Nanoparticles in natural systems I: The effective reactive surface area of the natural oxide fraction in field samples
Information on the particle size and reactive surface area of natural samples is essential for the application of surface complexation models (SCM) to predict bioavailability, toxicity, and transport of elements in the natural environment. In addition, this information will be of great help to enlig...
Saved in:
Published in | Geochimica et cosmochimica acta Vol. 74; no. 1; pp. 41 - 58 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Information on the particle size and reactive surface area of natural samples is essential for the application of surface complexation models (SCM) to predict bioavailability, toxicity, and transport of elements in the natural environment. In addition, this information will be of great help to enlighten views on the formation, stability, and structure of nanoparticle associations of natural organic matter (NOM) and natural oxide particles.
Phosphate is proposed as a natively present probe ion to derive the effective reactive surface area of natural samples. In the suggested method, natural samples are equilibrated (⩾10
days) with 0.5
M NaHCO
3 (pH
=
8.5) at various solid–solution ratios. This matrix fixes the pH and ionic strength, suppresses the influence of Ca
2+ and Mg
2+ ions by precipitation these in solid carbonates, and removes NOM due to the addition of activated carbon in excess, collectively leading to the dominance of the PO
4–CO
3 interaction in the system. The data have been interpreted with the charge distribution (CD) model, calibrated for goethite, and the analysis results in an effective reactive surface area (SA) and a reversibly bound phosphate loading
Γ for a series of top soils.
The oxidic SA varies between about 3–30
m
2/g sample for a large series of representative agricultural top soils. Scaling of our data to the total iron and aluminum oxide content (dithionite–citrate–bicarbonate extractable), results in the specific surface area between about 200–1200
m
2/g oxide for most soils, i.e. the oxide particles are nano-sized with an equivalent diameter in the order of ∼1–10
nm if considered as non-porous spheres. For the top soils, the effective surface area and the soil organic carbon fraction are strongly correlated. The oxide particles are embedded in a matrix of organic carbon (OC), equivalent to ∼1.4
±
0.2
mg OC/m
2 oxide for many soils of the collection, forming a NOM–mineral nanoparticle association with an average NOM volume fraction of ∼80%. The average mass density of such a NOM–mineral association is ∼1700
±
100
kg/m
3 (i.e. high-density NOM). The amount of reversibly bound phosphate is rather close to the amount of phosphate that is extractable with oxalate. The phosphate loading varies remarkably (
Γ
≈
1–3
μmol/m
2 oxide) in the samples. As discussed in part II of this paper series (
Hiemstra et al., 2010), the phosphate loading (
Γ) of field samples is suppressed by surface complexation of NOM, where hydrophilic, fulvic, and humic acids act as a competitor for (an)ions via site competition and electrostatic interaction. |
---|---|
AbstractList | Information on the particle size and reactive surface area of natural samples is essential for the application of surface complexation models (SCM) to predict bioavailability, toxicity, and transport of elements in the natural environment. In addition, this information will be of great help to enlighten views on the formation, stability, and structure of nanoparticle associations of natural organic matter (NOM) and natural oxide particles.
Phosphate is proposed as a natively present probe ion to derive the effective reactive surface area of natural samples. In the suggested method, natural samples are equilibrated (⩾10
days) with 0.5
M NaHCO
3 (pH
=
8.5) at various solid–solution ratios. This matrix fixes the pH and ionic strength, suppresses the influence of Ca
2+ and Mg
2+ ions by precipitation these in solid carbonates, and removes NOM due to the addition of activated carbon in excess, collectively leading to the dominance of the PO
4–CO
3 interaction in the system. The data have been interpreted with the charge distribution (CD) model, calibrated for goethite, and the analysis results in an effective reactive surface area (SA) and a reversibly bound phosphate loading
Γ for a series of top soils.
The oxidic SA varies between about 3–30
m
2/g sample for a large series of representative agricultural top soils. Scaling of our data to the total iron and aluminum oxide content (dithionite–citrate–bicarbonate extractable), results in the specific surface area between about 200–1200
m
2/g oxide for most soils, i.e. the oxide particles are nano-sized with an equivalent diameter in the order of ∼1–10
nm if considered as non-porous spheres. For the top soils, the effective surface area and the soil organic carbon fraction are strongly correlated. The oxide particles are embedded in a matrix of organic carbon (OC), equivalent to ∼1.4
±
0.2
mg OC/m
2 oxide for many soils of the collection, forming a NOM–mineral nanoparticle association with an average NOM volume fraction of ∼80%. The average mass density of such a NOM–mineral association is ∼1700
±
100
kg/m
3 (i.e. high-density NOM). The amount of reversibly bound phosphate is rather close to the amount of phosphate that is extractable with oxalate. The phosphate loading varies remarkably (
Γ
≈
1–3
μmol/m
2 oxide) in the samples. As discussed in part II of this paper series (
Hiemstra et al., 2010), the phosphate loading (
Γ) of field samples is suppressed by surface complexation of NOM, where hydrophilic, fulvic, and humic acids act as a competitor for (an)ions via site competition and electrostatic interaction. Information on the particle size and reactive surface area of natural samples is essential for the application of surface complexation models (SCM) to predict bioavailability, toxicity, and transport of elements in the natural environment. In addition, this information will be of great help to enlighten views on the formation, stability, and structure of nanoparticle associations of natural organic matter (NOM) and natural oxide particles. Phosphate is proposed as a natively present probe ion to derive the effective reactive surface area of natural samples. In the suggested method, natural samples are equilibrated (10 days) with 0.5 M NaHCO3 (pH = 8.5) at various solid–solution ratios. This matrix fixes the pH and ionic strength, suppresses the influence of Ca2+ and Mg2+ ions by precipitation these in solid carbonates, and removes NOM due to the addition of activated carbon in excess, collectively leading to the dominance of the PO4–CO3 interaction in the system. The data have been interpreted with the charge distribution (CD) model, calibrated for goethite, and the analysis results in an effective reactive surface area (SA) and a reversibly bound phosphate loading G for a series of top soils. The oxidic SA varies between about 3–30 m2/g sample for a large series of representative agricultural top soils. Scaling of our data to the total iron and aluminum oxide content (dithionite–citrate–bicarbonate extractable), results in the specific surface area between about 200–1200 m2/g oxide for most soils, i.e. the oxide particles are nano-sized with an equivalent diameter in the order of 1–10 nm if considered as non-porous spheres. For the top soils, the effective surface area and the soil organic carbon fraction are strongly correlated. The oxide particles are embedded in a matrix of organic carbon (OC), equivalent to 1.4 ± 0.2 mg OC/m2 oxide for many soils of the collection, forming a NOM–mineral nanoparticle association with an average NOM volume fraction of 80%. The average mass density of such a NOM–mineral association is 1700 ± 100 kg/m3 (i.e. high-density NOM). The amount of reversibly bound phosphate is rather close to the amount of phosphate that is extractable with oxalate. The phosphate loading varies remarkably (G ˜ 1–3 µmol/m2 oxide) in the samples. As discussed in part II of this paper series (Hiemstra et al., 2010), the phosphate loading (G) of field samples is suppressed by surface complexation of NOM, where hydrophilic, fulvic, and humic acids act as a competitor for (an)ions via site competition and electrostatic interaction Information on the particle size and reactive surface area of natural samples is essential for the application of surface complexation models (SCM) to predict bioavailability, toxicity, and transport of elements in the natural environment. In addition, this information will be of great help to enlighten views on the formation, stability, and structure of nanoparticle associations of natural organic matter (NOM) and natural oxide particles. Phosphate is proposed as a natively present probe ion to derive the effective reactive surface area of natural samples. In the suggested method, natural samples are equilibrated ([greater-or-equal, slanted]10 days) with 0.5 M NaHCO(3) (pH = 8.5) at various solid-solution ratios. This matrix fixes the pH and ionic strength, suppresses the influence of Ca(2+) and Mg(2+) ions by precipitation these in solid carbonates, and removes NOM due to the addition of activated carbon in excess, collectively leading to the dominance of the PO(4)-CO(3) interaction in the system. The data have been interpreted with the charge distribution (CD) model, calibrated for goethite, and the analysis results in an effective reactive surface area (SA) and a reversibly bound phosphate loading G for a series of top soils. The oxidic SA varies between about 3-30 m(2)/g sample for a large series of representative agricultural top soils. Scaling of our data to the total iron and aluminum oxide content (dithionite-citrate-bicarbonate extractable), results in the specific surface area between about 200-1200 m(2)/g oxide for most soils, i.e. the oxide particles are nano-sized with an equivalent diameter in the order of [not, vert, similar]1-10 nm if considered as non-porous spheres. For the top soils, the effective surface area and the soil organic carbon fraction are strongly correlated. The oxide particles are embedded in a matrix of organic carbon (OC), equivalent to [not, vert, similar]1.4 +/- 0.2 mg OC/m(2) oxide for many soils of the collection, forming a NOM-mineral nanoparticle association with an average NOM volume fraction of [not, vert, similar]80%. The average mass density of such a NOM-mineral association is [not, vert, similar]1700 +/- 100 kg/m(3) (i.e. high-density NOM). The amount of reversibly bound phosphate is rather close to the amount of phosphate that is extractable with oxalate. The phosphate loading varies remarkably (G [asymptotic to] 1-3 kmol/m(2) oxide) in the samples. As discussed in part II of this paper series (Hiemstra et al., 2010), the phosphate loading (G) of field samples is suppressed by surface complexation of NOM, where hydrophilic, fulvic, and humic acids act as a competitor for (an)ions via site competition and electrostatic interaction. |
