Nanoparticles in natural systems I: The effective reactive surface area of the natural oxide fraction in field samples

Information on the particle size and reactive surface area of natural samples is essential for the application of surface complexation models (SCM) to predict bioavailability, toxicity, and transport of elements in the natural environment. In addition, this information will be of great help to enlig...

Full description

Saved in:
Bibliographic Details
Published inGeochimica et cosmochimica acta Vol. 74; no. 1; pp. 41 - 58
Main Authors Hiemstra, Tjisse, Antelo, Juan, Rahnemaie, Rasoul, Riemsdijk, Willem H. van
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Information on the particle size and reactive surface area of natural samples is essential for the application of surface complexation models (SCM) to predict bioavailability, toxicity, and transport of elements in the natural environment. In addition, this information will be of great help to enlighten views on the formation, stability, and structure of nanoparticle associations of natural organic matter (NOM) and natural oxide particles. Phosphate is proposed as a natively present probe ion to derive the effective reactive surface area of natural samples. In the suggested method, natural samples are equilibrated (⩾10 days) with 0.5 M NaHCO 3 (pH = 8.5) at various solid–solution ratios. This matrix fixes the pH and ionic strength, suppresses the influence of Ca 2+ and Mg 2+ ions by precipitation these in solid carbonates, and removes NOM due to the addition of activated carbon in excess, collectively leading to the dominance of the PO 4–CO 3 interaction in the system. The data have been interpreted with the charge distribution (CD) model, calibrated for goethite, and the analysis results in an effective reactive surface area (SA) and a reversibly bound phosphate loading Γ for a series of top soils. The oxidic SA varies between about 3–30 m 2/g sample for a large series of representative agricultural top soils. Scaling of our data to the total iron and aluminum oxide content (dithionite–citrate–bicarbonate extractable), results in the specific surface area between about 200–1200 m 2/g oxide for most soils, i.e. the oxide particles are nano-sized with an equivalent diameter in the order of ∼1–10 nm if considered as non-porous spheres. For the top soils, the effective surface area and the soil organic carbon fraction are strongly correlated. The oxide particles are embedded in a matrix of organic carbon (OC), equivalent to ∼1.4 ± 0.2 mg OC/m 2 oxide for many soils of the collection, forming a NOM–mineral nanoparticle association with an average NOM volume fraction of ∼80%. The average mass density of such a NOM–mineral association is ∼1700 ± 100 kg/m 3 (i.e. high-density NOM). The amount of reversibly bound phosphate is rather close to the amount of phosphate that is extractable with oxalate. The phosphate loading varies remarkably ( Γ ≈ 1–3 μmol/m 2 oxide) in the samples. As discussed in part II of this paper series ( Hiemstra et al., 2010), the phosphate loading ( Γ) of field samples is suppressed by surface complexation of NOM, where hydrophilic, fulvic, and humic acids act as a competitor for (an)ions via site competition and electrostatic interaction.
AbstractList Information on the particle size and reactive surface area of natural samples is essential for the application of surface complexation models (SCM) to predict bioavailability, toxicity, and transport of elements in the natural environment. In addition, this information will be of great help to enlighten views on the formation, stability, and structure of nanoparticle associations of natural organic matter (NOM) and natural oxide particles. Phosphate is proposed as a natively present probe ion to derive the effective reactive surface area of natural samples. In the suggested method, natural samples are equilibrated (⩾10 days) with 0.5 M NaHCO 3 (pH = 8.5) at various solid–solution ratios. This matrix fixes the pH and ionic strength, suppresses the influence of Ca 2+ and Mg 2+ ions by precipitation these in solid carbonates, and removes NOM due to the addition of activated carbon in excess, collectively leading to the dominance of the PO 4–CO 3 interaction in the system. The data have been interpreted with the charge distribution (CD) model, calibrated for goethite, and the analysis results in an effective reactive surface area (SA) and a reversibly bound phosphate loading Γ for a series of top soils. The oxidic SA varies between about 3–30 m 2/g sample for a large series of representative agricultural top soils. Scaling of our data to the total iron and aluminum oxide content (dithionite–citrate–bicarbonate extractable), results in the specific surface area between about 200–1200 m 2/g oxide for most soils, i.e. the oxide particles are nano-sized with an equivalent diameter in the order of ∼1–10 nm if considered as non-porous spheres. For the top soils, the effective surface area and the soil organic carbon fraction are strongly correlated. The oxide particles are embedded in a matrix of organic carbon (OC), equivalent to ∼1.4 ± 0.2 mg OC/m 2 oxide for many soils of the collection, forming a NOM–mineral nanoparticle association with an average NOM volume fraction of ∼80%. The average mass density of such a NOM–mineral association is ∼1700 ± 100 kg/m 3 (i.e. high-density NOM). The amount of reversibly bound phosphate is rather close to the amount of phosphate that is extractable with oxalate. The phosphate loading varies remarkably ( Γ ≈ 1–3 μmol/m 2 oxide) in the samples. As discussed in part II of this paper series ( Hiemstra et al., 2010), the phosphate loading ( Γ) of field samples is suppressed by surface complexation of NOM, where hydrophilic, fulvic, and humic acids act as a competitor for (an)ions via site competition and electrostatic interaction.
Information on the particle size and reactive surface area of natural samples is essential for the application of surface complexation models (SCM) to predict bioavailability, toxicity, and transport of elements in the natural environment. In addition, this information will be of great help to enlighten views on the formation, stability, and structure of nanoparticle associations of natural organic matter (NOM) and natural oxide particles. Phosphate is proposed as a natively present probe ion to derive the effective reactive surface area of natural samples. In the suggested method, natural samples are equilibrated (10 days) with 0.5 M NaHCO3 (pH = 8.5) at various solid–solution ratios. This matrix fixes the pH and ionic strength, suppresses the influence of Ca2+ and Mg2+ ions by precipitation these in solid carbonates, and removes NOM due to the addition of activated carbon in excess, collectively leading to the dominance of the PO4–CO3 interaction in the system. The data have been interpreted with the charge distribution (CD) model, calibrated for goethite, and the analysis results in an effective reactive surface area (SA) and a reversibly bound phosphate loading G for a series of top soils. The oxidic SA varies between about 3–30 m2/g sample for a large series of representative agricultural top soils. Scaling of our data to the total iron and aluminum oxide content (dithionite–citrate–bicarbonate extractable), results in the specific surface area between about 200–1200 m2/g oxide for most soils, i.e. the oxide particles are nano-sized with an equivalent diameter in the order of 1–10 nm if considered as non-porous spheres. For the top soils, the effective surface area and the soil organic carbon fraction are strongly correlated. The oxide particles are embedded in a matrix of organic carbon (OC), equivalent to 1.4 ± 0.2 mg OC/m2 oxide for many soils of the collection, forming a NOM–mineral nanoparticle association with an average NOM volume fraction of 80%. The average mass density of such a NOM–mineral association is 1700 ± 100 kg/m3 (i.e. high-density NOM). The amount of reversibly bound phosphate is rather close to the amount of phosphate that is extractable with oxalate. The phosphate loading varies remarkably (G ˜ 1–3 µmol/m2 oxide) in the samples. As discussed in part II of this paper series (Hiemstra et al., 2010), the phosphate loading (G) of field samples is suppressed by surface complexation of NOM, where hydrophilic, fulvic, and humic acids act as a competitor for (an)ions via site competition and electrostatic interaction
Information on the particle size and reactive surface area of natural samples is essential for the application of surface complexation models (SCM) to predict bioavailability, toxicity, and transport of elements in the natural environment. In addition, this information will be of great help to enlighten views on the formation, stability, and structure of nanoparticle associations of natural organic matter (NOM) and natural oxide particles. Phosphate is proposed as a natively present probe ion to derive the effective reactive surface area of natural samples. In the suggested method, natural samples are equilibrated ([greater-or-equal, slanted]10 days) with 0.5 M NaHCO(3) (pH = 8.5) at various solid-solution ratios. This matrix fixes the pH and ionic strength, suppresses the influence of Ca(2+) and Mg(2+) ions by precipitation these in solid carbonates, and removes NOM due to the addition of activated carbon in excess, collectively leading to the dominance of the PO(4)-CO(3) interaction in the system. The data have been interpreted with the charge distribution (CD) model, calibrated for goethite, and the analysis results in an effective reactive surface area (SA) and a reversibly bound phosphate loading G for a series of top soils. The oxidic SA varies between about 3-30 m(2)/g sample for a large series of representative agricultural top soils. Scaling of our data to the total iron and aluminum oxide content (dithionite-citrate-bicarbonate extractable), results in the specific surface area between about 200-1200 m(2)/g oxide for most soils, i.e. the oxide particles are nano-sized with an equivalent diameter in the order of [not, vert, similar]1-10 nm if considered as non-porous spheres. For the top soils, the effective surface area and the soil organic carbon fraction are strongly correlated. The oxide particles are embedded in a matrix of organic carbon (OC), equivalent to [not, vert, similar]1.4 +/- 0.2 mg OC/m(2) oxide for many soils of the collection, forming a NOM-mineral nanoparticle association with an average NOM volume fraction of [not, vert, similar]80%. The average mass density of such a NOM-mineral association is [not, vert, similar]1700 +/- 100 kg/m(3) (i.e. high-density NOM). The amount of reversibly bound phosphate is rather close to the amount of phosphate that is extractable with oxalate. The phosphate loading varies remarkably (G [asymptotic to] 1-3 kmol/m(2) oxide) in the samples. As discussed in part II of this paper series (Hiemstra et al., 2010), the phosphate loading (G) of field samples is suppressed by surface complexation of NOM, where hydrophilic, fulvic, and humic acids act as a competitor for (an)ions via site competition and electrostatic interaction.
