Photoprotection Mechanism of p‑Methoxy Methylcinnamate: A CASPT2 Study
p-Methoxy methylcinnamate (p-MMC) shares the same molecular skeleton with octyl methoxycinnamate sunscreen. It is recently found that adding one water to p-MMC can significantly enhance the photoprotection efficiency. However, the physical origin is elusive. Herein we have employed multireference co...
Saved in:
Published in | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Vol. 119; no. 47; pp. 11488 - 11497 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
25.11.2015
|
Online Access | Get full text |
Cover
Loading…
Abstract | p-Methoxy methylcinnamate (p-MMC) shares the same molecular skeleton with octyl methoxycinnamate sunscreen. It is recently found that adding one water to p-MMC can significantly enhance the photoprotection efficiency. However, the physical origin is elusive. Herein we have employed multireference complete active space self-consistent field (CASSCF) and multistate complete active-space second-order perturbation (MS-CASPT2) methods to scrutinize the photophysical and photochemical mechanism of p-MMC and its one-water complex p-MMC–W. Specifically, we optimize the stationary-point structures on the 1ππ*, 1nπ*, and S0 potential energy surfaces to locate the 1ππ*/S0 and 1ππ*/1nπ* conical intersections and to map 1ππ* and 1nπ* excited-state relaxation paths. On the basis of the results, we find that, for the trans p-MMC, the major 1ππ* deactivation path is decaying to the dark 1nπ* state via the in-plane 1ππ*/1nπ* crossing point, which only need overcome a small barrier of 2.5 kcal/mol; the minor one is decaying to the S0 state via the 1ππ*/S0 conical intersection induced by out-of-plane photoisomerization. For the cis p-MMC, these two decay paths are comparable 1ππ* deactivation paths: one is decaying to the dark 1nπ* state via the 1ππ*/1nπ* crossing point, and the second is decaying to the ground state via the 1ππ*/S0 conical intersection. One-water hydration stabilizes the 1ππ* state and meanwhile destabilizes the 1nπ* state. As a consequence, the 1ππ* deactivation path to the dark 1nπ* state is heavily inhibited. The related barriers are increased to 5.8 and 3.3 kcal/mol for the trans and cis p-MMC–W, respectively. In comparison, the barriers associated with the photoisomerization-induced 1ππ* decay paths are reduced to 2.5 and 1.3 kcal/mol for the trans and cis p-MMC–W. Therefore, the 1ππ* decay paths to the S0 state are dominant relaxation channels when adding one water molecule. Finally, the present work contributes a lot of knowledge to understanding the photoprotection mechanism of methylcinnamate derivatives. |
---|---|
AbstractList | p-Methoxy methylcinnamate (p-MMC) shares the same molecular skeleton with octyl methoxycinnamate sunscreen. It is recently found that adding one water to p-MMC can significantly enhance the photoprotection efficiency. However, the physical origin is elusive. Herein we have employed multireference complete active space self-consistent field (CASSCF) and multistate complete active-space second-order perturbation (MS-CASPT2) methods to scrutinize the photophysical and photochemical mechanism of p-MMC and its one-water complex p-MMC-W. Specifically, we optimize the stationary-point structures on the (1)ππ*, (1)nπ*, and S0 potential energy surfaces to locate the (1)ππ*/S0 and (1)ππ*/(1)nπ* conical intersections and to map (1)ππ* and (1)nπ* excited-state relaxation paths. On the basis of the results, we find that, for the trans p-MMC, the major (1)ππ* deactivation path is decaying to the dark (1)nπ* state via the in-plane (1)ππ*/(1)nπ* crossing point, which only need overcome a small barrier of 2.5 kcal/mol; the minor one is decaying to the S0 state via the (1)ππ*/S0 conical intersection induced by out-of-plane photoisomerization. For the cis p-MMC, these two decay paths are comparable (1)ππ* deactivation paths: one is decaying to the dark (1)nπ* state via the (1)ππ*/(1)nπ* crossing point, and the second is decaying to the ground state via the (1)ππ*/S0 conical intersection. One-water hydration stabilizes the (1)ππ* state and meanwhile destabilizes the (1)nπ* state. As a consequence, the (1)ππ* deactivation path to the dark (1)nπ* state is heavily inhibited. The related barriers are increased to 5.8 and 3.3 kcal/mol for the trans and cis p-MMC-W, respectively. In comparison, the barriers associated with the photoisomerization-induced (1)ππ* decay paths are reduced to 2.5 and 1.3 kcal/mol for the trans and cis p-MMC-W. Therefore, the (1)ππ* decay paths to the S0 state are dominant relaxation channels when adding one water molecule. Finally, the present work contributes a lot of knowledge to understanding the photoprotection mechanism of methylcinnamate derivatives.p-Methoxy