Author | Antelo, Juan Rahnemaie, Rasoul Hiemstra, Tjisse Riemsdijk, Willem H. van |
Author_xml | – sequence: 1 givenname: Tjisse surname: Hiemstra fullname: Hiemstra, Tjisse email: tjisse.hiemstra@wur.nl organization: Department of Soil Quality, Wageningen University, P.O. Box 47, NL 6700 AA Wageningen, The Netherlands – sequence: 2 givenname: Juan surname: Antelo fullname: Antelo, Juan organization: Department of Soil Quality, Wageningen University, P.O. Box 47, NL 6700 AA Wageningen, The Netherlands – sequence: 3 givenname: Rasoul surname: Rahnemaie fullname: Rahnemaie, Rasoul organization: Department of Soil Science, Tarbiat Modares University, P.O. Box 14115-336, Tehran, Iran – sequence: 4 givenname: Willem H. van surname: Riemsdijk fullname: Riemsdijk, Willem H. van organization: Department of Soil Quality, Wageningen University, P.O. Box 47, NL 6700 AA Wageningen, The Netherlands |
BookMark | eNp9kU9v1DAQxS1UJLaFD8DNJ25ZxkmdP-WEKgqVKrjs3ZrY4-KV1w52sqXfHkeBC4deZsaj93uW5l2yixADMfZewF6AaD8e948a9zXAUN57EP0rthN9V1eDbJoLtoMiqjpoujfsMucjAHRSwo6dv2OIE6bZaU-Zu8ADzktCz_NznumU-f0NP_wkTtaSnt2ZeCLchrwki5o4lg2Pls9F9o-Ov50hbtMqjWH1tY684RlPU_noLXtt0Wd697dfscPdl8Ptt-rhx9f7288PFV5DPVey1kKYVndU93UH0GBXY9sDSDlCT_0owZihJ4OyHsehGYS51tYIlGR7HJordrPZPuEjBRdKUQGTdllFdMq7MWF6Vk9LUsGvbVrGrIpN33QF_rDBU4q_FsqzOrmsyXsMFJciayUMrYAiFJtQp5hzIqum5E6rsQC1pqOOqqSj1nTWVUmnMN1_jHYzrreaEzr_IvlpI6nc7ewoqawdBU3GpZKQMtG9QP8BvKevHQ |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2018_03_002 crossref_primary_10_1016_j_still_2011_01_006 crossref_primary_10_1039_C7EN00445A crossref_primary_10_1016_j_chemgeo_2015_06_011 crossref_primary_10_1002_etc_2642 crossref_primary_10_1016_j_soilbio_2024_109507 crossref_primary_10_1016_j_scitotenv_2023_167627 crossref_primary_10_1080_10643389_2021_1974766 crossref_primary_10_1021_acsearthspacechem_9b00320 crossref_primary_10_1016_j_apgeochem_2013_09_017 crossref_primary_10_1016_j_gca_2012_01_046 crossref_primary_10_1002_ldr_1155 crossref_primary_10_1021_es400997n crossref_primary_10_1071_EN20123 crossref_primary_10_1016_j_apgeochem_2020_104797 crossref_primary_10_1016_j_watres_2024_123031 crossref_primary_10_1016_j_gca_2014_08_031 crossref_primary_10_1021_acs_est_2c04971 crossref_primary_10_1016_j_apgeochem_2016_07_011 crossref_primary_10_1016_j_cej_2023_147677 crossref_primary_10_1016_j_gca_2021_07_028 crossref_primary_10_1016_j_jhazmat_2020_123135 crossref_primary_10_1021_acsearthspacechem_0c00078 crossref_primary_10_2139_ssrn_4047088 crossref_primary_10_1016_j_scitotenv_2019_135220 crossref_primary_10_1016_j_jhazmat_2024_134413 crossref_primary_10_1016_j_chemosphere_2023_138927 crossref_primary_10_1016_j_gca_2015_02_032 crossref_primary_10_1016_j_scitotenv_2020_138730 crossref_primary_10_1016_j_gca_2014_08_029 crossref_primary_10_1016_j_jallcom_2024_176542 crossref_primary_10_1021_es400526q crossref_primary_10_1016_j_gca_2023_12_024 crossref_primary_10_1016_j_apgeochem_2018_12_012 crossref_primary_10_1016_j_cej_2023_147671 crossref_primary_10_1016_j_jcis_2015_05_041 crossref_primary_10_1016_j_jhazmat_2021_125128 crossref_primary_10_1016_j_jhazmat_2021_127028 crossref_primary_10_1016_j_gca_2014_07_014 crossref_primary_10_2134_jeq2011_0250 crossref_primary_10_1021_acs_est_4c04812 crossref_primary_10_1007_s11368_011_0386_8 crossref_primary_10_1039_C8EN01198B crossref_primary_10_2136_sssaj2010_0455 crossref_primary_10_1021_acs_est_0c01341 crossref_primary_10_1016_j_chroma_2015_02_073 crossref_primary_10_1016_j_gca_2018_07_017 crossref_primary_10_1021_es201844d crossref_primary_10_1016_j_jhazmat_2023_130963 crossref_primary_10_1016_j_geoderma_2023_116737 crossref_primary_10_1016_j_chemosphere_2022_134032 crossref_primary_10_1016_j_geoderma_2015_01_022 crossref_primary_10_1016_j_geoderma_2015_08_036 crossref_primary_10_1016_j_chemosphere_2024_143356 crossref_primary_10_1016_j_geoderma_2022_115970 crossref_primary_10_1016_j_scitotenv_2022_155284 crossref_primary_10_1016_j_scitotenv_2023_165806 crossref_primary_10_1016_j_chemosphere_2010_11_034 crossref_primary_10_2139_ssrn_4167469 crossref_primary_10_1016_j_jhydrol_2018_07_018 crossref_primary_10_1007_s11356_018_1595_0 crossref_primary_10_1080_10643389_2013_829767 crossref_primary_10_2139_ssrn_4096587 crossref_primary_10_1002_jpln_201600451 crossref_primary_10_1016_j_gca_2012_12_002 crossref_primary_10_1016_j_cej_2018_07_152 crossref_primary_10_1016_j_gca_2009_10_019 crossref_primary_10_1071_EN13184 crossref_primary_10_1016_j_scitotenv_2024_173667 crossref_primary_10_1111_ejss_12285 crossref_primary_10_1016_j_geoderma_2018_11_001 crossref_primary_10_1016_j_watres_2022_119534 crossref_primary_10_1016_j_geoderma_2014_09_023 crossref_primary_10_1021_acs_est_9b01183 crossref_primary_10_1016_j_soilbio_2019_107583 crossref_primary_10_1016_j_chemosphere_2014_04_032 crossref_primary_10_1016_j_geoderma_2014_07_017 crossref_primary_10_1016_j_geoderma_2024_116838 crossref_primary_10_1016_j_apgeochem_2018_01_014 crossref_primary_10_1016_j_chemosphere_2022_135188 crossref_primary_10_1016_j_gca_2023_06_021 crossref_primary_10_1016_j_jhazmat_2010_12_074 crossref_primary_10_1007_s11104_011_0935_3 crossref_primary_10_1016_j_scitotenv_2013_04_076 crossref_primary_10_1007_s11368_023_03481_3 crossref_primary_10_5194_bg_19_763_2022 crossref_primary_10_1016_j_colsurfb_2013_05_005 crossref_primary_10_1002_etc_2612 crossref_primary_10_1016_j_still_2021_105220 crossref_primary_10_1021_acs_est_0c02163 crossref_primary_10_1071_EN13216 crossref_primary_10_1080_07391102_2013_836461 crossref_primary_10_1021_acsearthspacechem_8b00160 crossref_primary_10_1021_es501782g crossref_primary_10_1093_aob_mcq098 crossref_primary_10_1016_j_geoderma_2021_115458 crossref_primary_10_1016_j_jhazmat_2022_129830 crossref_primary_10_1016_j_scitotenv_2022_161294 crossref_primary_10_1016_j_apgeochem_2013_03_018 crossref_primary_10_1016_j_jhazmat_2021_126260 crossref_primary_10_1111_ejss_12549 crossref_primary_10_1016_j_apgeochem_2014_05_014 crossref_primary_10_1016_j_gca_2012_07_014 crossref_primary_10_1016_j_envpol_2018_03_064 crossref_primary_10_1016_j_gca_2011_02_034 crossref_primary_10_1016_j_geoderma_2013_01_019 crossref_primary_10_1016_j_trac_2015_07_003 crossref_primary_10_1016_j_gca_2020_07_032 crossref_primary_10_1016_j_geoderma_2022_116212 crossref_primary_10_1016_j_scitotenv_2018_04_191 crossref_primary_10_1039_C6EN00061D crossref_primary_10_1016_j_chemosphere_2022_135842 crossref_primary_10_1016_j_watres_2014_02_002 crossref_primary_10_1016_j_nbt_2013_03_008 crossref_primary_10_1002_etc_2581 crossref_primary_10_1016_j_jece_2017_04_002 crossref_primary_10_1007_s11368_014_0919_z crossref_primary_10_1016_j_geoderma_2013_03_015 crossref_primary_10_1021_es405330x crossref_primary_10_1111_ejss_13104 crossref_primary_10_1021_es500257e crossref_primary_10_1007_s10498_015_9271_1 crossref_primary_10_1016_j_cej_2018_03_125 crossref_primary_10_1007_s11104_012_1273_9 crossref_primary_10_1016_j_scitotenv_2015_06_005 crossref_primary_10_1016_j_catena_2016_05_012 crossref_primary_10_1016_j_geoderma_2022_115773 crossref_primary_10_1016_j_jhazmat_2020_123639 crossref_primary_10_1002_jpln_201200276 crossref_primary_10_1016_j_gca_2025_02_031 crossref_primary_10_1016_j_geoderma_2021_115517 crossref_primary_10_1016_j_jhazmat_2016_10_033 crossref_primary_10_2139_ssrn_3983771 crossref_primary_10_1016_j_chemosphere_2022_135172 crossref_primary_10_1016_j_envpol_2021_118669 crossref_primary_10_1016_j_gca_2011_10_037 crossref_primary_10_1016_j_geoderma_2017_05_012 crossref_primary_10_1111_sum_12911 |
Cites_doi | 10.1016/0021-9797(78)90217-5 10.2475/ajs.282.9.1508 10.1021/es00050a007 10.1016/j.gca.2006.08.047 10.1016/S0016-7037(99)00176-3 10.1126/science.1066611 10.2134/jeq2004.1393 10.2113/gselements.4.6.401 10.1016/j.jhydrol.2005.07.047 10.1016/0016-7061(73)90066-9 10.1007/978-1-4612-2930-8_1 10.1016/j.geoderma.2008.11.032 10.1111/j.1365-2389.2004.00599.x 10.1016/j.jcis.2007.05.039 10.1016/S0021-9797(78)80009-5 10.1016/0016-7037(94)90531-2 10.1016/S0016-7037(97)00009-4 10.1016/j.geoderma.2008.07.010 10.1016/j.apgeochem.2003.08.003 10.2136/sssaj2006.0189 10.1016/0021-9797(76)90253-8 10.1021/es049885v 10.1016/S0016-7037(99)00266-5 10.1016/S0146-6380(00)00046-2 10.1016/0001-8686(80)80012-1 10.1007/s000270050058 10.1021/es0001106 10.1016/S0016-7061(02)00369-5 10.1021/es048154s 10.1346/CCMN.1992.0400103 10.1346/CCMN.1958.0070122 10.1038/38260 10.1016/j.geoderma.2005.09.001 10.1021/ba-1968-0079.ch008 10.1021/es9506216 10.1016/j.jcis.2004.06.014 10.1021/es010085j 10.1097/00010694-197504000-00009 10.2136/sssaj1967.03615995003100020020x 10.1111/j.1365-2389.1997.tb00189.x 10.1016/0016-7037(96)00059-2 10.1016/j.apgeochem.2004.05.010 10.1021/la051730t 10.1016/j.gca.2009.04.032 10.1016/S0016-7037(98)00183-5 10.4141/cjss73-037 10.1016/j.jcis.2004.12.032 10.1038/370549a0 10.1016/j.orggeochem.2003.08.007 10.2475/ajs.299.10.828 10.2136/sssaj2002.1505 10.1130/G19924.1 10.2136/sssaj1979.03615995004300040045x 10.1016/j.jcis.2006.04.015 10.1021/la062965n 10.1016/j.marchem.2004.04.006 10.1016/j.gca.2004.05.040 10.1016/S0016-7037(00)00536-6 10.1021/es800881w 10.1021/j100812a002 10.1007/s003740050020 10.1006/jcis.1996.0242 10.1021/la00093a015 10.1016/0016-7061(76)90066-5 10.1016/j.gca.2004.08.002 10.2136/sssaj2002.1836 10.1346/CCMN.2000.0480114 10.1006/jcis.1998.5904 10.1080/00103629809370053 10.1016/j.jcis.2005.06.089 10.1021/es000210b 10.1016/j.jcis.2007.01.065 10.1016/j.jcis.2008.01.007 10.1071/SR9800395 10.1016/S0016-7037(99)00228-8 10.1021/es9701624 10.1046/j.1365-2389.2001.00414.x 10.1016/j.jcis.2007.07.017 10.1016/j.geoderma.2006.10.011 10.2136/sssaj1990.03615995005400040012x 10.4141/cjss63-002 10.1016/j.gca.2006.02.021 10.1016/j.jcis.2006.05.008 10.1111/j.1365-2389.2005.00710.x 10.1016/0016-7061(76)90033-1 10.1016/j.gca.2009.10.019 10.1006/jcis.1996.0666 10.1016/0016-7037(94)90381-6 10.1046/j.1365-2389.2003.00544.x 10.2134/jeq1988.00472425001700010005x 10.1016/0016-7061(76)90034-3 10.1016/j.geoderma.2007.05.003 10.1021/es801631d 10.1021/es0491984 10.1021/es940723g 10.1016/j.gca.2005.12.005 |
ContentType | Journal Article |
Copyright | 2009 Elsevier Ltd Wageningen University & Research |
Copyright_xml | – notice: 2009 Elsevier Ltd – notice: Wageningen University & Research |