Author Antelo, Juan
Rahnemaie, Rasoul
Hiemstra, Tjisse
Riemsdijk, Willem H. van
Author_xml – sequence: 1
  givenname: Tjisse
  surname: Hiemstra
  fullname: Hiemstra, Tjisse
  email: tjisse.hiemstra@wur.nl
  organization: Department of Soil Quality, Wageningen University, P.O. Box 47, NL 6700 AA Wageningen, The Netherlands
– sequence: 2
  givenname: Juan
  surname: Antelo
  fullname: Antelo, Juan
  organization: Department of Soil Quality, Wageningen University, P.O. Box 47, NL 6700 AA Wageningen, The Netherlands
– sequence: 3
  givenname: Rasoul
  surname: Rahnemaie
  fullname: Rahnemaie, Rasoul
  organization: Department of Soil Science, Tarbiat Modares University, P.O. Box 14115-336, Tehran, Iran
– sequence: 4
  givenname: Willem H. van
  surname: Riemsdijk
  fullname: Riemsdijk, Willem H. van
  organization: Department of Soil Quality, Wageningen University, P.O. Box 47, NL 6700 AA Wageningen, The Netherlands
BookMark eNp9kU9v1DAQxS1UJLaFD8DNJ25ZxkmdP-WEKgqVKrjs3ZrY4-KV1w52sqXfHkeBC4deZsaj93uW5l2yixADMfZewF6AaD8e948a9zXAUN57EP0rthN9V1eDbJoLtoMiqjpoujfsMucjAHRSwo6dv2OIE6bZaU-Zu8ADzktCz_NznumU-f0NP_wkTtaSnt2ZeCLchrwki5o4lg2Pls9F9o-Ov50hbtMqjWH1tY684RlPU_noLXtt0Wd697dfscPdl8Ptt-rhx9f7288PFV5DPVey1kKYVndU93UH0GBXY9sDSDlCT_0owZihJ4OyHsehGYS51tYIlGR7HJordrPZPuEjBRdKUQGTdllFdMq7MWF6Vk9LUsGvbVrGrIpN33QF_rDBU4q_FsqzOrmsyXsMFJciayUMrYAiFJtQp5hzIqum5E6rsQC1pqOOqqSj1nTWVUmnMN1_jHYzrreaEzr_IvlpI6nc7ewoqawdBU3GpZKQMtG9QP8BvKevHQ
CitedBy_id crossref_primary_10_1016_j_scitotenv_2018_03_002
crossref_primary_10_1016_j_still_2011_01_006
crossref_primary_10_1039_C7EN00445A
crossref_primary_10_1016_j_chemgeo_2015_06_011
crossref_primary_10_1002_etc_2642
crossref_primary_10_1016_j_soilbio_2024_109507
crossref_primary_10_1016_j_scitotenv_2023_167627
crossref_primary_10_1080_10643389_2021_1974766
crossref_primary_10_1021_acsearthspacechem_9b00320
crossref_primary_10_1016_j_apgeochem_2013_09_017
crossref_primary_10_1016_j_gca_2012_01_046
crossref_primary_10_1002_ldr_1155
crossref_primary_10_1021_es400997n
crossref_primary_10_1071_EN20123
crossref_primary_10_1016_j_apgeochem_2020_104797
crossref_primary_10_1016_j_watres_2024_123031
crossref_primary_10_1016_j_gca_2014_08_031
crossref_primary_10_1021_acs_est_2c04971
crossref_primary_10_1016_j_apgeochem_2016_07_011
crossref_primary_10_1016_j_cej_2023_147677
crossref_primary_10_1016_j_gca_2021_07_028
crossref_primary_10_1016_j_jhazmat_2020_123135
crossref_primary_10_1021_acsearthspacechem_0c00078
crossref_primary_10_2139_ssrn_4047088
crossref_primary_10_1016_j_scitotenv_2019_135220
crossref_primary_10_1016_j_jhazmat_2024_134413
crossref_primary_10_1016_j_chemosphere_2023_138927
crossref_primary_10_1016_j_gca_2015_02_032
crossref_primary_10_1016_j_scitotenv_2020_138730
crossref_primary_10_1016_j_gca_2014_08_029
crossref_primary_10_1016_j_jallcom_2024_176542
crossref_primary_10_1021_es400526q
crossref_primary_10_1016_j_gca_2023_12_024
crossref_primary_10_1016_j_apgeochem_2018_12_012
crossref_primary_10_1016_j_cej_2023_147671
crossref_primary_10_1016_j_jcis_2015_05_041
crossref_primary_10_1016_j_jhazmat_2021_125128
crossref_primary_10_1016_j_jhazmat_2021_127028
crossref_primary_10_1016_j_gca_2014_07_014
crossref_primary_10_2134_jeq2011_0250
crossref_primary_10_1021_acs_est_4c04812
crossref_primary_10_1007_s11368_011_0386_8
crossref_primary_10_1039_C8EN01198B
crossref_primary_10_2136_sssaj2010_0455
crossref_primary_10_1021_acs_est_0c01341
crossref_primary_10_1016_j_chroma_2015_02_073
crossref_primary_10_1016_j_gca_2018_07_017
crossref_primary_10_1021_es201844d
crossref_primary_10_1016_j_jhazmat_2023_130963
crossref_primary_10_1016_j_geoderma_2023_116737
crossref_primary_10_1016_j_chemosphere_2022_134032
crossref_primary_10_1016_j_geoderma_2015_01_022
crossref_primary_10_1016_j_geoderma_2015_08_036
crossref_primary_10_1016_j_chemosphere_2024_143356
crossref_primary_10_1016_j_geoderma_2022_115970
crossref_primary_10_1016_j_scitotenv_2022_155284
crossref_primary_10_1016_j_scitotenv_2023_165806
crossref_primary_10_1016_j_chemosphere_2010_11_034
crossref_primary_10_2139_ssrn_4167469
crossref_primary_10_1016_j_jhydrol_2018_07_018
crossref_primary_10_1007_s11356_018_1595_0
crossref_primary_10_1080_10643389_2013_829767
crossref_primary_10_2139_ssrn_4096587
crossref_primary_10_1002_jpln_201600451
crossref_primary_10_1016_j_gca_2012_12_002
crossref_primary_10_1016_j_cej_2018_07_152
crossref_primary_10_1016_j_gca_2009_10_019
crossref_primary_10_1071_EN13184
crossref_primary_10_1016_j_scitotenv_2024_173667
crossref_primary_10_1111_ejss_12285
crossref_primary_10_1016_j_geoderma_2018_11_001
crossref_primary_10_1016_j_watres_2022_119534
crossref_primary_10_1016_j_geoderma_2014_09_023
crossref_primary_10_1021_acs_est_9b01183
crossref_primary_10_1016_j_soilbio_2019_107583
crossref_primary_10_1016_j_chemosphere_2014_04_032
crossref_primary_10_1016_j_geoderma_2014_07_017
crossref_primary_10_1016_j_geoderma_2024_116838
crossref_primary_10_1016_j_apgeochem_2018_01_014
crossref_primary_10_1016_j_chemosphere_2022_135188
crossref_primary_10_1016_j_gca_2023_06_021
crossref_primary_10_1016_j_jhazmat_2010_12_074
crossref_primary_10_1007_s11104_011_0935_3
crossref_primary_10_1016_j_scitotenv_2013_04_076
crossref_primary_10_1007_s11368_023_03481_3
crossref_primary_10_5194_bg_19_763_2022
crossref_primary_10_1016_j_colsurfb_2013_05_005
crossref_primary_10_1002_etc_2612
crossref_primary_10_1016_j_still_2021_105220
crossref_primary_10_1021_acs_est_0c02163
crossref_primary_10_1071_EN13216
crossref_primary_10_1080_07391102_2013_836461
crossref_primary_10_1021_acsearthspacechem_8b00160
crossref_primary_10_1021_es501782g
crossref_primary_10_1093_aob_mcq098
crossref_primary_10_1016_j_geoderma_2021_115458
crossref_primary_10_1016_j_jhazmat_2022_129830
crossref_primary_10_1016_j_scitotenv_2022_161294
crossref_primary_10_1016_j_apgeochem_2013_03_018
crossref_primary_10_1016_j_jhazmat_2021_126260
crossref_primary_10_1111_ejss_12549
crossref_primary_10_1016_j_apgeochem_2014_05_014
crossref_primary_10_1016_j_gca_2012_07_014
crossref_primary_10_1016_j_envpol_2018_03_064
crossref_primary_10_1016_j_gca_2011_02_034
crossref_primary_10_1016_j_geoderma_2013_01_019
crossref_primary_10_1016_j_trac_2015_07_003
crossref_primary_10_1016_j_gca_2020_07_032
crossref_primary_10_1016_j_geoderma_2022_116212
crossref_primary_10_1016_j_scitotenv_2018_04_191
crossref_primary_10_1039_C6EN00061D
crossref_primary_10_1016_j_chemosphere_2022_135842
crossref_primary_10_1016_j_watres_2014_02_002
crossref_primary_10_1016_j_nbt_2013_03_008
crossref_primary_10_1002_etc_2581
crossref_primary_10_1016_j_jece_2017_04_002
crossref_primary_10_1007_s11368_014_0919_z
crossref_primary_10_1016_j_geoderma_2013_03_015
crossref_primary_10_1021_es405330x
crossref_primary_10_1111_ejss_13104
crossref_primary_10_1021_es500257e
crossref_primary_10_1007_s10498_015_9271_1
crossref_primary_10_1016_j_cej_2018_03_125
crossref_primary_10_1007_s11104_012_1273_9
crossref_primary_10_1016_j_scitotenv_2015_06_005
crossref_primary_10_1016_j_catena_2016_05_012
crossref_primary_10_1016_j_geoderma_2022_115773
crossref_primary_10_1016_j_jhazmat_2020_123639
crossref_primary_10_1002_jpln_201200276
crossref_primary_10_1016_j_gca_2025_02_031
crossref_primary_10_1016_j_geoderma_2021_115517
crossref_primary_10_1016_j_jhazmat_2016_10_033
crossref_primary_10_2139_ssrn_3983771
crossref_primary_10_1016_j_chemosphere_2022_135172
crossref_primary_10_1016_j_envpol_2021_118669
crossref_primary_10_1016_j_gca_2011_10_037
crossref_primary_10_1016_j_geoderma_2017_05_012
crossref_primary_10_1111_sum_12911
Cites_doi 10.1016/0021-9797(78)90217-5
10.2475/ajs.282.9.1508
10.1021/es00050a007
10.1016/j.gca.2006.08.047
10.1016/S0016-7037(99)00176-3
10.1126/science.1066611
10.2134/jeq2004.1393
10.2113/gselements.4.6.401
10.1016/j.jhydrol.2005.07.047
10.1016/0016-7061(73)90066-9
10.1007/978-1-4612-2930-8_1
10.1016/j.geoderma.2008.11.032
10.1111/j.1365-2389.2004.00599.x
10.1016/j.jcis.2007.05.039
10.1016/S0021-9797(78)80009-5
10.1016/0016-7037(94)90531-2
10.1016/S0016-7037(97)00009-4
10.1016/j.geoderma.2008.07.010
10.1016/j.apgeochem.2003.08.003
10.2136/sssaj2006.0189
10.1016/0021-9797(76)90253-8
10.1021/es049885v
10.1016/S0016-7037(99)00266-5
10.1016/S0146-6380(00)00046-2
10.1016/0001-8686(80)80012-1
10.1007/s000270050058
10.1021/es0001106
10.1016/S0016-7061(02)00369-5
10.1021/es048154s
10.1346/CCMN.1992.0400103
10.1346/CCMN.1958.0070122
10.1038/38260
10.1016/j.geoderma.2005.09.001
10.1021/ba-1968-0079.ch008
10.1021/es9506216
10.1016/j.jcis.2004.06.014
10.1021/es010085j
10.1097/00010694-197504000-00009
10.2136/sssaj1967.03615995003100020020x
10.1111/j.1365-2389.1997.tb00189.x
10.1016/0016-7037(96)00059-2
10.1016/j.apgeochem.2004.05.010
10.1021/la051730t
10.1016/j.gca.2009.04.032
10.1016/S0016-7037(98)00183-5
10.4141/cjss73-037
10.1016/j.jcis.2004.12.032
10.1038/370549a0
10.1016/j.orggeochem.2003.08.007
10.2475/ajs.299.10.828
10.2136/sssaj2002.1505
10.1130/G19924.1
10.2136/sssaj1979.03615995004300040045x
10.1016/j.jcis.2006.04.015
10.1021/la062965n
10.1016/j.marchem.2004.04.006
10.1016/j.gca.2004.05.040
10.1016/S0016-7037(00)00536-6
10.1021/es800881w
10.1021/j100812a002
10.1007/s003740050020
10.1006/jcis.1996.0242
10.1021/la00093a015
10.1016/0016-7061(76)90066-5
10.1016/j.gca.2004.08.002
10.2136/sssaj2002.1836
10.1346/CCMN.2000.0480114
10.1006/jcis.1998.5904
10.1080/00103629809370053
10.1016/j.jcis.2005.06.089
10.1021/es000210b
10.1016/j.jcis.2007.01.065
10.1016/j.jcis.2008.01.007
10.1071/SR9800395
10.1016/S0016-7037(99)00228-8
10.1021/es9701624
10.1046/j.1365-2389.2001.00414.x
10.1016/j.jcis.2007.07.017
10.1016/j.geoderma.2006.10.011
10.2136/sssaj1990.03615995005400040012x
10.4141/cjss63-002
10.1016/j.gca.2006.02.021
10.1016/j.jcis.2006.05.008
10.1111/j.1365-2389.2005.00710.x
10.1016/0016-7061(76)90033-1
10.1016/j.gca.2009.10.019
10.1006/jcis.1996.0666
10.1016/0016-7037(94)90381-6
10.1046/j.1365-2389.2003.00544.x
10.2134/jeq1988.00472425001700010005x
10.1016/0016-7061(76)90034-3
10.1016/j.geoderma.2007.05.003
10.1021/es801631d
10.1021/es0491984
10.1021/es940723g
10.1016/j.gca.2005.12.005
ContentType Journal Article
Copyright 2009 Elsevier Ltd
Wageningen University & Research
Copyright_xml – notice: 2009 Elsevier Ltd
– notice: Wageningen University & Research
DBID AAYXX
CITATION
8FD
H8D
L7M
QVL
DOI 10.1016/j.gca.2009.10.018
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
NARCIS:Publications
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1872-9533
EndPage 58
ExternalDocumentID oai_library_wur_nl_wurpubs_391837
10_1016_j_gca_2009_10_018
S0016703709006401
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
8WZ
9JN
A6W
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABMAC
ABPPZ
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SEP
SES
SEW
SPC
SSE
SSZ
T5K
TN5
TWZ
UQL
VH1
VOH
WUQ
XJT
XOL
XSW
ZKB
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
BNPGV
CITATION
SSH
8FD
H8D
L7M
02
08R
0R
1
6XO
8P
AAPBV
ABPTK
ADALY
ADKFC
AFRUD
DZ
G-
HZ
K
M
QVL
STF
UNR
X
ZY4
ID FETCH-LOGICAL-a402t-52c11d6c7e2827003a72a680055b08e8b50dd98eda52bb9391d4cfd1a5ef8a93
IEDL.DBID AIKHN
ISSN 0016-7037
IngestDate Tue Jan 05 18:05:36 EST 2021
Fri Jul 11 07:49:30 EDT 2025
Tue Jul 01 01:33:30 EDT 2025
Thu Apr 24 23:10:07 EDT 2025
Fri Feb 23 02:23:55 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a402t-52c11d6c7e2827003a72a680055b08e8b50dd98eda52bb9391d4cfd1a5ef8a93
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 36509610
PQPubID 23500
PageCount 18
ParticipantIDs wageningen_narcis_oai_library_wur_nl_wurpubs_391837
proquest_miscellaneous_36509610
crossref_primary_10_1016_j_gca_2009_10_018
crossref_citationtrail_10_1016_j_gca_2009_10_018
elsevier_sciencedirect_doi_10_1016_j_gca_2009_10_018
ProviderPackageCode CITATION
AAYXX
QVL
PublicationCentury 2000
PublicationDate 2010
2010-1-00
20100101
PublicationDateYYYYMMDD 2010-01-01
PublicationDate_xml – year: 2010
  text: 2010
PublicationDecade 2010
PublicationTitle Geochimica et cosmochimica acta
PublicationYear 2010
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hassellov, Von der Kammer (bib32) 2008; 4
Sverjensky (bib86) 2005; 69
Rosentreter, Swantje Quarder, Smith, McLing (bib77) 1998
Lindsay (bib56) 1979
Bargar, Kubicki, Reitmeyer, Davis (bib4) 2005; 69
Koopmans, Chardon, de Willigen, van Riemsdijk (bib53) 2004; 33
Eusterhues, Wagner, Hausler, Hanzlik, Knicker, Totsche, Kogel-Knabner, Schwertmann (bib24) 2008; 42
Barrow, Shaw (bib5) 1975; 119
Olsen, Cole, Watanabe, Dean (bib68) 1954; vol. 939
Schwertmann (bib80) 1973; 53
Wada (bib98) 1989
Millero, Schreiber (bib65) 1982; 282
Eusterhues, Rumpel, Kogel-Knabner (bib23) 2005; 56
Weng, Van Riemsdijk, Hiemstra (bib104) 2006; 22
Kinniburgh D. G. (1993) Fit, Technical Report WD/93/23. British Geological Survey.
