBSeeiDIcnGzoa31R5ayqGqlIq3yHZsiSu72mSlVX89M052pVYtglfLsXyM55vJjOcD-OJ9iDShMvtCcsTbkGurDQ-C3NMhtaOcfuifncvRZfztSlytgFi8hcFJlDhS6YP4dKsnuWsqDISH1H4zQU-_o-lFJ2reFxS1I8Hu9i6WChgdrLjOq0-5QARuopP_GoEwyZR_YtJ_DE0POMNX8Gs5VZ9ncnswq_SB-f1XFcdnr-U1bDQmKOvWMvMGVmzxFl72Fsxv72Dsqx5zeh3CBnNDRin3Rimj1Lm5P0vWr6nsSzZ27Hh6nV_P7hkpF6JpKo9Yn3RHYSr2gypGUadBQ7jDVJGzEbYyj5POTt_D5XDwszfiDTEDV-huVlzkCPztWKNbnZhQJ0KrDj2EEirV0qHPJVGFpiZw0orIpIFLnGwbIZwKY0PEZpuwWowLuw0MwdCEeZvURhpLFSuZB0pYayJlUqdkC_Zxp7LmYpWZj5lHYeYbcfuyZvtacLg4wsw01c2JZOPukS--Lr-Y1JU9Hum7t5CKDM-CYiqqsONZmUWo1KQgIrcWbNXishwtSonvMAl3nriGXVj73h9mp8fnJx9gHS2zDuWkRZ2PsFpNZ_YTWj-V_uxl_QH7q_0n
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early-Time+Excited-State+Relaxation+Dynamics+of+Iridium+Compounds%3A+Distinct+Roles+of+Electron+and+Hole+Transfer&rft.jtitle=The+journal+of+physical+chemistry.+A%2C+Molecules%2C+spectroscopy%2C+kinetics%2C+environment%2C+%26+general+theory&rft.au=Liu%2C+Xiang-Yang&rft.au=Zhang%2C+Ya-Hui&rft.au=Fang%2C+Wei-Hai&rft.au=Cui%2C+Ganglong&rft.date=2018-06-28&rft.issn=1089-5639&rft.eissn=1520-5215&rft.volume=122&rft.issue=25&rft.spage=5518&rft.epage=5532&rft_id=info:doi/10.1021%2Facs.jpca.8b04392&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_jpca_8b04392
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-5639&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-5639&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-5639&client=summon