DBID | AAYXX CITATION 8FD H8D L7M QVL |
DOI | 10.1016/j.gca.2009.10.018 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace NARCIS:Publications |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1872-9533 |
EndPage | 58 |
ExternalDocumentID | oai_library_wur_nl_wurpubs_391837 10_1016_j_gca_2009_10_018 S0016703709006401 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 8WZ 9JN A6W AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABMAC ABPPZ ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE ADIYS ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ IHE IMUCA J1W KOM LY3 M41 MO0 MVM N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SEP SES SEW SPC SSE SSZ T5K TN5 TWZ UQL VH1 VOH WUQ XJT XOL XSW ZKB ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION SSH 8FD H8D L7M 02 08R 0R 1 6XO 8P AAPBV ABPTK ADALY ADKFC AFRUD DZ G- HZ K M QVL STF UNR X ZY4 |
ID | FETCH-LOGICAL-a402t-52c11d6c7e2827003a72a680055b08e8b50dd98eda52bb9391d4cfd1a5ef8a93 |
IEDL.DBID | AIKHN |
ISSN | 0016-7037 |
IngestDate | Tue Jan 05 18:05:36 EST 2021 Fri Jul 11 07:49:30 EDT 2025 Tue Jul 01 01:33:30 EDT 2025 Thu Apr 24 23:10:07 EDT 2025 Fri Feb 23 02:23:55 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a402t-52c11d6c7e2827003a72a680055b08e8b50dd98eda52bb9391d4cfd1a5ef8a93 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 36509610 |
PQPubID | 23500 |
PageCount | 18 |
ParticipantIDs | wageningen_narcis_oai_library_wur_nl_wurpubs_391837 proquest_miscellaneous_36509610 crossref_primary_10_1016_j_gca_2009_10_018 crossref_citationtrail_10_1016_j_gca_2009_10_018 elsevier_sciencedirect_doi_10_1016_j_gca_2009_10_018 |
ProviderPackageCode | CITATION AAYXX QVL |
PublicationCentury | 2000 |
PublicationDate | 2010 2010-1-00 20100101 |
PublicationDateYYYYMMDD | 2010-01-01 |
PublicationDate_xml | – year: 2010 text: 2010 |
PublicationDecade | 2010 |
PublicationTitle | Geochimica et cosmochimica acta |
PublicationYear | 2010 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Hassellov, Von der Kammer (bib32) 2008; 4 Sverjensky (bib86) 2005; 69 Rosentreter, Swantje Quarder, Smith, McLing (bib77) 1998 Lindsay (bib56) 1979 Bargar, Kubicki, Reitmeyer, Davis (bib4) 2005; 69 Koopmans, Chardon, de Willigen, van Riemsdijk (bib53) 2004; 33 Eusterhues, Wagner, Hausler, Hanzlik, Knicker, Totsche, Kogel-Knabner, Schwertmann (bib24) 2008; 42 Barrow, Shaw (bib5) 1975; 119 Olsen, Cole, Watanabe, Dean (bib68) 1954; vol. 939 Schwertmann (bib80) 1973; 53 Wada (bib98) 1989 Millero, Schreiber (bib65) 1982; 282 Eusterhues, Rumpel, Kogel-Knabner (bib23) 2005; 56 Weng, Van Riemsdijk, Hiemstra (bib104) 2006; 22 Kinniburgh D. G. (1993) Fit, Technical Report WD/93/23. British Geological Survey. Weng, Van Riemsdijk, Hiemstra (bib106) 2008; 42 Zhou, Maurice, Cabaniss (bib110) 2001; 65 Kennedy, Pevear, Hill (bib51) 2002; 295 Lofts, Tipping (bib57) 1998; 62 Brecevic, Kralj (bib10) 2007; 80 Mayer (bib62) 1994; 58 Torrent, Barron, Schwertmann (bib92) 1990; 54 Walker, Syers (bib102) 1976; 15 Davis, Leckie (bib18) 1978; 67 Christl, Kretzschmar (bib13) 1999; 63 Lutzenkirchen (bib61) 2004; 68 Hiemstra, Van Riemsdijk (bib36) 2007; 80 Boily (bib9) 1999 Ponthieu, Juillot, Hiemstra, van Riemsdijk, Benedetti (bib70) 2006; 70 Fukushi, Sato (bib26) 2005; 39 Lienemann, Monnerat, Dominik, Perret (bib55) 1999; 61 Rahnemaie, Hiemstra, Van Riemsdijk (bib72) 2007; 315 Hiemstra, Van Riemsdijk (bib35) 2006; 301 Keil, Montlucon, Prahl, Hedges (bib49) 1994; 370 Dijkstra, Meeussen, Comans (bib20) 2004; 38 Kaiser, Guggenberger (bib47) 2003; 54 Hiemstra, Van Riemsdijk (bib33) 1996; 179 Rietra, Hiemstra, Van Riemsdijk (bib75) 2001; 35 Thompson, Chadwick, Rancourt, Chorover (bib90) 2006; 70 Tadanier, Eick (bib88) 2002; 66 Logue, Smith, Westall (bib58) 2004; 19 Luengo, Brigante, Antelo, Avena (bib59) 2006; 300 Sverjensky, Shock, Helgeson (bib87) 1997; 61 Rietra, Hiemstra, Van Riemsdijk (bib74) 1999; 63 Hiemstra, Venema, Van Riemsdijk (bib38) 1996; 184 Eusterhues, Rumpel, Kleber, Kogel-Knabner (bib22) 2003; 34 Murphy, Posner, Quirk (bib67) 1976; 56 Cihacek, Bremner (bib14) 1979; 43 Cances, Ponthieu, Castrec-Rouelle, Aubry, Benedetti (bib11) 2003; 113 Griffioen (bib28) 2006; 320 Rahnemaie, Hiemstra, Van Riemsdijk (bib73) 2007; 23 Schroder, Hiemstra, Vink, van der Zee (bib78) 2005; 39 Torn, Trumbore, Chadwick, Vitousek, Hendricks (bib91) 1997; 389 Coffin (bib15) 1963; 43 Schulten, Leinweber (bib79) 2000; 30 Westall, Hohl (bib107) 1980; 12 Barrow, Bowden, Posner, Quirk (bib8) 1980; 18 Vanderzee, Vanriemsdijk (bib96) 1988; 17 Kaiser, Mikutta, Guggenberger (bib48) 2007; 71 Gu, Mehlhorn, Liang, McCarthy (bib30) 1996; 60 Barrow, Shaw (bib7) 1976; 16 Criscenti, Sverjensky (bib17) 1999; 299 Schwertmann, Fischer (bib81) 1973; 10 Goldberg, Lesch, Suarez (bib27) 2002; 66 Parks, De Bruyn (bib69) 1962; 66 Antelo, Arce, Avena, Fiol, López, Macías (bib3) 2007; 138 Weng, Temminghoff, van Riemsdijk (bib103) 2001; 35 Antelo, Avena, Fiol, Lopez, Arce (bib2) 2005; 285 Wolthoorn, Temminghoff, Weng, van Riemsdijk (bib109) 2004; 19 Stern (bib84) 1924; 30 Stachowicz, Hiemstra, van Riemsdijk (bib83) 2008; 320 van der Zee, Roberts, Rancourt, Slomp (bib94) 2003; 31 Dzombak, Morel (bib21) 1990 Filius, Hiemstra, Van Riemsdijk (bib25) 2000; 64 Ali, Dzombak (bib1) 1996; 30 Kaiser, Guggenberger (bib46) 2000; 31 Mödl, Wörmann, Amelung (bib66) 2007; 141 Hiemstra, Van Riemsdijk (bib34) 1999; 210 Gustafsson (bib31) 2001; 52 Hingston F. J., Posner A. M. and Quirk J. P. (1968) Adsorption of selenite by goethite. In Symposium on Adsorption from Aqueous Solution Advances in Chemical Series, vol. 70. pp. 82–90. Janney, Cowley, Buseck (bib45) 2000; 48 Davis, James, Leckie (bib19) 1978; 63 Hyacinthe, Van Cappellen (bib44) 2004; 91 Weng, Van Riemsdijk, Hiemstra (bib105) 2007; 314 Lumsdon (bib60) 2004; 55 Mehra, Jackson (bib63) 1960; 7 Holmgren (bib43) 1967; 31 Wagai, Mayer, Kitayama (bib101) 2009; 149 Meima, Comans (bib64) 1998; 32 Wagai, Mayer, Kitayama, Knicker (bib100) 2008; 147 Christensen (bib12) 1992; 20 Cornell, Schwertmann (bib16) 1996 Hiemstra, Rahnemaie, Van Riemsdijk (bib39) 2004; 278 Hiemstra, Antelo, Van Rotterdam, Van Riemsdijk (bib41) 2010; 74 Rahnemaie, Hiemstra, Van Riemsdijk (bib71) 2006; 293 Smith, Martell (bib82) 1981 Voegelin, Vulava, Kretzschmar (bib97) 2001; 35 Wiseman, Puttmann (bib108) 2006; 134 Wagai, Mayer (bib99) 2007; 71 Roden, Zachara (bib76) 1996; 30 Tejedor-Tejedor, Anderson (bib89) 1990; 6 van Erp, Houba, Van Beusichem (bib95) 1998; 29 Hiemstra, Van Riemsdijk (bib37) 2009; 73 Strauss, Brummer, Barrow (bib85) 1997; 48 Keizer, Van Riemsdijk (bib50) 1998 Hiemstra, Barnett, Van Riemsdijk (bib40) 2007; 310 Torrent, Schwertmann, Barron (bib93) 1992; 40 Gu, Schmitt, Chen, Liang, McCarthy (bib29) 1994; 28 Barrow, Shaw (bib6) 1976; 16 Kostka, Luther (bib54) 1994; 58 Weng (10.1016/j.gca.2009.10.018_bib103) 2001; 35 Dijkstra (10.1016/j.gca.2009.10.018_bib20) 2004; 38 Weng (10.1016/j.gca.2009.10.018_bib104) 2006; 22 Rosentreter (10.1016/j.gca.2009.10.018_bib77) 1998 Cances (10.1016/j.gca.2009.10.018_bib11) 2003; 113 Schwertmann (10.1016/j.gca.2009.10.018_bib80) 1973; 53 Barrow (10.1016/j.gca.2009.10.018_bib8) 1980; 18 Stern (10.1016/j.gca.2009.10.018_bib84) 1924; 30 Weng (10.1016/j.gca.2009.10.018_bib105) 2007; 314 Millero (10.1016/j.gca.2009.10.018_bib65) 1982; 282 Barrow (10.1016/j.gca.2009.10.018_bib7) 1976; 16 Hassellov (10.1016/j.gca.2009.10.018_bib32) 2008; 4 Eusterhues (10.1016/j.gca.2009.10.018_bib22) 2003; 34 Filius (10.1016/j.gca.2009.10.018_bib25) 2000; 64 Barrow (10.1016/j.gca.2009.10.018_bib5) 1975; 119 Rahnemaie (10.1016/j.gca.2009.10.018_bib71) 2006; 293 Voegelin (10.1016/j.gca.2009.10.018_bib97) 2001; 35 Murphy (10.1016/j.gca.2009.10.018_bib67) 1976; 56 Roden (10.1016/j.gca.2009.10.018_bib76) 1996; 30 Hiemstra (10.1016/j.gca.2009.10.018_bib37) 2009; 73 Mayer (10.1016/j.gca.2009.10.018_bib62) 1994; 58 Sverjensky (10.1016/j.gca.2009.10.018_bib87) 1997; 61 Kennedy (10.1016/j.gca.2009.10.018_bib51) 2002; 295 Weng (10.1016/j.gca.2009.10.018_bib106) 2008; 42 Olsen (10.1016/j.gca.2009.10.018_bib68) 1954; vol. 939 Antelo (10.1016/j.gca.2009.10.018_bib3) 2007; 138 Gu (10.1016/j.gca.2009.10.018_bib30) 1996; 60 van der Zee (10.1016/j.gca.2009.10.018_bib94) 2003; 31 Hiemstra (10.1016/j.gca.2009.10.018_bib39) 2004; 278 Keil (10.1016/j.gca.2009.10.018_bib49) 1994; 370 Wada (10.1016/j.gca.2009.10.018_bib98) 1989 Wagai (10.1016/j.gca.2009.10.018_bib100) 2008; 147 Kaiser (10.1016/j.gca.2009.10.018_bib47) 2003; 54 Mödl (10.1016/j.gca.2009.10.018_bib66) 2007; 141 Gu (10.1016/j.gca.2009.10.018_bib29) 1994; 28 Keizer (10.1016/j.gca.2009.10.018_bib50) 1998 Rietra (10.1016/j.gca.2009.10.018_bib74) 1999; 63 Torrent (10.1016/j.gca.2009.10.018_bib93) 1992; 40 Schwertmann (10.1016/j.gca.2009.10.018_bib81) 1973; 10 Cihacek (10.1016/j.gca.2009.10.018_bib14) 1979; 43 Hiemstra (10.1016/j.gca.2009.10.018_bib38) 1996; 184 Torn (10.1016/j.gca.2009.10.018_bib91) 1997; 389 Criscenti (10.1016/j.gca.2009.10.018_bib17) 1999; 299 Rahnemaie (10.1016/j.gca.2009.10.018_bib73) 2007; 23 Kaiser (10.1016/j.gca.2009.10.018_bib48) 2007; 71 Barrow (10.1016/j.gca.2009.10.018_bib6) 1976; 16 Ponthieu (10.1016/j.gca.2009.10.018_bib70) 2006; 70 Cornell (10.1016/j.gca.2009.10.018_bib16) 1996 Smith (10.1016/j.gca.2009.10.018_bib82) 1981 Gustafsson (10.1016/j.gca.2009.10.018_bib31) 2001; 52 Davis (10.1016/j.gca.2009.10.018_bib18) 1978; 67 Griffioen (10.1016/j.gca.2009.10.018_bib28) 2006; 320 Hiemstra (10.1016/j.gca.2009.10.018_bib41) 2010; 74 Dzombak (10.1016/j.gca.2009.10.018_bib21) 1990 Hyacinthe (10.1016/j.gca.2009.10.018_bib44) 2004; 91 Rahnemaie (10.1016/j.gca.2009.10.018_bib72) 2007; 315 Zhou (10.1016/j.gca.2009.10.018_bib110) 2001; 65 Kostka (10.1016/j.gca.2009.10.018_bib54) 1994; 58 Holmgren (10.1016/j.gca.2009.10.018_bib43) 1967; 31 Schroder (10.1016/j.gca.2009.10.018_bib78) 2005; 39 Goldberg (10.1016/j.gca.2009.10.018_bib27) 2002; 66 Wagai (10.1016/j.gca.2009.10.018_bib99) 2007; 71 Koopmans (10.1016/j.gca.2009.10.018_bib53) 2004; 33 Stachowicz (10.1016/j.gca.2009.10.018_bib83) 2008; 320 Luengo (10.1016/j.gca.2009.10.018_bib59) 2006; 300 Lindsay (10.1016/j.gca.2009.10.018_bib56) 1979 Davis (10.1016/j.gca.2009.10.018_bib19) 1978; 63 Logue (10.1016/j.gca.2009.10.018_bib58) 2004; 19 Schulten (10.1016/j.gca.2009.10.018_bib79) 2000; 30 Fukushi (10.1016/j.gca.2009.10.018_bib26) 2005; 39 Lutzenkirchen (10.1016/j.gca.2009.10.018_bib61) 2004; 68 Kaiser (10.1016/j.gca.2009.10.018_bib46) 2000; 31 Walker (10.1016/j.gca.2009.10.018_bib102) 1976; 15 Wolthoorn (10.1016/j.gca.2009.10.018_bib109) 2004; 19 Christl (10.1016/j.gca.2009.10.018_bib13) 1999; 63 Bargar (10.1016/j.gca.2009.10.018_bib4) 2005; 69 Coffin (10.1016/j.gca.2009.10.018_bib15) 1963; 43 Mehra (10.1016/j.gca.2009.10.018_bib63) 1960; 7 Christensen (10.1016/j.gca.2009.10.018_bib12) 1992; 20 Thompson (10.1016/j.gca.2009.10.018_bib90) 2006; 70 Westall (10.1016/j.gca.2009.10.018_bib107) 1980; 12 Parks (10.1016/j.gca.2009.10.018_bib69) 1962; 66 Vanderzee (10.1016/j.gca.2009.10.018_bib96) 1988; 17 Antelo (10.1016/j.gca.2009.10.018_bib2) 2005; 285 Rietra (10.1016/j.gca.2009.10.018_bib75) 2001; 35 Tadanier (10.1016/j.gca.2009.10.018_bib88) 2002; 66 Hiemstra (10.1016/j.gca.2009.10.018_bib35) 2006; 301 Eusterhues (10.1016/j.gca.2009.10.018_bib24) 2008; 42 Lofts (10.1016/j.gca.2009.10.018_bib57) 1998; 62 Tejedor-Tejedor (10.1016/j.gca.2009.10.018_bib89) 1990; 6 Lumsdon (10.1016/j.gca.2009.10.018_bib60) 2004; 55 Wagai (10.1016/j.gca.2009.10.018_bib101) 2009; 149 Janney (10.1016/j.gca.2009.10.018_bib45) 2000; 48 van Erp (10.1016/j.gca.2009.10.018_bib95) 1998; 29 Eusterhues (10.1016/j.gca.2009.10.018_bib23) 2005; 56 10.1016/j.gca.2009.10.018_bib52 10.1016/j.gca.2009.10.018_bib42 Hiemstra (10.1016/j.gca.2009.10.018_bib36) 2007; 80 Torrent (10.1016/j.gca.2009.10.018_bib92) 1990; 54 Boily (10.1016/j.gca.2009.10.018_bib9) 1999 Lienemann (10.1016/j.gca.2009.10.018_bib55) 1999; 61 Hiemstra (10.1016/j.gca.2009.10.018_bib33) 1996; 179 Wiseman (10.1016/j.gca.2009.10.018_bib108) 2006; 134 Meima (10.1016/j.gca.2009.10.018_bib64) 1998; 32 Ali (10.1016/j.gca.2009.10.018_bib1) 1996; 30 Strauss (10.1016/j.gca.2009.10.018_bib85) 1997; 48 Hiemstra (10.1016/j.gca.2009.10.018_bib34) 1999; 210 Brecevic (10.1016/j.gca.2009.10.018_bib10) 2007; 80 Hiemstra (10.1016/j.gca.2009.10.018_bib40) 2007; 310 Sverjensky (10.1016/j.gca.2009.10.018_bib86) 2005; 69 |
References_xml | – volume: 19 start-page: 611 year: 2004 end-page: 622 ident: bib109 article-title: Colloid formation in groundwater: effect of phosphate, manganese, silicate and dissolved organic matter on the dynamic heterogeneous oxidation of ferrous iron publication-title: Appl. Geochem. – volume: 18 start-page: 395 year: 1980 end-page: 404 ident: bib8 article-title: Describing the effects of electrolyte on adsorption of phosphate by a variable charge surface publication-title: Aust. J. Soil Res. – volume: 320 start-page: 400 year: 2008 end-page: 414 ident: bib83 article-title: Multi-competitive interaction of As(III) and As(V) oxyanions with Ca publication-title: J. Colloid Interf. Sci. – volume: 6 start-page: 602 year: 1990 end-page: 611 ident: bib89 article-title: Protonation of phosphate on the surface of goethite as studied by CIR-FTIR and electrophoretic mobility publication-title: Langmuir – volume: 61 start-page: 133 year: 1999 end-page: 149 ident: bib55 article-title: Identification of stoichiometric iron–phosphorus colloids produced in a eutrophic lake publication-title: Aquat.1 Sci. – volume: 314 start-page: 107 year: 2007 end-page: 118 ident: bib105 article-title: Adsorption of humic acids onto goethite: effects of molar mass, pH and ionic strength publication-title: J. Colloid Interf. Sci. – volume: 66 start-page: 1836 year: 2002 end-page: 1842 ident: bib27 article-title: Predicting molybdenum adsorption by soils using soil chemical. Parameters in the constant capacitance model publication-title: Soil Sci. Soc. Am. J. – volume: 17 start-page: 35 year: 1988 end-page: 41 ident: bib96 article-title: Model for long-term phosphate reaction-kinetics in soil publication-title: J. Environ. Qual. – volume: 293 start-page: 312 year: 2006 end-page: 321 ident: bib71 article-title: A new structural approach for outersphere complexation, tracing the location of electrolyte ions publication-title: J. Colloid Interf. Sci. – volume: 370 start-page: 549 year: 1994 end-page: 552 ident: bib49 article-title: Sorptive preservation of labile organic-matter in marine-sediments publication-title: Nature – volume: 30 start-page: 508 year: 1924 end-page: 516 ident: bib84 article-title: Zur theory der electrolytischen doppelschicht publication-title: Z. Electrochem. – volume: 43 start-page: 7 year: 1963 end-page: 17 ident: bib15 article-title: A method for the determination of free iron in soils and clays publication-title: Can. J. Soil Sci. – volume: 29 start-page: 1603 year: 1998 end-page: 1623 ident: bib95 article-title: One hundredth molar calcium chloride extraction procedure. Part I: a review of soil chemical, analytical, and plant nutritional aspects publication-title: Commun. Soil Sci. Plan. – volume: 80 start-page: 313 year: 2007 end-page: 324 ident: bib36 article-title: Surface complexation of selenite on goethite: MO/DFT geometry and charge distribution publication-title: Croat. Chem. Acta – volume: 32 start-page: 688 year: 1998 end-page: 693 ident: bib64 article-title: Application of surface complexation precipitation modeling to contaminant leaching from weathered municipal solid waste incinerator bottom ash publication-title: Environ. Sci. Technol. – volume: 210 start-page: 182 year: 1999 end-page: 193 ident: bib34 article-title: Surface structural ion adsorption modeling of competitive binding of oxyanions by metal (hydr)oxides publication-title: J. Colloid Interf. Sci. – volume: 52 start-page: 639 year: 2001 end-page: 653 ident: bib31 article-title: Modelling competitive anion adsorption on oxide minerals and an allophane-containing soil publication-title: Eur. J. Soil Sci. – volume: 19 start-page: 1937 year: 2004 end-page: 1951 ident: bib58 article-title: U(VI) adsorption on natural iron-coated sands: comparison of approaches for modeling adsorption on heterogeneous environmental materials publication-title: Appl. Geochem. – year: 1998 ident: bib77 article-title: Uranium sorption onto natural sands as a function of sediment characteristics and solution pH publication-title: Adsorption of Metals by Geomedia – volume: 62 start-page: 2609 year: 1998 end-page: 2625 ident: bib57 article-title: An assemblage model for cation binding by natural particulate matter publication-title: Geochim. Cosmoschim. Acta – volume: 30 start-page: 399 year: 2000 end-page: 432 ident: bib79 article-title: New insights into organic-mineral particles: composition, properties and models of molecular structure publication-title: Biol. Fert. Soils – year: 1979 ident: bib56 article-title: Chemical Equilibria in Soils – volume: 68 start-page: A502 year: 2004 ident: bib61 article-title: Modelling uranyl adsorption to quartz – application of the CD-MUSIC concept publication-title: Geochim. Cosmoschim. Acta – volume: 35 start-page: 1651 year: 2001 end-page: 1657 ident: bib97 article-title: Reaction-based model describing competitive sorption and transport of Cd, Zn, and Ni in an acidic soil publication-title: Environ. Sci. Technol. – volume: vol. 939 year: 1954 ident: bib68 publication-title: Estimation of Available Phosphorous in Soils by Extraction with Sodium bicarbonate – volume: 28 start-page: 38 year: 1994 end-page: 46 ident: bib29 article-title: Adsorption and desorption of natural organic-matter on iron-oxide – mechanisms and models publication-title: Environ. Sci. Technol. – volume: 63 start-page: 480 year: 1978 end-page: 499 ident: bib19 article-title: Surface ionization and complexation at the oxide/water interface. I. Computation of electrical double layer properties in simple electrolytes publication-title: J. Colloid Interf. Sci. – volume: 149 start-page: 152 year: 2009 end-page: 160 ident: bib101 article-title: Extent and nature of organic coverage of soil mineral surfaces assessed by a gas sorption approach publication-title: Geoderma – volume: 320 start-page: 359 year: 2006 end-page: 369 ident: bib28 article-title: Extent of immobilisation of phosphate during aeration of nutrient-rich, anoxic groundwater publication-title: J. Hydrol. – volume: 71 start-page: 711 year: 2007 end-page: 719 ident: bib48 article-title: Increased stability of organic matter sorbed to ferrihydrite and goethite on aging publication-title: Soil Sci. Soc. Am. J. – volume: 74 start-page: 59 year: 2010 end-page: 69 ident: bib41 article-title: Nanoparticles in natural systems II: the natural oxide fraction at interaction with natural organic matter and phosphate publication-title: Geochim. Cosmoschim. Acta – volume: 43 start-page: 821 year: 1979 end-page: 822 ident: bib14 article-title: Simplified ethylene-glycol monoethyl ether procedure for assessment of soil surface-area publication-title: Soil Sci. Soc. Am. J. – volume: 299 start-page: 828 year: 1999 end-page: 899 ident: bib17 article-title: The role of electrolyte anions (ClO publication-title: Am. J. Sci. – volume: 71 start-page: 25 year: 2007 end-page: 35 ident: bib99 article-title: Sorptive stabilization of organic matter in soils by hydrous iron oxides publication-title: Geochim. Cosmoschim. Acta – volume: 56 start-page: 753 year: 2005 end-page: 763 ident: bib23 article-title: Organo-mineral associations in sandy acid forest soils: importance of specific surface area, iron oxides and micropores publication-title: Eur. J. Soil Sci. – volume: 42 start-page: 7891 year: 2008 end-page: 7897 ident: bib24 article-title: Characterization of ferrihydrite–soil organic matter coprecipitates by X-ray diffraction and Mossbauer spectroscopy publication-title: Environ. Sci. Technol. – volume: 147 start-page: 23 year: 2008 end-page: 33 ident: bib100 article-title: Climate and parent material controls on organic matter storage in surface soils: a three-pool, density-separation approach publication-title: Geoderma – volume: 301 start-page: 1 year: 2006 end-page: 18 ident: bib35 article-title: On the relationship between charge distribution, surface hydration and the structure of the interface of metal hydroxides publication-title: J. Colloid Interf. Sci. – volume: 69 start-page: 225 year: 2005 end-page: 257 ident: bib86 article-title: Prediction of surface charge on oxides in salt solutions: revisions for 1:1 (M publication-title: Geochim. Cosmochim. Acta – volume: 48 start-page: 111 year: 2000 end-page: 119 ident: bib45 article-title: Transmission electron microscopy of synthetic 2- and 6-line ferrihydrite publication-title: Clays Clay Miner. – volume: 31 start-page: 711 year: 2000 end-page: 725 ident: bib46 article-title: The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils publication-title: Org. Geochem. – volume: 295 start-page: 657 year: 2002 end-page: 660 ident: bib51 article-title: Mineral surface control of organic carbon in black shale publication-title: Science – volume: 91 start-page: 227 year: 2004 end-page: 251 ident: bib44 article-title: An authigenic iron phosphate phase in estuarine sediments: composition, formation and chemical reactivity publication-title: Mar. Chem. – year: 