Weng, Van Riemsdijk, Hiemstra (bib106) 2008; 42
Zhou, Maurice, Cabaniss (bib110) 2001; 65
Kennedy, Pevear, Hill (bib51) 2002; 295
Lofts, Tipping (bib57) 1998; 62
Brecevic, Kralj (bib10) 2007; 80
Mayer (bib62) 1994; 58
Torrent, Barron, Schwertmann (bib92) 1990; 54
Walker, Syers (bib102) 1976; 15
Davis, Leckie (bib18) 1978; 67
Christl, Kretzschmar (bib13) 1999; 63
Lutzenkirchen (bib61) 2004; 68
Hiemstra, Van Riemsdijk (bib36) 2007; 80
Boily (bib9) 1999
Ponthieu, Juillot, Hiemstra, van Riemsdijk, Benedetti (bib70) 2006; 70
Fukushi, Sato (bib26) 2005; 39
Lienemann, Monnerat, Dominik, Perret (bib55) 1999; 61
Rahnemaie, Hiemstra, Van Riemsdijk (bib72) 2007; 315
Hiemstra, Van Riemsdijk (bib35) 2006; 301
Keil, Montlucon, Prahl, Hedges (bib49) 1994; 370
Dijkstra, Meeussen, Comans (bib20) 2004; 38
Kaiser, Guggenberger (bib47) 2003; 54
Hiemstra, Van Riemsdijk (bib33) 1996; 179
Rietra, Hiemstra, Van Riemsdijk (bib75) 2001; 35
Thompson, Chadwick, Rancourt, Chorover (bib90) 2006; 70
Tadanier, Eick (bib88) 2002; 66
Logue, Smith, Westall (bib58) 2004; 19
Luengo, Brigante, Antelo, Avena (bib59) 2006; 300
Sverjensky, Shock, Helgeson (bib87) 1997; 61
Rietra, Hiemstra, Van Riemsdijk (bib74) 1999; 63
Hiemstra, Venema, Van Riemsdijk (bib38) 1996; 184
Eusterhues, Rumpel, Kleber, Kogel-Knabner (bib22) 2003; 34
Murphy, Posner, Quirk (bib67) 1976; 56
Cihacek, Bremner (bib14) 1979; 43
Cances, Ponthieu, Castrec-Rouelle, Aubry, Benedetti (bib11) 2003; 113
Griffioen (bib28) 2006; 320
Rahnemaie, Hiemstra, Van Riemsdijk (bib73) 2007; 23
Schroder, Hiemstra, Vink, van der Zee (bib78) 2005; 39
Torn, Trumbore, Chadwick, Vitousek, Hendricks (bib91) 1997; 389
Coffin (bib15) 1963; 43
Schulten, Leinweber (bib79) 2000; 30
Westall, Hohl (bib107) 1980; 12
Barrow, Bowden, Posner, Quirk (bib8) 1980; 18
Vanderzee, Vanriemsdijk (bib96) 1988; 17
Kaiser, Mikutta, Guggenberger (bib48) 2007; 71
Gu, Mehlhorn, Liang, McCarthy (bib30) 1996; 60
Barrow, Shaw (bib7) 1976; 16
Criscenti, Sverjensky (bib17) 1999; 299
Schwertmann, Fischer (bib81) 1973; 10
Goldberg, Lesch, Suarez (bib27) 2002; 66
Parks, De Bruyn (bib69) 1962; 66
Antelo, Arce, Avena, Fiol, López, Macías (bib3) 2007; 138
Weng, Temminghoff, van Riemsdijk (bib103) 2001; 35
Antelo, Avena, Fiol, Lopez, Arce (bib2) 2005; 285
Wolthoorn, Temminghoff, Weng, van Riemsdijk (bib109) 2004; 19
Stern (bib84) 1924; 30
Stachowicz, Hiemstra, van Riemsdijk (bib83) 2008; 320
van der Zee, Roberts, Rancourt, Slomp (bib94) 2003; 31
Dzombak, Morel (bib21) 1990
Filius, Hiemstra, Van Riemsdijk (bib25) 2000; 64
Ali, Dzombak (bib1) 1996; 30
Kaiser, Guggenberger (bib46) 2000; 31
Mödl, Wörmann, Amelung (bib66) 2007; 141
Hiemstra, Van Riemsdijk (bib34) 1999; 210
Gustafsson (bib31) 2001; 52
Hingston F. J., Posner A. M. and Quirk J. P. (1968) Adsorption of selenite by goethite. In Symposium on Adsorption from Aqueous Solution Advances in Chemical Series, vol. 70. pp. 82–90.
Janney, Cowley, Buseck (bib45) 2000; 48
Davis, James, Leckie (bib19) 1978; 63
Hyacinthe, Van Cappellen (bib44) 2004; 91
Weng, Van Riemsdijk, Hiemstra (bib105) 2007; 314
Lumsdon (bib60) 2004; 55
Mehra, Jackson (bib63) 1960; 7
Holmgren (bib43) 1967; 31
Wagai, Mayer, Kitayama (bib101) 2009; 149
Meima, Comans (bib64) 1998; 32
Wagai, Mayer, Kitayama, Knicker (bib100) 2008; 147
Christensen (bib12) 1992; 20
Cornell, Schwertmann (bib16) 1996
Hiemstra, Rahnemaie, Van Riemsdijk (bib39) 2004; 278
Hiemstra, Antelo, Van Rotterdam, Van Riemsdijk (bib41) 2010; 74
Rahnemaie, Hiemstra, Van Riemsdijk (bib71) 2006; 293
Smith, Martell (bib82) 1981
Voegelin, Vulava, Kretzschmar (bib97) 2001; 35
Wiseman, Puttmann (bib108) 2006; 134
Wagai, Mayer (bib99) 2007; 71
Roden, Zachara (bib76) 1996; 30
Tejedor-Tejedor, Anderson (bib89) 1990; 6
van Erp, Houba, Van Beusichem (bib95) 1998; 29
Hiemstra, Van Riemsdijk (bib37) 2009; 73
Strauss, Brummer, Barrow (bib85) 1997; 48
Keizer, Van Riemsdijk (bib50) 1998
Hiemstra, Barnett, Van Riemsdijk (bib40) 2007; 310
Torrent, Schwertmann, Barron (bib93) 1992; 40
Gu, Schmitt, Chen, Liang, McCarthy (bib29) 1994; 28
Barrow, Shaw (bib6) 1976; 16
Kostka, Luther (bib54) 1994; 58
Weng (10.1016/j.gca.2009.10.018_bib103) 2001; 35
Dijkstra (10.1016/j.gca.2009.10.018_bib20) 2004; 38
Weng (10.1016/j.gca.2009.10.018_bib104) 2006; 22
Rosentreter (10.1016/j.gca.2009.10.018_bib77) 1998
Cances (10.1016/j.gca.2009.10.018_bib11) 2003; 113
Schwertmann (10.1016/j.gca.2009.10.018_bib80) 1973; 53
Barrow (10.1016/j.gca.2009.10.018_bib8) 1980; 18
Stern (10.1016/j.gca.2009.10.018_bib84) 1924; 30
Weng (10.1016/j.gca.2009.10.018_bib105) 2007; 314
Millero (10.1016/j.gca.2009.10.018_bib65) 1982; 282
Barrow (10.1016/j.gca.2009.10.018_bib7) 1976; 16
Hassellov (10.1016/j.gca.2009.10.018_bib32) 2008; 4
Eusterhues (10.1016/j.gca.2009.10.018_bib22) 2003; 34
Filius (10.1016/j.gca.2009.10.018_bib25) 2000; 64
Barrow (10.1016/j.gca.2009.10.018_bib5) 1975; 119
Rahnemaie (10.1016/j.gca.2009.10.018_bib71) 2006; 293
Voegelin (10.1016/j.gca.2009.10.018_bib97) 2001; 35
Murphy (10.1016/j.gca.2009.10.018_bib67) 1976; 56
Roden (10.1016/j.gca.2009.10.018_bib76) 1996; 30
Hiemstra (10.1016/j.gca.2009.10.018_bib37) 2009; 73
Mayer (10.1016/j.gca.2009.10.018_bib62) 1994; 58
Sverjensky (10.1016/j.gca.2009.10.018_bib87) 1997; 61
Kennedy (10.1016/j.gca.2009.10.018_bib51) 2002; 295
Weng (10.1016/j.gca.2009.10.018_bib106) 2008; 42
Olsen (10.1016/j.gca.2009.10.018_bib68) 1954; vol. 939
Antelo (10.1016/j.gca.2009.10.018_bib3) 2007; 138
Gu (10.1016/j.gca.2009.10.018_bib30) 1996; 60
van der Zee (10.1016/j.gca.2009.10.018_bib94) 2003; 31
Hiemstra (10.1016/j.gca.2009.10.018_bib39) 2004; 278
Keil (10.1016/j.gca.2009.10.018_bib49) 1994; 370
Wada (10.1016/j.gca.2009.10.018_bib98) 1989
Wagai (10.1016/j.gca.2009.10.018_bib100) 2008; 147
Kaiser (10.1016/j.gca.2009.10.018_bib47) 2003; 54
Mödl (10.1016/j.gca.2009.10.018_bib66) 2007; 141
Gu (10.1016/j.gca.2009.10.018_bib29) 1994; 28
Keizer (10.1016/j.gca.2009.10.018_bib50) 1998
Rietra (10.1016/j.gca.2009.10.018_bib74) 1999; 63
Torrent (10.1016/j.gca.2009.10.018_bib93) 1992; 40
Schwertmann (10.1016/j.gca.2009.10.018_bib81) 1973; 10
Cihacek (10.1016/j.gca.2009.10.018_bib14) 1979; 43
Hiemstra (10.1016/j.gca.2009.10.018_bib38) 1996; 184
Torn (10.1016/j.gca.2009.10.018_bib91) 1997; 389
Criscenti (10.1016/j.gca.2009.10.018_bib17) 1999; 299
Rahnemaie (10.1016/j.gca.2009.10.018_bib73) 2007; 23
Kaiser (10.1016/j.gca.2009.10.018_bib48) 2007; 71
Barrow (10.1016/j.gca.2009.10.018_bib6) 1976; 16
Ponthieu (10.1016/j.gca.2009.10.018_bib70) 2006; 70
Cornell (10.1016/j.gca.2009.10.018_bib16) 1996
Smith (10.1016/j.gca.2009.10.018_bib82) 1981
Gustafsson (10.1016/j.gca.2009.10.018_bib31) 2001; 52
Davis (10.1016/j.gca.2009.10.018_bib18) 1978; 67
Griffioen (10.1016/j.gca.2009.10.018_bib28) 2006; 320
Hiemstra (10.1016/j.gca.2009.10.018_bib41) 2010; 74
Dzombak (10.1016/j.gca.2009.10.018_bib21) 1990
Hyacinthe (10.1016/j.gca.2009.10.018_bib44) 2004; 91
Rahnemaie (10.1016/j.gca.2009.10.018_bib72) 2007; 315
Zhou (10.1016/j.gca.2009.10.018_bib110) 2001; 65
Kostka (10.1016/j.gca.2009.10.018_bib54) 1994; 58
Holmgren (10.1016/j.gca.2009.10.018_bib43) 1967; 31
Schroder (10.1016/j.gca.2009.10.018_bib78) 2005; 39
Goldberg (10.1016/j.gca.2009.10.018_bib27) 2002; 66
Wagai (10.1016/j.gca.2009.10.018_bib99) 2007; 71
Koopmans (10.1016/j.gca.2009.10.018_bib53) 2004; 33
Stachowicz (10.1016/j.gca.2009.10.018_bib83) 2008; 320
Luengo (10.1016/j.gca.2009.10.018_bib59) 2006; 300
Lindsay (10.1016/j.gca.2009.10.018_bib56) 1979
Davis (10.1016/j.gca.2009.10.018_bib19) 1978; 63
Logue (10.1016/j.gca.2009.10.018_bib58) 2004; 19
Schulten (10.1016/j.gca.2009.10.018_bib79) 2000; 30
Fukushi (10.1016/j.gca.2009.10.018_bib26) 2005; 39
Lutzenkirchen (10.1016/j.gca.2009.10.018_bib61) 2004; 68
Kaiser (10.1016/j.gca.2009.10.018_bib46) 2000; 31
Walker (10.1016/j.gca.2009.10.018_bib102) 1976; 15
Wolthoorn (10.1016/j.gca.2009.10.018_bib109) 2004; 19
Christl (10.1016/j.gca.2009.10.018_bib13) 1999; 63
Bargar (10.1016/j.gca.2009.10.018_bib4) 2005; 69
Coffin (10.1016/j.gca.2009.10.018_bib15) 1963; 43
Mehra (10.1016/j.gca.2009.10.018_bib63) 1960; 7
Christensen (10.1016/j.gca.2009.10.018_bib12) 1992; 20
Thompson (10.1016/j.gca.2009.10.018_bib90) 2006; 70
Westall (10.1016/j.gca.2009.10.018_bib107) 1980; 12
Parks (10.1016/j.gca.2009.10.018_bib69) 1962; 66
Vanderzee (10.1016/j.gca.2009.10.018_bib96) 1988; 17
Antelo (10.1016/j.gca.2009.10.018_bib2) 2005; 285
Rietra (10.1016/j.gca.2009.10.018_bib75) 2001; 35
Tadanier (10.1016/j.gca.2009.10.018_bib88) 2002; 66
Hiemstra (10.1016/j.gca.2009.10.018_bib35) 2006; 301
Eusterhues (10.1016/j.gca.2009.10.018_bib24) 2008; 42
Lofts (10.1016/j.gca.2009.10.018_bib57) 1998; 62
Tejedor-Tejedor (10.1016/j.gca.2009.10.018_bib89) 1990; 6
Lumsdon (10.1016/j.gca.2009.10.018_bib60) 2004; 55
Wagai (10.1016/j.gca.2009.10.018_bib101) 2009; 149
Janney (10.1016/j.gca.2009.10.018_bib45) 2000; 48
van Erp (10.1016/j.gca.2009.10.018_bib95) 1998; 29
Eusterhues (10.1016/j.gca.2009.10.018_bib23) 2005; 56
10.1016/j.gca.2009.10.018_bib52
10.1016/j.gca.2009.10.018_bib42
Hiemstra (10.1016/j.gca.2009.10.018_bib36) 2007; 80
Torrent (10.1016/j.gca.2009.10.018_bib92) 1990; 54
Boily (10.1016/j.gca.2009.10.018_bib9) 1999
Lienemann (10.1016/j.gca.2009.10.018_bib55) 1999; 61
Hiemstra (10.1016/j.gca.2009.10.018_bib33) 1996; 179
Wiseman (10.1016/j.gca.2009.10.018_bib108) 2006; 134
Meima (10.1016/j.gca.2009.10.018_bib64) 1998; 32
Ali (10.1016/j.gca.2009.10.018_bib1) 1996; 30
Strauss (10.1016/j.gca.2009.10.018_bib85) 1997; 48
Hiemstra (10.1016/j.gca.2009.10.018_bib34) 1999; 210
Brecevic (10.1016/j.gca.2009.10.018_bib10) 2007; 80
Hiemstra (10.1016/j.gca.2009.10.018_bib40) 2007; 310
Sverjensky (10.1016/j.gca.2009.10.018_bib86) 2005; 69
References_xml – volume: 19
  start-page: 611
  year: 2004
  end-page: 622
  ident: bib109
  article-title: Colloid formation in groundwater: effect of phosphate, manganese, silicate and dissolved organic matter on the dynamic heterogeneous oxidation of ferrous iron
  publication-title: Appl. Geochem.
– volume: 18
  start-page: 395
  year: 1980
  end-page: 404
  ident: bib8
  article-title: Describing the effects of electrolyte on adsorption of phosphate by a variable charge surface
  publication-title: Aust. J. Soil Res.
– volume: 320
  start-page: 400
  year: 2008
  end-page: 414
  ident: bib83
  article-title: Multi-competitive interaction of As(III) and As(V) oxyanions with Ca
  publication-title: J. Colloid Interf. Sci.
– volume: 6
  start-page: 602
  year: 1990
  end-page: 611
  ident: bib89
  article-title: Protonation of phosphate on the surface of goethite as studied by CIR-FTIR and electrophoretic mobility
  publication-title: Langmuir
– volume: 61
  start-page: 133
  year: 1999
  end-page: 149
  ident: bib55
  article-title: Identification of stoichiometric iron–phosphorus colloids produced in a eutrophic lake
  publication-title: Aquat.1 Sci.
– volume: 314
  start-page: 107
  year: 2007
  end-page: 118
  ident: bib105
  article-title: Adsorption of humic acids onto goethite: effects of molar mass, pH and ionic strength
  publication-title: J. Colloid Interf. Sci.
– volume: 66
  start-page: 1836
  year: 2002
  end-page: 1842
  ident: bib27
  article-title: Predicting molybdenum adsorption by soils using soil chemical. Parameters in the constant capacitance model
  publication-title: Soil Sci. Soc. Am. J.
– volume: 17
  start-page: 35
  year: 1988
  end-page: 41
  ident: bib96
  article-title: Model for long-term phosphate reaction-kinetics in soil
  publication-title: J. Environ. Qual.
– volume: 293
  start-page: 312
  year: 2006
  end-page: 321
  ident: bib71
  article-title: A new structural approach for outersphere complexation, tracing the location of electrolyte ions
  publication-title: J. Colloid Interf. Sci.
– volume: 370
  start-page: 549
  year: 1994
  end-page: 552
  ident: bib49
  article-title: Sorptive preservation of labile organic-matter in marine-sediments
  publication-title: Nature
– volume: 30
  start-page: 508
  year: 1924
  end-page: 516
  ident: bib84
  article-title: Zur theory der electrolytischen doppelschicht
  publication-title: Z. Electrochem.
– volume: 43
  start-page: 7
  year: 1963
  end-page: 17
  ident: bib15
  article-title: A method for the determination of free iron in soils and clays
  publication-title: Can. J. Soil Sci.
– volume: 29
  start-page: 1603
  year: 1998
  end-page: 1623
  ident: bib95
  article-title: One hundredth molar calcium chloride extraction procedure. Part I: a review of soil chemical, analytical, and plant nutritional aspects
  publication-title: Commun. Soil Sci. Plan.
– volume: 80
  start-page: 313
  year: 2007
  end-page: 324
  ident: bib36
  article-title: Surface complexation of selenite on goethite: MO/DFT geometry and charge distribution
  publication-title: Croat. Chem. Acta
– volume: 32
  start-page: 688
  year: 1998
  end-page: 693
  ident: bib64
  article-title: Application of surface complexation precipitation modeling to contaminant leaching from weathered municipal solid waste incinerator bottom ash
  publication-title: Environ. Sci. Technol.
– volume: 210
  start-page: 182
  year: 1999
  end-page: 193
  ident: bib34
  article-title: Surface structural ion adsorption modeling of competitive binding of oxyanions by metal (hydr)oxides
  publication-title: J. Colloid Interf. Sci.
– volume: 52
  start-page: 639
  year: 2001
  end-page: 653
  ident: bib31
  article-title: Modelling competitive anion adsorption on oxide minerals and an allophane-containing soil
  publication-title: Eur. J. Soil Sci.
– volume: 19
  start-page: 1937
  year: 2004
  end-page: 1951
  ident: bib58
  article-title: U(VI) adsorption on natural iron-coated sands: comparison of approaches for modeling adsorption on heterogeneous environmental materials
  publication-title: Appl. Geochem.
– year: 1998
  ident: bib77
  article-title: Uranium sorption onto natural sands as a function of sediment characteristics and solution pH
  publication-title: Adsorption of Metals by Geomedia
– volume: 62
  start-page: 2609
  year: 1998
  end-page: 2625
  ident: bib57
  article-title: An assemblage model for cation binding by natural particulate matter
  publication-title: Geochim. Cosmoschim. Acta
– volume: 30
  start-page: 399
  year: 2000
  end-page: 432
  ident: bib79
  article-title: New insights into organic-mineral particles: composition, properties and models of molecular structure
  publication-title: Biol. Fert. Soils
– year: 1979
  ident: bib56
  article-title: Chemical Equilibria in Soils
– volume: 68
  start-page: A502
  year: 2004
  ident: bib61
  article-title: Modelling uranyl adsorption to quartz – application of the CD-MUSIC concept
  publication-title: Geochim. Cosmoschim. Acta
– volume: 35
  start-page: 1651
  year: 2001
  end-page: 1657
  ident: bib97
  article-title: Reaction-based model describing competitive sorption and transport of Cd, Zn, and Ni in an acidic soil
  publication-title: Environ. Sci. Technol.
– volume: vol. 939
  year: 1954
  ident: bib68
  publication-title: Estimation of Available Phosphorous in Soils by Extraction with Sodium bicarbonate
– volume: 28
  start-page: 38
  year: 1994
  end-page: 46
  ident: bib29
  article-title: Adsorption and desorption of natural organic-matter on iron-oxide – mechanisms and models
  publication-title: Environ. Sci. Technol.
– volume: 63
  start-page: 480
  year: 1978
  end-page: 499
  ident: bib19
  article-title: Surface ionization and complexation at the oxide/water interface. I. Computation of electrical double layer properties in simple electrolytes
  publication-title: J. Colloid Interf. Sci.
– volume: 149
  start-page: 152
  year: 2009
  end-page: 160
  ident: bib101
  article-title: Extent and nature of organic coverage of soil mineral surfaces assessed by a gas sorption approach
  publication-title: Geoderma
– volume: 320
  start-page: 359
  year: 2006
  end-page: 369
  ident: bib28
  article-title: Extent of immobilisation of phosphate during aeration of nutrient-rich, anoxic groundwater
  publication-title: J. Hydrol.
– volume: 71
  start-page: 711
  year: 2007
  end-page: 719
  ident: bib48
  article-title: Increased stability of organic matter sorbed to ferrihydrite and goethite on aging
  publication-title: Soil Sci. Soc. Am. J.
– volume: 74
  start-page: 59
  year: 2010
  end-page: 69
  ident: bib41
  article-title: Nanoparticles in natural systems II: the natural oxide fraction at interaction with natural organic matter and phosphate
  publication-title: Geochim. Cosmoschim. Acta
– volume: 43
  start-page: 821
  year: 1979
  end-page: 822
  ident: bib14
  article-title: Simplified ethylene-glycol monoethyl ether procedure for assessment of soil surface-area
  publication-title: Soil Sci. Soc. Am. J.