1998 ident: bib50 article-title: ECOSAT, Equilibrium Calculation of Speciation and Transport. Technical Report Department Soil Quality – volume: 61 start-page: 1359 year: 1997 end-page: 1412 ident: bib87 article-title: Prediction of the thermodynamic properties of aqueous metal complexes to 1000 publication-title: Geochim. Cosmoschim. Acta – volume: 54 start-page: 1007 year: 1990 end-page: 1012 ident: bib92 article-title: Phosphate adsorption and desorption by goethites differing in crystal morphology publication-title: Soil Sci. Soc. Am. J. – volume: 33 start-page: 1393 year: 2004 end-page: 1402 ident: bib53 article-title: Phosphorus desorption dynamics in soil and the link to a dynamic concept of bioavailability publication-title: J. Environ. Qual. – year: 1996 ident: bib16 article-title: The Iron Oxides: Structures, Properties, Reactions, Occurrence and Uses – volume: 63 start-page: 2929 year: 1999 end-page: 2938 ident: bib13 article-title: Competitive sorption of copper and lead at the oxide–water interface: implications for surface site density publication-title: Geochim. Cosmoschim. Acta – volume: 73 start-page: 4423 year: 2009 end-page: 4436 ident: bib37 article-title: A surface structural model for ferrihydrite I: sites related to primary charge, molar mass, and mass density publication-title: Geochim. Cosmochim. Acta – volume: 300 start-page: 511 year: 2006 end-page: 518 ident: bib59 article-title: Kinetics of phosphate adsorption on goethite: comparing batch adsorption and ATR-IR measurements publication-title: J. Colloid Interf. Sci. – volume: 58 start-page: 1271 year: 1994 end-page: 1284 ident: bib62 article-title: Surface-area control of organic-carbon accumulation in continental-shelf sediments publication-title: Geochim. Cosmoschim. Acta – reference: Hingston F. J., Posner A. M. and Quirk J. P. (1968) Adsorption of selenite by goethite. In Symposium on Adsorption from Aqueous Solution Advances in Chemical Series, vol. 70. pp. 82–90. – volume: 48 start-page: 101 year: 1997 end-page: 114 ident: bib85 article-title: Effects of crystallinity of goethite. 2. Rates of sorption and desorption of phosphate publication-title: Eur. J. Soil Sci. – volume: 310 start-page: 8 year: 2007 end-page: 17 ident: bib40 article-title: Interaction of silicic acid with goethite publication-title: J. Colloid Interf. Sci. – volume: 54 start-page: 219 year: 2003 end-page: 236 ident: bib47 article-title: Mineral surfaces and soil organic matter publication-title: Eur. J. Soil Sci. – volume: 63 start-page: 3009 year: 1999 end-page: 3015 ident: bib74 article-title: The relationship between molecular structure and ion adsorption on variable charge minerals publication-title: Geochim. Cosmochim. Acta – volume: 64 start-page: 51 year: 2000 end-page: 60 ident: bib25 article-title: Adsorption of fulvic acid on goethite publication-title: Geochim. Cosmochim. Acta – volume: 39 start-page: 1250 year: 2005 end-page: 1256 ident: bib26 article-title: Using a surface complexation model to predict the mature and stability of nanoparticles publication-title: Environ. Sci. Technol. – volume: 56 start-page: 270 year: 1976 end-page: 283 ident: bib67 article-title: Characterization of partially neutralized ferric nitrate solutions publication-title: J. Colloid Interf. Sci. – volume: 141 start-page: 167 year: 2007 end-page: 173 ident: bib66 article-title: Contrasting effects of different types of organic material on surface area and microaggregation of goethite publication-title: Geoderma – volume: 20 start-page: 1 year: 1992 end-page: 90 ident: bib12 article-title: Physical fractionation of soil and organic matter in primary particle size and density separates publication-title: Adv. Soil Sci. – year: 1981 ident: bib82 article-title: Critical Stability Constants – volume: 16 start-page: 109 year: 1976 end-page: 123 ident: bib7 article-title: Sodium bicarbonate as an extractant for soil phosphate, II. Effect of varying the conditions of extraction on the amount of phosphate initially displaced and on the secondary adsorption publication-title: Geoderma – volume: 39 start-page: 7176 year: 2005 end-page: 7184 ident: bib78 article-title: Modeling of the solid–solution partitioning of heavy metals and arsenic in embanked flood plain soils of the rivers Rhine and Meuse publication-title: Environ. Sci. Technol. – volume: 34 start-page: 1591 year: 2003 end-page: 1600 ident: bib22 article-title: Stabilisation of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradation publication-title: Org. Geochem. – volume: 184 start-page: 680 year: 1996 end-page: 692 ident: bib38 article-title: Intrinsic proton affinity of reactive surface groups of metal (hydr)oxides: the bond valence principle publication-title: J. Colloid Interf. Sci. – volume: 35 start-page: 3369 year: 2001 end-page: 3374 ident: bib75 article-title: Interaction of calcium and phosphate adsorption on goethite publication-title: Environ. Sci. Technol. – volume: 15 start-page: 1 year: 1976 end-page: 19 ident: bib102 article-title: Fate of phosphorus during pedogenesis publication-title: Geoderma – volume: 30 start-page: 1061 year: 1996 end-page: 1071 ident: bib1 article-title: Competitive sorption of simple organic acids and sulfate on goethite publication-title: Environ. Sci. Technol. – volume: 40 start-page: 14 year: 1992 end-page: 21 ident: bib93 article-title: Fast and slow phosphate sorption by goethite-rich natural materials publication-title: Clays Clay Miner. – volume: 22 start-page: 389 year: 2006 end-page: 397 ident: bib104 article-title: Adsorption free energy of variable-charge nanoparticles to a charged surface in relation to the change of the average chemical state of the particles publication-title: Langmuir – volume: 285 start-page: 476 year: 2005 end-page: 486 ident: bib2 article-title: Effects of pH and ionic strength on the adsorption of phosphate and arsenate at the goethite–water interface publication-title: J. Colloid Interf. Sci. – volume: 282 start-page: 1508 year: 1982 end-page: 1540 ident: bib65 article-title: Activity coefficients of the ionic components of natural water publication-title: Am. J. Sci. – volume: 70 start-page: 1710 year: 2006 end-page: 1727 ident: bib90 article-title: Iron-oxide crystallinity increases during soil redox oscillations publication-title: Geochim. Cosmoschim. Acta – volume: 23 start-page: 3680 year: 2007 end-page: 3689 ident: bib73 article-title: Geometry, charge distribution and surface speciation of phosphate on goethite publication-title: Langmuir – volume: 134 start-page: 109 year: 2006 end-page: 118 ident: bib108 article-title: Interactions between mineral phases in the preservation of soil organic matter publication-title: Geoderma – volume: 42 start-page: 8747 year: 2008 end-page: 8752 ident: bib106 article-title: Humic nano-particles at the oxide–water interface: interaction with phosphate ion adsorption publication-title: Environ. Sci. Technol. – year: 1999 ident: bib9 article-title: The Surface Complexation of Ions at the Goethite (a-FeOOH)/Water Interface: a Multisite Complexation Approach – volume: 119 start-page: 311 year: 1975 end-page: 320 ident: bib5 article-title: Slow Reactions between soil and anions. 5. Effects of period of prior contact on desorption of phosphate from soils publication-title: Soil Sci. – volume: 31 start-page: 993 year: 2003 end-page: 996 ident: bib94 article-title: Nanogoethite is the dominant reactive oxyhydroxide phase in lake and marine sediments publication-title: Geology – volume: 113 start-page: 341 year: 2003 end-page: 355 ident: bib11 article-title: Metal ions speciation in a soil and its solution: experimental data and model results publication-title: Geoderma – volume: 69 start-page: 1527 year: 2005 end-page: 1542 ident: bib4 article-title: ATR-FTIR spectroscopic characterization of coexisting carbonate surface complexes on hematite publication-title: Geochim. Cosmochim. Acta – volume: 12 start-page: 265 year: 1980 end-page: 294 ident: bib107 article-title: A comparison of electrostatic models for the oxide/solution interface publication-title: Adv. Colloid Interf. Sci. – start-page: 1051 year: 1989 end-page: 1087 ident: bib98 article-title: Allophane and imogolite publication-title: Minerals in Soil Environment – volume: 67 start-page: 90 year: 1978 end-page: 105 ident: bib18 article-title: Surface ionization and complexation at the oxide/water interface. II Surface properties of amorphous iron oxyhydroxide and adsorption of metal ions publication-title: J. Colloid Interf. Sci. – volume: 60 start-page: 1943 year: 1996 end-page: 1950 ident: bib30 article-title: Competitive adsorption, displacement, and transport of organic matter on iron oxide. 1. Competitive adsorption publication-title: Geochim. Cosmoschim. Acta – year: 1990 ident: bib21 article-title: Surface Complexation Modeling: Hydrous Ferric Oxide – volume: 315 start-page: 415 year: 2007 end-page: 425 ident: bib72 article-title: Carbonate adsorption on goethite in competition with phosphate publication-title: J. Colloid Interf. Sci. – volume: 16 start-page: 91 year: 1976 end-page: 107 ident: bib6 article-title: Sodium bicarbonate as an extractant for soil phosphate, I. Separation of the factors affecting the amount of phosphate displaced from soil from those affecting secondary adsorption publication-title: Geoderma – volume: 65 start-page: 803 year: 2001 end-page: 812 ident: bib110 article-title: Size fractionation upon adsorption of fulvic acid on goethite: equilibrium and kinetic studies publication-title: Geochim. Cosmoschim. Acta – reference: Kinniburgh D. G. (1993) Fit, Technical Report WD/93/23. British Geological Survey. – volume: 30 start-page: 1618 year: 1996 end-page: 1628 ident: bib76 article-title: Microbial reduction of crystalline iron(III) oxides: influence of oxide surface area and potential for cell growth publication-title: Environ. Sci. Technol. – volume: 53 start-page: 244 year: 1973 end-page: 246 ident: bib80 article-title: Use of oxalate for Fe extraction from soils publication-title: Can. J. Soil Sci. – volume: 66 start-page: 1505 year: 2002 end-page: 1517 ident: bib88 article-title: Formulating the charge-distribution multisite surface complexation model using FITEQL publication-title: Soil Sci. Soc. Am. J. – volume: 389 start-page: 170 year: 1997 end-page: 173 ident: bib91 article-title: Mineral control of soil organic carbon storage and turnover publication-title: Nature – volume: 138 start-page: 12 year: 2007 end-page: 19 ident: bib3 article-title: Adsorption of a soil humic acid at the surface of goethite and its competitive interaction with phosphate