– volume: 299
  start-page: 828
  year: 1999
  end-page: 899
  ident: bib17
  article-title: The role of electrolyte anions (ClO
  publication-title: Am. J. Sci.
– volume: 71
  start-page: 25
  year: 2007
  end-page: 35
  ident: bib99
  article-title: Sorptive stabilization of organic matter in soils by hydrous iron oxides
  publication-title: Geochim. Cosmoschim. Acta
– volume: 56
  start-page: 753
  year: 2005
  end-page: 763
  ident: bib23
  article-title: Organo-mineral associations in sandy acid forest soils: importance of specific surface area, iron oxides and micropores
  publication-title: Eur. J. Soil Sci.
– volume: 42
  start-page: 7891
  year: 2008
  end-page: 7897
  ident: bib24
  article-title: Characterization of ferrihydrite–soil organic matter coprecipitates by X-ray diffraction and Mossbauer spectroscopy
  publication-title: Environ. Sci. Technol.
– volume: 147
  start-page: 23
  year: 2008
  end-page: 33
  ident: bib100
  article-title: Climate and parent material controls on organic matter storage in surface soils: a three-pool, density-separation approach
  publication-title: Geoderma
– volume: 301
  start-page: 1
  year: 2006
  end-page: 18
  ident: bib35
  article-title: On the relationship between charge distribution, surface hydration and the structure of the interface of metal hydroxides
  publication-title: J. Colloid Interf. Sci.
– volume: 69
  start-page: 225
  year: 2005
  end-page: 257
  ident: bib86
  article-title: Prediction of surface charge on oxides in salt solutions: revisions for 1:1 (M
  publication-title: Geochim. Cosmochim. Acta
– volume: 48
  start-page: 111
  year: 2000
  end-page: 119
  ident: bib45
  article-title: Transmission electron microscopy of synthetic 2- and 6-line ferrihydrite
  publication-title: Clays Clay Miner.
– volume: 31
  start-page: 711
  year: 2000
  end-page: 725
  ident: bib46
  article-title: The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils
  publication-title: Org. Geochem.
– volume: 295
  start-page: 657
  year: 2002
  end-page: 660
  ident: bib51
  article-title: Mineral surface control of organic carbon in black shale
  publication-title: Science
– volume: 91
  start-page: 227
  year: 2004
  end-page: 251
  ident: bib44
  article-title: An authigenic iron phosphate phase in estuarine sediments: composition, formation and chemical reactivity
  publication-title: Mar. Chem.
– year: 1998
  ident: bib50
  article-title: ECOSAT, Equilibrium Calculation of Speciation and Transport. Technical Report Department Soil Quality
– volume: 61
  start-page: 1359
  year: 1997
  end-page: 1412
  ident: bib87
  article-title: Prediction of the thermodynamic properties of aqueous metal complexes to 1000
  publication-title: Geochim. Cosmoschim. Acta
– volume: 54
  start-page: 1007
  year: 1990
  end-page: 1012
  ident: bib92
  article-title: Phosphate adsorption and desorption by goethites differing in crystal morphology
  publication-title: Soil Sci. Soc. Am. J.
– volume: 33
  start-page: 1393
  year: 2004
  end-page: 1402
  ident: bib53
  article-title: Phosphorus desorption dynamics in soil and the link to a dynamic concept of bioavailability
  publication-title: J. Environ. Qual.
– year: 1996
  ident: bib16
  article-title: The Iron Oxides: Structures, Properties, Reactions, Occurrence and Uses
– volume: 63
  start-page: 2929
  year: 1999
  end-page: 2938
  ident: bib13
  article-title: Competitive sorption of copper and lead at the oxide–water interface: implications for surface site density
  publication-title: Geochim. Cosmoschim. Acta
– volume: 73
  start-page: 4423
  year: 2009
  end-page: 4436
  ident: bib37
  article-title: A surface structural model for ferrihydrite I: sites related to primary charge, molar mass, and mass density
  publication-title: Geochim. Cosmochim. Acta
– volume: 300
  start-page: 511
  year: 2006
  end-page: 518
  ident: bib59
  article-title: Kinetics of phosphate adsorption on goethite: comparing batch adsorption and ATR-IR measurements
  publication-title: J. Colloid Interf. Sci.
– volume: 58
  start-page: 1271
  year: 1994
  end-page: 1284
  ident: bib62
  article-title: Surface-area control of organic-carbon accumulation in continental-shelf sediments
  publication-title: Geochim. Cosmoschim. Acta
– reference: Hingston F. J., Posner A. M. and Quirk J. P. (1968) Adsorption of selenite by goethite. In Symposium on Adsorption from Aqueous Solution Advances in Chemical Series, vol. 70. pp. 82–90.
– volume: 48
  start-page: 101
  year: 1997
  end-page: 114
  ident: bib85
  article-title: Effects of crystallinity of goethite. 2. Rates of sorption and desorption of phosphate
  publication-title: Eur. J. Soil Sci.
– volume: 310
  start-page: 8
  year: 2007
  end-page: 17
  ident: bib40
  article-title: Interaction of silicic acid with goethite
  publication-title: J. Colloid Interf. Sci.
– volume: 54
  start-page: 219
  year: 2003
  end-page: 236
  ident: bib47
  article-title: Mineral surfaces and soil organic matter
  publication-title: Eur. J. Soil Sci.
– volume: 63
  start-page: 3009
  year: 1999
  end-page: 3015
  ident: bib74
  article-title: The relationship between molecular structure and ion adsorption on variable charge minerals
  publication-title: Geochim. Cosmochim. Acta
– volume: 64
  start-page: 51
  year: 2000
  end-page: 60
  ident: bib25
  article-title: Adsorption of fulvic acid on goethite
  publication-title: Geochim. Cosmochim. Acta
– volume: 39
  start-page: 1250
  year: 2005
  end-page: 1256
  ident: bib26
  article-title: Using a surface complexation model to predict the mature and stability of nanoparticles
  publication-title: Environ. Sci. Technol.
– volume: 56
  start-page: 270
  year: 1976
  end-page: 283
  ident: bib67
  article-title: Characterization of partially neutralized ferric nitrate solutions
  publication-title: J. Colloid Interf. Sci.
– volume: 141
  start-page: 167
  year: 2007
  end-page: 173
  ident: bib66
  article-title: Contrasting effects of different types of organic material on surface area and microaggregation of goethite
  publication-title: Geoderma
– volume: 20
  start-page: 1
  year: 1992
  end-page: 90
  ident: bib12
  article-title: Physical fractionation of soil and organic matter in primary particle size and density separates
  publication-title: Adv. Soil Sci.
– year: 1981
  ident: bib82
  article-title: Critical Stability Constants
– volume: 16
  start-page: 109
  year: 1976
  end-page: 123
  ident: bib7
  article-title: Sodium bicarbonate as an extractant for soil phosphate, II. Effect of varying the conditions of extraction on the amount of phosphate initially displaced and on the secondary adsorption
  publication-title: Geoderma
– volume: 39
  start-page: 7176
  year: 2005
  end-page: 7184
  ident: bib78
  article-title: Modeling of the solid–solution partitioning of heavy metals and arsenic in embanked flood plain soils of the rivers Rhine and Meuse
  publication-title: Environ. Sci. Technol.
– volume: 34
  start-page: 1591
  year: 2003
  end-page: 1600
  ident: bib22
  article-title: Stabilisation of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradation
  publication-title: Org. Geochem.
– volume: 184
  start-page: 680
  year: 1996
  end-page: 692
  ident: bib38
  article-title: Intrinsic proton affinity of reactive surface groups of metal (hydr)oxides: the bond valence principle
  publication-title: J. Colloid Interf. Sci.
– volume: 35
  start-page: 3369
  year: 2001
  end-page: 3374
  ident: bib75
  article-title: Interaction of calcium and phosphate adsorption on goethite
  publication-title: Environ. Sci. Technol.
– volume: 15
  start-page: 1
  year: 1976
  end-page: 19
  ident: bib102
  article-title: Fate of phosphorus during pedogenesis
  publication-title: Geoderma
– volume: 30
  start-page: 1061
  year: 1996
  end-page: 1071
  ident: bib1
  article-title: Competitive sorption of simple organic acids and sulfate on goethite
  publication-title: Environ. Sci. Technol.
– volume: 40
  start-page: 14
  year: 1992
  end-page: 21
  ident: bib93
  article-title: Fast and slow phosphate sorption by goethite-rich natural materials
  publication-title: Clays Clay Miner.
– volume: 22
  start-page: 389
  year: 2006
  end-page: 397
  ident: bib104
  article-title: Adsorption free energy of variable-charge nanoparticles to a charged surface in relation to the change of the average chemical state of the particles
  publication-title: Langmuir
– volume: 285
  start-page: 476
  year: 2005
  end-page: 486
  ident: bib2
  article-title: Effects of pH and ionic strength on the adsorption of phosphate and arsenate at the goethite–water interface
  publication-title: J. Colloid Interf. Sci.
– volume: 282
  start-page: 1508
  year: 1982
  end-page: 1540
  ident: bib65
  article-title: Activity coefficients of the ionic components of natural water
  publication-title: Am. J. Sci.
– volume: 70
  start-page: 1710
  year: 2006
  end-page: 1727
  ident: bib90
  article-title: Iron-oxide crystallinity increases during soil redox oscillations
  publication-title: Geochim. Cosmoschim. Acta
– volume: 23
  start-page: 3680
  year: 2007
  end-page: 3689
  ident: bib73
  article-title: Geometry, charge distribution and surface speciation of phosphate on goethite
  publication-title: Langmuir
– volume: 134
  start-page: 109
  year: 2006
  end-page: 118
  ident: bib108
  article-title: Interactions between mineral phases in the preservation of soil organic matter
  publication-title: Geoderma
– volume: 42
  start-page: 8747
  year: 2008
  end-page: 8752
  ident: bib106
  article-title: Humic nano-particles at the oxide–water interface: interaction with phosphate ion adsorption
  publication-title: Environ. Sci. Technol.
– year: 1999
  ident: bib9
  article-title: The Surface Complexation of Ions at the Goethite (a-FeOOH)/Water Interface: a Multisite Complexation Approach
– volume: 119
  start-page: 311
  year: 1975
  end-page: 320
  ident: bib5
  article-title: Slow Reactions between soil and anions. 5. Effects of period of prior contact on desorption of phosphate from soils
  publication-title: Soil Sci.
– volume: 31
  start-page: 993
  year: 2003
  end-page: 996
  ident: bib94
  article-title: Nanogoethite is the dominant reactive oxyhydroxide phase in lake and marine sediments
  publication-title: Geology
– volume: 113
  start-page: 341
  year: 2003
  end-page: 355
  ident: bib11
  article-title: Metal ions speciation in a soil and its solution: experimental data and model results
  publication-title: Geoderma
– volume: 69
  start-page: 1527
  year: 2005
  end-page: 1542
  ident: bib4
  article-title: ATR-FTIR spectroscopic characterization of coexisting carbonate surface complexes on hematite
  publication-title: Geochim. Cosmochim. Acta
– volume: 12
  start-page: 265
  year: 1980
  end-page: 294
  ident: bib107
  article-title: A comparison of electrostatic models for the oxide/solution interface
  publication-title: Adv. Colloid Interf. Sci.
– start-page: 1051
  year: 1989
  end-page: 1087
  ident: bib98
  article-title: Allophane and imogolite
  publication-title: Minerals in Soil Environment
– volume: 67
  start-page: 90
  year: 1978
  end-page: 105
  ident: bib18
  article-title: Surface ionization and complexation at the oxide/water interface. II Surface properties of amorphous iron oxyhydroxide and adsorption of metal ions
  publication-title: J. Colloid Interf. Sci.
– volume: 60
  start-page: 1943
  year: 1996
  end-page: 1950
  ident: bib30
  article-title: Competitive adsorption, displacement, and transport of organic matter on iron oxide. 1. Competitive adsorption
  publication-title: Geochim. Cosmoschim. Acta
– year: 1990
  ident: bib21
  article-title: Surface Complexation Modeling: Hydrous Ferric Oxide
– volume: 315
  start-page: 415
  year: 2007
  end-page: 425
  ident: bib72
  article-title: Carbonate adsorption on goethite in competition with phosphate
  publication-title: J. Colloid Interf. Sci.
– volume: 16
  start-page: 91
  year: 1976
  end-page: 107
  ident: bib6
  article-title: Sodium bicarbonate as an extractant for soil phosphate, I. Separation of the factors affecting the amount of phosphate displaced from soil from those affecting secondary adsorption
  publication-title: Geoderma
– volume: 65
  start-page: 803
  year: 2001
  end-page: 812
  ident: bib110
  article-title: Size fractionation upon adsorption of fulvic acid on goethite: equilibrium and kinetic studies
  publication-title: Geochim. Cosmoschim. Acta
– reference: Kinniburgh D. G. (1993) Fit, Technical Report WD/93/23. British Geological Survey.
– volume: 30
  start-page: 1618
  year: 1996
  end-page: 1628
  ident: bib76
  article-title: Microbial reduction of crystalline iron(III) oxides: influence of oxide surface area and potential for cell growth
  publication-title: Environ. Sci. Technol.
– volume: 53
  start-page: 244
  year: 1973
  end-page: 246
  ident: bib80
  article-title: Use of oxalate for Fe extraction from soils
  publication-title: Can. J. Soil Sci.
– volume: 66
  start-page: 1505
  year: 2002
  end-page: 1517
  ident: bib88
  article-title: Formulating the charge-distribution multisite surface complexation model using FITEQL
  publication-title: Soil Sci. Soc. Am. J.
– volume: 389
  start-page: 170
  year: 1997
  end-page: 173
  ident: bib91
  article-title: Mineral control of soil organic carbon storage and turnover
  publication-title: Nature
– volume: 138
  start-page: 12
  year: 2007
  end-page: 19
  ident: bib3
  article-title: Adsorption of a soil humic acid at the surface of goethite and its competitive interaction with phosphate
  publication-title: Geoderma
– volume: 38
  start-page: 4390
  year: 2004
  end-page: 4395
  ident: bib20
  article-title: Leaching of heavy metals from contaminated soils: an experimental and modeling study
  publication-title: Environ. Sci. Technol.
– volume: 58
  start-page: 1701
  year: 1994
  end-page: 1710
  ident: bib54
  article-title: Partitioning and speciation of solid-phase iron in salt-marsh sediments
  publication-title: Geochim. Cosmoschim. Acta
– volume: 10
  start-page: 237
  year: 1973
  end-page: 247
  ident: bib81
  article-title: Natural amorphous ferric hydroxide
  publication-title: Geoderma
– volume: 4
  start-page: 401
  year: 2008
  end-page: 406
  ident: bib32
  article-title: Iron oxide as geochemical nanovectors for metal transport in soil–river systems
  publication-title: Elements
– volume: 31
  start-page: 210
  year: 1967
  ident: bib43
  article-title: A rapid citrate–dithionite extractable iron procedure
  publication-title: Soil Sci. Soc. Am. Proc.
– volume: 70
  start-page: 2679
  year: 2006
  end-page: 2698
  ident: bib70
  article-title: Metal ion binding to iron oxides
  publication-title: Geochim. Cosmoschim. Acta
– volume: 66
  start-page: 967
  year: 1962
  end-page: 973
  ident: bib69
  article-title: The zero point of charge of oxides
  publication-title: J. Phys. Chem.
– volume: 35
  start-page: 4436
  year: 2001
  end-page: 4443
  ident: bib103
  article-title: Contribution of individual sorbents to the control of heavy metal activity in sandy soil
  publication-title: Environ. Sci. Technol.
– volume: 179
  start-page: 488
  year: 1996
  end-page: 508
  ident: bib33
  article-title: A surface structural approach to ion adsorption: the charge distribution (CD) model
  publication-title: J. Colloid Interf. Sci.
– volume: 7
  start-page: 317
  year: 1960
  end-page: 327
  ident: bib63
  article-title: Iron oxide removal from the soils and clays by dithionite–citrate system buffered with sodium bicarbonate
  publication-title: Clays Clay Miner.
– volume: 278
  start-page: 282
  year: 2004
  end-page: 290
  ident: bib39
  article-title: Surface complexation of carbonate on goethite: IR spectroscopy, structure and charge distribution
  publication-title: J. Colloid Interf. Sci.
– volume: 80
  start-page: 467
  year: 2007
  end-page: 484
  ident: bib10
  article-title: On calcium carbonates: from fundamental research to application
  publication-title: Croat. Chem. Acta
– volume: 55
  start-page: 271
  year: 2004
  end-page: 285
  ident: bib60
  article-title: Partitioning of organic carbon, aluminium and cadmium between solid and solution in soils: application of a mineral-humic particle additivity model
  publication-title: Eur. J. Soil Sci
– volume: 67
  start-page: 90
  year: 1978
  ident: 10.1016/j.gca.2009.10.018_bib18
  article-title: Surface ionization and complexation at the oxide/water interface. II Surface properties of amorphous iron oxyhydroxide and adsorption of metal ions
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/0021-9797(78)90217-5
– volume: 282
  start-page: 1508
  year: 1982
  ident: 10.1016/j.gca.2009.10.018_bib65
  article-title: Activity coefficients of the ionic components of natural water
  publication-title: Am. J. Sci.
  doi: 10.2475/ajs.282.9.1508
– volume: 28
  start-page: 38
  issue: 1
  year: 1994
  ident: 10.1016/j.gca.2009.10.018_bib29
  article-title: Adsorption and desorption of natural organic-matter on iron-oxide – mechanisms and models
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00050a007
– volume: 71
  start-page: 25
  issue: 1
  year: 2007
  ident: 10.1016/j.gca.2009.10.018_bib99
  article-title: Sorptive stabilization of organic matter in soils by hydrous iron oxides
  publication-title: Geochim. Cosmoschim. Acta
  doi: 10.1016/j.gca.2006.08.047
– start-page: 1051
  year: 1989
  ident: 10.1016/j.gca.2009.10.018_bib98
  article-title: Allophane and imogolite
– volume: 64
  start-page: 51
  issue: 1
  year: 2000
  ident: 10.1016/j.gca.2009.10.018_bib25
  article-title: Adsorption of fulvic acid on goethite
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(99)00176-3
– volume: 295
  start-page: 657
  issue: 5555
  year: 2002
  ident: 10.1016/j.gca.2009.10.018_bib51
  article-title: Mineral surface control of organic carbon in black shale
  publication-title: Science
  doi: 10.1126/science.1066611
– volume: 33
  start-page: 1393
  issue: 4
  year: 2004
  ident: 10.1016/j.gca.2009.10.018_bib53
  article-title: Phosphorus desorption dynamics in soil and the link to a dynamic concept of bioavailability
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2004.1393
– volume: 4
  start-page: 401
  year: 2008
  ident: 10.1016/j.gca.2009.10.018_bib32
  article-title: Iron oxide as geochemical nanovectors for metal transport in soil–river systems
  publication-title: Elements
  doi: 10.2113/gselements.4.6.401
– volume: 320
  start-page: 359
  issue: 3–4
  year: 2006
  ident: 10.1016/j.gca.2009.10.018_bib28
  article-title: Extent of immobilisation of phosphate during aeration of nutrient-rich, anoxic groundwater
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2005.07.047
– volume: 10
  start-page: 237
  issue: 3
  year: 1973
  ident: 10.1016/j.gca.2009.10.018_bib81
  article-title: Natural amorphous ferric hydroxide
  publication-title: Geoderma
  doi: 10.1016/0016-7061(73)90066-9
– volume: 20
  start-page: 1
  year: 1992
  ident: 10.1016/j.gca.2009.10.018_bib12
  article-title: Physical fractionation of soil and organic matter in primary particle size and density separates
  publication-title: Adv. Soil Sci.
  doi: 10.1007/978-1-4612-2930-8_1
– volume: 149
  start-page: 152
  issue: 1–2
  year: 2009
  ident: 10.1016/j.gca.2009.10.018_bib101
  article-title: Extent and nature of organic coverage of soil mineral surfaces assessed by a gas sorption approach
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2008.11.032
– ident: 10.1016/j.gca.2009.10.018_bib52
– volume: 55
  start-page: 271
  issue: 2
  year: 2004
  ident: 10.1016/j.gca.2009.10.018_bib60
  article-title: Partitioning of organic carbon, aluminium and cadmium between solid and solution in soils: application of a mineral-humic particle additivity model
  publication-title: Eur. J. Soil Sci
  doi: 10.1111/j.1365-2389.2004.00599.x
– volume: 314
  start-page: 107
  issue: 1
  year: 2007
  ident: 10.1016/j.gca.2009.10.018_bib105
  article-title: Adsorption of humic acids onto goethite: effects of molar mass, pH and ionic strength
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2007.05.039
– volume: 63
  start-page: 480
  year: 1978
  ident: 10.1016/j.gca.2009.10.018_bib19
  article-title: Surface ionization and complexation at the oxide/water interface. I. Computation of electrical double layer properties in simple electrolytes
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/S0021-9797(78)80009-5
– volume: 58
  start-page: 1701
  issue: 7
  year: 1994
  ident: 10.1016/j.gca.2009.10.018_bib54
  article-title: Partitioning and speciation of solid-phase iron in salt-marsh sediments
  publication-title: Geochim. Cosmoschim. Acta
  doi: 10.1016/0016-7037(94)90531-2
– year: 1979
  ident: 10.1016/j.gca.2009.10.018_bib56
– volume: 68
  start-page: A502
  issue: 11
  year: 2004
  ident: 10.1016/j.gca.2009.10.018_bib61
  article-title: Modelling uranyl adsorption to quartz – application of the CD-MUSIC concept
  publication-title: Geochim. Cosmoschim. Acta
– volume: 61
  start-page: 1359
  issue: 7
  year: 1997
  ident: 10.1016/j.gca.2009.10.018_bib87
  article-title: Prediction of the thermodynamic properties of aqueous metal complexes to 1000°C and 5kb
  publication-title: Geochim. Cosmoschim. Acta
  doi: 10.1016/S0016-7037(97)00009-4
– volume: 147
  start-page: 23
  issue: 1–2
  year: 2008
  ident: 10.1016/j.gca.2009.10.018_bib100
  article-title: Climate and parent material controls on organic matter storage in surface soils: a three-pool, density-separation approach
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2008.07.010
– volume: 19
  start-page: 611
  issue: 4
  year: 2004
  ident: 10.1016/j.gca.2009.10.018_bib109
  article-title: Colloid formation in groundwater: effect of phosphate, manganese, silicate and dissolved organic matter on the dynamic heterogeneous oxidation of ferrous iron
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2003.08.003
– volume: 71
  start-page: 711
  issue: 3
  year: 2007
  ident: 10.1016/j.gca.2009.10.018_bib48
  article-title: Increased stability of organic matter sorbed to ferrihydrite and goethite on aging
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2006.0189
– volume: 56
  start-page: 270
  issue: 2
  year: 1976
  ident: 10.1016/j.gca.2009.10.018_bib67
  article-title: Characterization of partially neutralized ferric nitrate solutions
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/0021-9797(76)90253-8
– volume: 38
  start-page: 4390
  issue: 16
  year: 2004
  ident: 10.1016/j.gca.2009.10.018_bib20
  article-title: Leaching of heavy metals from contaminated soils: an experimental and modeling study
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es049885v
– volume: 63
  start-page: 2929
  issue: 19–20
  year: 1999
  ident: 10.1016/j.gca.2009.10.018_bib13
  article-title: Competitive sorption of copper and lead at the oxide–water interface: implications for surface site density
  publication-title: Geochim. Cosmoschim. Acta
  doi: 10.1016/S0016-7037(99)00266-5
– volume: 31
  start-page: 711
  issue: 7–8
  year: 2000
  ident: 10.1016/j.gca.2009.10.018_bib46
  article-title: The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils
  publication-title: Org. Geochem.
  doi: 10.1016/S0146-6380(00)00046-2
– volume: 12
  start-page: 265
  year: 1980
  ident: 10.1016/j.gca.2009.10.018_bib107
  article-title: A comparison of electrostatic models for the oxide/solution interface
  publication-title: Adv. Colloid Interf. Sci.
  doi: 10.1016/0001-8686(80)80012-1
– volume: 61
  start-page: 133
  issue: 2
  year: 1999
  ident: 10.1016/j.gca.2009.10.018_bib55
  article-title: Identification of stoichiometric iron–phosphorus colloids produced in a eutrophic lake
  publication-title: Aquat.1 Sci.