publication-title: Geoderma – volume: 38 start-page: 4390 year: 2004 end-page: 4395 ident: bib20 article-title: Leaching of heavy metals from contaminated soils: an experimental and modeling study publication-title: Environ. Sci. Technol. – volume: 58 start-page: 1701 year: 1994 end-page: 1710 ident: bib54 article-title: Partitioning and speciation of solid-phase iron in salt-marsh sediments publication-title: Geochim. Cosmoschim. Acta – volume: 10 start-page: 237 year: 1973 end-page: 247 ident: bib81 article-title: Natural amorphous ferric hydroxide publication-title: Geoderma – volume: 4 start-page: 401 year: 2008 end-page: 406 ident: bib32 article-title: Iron oxide as geochemical nanovectors for metal transport in soil–river systems publication-title: Elements – volume: 31 start-page: 210 year: 1967 ident: bib43 article-title: A rapid citrate–dithionite extractable iron procedure publication-title: Soil Sci. Soc. Am. Proc. – volume: 70 start-page: 2679 year: 2006 end-page: 2698 ident: bib70 article-title: Metal ion binding to iron oxides publication-title: Geochim. Cosmoschim. Acta – volume: 66 start-page: 967 year: 1962 end-page: 973 ident: bib69 article-title: The zero point of charge of oxides publication-title: J. Phys. Chem. – volume: 35 start-page: 4436 year: 2001 end-page: 4443 ident: bib103 article-title: Contribution of individual sorbents to the control of heavy metal activity in sandy soil publication-title: Environ. Sci. Technol. – volume: 179 start-page: 488 year: 1996 end-page: 508 ident: bib33 article-title: A surface structural approach to ion adsorption: the charge distribution (CD) model publication-title: J. Colloid Interf. Sci. – volume: 7 start-page: 317 year: 1960 end-page: 327 ident: bib63 article-title: Iron oxide removal from the soils and clays by dithionite–citrate system buffered with sodium bicarbonate publication-title: Clays Clay Miner. – volume: 278 start-page: 282 year: 2004 end-page: 290 ident: bib39 article-title: Surface complexation of carbonate on goethite: IR spectroscopy, structure and charge distribution publication-title: J. Colloid Interf. Sci. – volume: 80 start-page: 467 year: 2007 end-page: 484 ident: bib10 article-title: On calcium carbonates: from fundamental research to application publication-title: Croat. Chem. Acta – volume: 55 start-page: 271 year: 2004 end-page: 285 ident: bib60 article-title: Partitioning of organic carbon, aluminium and cadmium between solid and solution in soils: application of a mineral-humic particle additivity model publication-title: Eur. J. Soil Sci – volume: 67 start-page: 90 year: 1978 ident: 10.1016/j.gca.2009.10.018_bib18 article-title: Surface ionization and complexation at the oxide/water interface. II Surface properties of amorphous iron oxyhydroxide and adsorption of metal ions publication-title: J. Colloid Interf. Sci. doi: 10.1016/0021-9797(78)90217-5 – volume: 282 start-page: 1508 year: 1982 ident: 10.1016/j.gca.2009.10.018_bib65 article-title: Activity coefficients of the ionic components of natural water publication-title: Am. J. Sci. doi: 10.2475/ajs.282.9.1508 – volume: 28 start-page: 38 issue: 1 year: 1994 ident: 10.1016/j.gca.2009.10.018_bib29 article-title: Adsorption and desorption of natural organic-matter on iron-oxide – mechanisms and models publication-title: Environ. Sci. Technol. doi: 10.1021/es00050a007 – volume: 71 start-page: 25 issue: 1 year: 2007 ident: 10.1016/j.gca.2009.10.018_bib99 article-title: Sorptive stabilization of organic matter in soils by hydrous iron oxides publication-title: Geochim. Cosmoschim. Acta doi: 10.1016/j.gca.2006.08.047 – start-page: 1051 year: 1989 ident: 10.1016/j.gca.2009.10.018_bib98 article-title: Allophane and imogolite – volume: 64 start-page: 51 issue: 1 year: 2000 ident: 10.1016/j.gca.2009.10.018_bib25 article-title: Adsorption of fulvic acid on goethite publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(99)00176-3 – volume: 295 start-page: 657 issue: 5555 year: 2002 ident: 10.1016/j.gca.2009.10.018_bib51 article-title: Mineral surface control of organic carbon in black shale publication-title: Science doi: 10.1126/science.1066611 – volume: 33 start-page: 1393 issue: 4 year: 2004 ident: 10.1016/j.gca.2009.10.018_bib53 article-title: Phosphorus desorption dynamics in soil and the link to a dynamic concept of bioavailability publication-title: J. Environ. Qual. doi: 10.2134/jeq2004.1393 – volume: 4 start-page: 401 year: 2008 ident: 10.1016/j.gca.2009.10.018_bib32 article-title: Iron oxide as geochemical nanovectors for metal transport in soil–river systems publication-title: Elements doi: 10.2113/gselements.4.6.401 – volume: 320 start-page: 359 issue: 3–4 year: 2006 ident: 10.1016/j.gca.2009.10.018_bib28 article-title: Extent of immobilisation of phosphate during aeration of nutrient-rich, anoxic groundwater publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2005.07.047 – volume: 10 start-page: 237 issue: 3 year: 1973 ident: 10.1016/j.gca.2009.10.018_bib81 article-title: Natural amorphous ferric hydroxide publication-title: Geoderma doi: 10.1016/0016-7061(73)90066-9 – volume: 20 start-page: 1 year: 1992 ident: 10.1016/j.gca.2009.10.018_bib12 article-title: Physical fractionation of soil and organic matter in primary particle size and density separates publication-title: Adv. Soil Sci. doi: 10.1007/978-1-4612-2930-8_1 – volume: 149 start-page: 152 issue: 1–2 year: 2009 ident: 10.1016/j.gca.2009.10.018_bib101 article-title: Extent and nature of organic coverage of soil mineral surfaces assessed by a gas sorption approach publication-title: Geoderma doi: 10.1016/j.geoderma.2008.11.032 – ident: 10.1016/j.gca.2009.10.018_bib52 – volume: 55 start-page: 271 issue: 2 year: 2004 ident: 10.1016/j.gca.2009.10.018_bib60 article-title: Partitioning of organic carbon, aluminium and cadmium between solid and solution in soils: application of a mineral-humic particle additivity model publication-title: Eur. J. Soil Sci doi: 10.1111/j.1365-2389.2004.00599.x – volume: 314 start-page: 107 issue: 1 year: 2007 ident: 10.1016/j.gca.2009.10.018_bib105 article-title: Adsorption of humic acids onto goethite: effects of molar mass, pH and ionic strength publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2007.05.039 – volume: 63 start-page: 480 year: 1978 ident: 10.1016/j.gca.2009.10.018_bib19 article-title: Surface ionization and complexation at the oxide/water interface. I. Computation of electrical double layer properties in simple electrolytes publication-title: J. Colloid Interf. Sci. doi: 10.1016/S0021-9797(78)80009-5 – volume: 58 start-page: 1701 issue: 7 year: 1994 ident: 10.1016/j.gca.2009.10.018_bib54 article-title: Partitioning and speciation of solid-phase iron in salt-marsh sediments publication-title: Geochim. Cosmoschim. Acta doi: 10.1016/0016-7037(94)90531-2 – year: 1979 ident: 10.1016/j.gca.2009.10.018_bib56 – volume: 68 start-page: A502 issue: 11 year: 2004 ident: 10.1016/j.gca.2009.10.018_bib61 article-title: Modelling uranyl adsorption to quartz – application of the CD-MUSIC concept publication-title: Geochim. Cosmoschim. Acta – volume: 61 start-page: 1359 issue: 7 year: 1997 ident: 10.1016/j.gca.2009.10.018_bib87 article-title: Prediction of the thermodynamic properties of aqueous metal complexes to 1000°C and 5kb publication-title: Geochim. Cosmoschim. Acta doi: 10.1016/S0016-7037(97)00009-4 – volume: 147 start-page: 23 issue: 1–2 year: 2008 ident: 10.1016/j.gca.2009.10.018_bib100 article-title: Climate and parent material controls on organic matter storage in surface soils: a three-pool, density-separation approach publication-title: Geoderma doi: 10.1016/j.geoderma.2008.07.010 – volume: 19 start-page: 611 issue: 4 year: 2004 ident: 10.1016/j.gca.2009.10.018_bib109 article-title: Colloid formation in groundwater: effect of phosphate, manganese, silicate and dissolved organic matter on the dynamic heterogeneous oxidation of ferrous iron publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2003.08.003 – volume: 71 start-page: 711 issue: 3 year: 2007 ident: 10.1016/j.gca.2009.10.018_bib48 article-title: Increased stability of organic matter sorbed to ferrihydrite and goethite on aging publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2006.0189 – volume: 56 start-page: 270 issue: 2 year: 1976 ident: 10.1016/j.gca.2009.10.018_bib67 article-title: Characterization of partially neutralized ferric nitrate solutions publication-title: J. Colloid Interf. Sci. doi: 10.1016/0021-9797(76)90253-8 – volume: 38 start-page: 4390 issue: 16 year: 2004 ident: 10.1016/j.gca.2009.10.018_bib20 article-title: Leaching of heavy metals from contaminated soils: an experimental and modeling study publication-title: Environ. Sci. Technol. doi: 10.1021/es049885v – volume: 63 start-page: 2929 issue: 19–20 year: 1999 ident: 10.1016/j.gca.2009.10.018_bib13 article-title: Competitive sorption of copper and lead at the oxide–water interface: implications for surface site density publication-title: Geochim. Cosmoschim. Acta doi: 10.1016/S0016-7037(99)00266-5 – volume: 31 start-page: 711 issue: 7–8 year: 2000 ident: 10.1016/j.gca.2009.10.018_bib46 article-title: The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils publication-title: Org. Geochem. doi: 10.1016/S0146-6380(00)00046-2 – volume: 12 start-page: 265 year: 1980 ident: 10.1016/j.gca.2009.10.018_bib107 article-title: A comparison of electrostatic models for the oxide/solution interface publication-title: Adv. Colloid Interf. Sci. doi: 10.1016/0001-8686(80)80012-1 – volume: 61 start-page: 133 issue: 2 year: 1999 ident: 10.1016/j.gca.2009.10.018_bib55 article-title: Identification of stoichiometric iron–phosphorus colloids produced in a eutrophic lake publication-title: Aquat.1 Sci. doi: 10.1007/s000270050058 – volume: 80 start-page: 467 issue: 3–4 year: 2007 ident: 10.1016/j.gca.2009.10.018_bib10 article-title: On calcium carbonates: from fundamental research to application publication-title: Croat. Chem. Acta – volume: 35 start-page: 1651 issue: 8 year: 2001 ident: 10.1016/j.gca.2009.10.018_bib97 article-title: Reaction-based model describing competitive sorption and transport of Cd, Zn, and Ni in an acidic soil publication-title: Environ. Sci. Technol. doi: 10.1021/es0001106 – volume: 113 start-page: 341 issue: 3–4 year: 2003 ident: 10.1016/j.gca.2009.10.018_bib11 article-title: Metal ions speciation in a soil and its solution: experimental data and model results publication-title: Geoderma doi: 10.1016/S0016-7061(02)00369-5 – volume: 39 start-page: 7176 issue: 18 year: 2005 ident: 10.1016/j.gca.2009.10.018_bib78 article-title: Modeling of the solid–solution partitioning