  doi: 10.1007/s000270050058
– volume: 80
  start-page: 467
  issue: 3–4
  year: 2007
  ident: 10.1016/j.gca.2009.10.018_bib10
  article-title: On calcium carbonates: from fundamental research to application
  publication-title: Croat. Chem. Acta
– volume: 35
  start-page: 1651
  issue: 8
  year: 2001
  ident: 10.1016/j.gca.2009.10.018_bib97
  article-title: Reaction-based model describing competitive sorption and transport of Cd, Zn, and Ni in an acidic soil
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0001106
– volume: 113
  start-page: 341
  issue: 3–4
  year: 2003
  ident: 10.1016/j.gca.2009.10.018_bib11
  article-title: Metal ions speciation in a soil and its solution: experimental data and model results
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(02)00369-5
– volume: 39
  start-page: 7176
  issue: 18
  year: 2005
  ident: 10.1016/j.gca.2009.10.018_bib78
  article-title: Modeling of the solid–solution partitioning of heavy metals and arsenic in embanked flood plain soils of the rivers Rhine and Meuse
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es048154s
– volume: 40
  start-page: 14
  issue: 1
  year: 1992
  ident: 10.1016/j.gca.2009.10.018_bib93
  article-title: Fast and slow phosphate sorption by goethite-rich natural materials
  publication-title: Clays Clay Miner.
  doi: 10.1346/CCMN.1992.0400103
– volume: 7
  start-page: 317
  year: 1960
  ident: 10.1016/j.gca.2009.10.018_bib63
  article-title: Iron oxide removal from the soils and clays by dithionite–citrate system buffered with sodium bicarbonate
  publication-title: Clays Clay Miner.
  doi: 10.1346/CCMN.1958.0070122
– volume: 389
  start-page: 170
  issue: 6647
  year: 1997
  ident: 10.1016/j.gca.2009.10.018_bib91
  article-title: Mineral control of soil organic carbon storage and turnover
  publication-title: Nature
  doi: 10.1038/38260
– volume: 134
  start-page: 109
  issue: 1–2
  year: 2006
  ident: 10.1016/j.gca.2009.10.018_bib108
  article-title: Interactions between mineral phases in the preservation of soil organic matter
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2005.09.001
– ident: 10.1016/j.gca.2009.10.018_bib42
  doi: 10.1021/ba-1968-0079.ch008
– volume: 30
  start-page: 1618
  issue: 5
  year: 1996
  ident: 10.1016/j.gca.2009.10.018_bib76
  article-title: Microbial reduction of crystalline iron(III) oxides: influence of oxide surface area and potential for cell growth
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9506216
– year: 1990
  ident: 10.1016/j.gca.2009.10.018_bib21
– volume: 278
  start-page: 282
  year: 2004
  ident: 10.1016/j.gca.2009.10.018_bib39
  article-title: Surface complexation of carbonate on goethite: IR spectroscopy, structure and charge distribution
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2004.06.014
– volume: 35
  start-page: 4436
  issue: 22
  year: 2001
  ident: 10.1016/j.gca.2009.10.018_bib103
  article-title: Contribution of individual sorbents to the control of heavy metal activity in sandy soil
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es010085j
– volume: 119
  start-page: 311
  issue: 4
  year: 1975
  ident: 10.1016/j.gca.2009.10.018_bib5
  article-title: Slow Reactions between soil and anions. 5. Effects of period of prior contact on desorption of phosphate from soils
  publication-title: Soil Sci.
  doi: 10.1097/00010694-197504000-00009
– volume: 31
  start-page: 210
  issue: 2
  year: 1967
  ident: 10.1016/j.gca.2009.10.018_bib43
  article-title: A rapid citrate–dithionite extractable iron procedure
  publication-title: Soil Sci. Soc. Am. Proc.
  doi: 10.2136/sssaj1967.03615995003100020020x
– volume: 48
  start-page: 101
  issue: 1
  year: 1997
  ident: 10.1016/j.gca.2009.10.018_bib85
  article-title: Effects of crystallinity of goethite. 2. Rates of sorption and desorption of phosphate
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.1997.tb00189.x
– volume: 80
  start-page: 313
  issue: 3–4
  year: 2007
  ident: 10.1016/j.gca.2009.10.018_bib36
  article-title: Surface complexation of selenite on goethite: MO/DFT geometry and charge distribution
  publication-title: Croat. Chem. Acta
– year: 1998
  ident: 10.1016/j.gca.2009.10.018_bib50
– volume: 60
  start-page: 1943
  issue: 11
  year: 1996
  ident: 10.1016/j.gca.2009.10.018_bib30
  article-title: Competitive adsorption, displacement, and transport of organic matter on iron oxide. 1. Competitive adsorption
  publication-title: Geochim. Cosmoschim. Acta
  doi: 10.1016/0016-7037(96)00059-2
– volume: 19
  start-page: 1937
  issue: 12
  year: 2004
  ident: 10.1016/j.gca.2009.10.018_bib58
  article-title: U(VI) adsorption on natural iron-coated sands: comparison of approaches for modeling adsorption on heterogeneous environmental materials
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2004.05.010
– volume: 30
  start-page: 508
  year: 1924
  ident: 10.1016/j.gca.2009.10.018_bib84
  article-title: Zur theory der electrolytischen doppelschicht
  publication-title: Z. Electrochem.
– volume: 22
  start-page: 389
  issue: 1
  year: 2006
  ident: 10.1016/j.gca.2009.10.018_bib104
  article-title: Adsorption free energy of variable-charge nanoparticles to a charged surface in relation to the change of the average chemical state of the particles
  publication-title: Langmuir
  doi: 10.1021/la051730t
– volume: 73
  start-page: 4423
  year: 2009
  ident: 10.1016/j.gca.2009.10.018_bib37
  article-title: A surface structural model for ferrihydrite I: sites related to primary charge, molar mass, and mass density
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2009.04.032
– volume: 62
  start-page: 2609
  issue: 15
  year: 1998
  ident: 10.1016/j.gca.2009.10.018_bib57
  article-title: An assemblage model for cation binding by natural particulate matter
  publication-title: Geochim. Cosmoschim. Acta
  doi: 10.1016/S0016-7037(98)00183-5
– volume: 53
  start-page: 244
  issue: 2
  year: 1973
  ident: 10.1016/j.gca.2009.10.018_bib80
  article-title: Use of oxalate for Fe extraction from soils
  publication-title: Can. J. Soil Sci.
  doi: 10.4141/cjss73-037
– volume: 285
  start-page: 476
  issue: 2
  year: 2005
  ident: 10.1016/j.gca.2009.10.018_bib2
  article-title: Effects of pH and ionic strength on the adsorption of phosphate and arsenate at the goethite–water interface
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2004.12.032
– volume: 370
  start-page: 549
  issue: 6490
  year: 1994
  ident: 10.1016/j.gca.2009.10.018_bib49
  article-title: Sorptive preservation of labile organic-matter in marine-sediments
  publication-title: Nature
  doi: 10.1038/370549a0
– volume: 34
  start-page: 1591
  issue: 12
  year: 2003
  ident: 10.1016/j.gca.2009.10.018_bib22
  article-title: Stabilisation of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradation
  publication-title: Org. Geochem.
  doi: 10.1016/j.orggeochem.2003.08.007
– volume: 299
  start-page: 828
  year: 1999
  ident: 10.1016/j.gca.2009.10.018_bib17
  article-title: The role of electrolyte anions (ClO4−, NO3−, and Cl−) in divalent metal (M2+) adsorption on oxide and hydroxide surfaces in salt solution
  publication-title: Am. J. Sci.
  doi: 10.2475/ajs.299.10.828
– volume: 66
  start-page: 1505
  issue: 5
  year: 2002
  ident: 10.1016/j.gca.2009.10.018_bib88
  article-title: Formulating the charge-distribution multisite surface complexation model using FITEQL
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2002.1505
– volume: 31
  start-page: 993
  issue: 11
  year: 2003
  ident: 10.1016/j.gca.2009.10.018_bib94
  article-title: Nanogoethite is the dominant reactive oxyhydroxide phase in lake and marine sediments
  publication-title: Geology
  doi: 10.1130/G19924.1
– volume: 43
  start-page: 821
  issue: 4
  year: 1979
  ident: 10.1016/j.gca.2009.10.018_bib14
  article-title: Simplified ethylene-glycol monoethyl ether procedure for assessment of soil surface-area
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1979.03615995004300040045x
– volume: 300
  start-page: 511
  issue: 2
  year: 2006
  ident: 10.1016/j.gca.2009.10.018_bib59
  article-title: Kinetics of phosphate adsorption on goethite: comparing batch adsorption and ATR-IR measurements
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2006.04.015
– volume: 23
  start-page: 3680
  year: 2007
  ident: 10.1016/j.gca.2009.10.018_bib73
  article-title: Geometry, charge distribution and surface speciation of phosphate on goethite
  publication-title: Langmuir
  doi: 10.1021/la062965n
– volume: 91
  start-page: 227
  issue: 1–4
  year: 2004
  ident: 10.1016/j.gca.2009.10.018_bib44
  article-title: An authigenic iron phosphate phase in estuarine sediments: composition, formation and chemical reactivity
  publication-title: Mar. Chem.
  doi: 10.1016/j.marchem.2004.04.006
– volume: 69
  start-page: 225
  issue: 2
  year: 2005
  ident: 10.1016/j.gca.2009.10.018_bib86
  article-title: Prediction of surface charge on oxides in salt solutions: revisions for 1:1 (M+L−) electrolytes
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2004.05.040
– volume: 65
  start-page: 803
  issue: 5
  year: 2001
  ident: 10.1016/j.gca.2009.10.018_bib110
  article-title: Size fractionation upon adsorption of fulvic acid on goethite: equilibrium and kinetic studies
  publication-title: Geochim. Cosmoschim. Acta
  doi: 10.1016/S0016-7037(00)00536-6
– volume: 42
  start-page: 7891
  issue: 21
  year: 2008
  ident: 10.1016/j.gca.2009.10.018_bib24
  article-title: Characterization of ferrihydrite–soil organic matter coprecipitates by X-ray diffraction and Mossbauer spectroscopy
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es800881w
– volume: 66
  start-page: 967
  year: 1962
  ident: 10.1016/j.gca.2009.10.018_bib69
  article-title: The zero point of charge of oxides
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100812a002
– volume: 30
  start-page: 399
  issue: 5–6
  year: 2000
  ident: 10.1016/j.gca.2009.10.018_bib79
  article-title: New insights into organic-mineral particles: composition, properties and models of molecular structure
  publication-title: Biol. Fert. Soils
  doi: 10.1007/s003740050020
– volume: 179
  start-page: 488
  year: 1996
  ident: 10.1016/j.gca.2009.10.018_bib33
  article-title: A surface structural approach to ion adsorption: the charge distribution (CD) model
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1006/jcis.1996.0242
– volume: 6
  start-page: 602
  year: 1990
  ident: 10.1016/j.gca.2009.10.018_bib89
  article-title: Protonation of phosphate on the surface of goethite as studied by CIR-FTIR and electrophoretic mobility
  publication-title: Langmuir
  doi: 10.1021/la00093a015
– volume: 15
  start-page: 1
  issue: 1
  year: 1976
  ident: 10.1016/j.gca.2009.10.018_bib102
  article-title: Fate of phosphorus during pedogenesis
  publication-title: Geoderma
  doi: 10.1016/0016-7061(76)90066-5
– volume: 69
  start-page: 1527
  issue: 6
  year: 2005
  ident: 10.1016/j.gca.2009.10.018_bib4
  article-title: ATR-FTIR spectroscopic characterization of coexisting carbonate surface complexes on hematite
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2004.08.002
– volume: 66
  start-page: 1836
  issue: 6
  year: 2002
  ident: 10.1016/j.gca.2009.10.018_bib27
  article-title: Predicting molybdenum adsorption by soils using soil chemical. Parameters in the constant capacitance model
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2002.1836
– volume: 48
  start-page: 111
  issue: 1
  year: 2000
  ident: 10.1016/j.gca.2009.10.018_bib45
  article-title: Transmission electron microscopy of synthetic 2- and 6-line ferrihydrite
  publication-title: Clays Clay Miner.
  doi: 10.1346/CCMN.2000.0480114
– volume: 210
  start-page: 182
  year: 1999
  ident: 10.1016/j.gca.2009.10.018_bib34
  article-title: Surface structural ion adsorption modeling of competitive binding of oxyanions by metal (hydr)oxides
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1006/jcis.1998.5904
– volume: 29
  start-page: 1603
  issue: 11–14
  year: 1998
  ident: 10.1016/j.gca.2009.10.018_bib95
  article-title: One hundredth molar calcium chloride extraction procedure. Part I: a review of soil chemical, analytical, and plant nutritional aspects
  publication-title: Commun. Soil Sci. Plan.
  doi: 10.1080/00103629809370053
– volume: 293
  start-page: 312
  year: 2006
  ident: 10.1016/j.gca.2009.10.018_bib71
  article-title: A new structural approach for outersphere complexation, tracing the location of electrolyte ions
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2005.06.089
– volume: 35
  start-page: 3369
  year: 2001
  ident: 10.1016/j.gca.2009.10.018_bib75
  article-title: Interaction of calcium and phosphate adsorption on goethite
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es000210b
– volume: 310
  start-page: 8
  year: 2007
  ident: 10.1016/j.gca.2009.10.018_bib40
  article-title: Interaction of silicic acid with goethite
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2007.01.065
– volume: 320
  start-page: 400
  issue: 2
  year: 2008
  ident: 10.1016/j.gca.2009.10.018_bib83
  article-title: Multi-competitive interaction of As(III) and As(V) oxyanions with Ca2+, Mg2+, PO43−, and CO32− ions on goethite
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2008.01.007
– volume: 18
  start-page: 395
  issue: 4
  year: 1980
  ident: 10.1016/j.gca.2009.10.018_bib8
  article-title: Describing the effects of electrolyte on adsorption of phosphate by a variable charge surface
  publication-title: Aust. J. Soil Res.
  doi: 10.1071/SR9800395
– volume: 63
  start-page: 3009
  issue: 19/20
  year: 1999
  ident: 10.1016/j.gca.2009.10.018_bib74
  article-title: The relationship between molecular structure and ion adsorption on variable charge minerals
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(99)00228-8
– volume: 32
  start-page: 688
  issue: 5
  year: 1998
  ident: 10.1016/j.gca.2009.10.018_bib64
  article-title: Application of surface complexation precipitation modeling to contaminant leaching from weathered municipal solid waste incinerator bottom ash
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9701624
– volume: 52
  start-page: 639
  issue: 4
  year: 2001
  ident: 10.1016/j.gca.2009.10.018_bib31
  article-title: Modelling competitive anion adsorption on oxide minerals and an allophane-containing soil
  publication-title: Eur. J. Soil Sci.
  doi: 10.1046/j.1365-2389.2001.00414.x
– volume: 315
  start-page: 415
  issue: 2
  year: 2007
  ident: 10.1016/j.gca.2009.10.018_bib72
  article-title: Carbonate adsorption on goethite in competition with phosphate
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2007.07.017
– volume: 138
  start-page: 12
  issue: 1–2
  year: 2007
  ident: 10.1016/j.gca.2009.10.018_bib3
  article-title: Adsorption of a soil humic acid at the surface of goethite and its competitive interaction with phosphate
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2006.10.011
– volume: 54
  start-page: 1007
  year: 1990
  ident: 10.1016/j.gca.2009.10.018_bib92
  article-title: Phosphate adsorption and desorption by goethites differing in crystal morphology
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1990.03615995005400040012x
– volume: 43
  start-page: 7
  year: 1963
  ident: 10.1016/j.gca.2009.10.018_bib15
  article-title: A method for the determination of free iron in soils and clays
  publication-title: Can. J. Soil Sci.
  doi: 10.4141/cjss63-002
– volume: vol. 939
  year: 1954
  ident: 10.1016/j.gca.2009.10.018_bib68
– volume: 70
  start-page: 2679
  issue: 11
  year: 2006
  ident: 10.1016/j.gca.2009.10.018_bib70
  article-title: Metal ion binding to iron oxides
  publication-title: Geochim. Cosmoschim. Acta
  doi: 10.1016/j.gca.2006.02.021
– year: 1998
  ident: 10.1016/j.gca.2009.10.018_bib77
  article-title: Uranium sorption onto natural sands as a function of sediment characteristics and solution pH
– year: 1999
  ident: 10.1016/j.gca.2009.10.018_bib9
– volume: 301
  start-page: 1
  year: 2006
  ident: 10.1016/j.gca.2009.10.018_bib35
  article-title: On the relationship between charge distribution, surface hydration and the structure of the interface of metal hydroxides
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2006.05.008
– volume: 56
  start-page: 753
  issue: 6
  year: 2005
  ident: 10.1016/j.gca.2009.10.018_bib23
  article-title: Organo-mineral associations in sandy acid forest soils: importance of specific surface area, iron oxides and micropores
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2005.00710.x
– volume: 16
  start-page: 91
  issue: 2
  year: 1976
  ident: 10.1016/j.gca.2009.10.018_bib6
  article-title: Sodium bicarbonate as an extractant for soil phosphate, I. Separation of the factors affecting the amount of phosphate displaced from soil from those affecting secondary adsorption
  publication-title: Geoderma
  doi: 10.1016/0016-7061(76)90033-1
– year: 1981
  ident: 10.1016/j.gca.2009.10.018_bib82
– volume: 74
  start-page: 59
  issue: 1
  year: 2010
  ident: 10.1016/j.gca.2009.10.018_bib41
  article-title: Nanoparticles in natural systems II: the natural oxide fraction at interaction with natural organic matter and phosphate
  publication-title: Geochim. Cosmoschim. Acta
  doi: 10.1016/j.gca.2009.10.019
– volume: 184
  start-page: 680
  year: 1996
  ident: 10.1016/j.gca.2009.10.018_bib38
  article-title: Intrinsic proton affinity of reactive surface groups of metal (hydr)oxides: the bond valence principle
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1006/jcis.1996.0666
– volume: 58
  start-page: 1271
  issue: 4
  year: 1994
  ident: 10.1016/j.gca.2009.10.018_bib62
  article-title: Surface-area control of organic-carbon accumulation in continental-shelf sediments
  publication-title: Geochim. Cosmoschim. Acta
  doi: 10.1016/0016-7037(94)90381-6
– volume: 54
  start-page: 219
  issue: 2
  year: 2003
  ident: 10.1016/j.gca.2009.10.018_bib47
  article-title: Mineral surfaces and soil organic matter
  publication-title: Eur. J. Soil Sci.
  doi: 10.1046/j.1365-2389.2003.00544.x
– year: 1996
  ident: 10.1016/j.gca.2009.10.018_bib16
– volume: 17
  start-page: 35
  issue: 1
  year: 1988
  ident: 10.1016/j.gca.2009.10.018_bib96
  article-title: Model for long-term phosphate reaction-kinetics in soil
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq1988.00472425001700010005x
– volume: 16
  start-page: 109
  issue: 2
  year: 1976
  ident: 10.1016/j.gca.2009.10.018_bib7
  article-title: Sodium bicarbonate as an extractant for soil phosphate, II. Effect of varying the conditions of extraction on the amount of phosphate initially displaced and on the secondary adsorption
  publication-title: Geoderma
  doi: 10.1016/0016-7061(76)90034-3
– volume: 141
  start-page: 167
  issue: 3–4
  year: 2007
  ident: 10.1016/j.gca.2009.10.018_bib66
  article-title: Contrasting effects of different types of organic material on surface area and microaggregation of goethite
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2007.05.003
– volume: 42
  start-page: 8747
  issue: 23
  year: 2008
  ident: 10.1016/j.gca.2009.10.018_bib106
  article-title: Humic nano-particles at the oxide–water interface: interaction with phosphate ion adsorption
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es801631d
– volume: 39
  start-page: 1250
  issue: 5
  year: 2005
  ident: 10.1016/j.gca.2009.10.018_bib26
  article-title: Using a surface complexation model to predict the mature and stability of nanoparticles
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0491984
– volume: 30
  start-page: 1061
  year: 1996
  ident: 10.1016/j.gca.2009.10.018_bib1
  article-title: Competitive sorption of simple organic acids and sulfate on goethite
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es940723g
– volume: 70
  start-page: 1710
  issue: 7
  year: 2006
  ident: 10.1016/j.gca.2009.10.018_bib90
  article-title: Iron-oxide crystallinity increases during soil redox oscillations
  publication-title: Geochim. Cosmoschim. Acta
  doi: 10.1016/j.gca.2005.12.005
SSID ssj0007550
Score 2.375261
Snippet Information on the particle size and reactive surface area of natural samples is essential for the application of surface complexation models (SCM) to predict...
SourceID wageningen
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 41
SubjectTerms charge-distribution
competitive sorption
ion adsorption
iron-oxides
mineral surfaces
molecular-structure
phosphate adsorption
secondary adsorption
soil organic-matter
water interface
Title Nanoparticles in natural systems I: The effective reactive surface area of the natural oxide fraction in field samples
URI https://dx.doi.org/10.1016/j.gca.2009.10.018
https://www.proquest.com/docview/36509610
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F391837
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoqBKXqoVW3ZZSH3qqFIg3sR1zQ6h0AcEJJG6Wn9VWKIs2u0Av_e2diZ2FShWHnhJZmcjyPDxjz3xDyJfSWeUFdwVEPLaoubSFDVVVWMcCFxY2tYC1w-cXYnJVn17z6zVyNNTCYFpltv3JpvfWOo_s59Xcv51OscaXCZBXWar-OgpCoI1xpQSI9sbhydnkYmWQJeepEoWJAgmGy80-zeuHMwm1EnO8sPXHv7enJ-7n5j1oetuXPj3Zio5fk1fZh6SHaZpvyFpot8jL732P3l_b5A4sJoTCOeONTlvao3cCRYJt7ujJAQXxoCmXA8wdBc8xvXTLeTQuUAMjdBYpuIcr6tnD1Aca56kUAv_bp7_RziDCcPeWXB5_uzyaFLm9QmEgaFxACOoY88LJAGGXBO02cmxEg6hctmxCY3npvWqCN3xsraoU87WLnhkeYmNU9Y6st7M2vCe09I1gMSoZa1c3gVmgV6aMXnpVc8VGpBwWVbsMPY4dMG70kGP2UwMfsCWmwiHgw4h8XZHcJtyN5z6uB07pv4RHw77wHNnngasalApvSkwbZstOV4grCI7liFSPzNYtdnfqNAJy5yM2fb-c6_YGH6A9QKfAQsoP_zedj2QzpSbg-c4OWV_Ml-ETeDwLu0te7P1mu1mu_wDtrgKi
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-QwDI4QCMEFAbuIYXnkwAmp0NCmafaGEDA8T7MStyhPNAh10HQGlgu_fe2m5SGtOHBqFdVVVceOnXz-TMhuao10BbcJZDwmybkwifFZlhjLPC8MLGoea4evb4r-n_zilt_OkOOuFgZhla3vjz698dbtyEH7Nw8eh0Os8WUFzFeRyuY4ClKguRzMF61z__Ud5yE4j3UorEjw8e5oswF53VkdOSsR4YWNP_6_OH0IPhefwc6rpvDpw0J0ukyW2giSHsWPXCEzvlol82dNh96XH-QJ_CUkwi3ejQ4r2nB3gkQkba7p-W8Kk4NGJAc4OwpxY7ypp-OgracaRugoUAgO36RHf4fO0zCOhRD43gb8RmuN_ML1TzI4PRkc95O2uUKiIWWcQAJqGXOFFR6SLgG2rcWhLkrk5DJp6UvDU-dk6Z3mh8bITDKX2-CY5j6UWmZrZLYaVX6d0NSVBQtBipDbvPTMgLzUaXDCyZxL1iNp91OVbYnHsf_Fg-oQZvcK9IANMSUOgR56ZO9N5DGybnz1cN5pSn2aOgpWha_EdjqtKjApPCfRlR9Na5UhqyCElT2SvStbVdjbqVZIx91usKnn6VhVD3gB2wE5Cf5RbHzvc3bIQn9wfaWuzm8uf5HFCFLAnZ5NMjsZT_0WxD4Ts93M7X8PqANm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoparticles+in+natural+systems+I%3A+The+effective+reactive+surface+area+of+the+natural+oxide+fraction+in+field+samples&rft.jtitle=Geochimica+et+cosmochimica+acta&rft.au=Hiemstra%2C+Tjisse&rft.au=Antelo%2C+Juan&rft.au=Rahnemaie%2C+Rasoul&rft.au=Riemsdijk%2C+Willem+H.+van&rft.date=2010&rft.pub=Elsevier+Ltd&rft.issn=0016-7037&rft.eissn=1872-9533&rft.volume=74&rft.issue=1&rft.spage=41&rft.epage=58&rft_id=info:doi/10.1016%2Fj.gca.2009.10.018&rft.externalDocID=S0016703709006401
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7037&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7037&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7037&client=summon