of heavy metals and arsenic in embanked flood plain soils of the rivers Rhine and Meuse publication-title: Environ. Sci. Technol. doi: 10.1021/es048154s – volume: 40 start-page: 14 issue: 1 year: 1992 ident: 10.1016/j.gca.2009.10.018_bib93 article-title: Fast and slow phosphate sorption by goethite-rich natural materials publication-title: Clays Clay Miner. doi: 10.1346/CCMN.1992.0400103 – volume: 7 start-page: 317 year: 1960 ident: 10.1016/j.gca.2009.10.018_bib63 article-title: Iron oxide removal from the soils and clays by dithionite–citrate system buffered with sodium bicarbonate publication-title: Clays Clay Miner. doi: 10.1346/CCMN.1958.0070122 – volume: 389 start-page: 170 issue: 6647 year: 1997 ident: 10.1016/j.gca.2009.10.018_bib91 article-title: Mineral control of soil organic carbon storage and turnover publication-title: Nature doi: 10.1038/38260 – volume: 134 start-page: 109 issue: 1–2 year: 2006 ident: 10.1016/j.gca.2009.10.018_bib108 article-title: Interactions between mineral phases in the preservation of soil organic matter publication-title: Geoderma doi: 10.1016/j.geoderma.2005.09.001 – ident: 10.1016/j.gca.2009.10.018_bib42 doi: 10.1021/ba-1968-0079.ch008 – volume: 30 start-page: 1618 issue: 5 year: 1996 ident: 10.1016/j.gca.2009.10.018_bib76 article-title: Microbial reduction of crystalline iron(III) oxides: influence of oxide surface area and potential for cell growth publication-title: Environ. Sci. Technol. doi: 10.1021/es9506216 – year: 1990 ident: 10.1016/j.gca.2009.10.018_bib21 – volume: 278 start-page: 282 year: 2004 ident: 10.1016/j.gca.2009.10.018_bib39 article-title: Surface complexation of carbonate on goethite: IR spectroscopy, structure and charge distribution publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2004.06.014 – volume: 35 start-page: 4436 issue: 22 year: 2001 ident: 10.1016/j.gca.2009.10.018_bib103 article-title: Contribution of individual sorbents to the control of heavy metal activity in sandy soil publication-title: Environ. Sci. Technol. doi: 10.1021/es010085j – volume: 119 start-page: 311 issue: 4 year: 1975 ident: 10.1016/j.gca.2009.10.018_bib5 article-title: Slow Reactions between soil and anions. 5. Effects of period of prior contact on desorption of phosphate from soils publication-title: Soil Sci. doi: 10.1097/00010694-197504000-00009 – volume: 31 start-page: 210 issue: 2 year: 1967 ident: 10.1016/j.gca.2009.10.018_bib43 article-title: A rapid citrate–dithionite extractable iron procedure publication-title: Soil Sci. Soc. Am. Proc. doi: 10.2136/sssaj1967.03615995003100020020x – volume: 48 start-page: 101 issue: 1 year: 1997 ident: 10.1016/j.gca.2009.10.018_bib85 article-title: Effects of crystallinity of goethite. 2. Rates of sorption and desorption of phosphate publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.1997.tb00189.x – volume: 80 start-page: 313 issue: 3–4 year: 2007 ident: 10.1016/j.gca.2009.10.018_bib36 article-title: Surface complexation of selenite on goethite: MO/DFT geometry and charge distribution publication-title: Croat. Chem. Acta – year: 1998 ident: 10.1016/j.gca.2009.10.018_bib50 – volume: 60 start-page: 1943 issue: 11 year: 1996 ident: 10.1016/j.gca.2009.10.018_bib30 article-title: Competitive adsorption, displacement, and transport of organic matter on iron oxide. 1. Competitive adsorption publication-title: Geochim. Cosmoschim. Acta doi: 10.1016/0016-7037(96)00059-2 – volume: 19 start-page: 1937 issue: 12 year: 2004 ident: 10.1016/j.gca.2009.10.018_bib58 article-title: U(VI) adsorption on natural iron-coated sands: comparison of approaches for modeling adsorption on heterogeneous environmental materials publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2004.05.010 – volume: 30 start-page: 508 year: 1924 ident: 10.1016/j.gca.2009.10.018_bib84 article-title: Zur theory der electrolytischen doppelschicht publication-title: Z. Electrochem. – volume: 22 start-page: 389 issue: 1 year: 2006 ident: 10.1016/j.gca.2009.10.018_bib104 article-title: Adsorption free energy of variable-charge nanoparticles to a charged surface in relation to the change of the average chemical state of the particles publication-title: Langmuir doi: 10.1021/la051730t – volume: 73 start-page: 4423 year: 2009 ident: 10.1016/j.gca.2009.10.018_bib37 article-title: A surface structural model for ferrihydrite I: sites related to primary charge, molar mass, and mass density publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2009.04.032 – volume: 62 start-page: 2609 issue: 15 year: 1998 ident: 10.1016/j.gca.2009.10.018_bib57 article-title: An assemblage model for cation binding by natural particulate matter publication-title: Geochim. Cosmoschim. Acta doi: 10.1016/S0016-7037(98)00183-5 – volume: 53 start-page: 244 issue: 2 year: 1973 ident: 10.1016/j.gca.2009.10.018_bib80 article-title: Use of oxalate for Fe extraction from soils publication-title: Can. J. Soil Sci. doi: 10.4141/cjss73-037 – volume: 285 start-page: 476 issue: 2 year: 2005 ident: 10.1016/j.gca.2009.10.018_bib2 article-title: Effects of pH and ionic strength on the adsorption of phosphate and arsenate at the goethite–water interface publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2004.12.032 – volume: 370 start-page: 549 issue: 6490 year: 1994 ident: 10.1016/j.gca.2009.10.018_bib49 article-title: Sorptive preservation of labile organic-matter in marine-sediments publication-title: Nature doi: 10.1038/370549a0 – volume: 34 start-page: 1591 issue: 12 year: 2003 ident: 10.1016/j.gca.2009.10.018_bib22 article-title: Stabilisation of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradation publication-title: Org. Geochem. doi: 10.1016/j.orggeochem.2003.08.007 – volume: 299 start-page: 828 year: 1999 ident: 10.1016/j.gca.2009.10.018_bib17 article-title: The role of electrolyte anions (ClO4−, NO3−, and Cl−) in divalent metal (M2+) adsorption on oxide and hydroxide surfaces in salt solution publication-title: Am. J. Sci. doi: 10.2475/ajs.299.10.828 – volume: 66 start-page: 1505 issue: 5 year: 2002 ident: 10.1016/j.gca.2009.10.018_bib88 article-title: Formulating the charge-distribution multisite surface complexation model using FITEQL publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2002.1505 – volume: 31 start-page: 993 issue: 11 year: 2003 ident: 10.1016/j.gca.2009.10.018_bib94 article-title: Nanogoethite is the dominant reactive oxyhydroxide phase in lake and marine sediments publication-title: Geology doi: 10.1130/G19924.1 – volume: 43 start-page: 821 issue: 4 year: 1979 ident: 10.1016/j.gca.2009.10.018_bib14 article-title: Simplified ethylene-glycol monoethyl ether procedure for assessment of soil surface-area publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1979.03615995004300040045x – volume: 300 start-page: 511 issue: 2 year: 2006 ident: 10.1016/j.gca.2009.10.018_bib59 article-title: Kinetics of phosphate adsorption on goethite: comparing batch adsorption and ATR-IR measurements publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2006.04.015 – volume: 23 start-page: 3680 year: 2007 ident: 10.1016/j.gca.2009.10.018_bib73 article-title: Geometry, charge distribution and surface speciation of phosphate on goethite publication-title: Langmuir doi: 10.1021/la062965n – volume: 91 start-page: 227 issue: 1–4 year: 2004 ident: 10.1016/j.gca.2009.10.018_bib44 article-title: An authigenic iron phosphate phase in estuarine sediments: composition, formation and chemical reactivity publication-title: Mar. Chem. doi: 10.1016/j.marchem.2004.04.006 – volume: 69 start-page: 225 issue: 2 year: 2005 ident: 10.1016/j.gca.2009.10.018_bib86 article-title: Prediction of surface charge on oxides in salt solutions: revisions for 1:1 (M+L−) electrolytes publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2004.05.040 – volume: 65 start-page: 803 issue: 5 year: 2001 ident: 10.1016/j.gca.2009.10.018_bib110 article-title: Size fractionation upon adsorption of fulvic acid on goethite: equilibrium and kinetic studies publication-title: Geochim. Cosmoschim. Acta doi: 10.1016/S0016-7037(00)00536-6 – volume: 42 start-page: 7891 issue: 21 year: 2008 ident: 10.1016/j.gca.2009.10.018_bib24 article-title: Characterization of ferrihydrite–soil organic matter coprecipitates by X-ray diffraction and Mossbauer spectroscopy publication-title: Environ. Sci. Technol. doi: 10.1021/es800881w – volume: 66 start-page: 967 year: 1962 ident: 10.1016/j.gca.2009.10.018_bib69 article-title: The zero point of charge of oxides publication-title: J. Phys. Chem. doi: 10.1021/j100812a002 – volume: 30 start-page: 399 issue: 5–6 year: 2000 ident: 10.1016/j.gca.2009.10.018_bib79 article-title: New insights into organic-mineral particles: composition, properties and models of molecular structure publication-title: Biol. Fert. Soils doi: 10.1007/s003740050020 – volume: 179 start-page: 488 year: 1996 ident: 10.1016/j.gca.2009.10.018_bib33 article-title: A surface structural approach to ion adsorption: the charge distribution (CD) model publication-title: J. Colloid Interf. Sci. doi: 10.1006/jcis.1996.0242 – volume: 6 start-page: 602 year: 1990 ident: 10.1016/j.gca.2009.10.018_bib89 article-title: Protonation of phosphate on the surface of goethite as studied by CIR-FTIR and electrophoretic mobility publication-title: Langmuir doi: 10.1021/la00093a015 – volume: 15 start-page: 1 issue: 1 year: 1976 ident: 10.1016/j.gca.2009.10.018_bib102 article-title: Fate of phosphorus during pedogenesis publication-title: Geoderma doi: 10.1016/0016-7061(76)90066-5 – volume: 69 start-page: 1527 issue: 6 year: 2005 ident: 10.1016/j.gca.2009.10.018_bib4 article-title: ATR-FTIR spectroscopic characterization of coexisting carbonate surface complexes on hematite publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2004.08.002 – volume: 66 start-page: 1836 issue: 6 year: 2002 ident: 10.1016/j.gca.2009.10.018_bib27 article-title: Predicting molybdenum adsorption by soils using soil chemical. Parameters in the constant capacitance model publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2002.1836 – volume: 48 start-page: 111 issue: 1 year: 2000 ident: 10.1016/j.gca.2009.10.018_bib45 article-title: Transmission electron microscopy of synthetic 2- and 6-line ferrihydrite publication-title: Clays Clay Miner. doi: 10.1346/CCMN.2000.0480114 – volume: 210 start-page: 182 year: 1999 ident: 10.1016/j.gca.2009.10.018_bib34 article-title: Surface structural ion adsorption modeling of competitive binding of oxyanions by metal (hydr)oxides publication-title: J. Colloid Interf. Sci. doi: 10.1006/jcis.1998.5904 – volume: 29 start-page: 1603 issue: 11–14 year: 1998 ident: 10.1016/j.gca.2009.10.018_bib95 article-title: One hundredth molar calcium chloride extraction procedure. Part I: a review of soil chemical, analytical, and plant nutritional aspects publication-title: Commun. Soil Sci. Plan. doi: 10.1080/00103629809370053 – volume: 293 start-page: 312 year: 2006 ident: 10.1016/j.gca.2009.10.018_bib71 article-title: A new structural approach for outersphere complexation, tracing the location of electrolyte ions publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2005.06.089 – volume: 35 start-page: 3369 year: 2001 ident: 10.1016/j.gca.2009.10.018_bib75 article-title: Interaction of calcium and phosphate adsorption on goethite publication-title: Environ. Sci. Technol. doi: 10.1021/es000210b – volume: 310 start-page: 8 year: 2007 ident: 10.1016/j.gca.2009.10.018_bib40 article-title: Interaction of silicic acid with goethite publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2007.01.065 – volume: 320 start-page: 400 issue: 2 year: 2008 ident: 10.1016/j.gca.2009.10.018_bib83 article-title: Multi-competitive interaction of As(III) and As(V) oxyanions with Ca2+, Mg2+, PO43−, and CO32− ions on goethite publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2008.01.007 – volume: 18 start-page: 395 issue: 4 year: 1980 ident: 10.1016/j.gca.2009.10.018_bib8 article-title: Describing the effects of electrolyte on adsorption of phosphate by a variable charge surface publication-title: Aust. J. Soil Res. doi: 10.1071/SR9800395 – volume: 63 start-page: 3009 issue: 19/20 year: 1999 ident: 10.1016/j.gca.2009.10.018_bib74 article-title: The relationship between molecular structure and ion adsorption on variable charge minerals publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(99)00228-8 – volume: 32 start-page: 688 issue: 5 year: 1998 ident: 10.1016/j.gca.2009.10.018_bib64 article-title: Application of surface complexation precipitation modeling to contaminant leaching from weathered municipal solid waste incinerator bottom ash publication-title: Environ. Sci. Technol. doi: 10.1021/es9701624 – volume: 52 start-page: 639 issue: 4 year: 2001 ident: 10.1016/j.gca.2009.10.018_bib31 article-title: Modelling competitive anion adsorption on oxide minerals and an allophane-containing soil publication-title: Eur. J. Soil Sci. doi: 10.1046/j.1365-2389.2001.00414.x – volume: 315 start-page: 415 issue: 2 year: 2007 ident: 10.1016/j.gca.2009.10.018_bib72 article-title: Carbonate adsorption on goethite in competition with phosphate publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2007.07.017 – volume: 138 start-page: 12 issue: 1–2 year: 2007 ident: 10.1016/j.gca.2009.10.018_bib3 article-title: Adsorption of a soil humic acid at the surface of goethite and its competitive interaction with phosphate publication-title: Geoderma doi: 10.1016/j.geoderma.2006.10.011 – volume: 54 start-page: 1007 year: 1990 ident: 10.1016/j.gca.2009.10.018_bib92 article-title: Phosphate adsorption and desorption by goethites differing in crystal morphology publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1990.03615995005400040012x – volume: 43 start-page: 7 year: 1963 ident: 10.1016/j.gca.2009.10.018_bib15 article-title: A method for the determination of free iron in soils and clays publication-title: Can. J. Soil Sci. doi: 10.4141/cjss63-002 – volume: vol. 939 year: 1954 ident: 10.1016/j.gca.2009.10.018_bib68 – volume: 70 start-page: 2679 issue: 11 year: 2006 ident: 10.1016/j.gca.2009.10.018_bib70 article-title: Metal ion binding to iron oxides publication-title: Geochim. Cosmoschim. Acta doi: 10.1016/j.gca.2006.02.021 – year: 1998 ident: 10.1016/j.gca.2009.10.018_bib77 article-title: Uranium sorption onto natural sands as a function of sediment characteristics and solution pH – year: 1999 ident: 10.1016/j.gca.2009.10.018_bib9 – volume: 301 start-page: 1 year: 2006 ident: 10.1016/j.gca.2009.10.018_bib35 article-title: On the relationship between charge distribution, surface hydration and the structure of the interface of metal hydroxides publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2006.05.008 – volume: 56 start-page: 753 issue: 6 year: 2005 ident: 10.1016/j.gca.2009.10.018_bib23 article-title: Organo-mineral associations in sandy acid forest soils: importance of specific surface area, iron oxides and micropores publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2005.00710.x – volume: 16 start-page: 91 issue: 2 year: 1976 ident: 10.1016/j.gca.2009.10.018_bib6 article-title: Sodium bicarbonate as an extractant for soil phosphate, I. Separation of the factors affecting the amount of phosphate displaced from soil from those affecting secondary adsorption publication-title: Geoderma doi: 10.1016/0016-7061(76)90033-1 – year: 1981 ident: 10.1016/j.gca.2009.10.018_bib82 – volume: 74 start-page: 59 issue: 1 year: 2010 ident: 10.1016/j.gca.2009.10.018_bib41 article-title: Nanoparticles in natural systems II: the natural oxide fraction at interaction with natural organic matter and phosphate publication-title: Geochim. Cosmoschim. Acta doi: 10.1016/j.gca.2009.10.019 – volume: 184 start-page: 680 year: 1996 ident: 10.1016/j.gca.2009.10.018_bib38 article-title: Intrinsic proton affinity of reactive surface groups of metal (hydr)oxides: the bond valence principle publication-title: J. Colloid Interf. Sci. doi: 10.1006/jcis.1996.0666 – volume: 58 start-page: 1271 issue: 4 year: 1994 ident: 10.1016/j.gca.2009.10.018_bib62 article-title: Surface-area control of organic-carbon accumulation in continental-shelf sediments publication-title: Geochim. Cosmoschim. Acta doi: 10.1016/0016-7037(94)90381-6 – volume: 54 start-page: 219 issue: 2 year: 2003 ident: 10.1016/j.gca.2009.10.018_bib47 article-title: Mineral surfaces and soil organic matter publication-title: Eur. J. Soil Sci. doi: 10.1046/j.1365-2389.2003.00544.x – year: 1996 ident: 10.1016/j.gca.2009.10.018_bib16 – volume: 17 start-page: 35 issue: 1 year: 1988 ident: 10.1016/j.gca.2009.10.018_bib96 article-title: Model for long-term phosphate reaction-kinetics in soil publication-title: J. Environ. Qual. doi: 10.2134/jeq1988.00472425001700010005x – volume: 16 start-page: 109 issue: 2 year: 1976 ident: 10.1016/j.gca.2009.10.018_bib7 article-title: Sodium bicarbonate as an extractant for soil phosphate, II. Effect of varying the conditions of extraction on the amount of phosphate initially displaced and on the secondary adsorption publication-title: Geoderma doi: 10.1016/0016-7061(76)90034-3 – volume: 141 start-page: 167 issue: 3–4 year: 2007 ident: 10.1016/j.gca.2009.10.018_bib66 article-title: Contrasting effects of different types of organic material on surface area and microaggregation of goethite publication-title: Geoderma doi: 10.1016/j.geoderma.2007.05.003 – volume: 42 start-page: 8747 issue: 23 year: 2008 ident: 10.1016/j.gca.2009.10.018_bib106 article-title: Humic nano-particles at the oxide–water interface: interaction with phosphate ion adsorption publication-title: Environ. Sci. Technol. doi: 10.1021/es801631d – volume: 39 start-page: 1250 issue: 5 year: 2005 ident: 10.1016/j.gca.2009.10.018_bib26 article-title: Using a surface complexation model to predict the mature and stability of nanoparticles publication-title: Environ. Sci. Technol. doi: 10.1021/es0491984 – volume: 30 start-page: 1061 year: 1996 ident: 10.1016/j.gca.2009.10.018_bib1 article-title: Competitive sorption of simple organic acids and sulfate on goethite publication-title: Environ. Sci. Technol. doi: 10.1021/es940723g – volume: 70 start-page: 1710 issue: 7 year: 2006 ident: 10.1016/j.gca.2009.10.018_bib90 article-title: Iron-oxide crystallinity increases during soil redox oscillations publication-title: Geochim. Cosmoschim. Acta doi: 10.1016/j.gca.2005.12.005 |
SSID | ssj0007550 |
Score | 2.375261 |
Snippet | Information on the particle size and reactive surface area of natural samples is essential for the application of surface complexation models (SCM) to predict... |
SourceID | wageningen proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 41 |
SubjectTerms | charge-distribution competitive sorption ion adsorption iron-oxides mineral surfaces molecular-structure phosphate adsorption secondary adsorption soil organic-matter water interface |
Title | Nanoparticles in natural systems I: The effective reactive surface area of the natural oxide fraction in field samples |
URI | https://dx.doi.org/10.1016/j.gca.2009.10.018 https://www.proquest.com/docview/36509610 http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F391837 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoqBKXqoVW3ZZSH3qqFIg3sR1zQ6h0AcEJJG6Wn9VWKIs2u0Av_e2diZ2FShWHnhJZmcjyPDxjz3xDyJfSWeUFdwVEPLaoubSFDVVVWMcCFxY2tYC1w-cXYnJVn17z6zVyNNTCYFpltv3JpvfWOo_s59Xcv51OscaXCZBXWar-OgpCoI1xpQSI9sbhydnkYmWQJeepEoWJAgmGy80-zeuHMwm1EnO8sPXHv7enJ-7n5j1oetuXPj3Zio5fk1fZh6SHaZpvyFpot8jL732P3l_b5A4sJoTCOeONTlvao3cCRYJt7ujJAQXxoCmXA8wdBc8xvXTLeTQuUAMjdBYpuIcr6tnD1Aca56kUAv_bp7_RziDCcPeWXB5_uzyaFLm9QmEgaFxACOoY88LJAGGXBO02cmxEg6hctmxCY3npvWqCN3xsraoU87WLnhkeYmNU9Y6st7M2vCe09I1gMSoZa1c3gVmgV6aMXnpVc8VGpBwWVbsMPY4dMG70kGP2UwMfsCWmwiHgw4h8XZHcJtyN5z6uB07pv4RHw77wHNnngasalApvSkwbZstOV4grCI7liFSPzNYtdnfqNAJy5yM2fb-c6_YGH6A9QKfAQsoP_zedj2QzpSbg-c4OWV_Ml-ETeDwLu0te7P1mu1mu_wDtrgKi |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-QwDI4QCMEFAbuIYXnkwAmp0NCmafaGEDA8T7MStyhPNAh10HQGlgu_fe2m5SGtOHBqFdVVVceOnXz-TMhuao10BbcJZDwmybkwifFZlhjLPC8MLGoea4evb4r-n_zilt_OkOOuFgZhla3vjz698dbtyEH7Nw8eh0Os8WUFzFeRyuY4ClKguRzMF61z__Ud5yE4j3UorEjw8e5oswF53VkdOSsR4YWNP_6_OH0IPhefwc6rpvDpw0J0ukyW2giSHsWPXCEzvlol82dNh96XH-QJ_CUkwi3ejQ4r2nB3gkQkba7p-W8Kk4NGJAc4OwpxY7ypp-OgracaRugoUAgO36RHf4fO0zCOhRD43gb8RmuN_ML1TzI4PRkc95O2uUKiIWWcQAJqGXOFFR6SLgG2rcWhLkrk5DJp6UvDU-dk6Z3mh8bITDKX2-CY5j6UWmZrZLYaVX6d0NSVBQtBipDbvPTMgLzUaXDCyZxL1iNp91OVbYnHsf_Fg-oQZvcK9IANMSUOgR56ZO9N5DGybnz1cN5pSn2aOgpWha_EdjqtKjApPCfRlR9Na5UhqyCElT2SvStbVdjbqVZIx91usKnn6VhVD3gB2wE5Cf5RbHzvc3bIQn9wfaWuzm8uf5HFCFLAnZ5NMjsZT_0WxD4Ts93M7X8PqANm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoparticles+in+natural+systems+I%3A+The+effective+reactive+surface+area+of+the+natural+oxide+fraction+in+field+samples&rft.jtitle=Geochimica+et+cosmochimica+acta&rft.au=Hiemstra%2C+Tjisse&rft.au=Antelo%2C+Juan&rft.au=Rahnemaie%2C+Rasoul&rft.au=Riemsdijk%2C+Willem+H.+van&rft.date=2010&rft.pub=Elsevier+Ltd&rft.issn=0016-7037&rft.eissn=1872-9533&rft.volume=74&rft.issue=1&rft.spage=41&rft.epage=58&rft_id=info:doi/10.1016%2Fj.gca.2009.10.018&rft.externalDocID=S0016703709006401 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7037&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7037&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7037&client=summon |