methylcinnamate (p-MMC) shares the same molecular skeleton with octyl methoxycinnamate sunscreen. It is recently found that adding one water to p-MMC can significantly enhance the photoprotection efficiency. However, the physical origin is elusive. Herein we have employed multireference complete active space self-consistent field (CASSCF) and multistate complete active-space second-order perturbation (MS-CASPT2) methods to scrutinize the photophysical and photochemical mechanism of p-MMC and its one-water complex p-MMC-W. Specifically, we optimize the stationary-point structures on the (1)ππ*, (1)nπ*, and S0 potential energy surfaces to locate the (1)ππ*/S0 and (1)ππ*/(1)nπ* conical intersections and to map (1)ππ* and (1)nπ* excited-state relaxation paths. On the basis of the results, we find that, for the trans p-MMC, the major (1)ππ* deactivation path is decaying to the dark (1)nπ* state via the in-plane (1)ππ*/(1)nπ* crossing point, which only need overcome a small barrier of 2.5 kcal/mol; the minor one is decaying to the S0 state via the (1)ππ*/S0 conical intersection induced by out-of-plane photoisomerization. For the cis p-MMC, these two decay paths are comparable (1)ππ* deactivation paths: one is decaying to the dark (1)nπ* state via the (1)ππ*/(1)nπ* crossing point, and the second is decaying to the ground state via the (1)ππ*/S0 conical intersection. One-water hydration stabilizes the (1)ππ* state and meanwhile destabilizes the (1)nπ* state. As a consequence, the (1)ππ* deactivation path to the dark (1)nπ* state is heavily inhibited. The related barriers are increased to 5.8 and 3.3 kcal/mol for the trans and cis p-MMC-W, respectively. In comparison, the barriers associated with the photoisomerization-induced (1)ππ* decay paths are reduced to 2.5 and 1.3 kcal/mol for the trans and cis p-MMC-W. Therefore, the (1)ππ* decay paths to the S0 state are dominant relaxation channels when adding one water molecule. Finally, the present work contributes a lot of knowledge to understanding the photoprotection mechanism of methylcinnamate derivatives. p-Methoxy methylcinnamate (p-MMC) shares the same molecular skeleton with octyl methoxycinnamate sunscreen. It is recently found that adding one water to p-MMC can significantly enhance the photoprotection efficiency. However, the physical origin is elusive. Herein we have employed multireference complete active space self-consistent field (CASSCF) and multistate complete active-space second-order perturbation (MS-CASPT2) methods to scrutinize the photophysical and photochemical mechanism of p-MMC and its one-water complex p-MMC–W. Specifically, we optimize the stationary-point structures on the 1ππ*, 1nπ*, and S0 potential energy surfaces to locate the 1ππ*/S0 and 1ππ*/1nπ* conical intersections and to map 1ππ* and 1nπ* excited-state relaxation paths. On the basis of the results, we find that, for the trans p-MMC, the major 1ππ* deactivation path is decaying to the dark 1nπ* state via the in-plane 1ππ*/1nπ* crossing point, which only need overcome a small barrier of 2.5 kcal/mol; the minor one is decaying to the S0 state via the 1ππ*/S0 conical intersection induced by out-of-plane photoisomerization. For the cis p-MMC, these two decay paths are comparable 1ππ* deactivation paths: one is decaying to the dark 1nπ* state via the 1ππ*/1nπ* crossing point, and the second is decaying to the ground state via the 1ππ*/S0 conical intersection. One-water hydration stabilizes the 1ππ* state and meanwhile destabilizes the 1nπ* state. As a consequence, the 1ππ* deactivation path to the dark 1nπ* state is heavily inhibited. The related barriers are increased to 5.8 and 3.3 kcal/mol for the trans and cis p-MMC–W, respectively. In comparison, the barriers associated with the photoisomerization-induced 1ππ* decay paths are reduced to 2.5 and 1.3 kcal/mol for the trans and cis p-MMC–W. Therefore, the 1ππ* decay paths to the S0 state are dominant relaxation channels when adding one water molecule. Finally, the present work contributes a lot of knowledge to understanding the photoprotection mechanism of methylcinnamate derivatives. p-Methoxy methylcinnamate (p-MMC) shares the same molecular skeleton with octyl methoxycinnamate sunscreen. It is recently found that adding one water to p-MMC can significantly enhance the photoprotection efficiency. However, the physical origin is elusive. Herein we have employed multireference complete active space self-consistent field (CASSCF) and multistate complete active-space second-order perturbation (MS-CASPT2) methods to scrutinize the photophysical and photochemical mechanism of p-MMC and its one-water complex p-MMC-W. Specifically, we optimize the stationary-point structures on the (1)ππ*, (1)nπ*, and S0 potential energy surfaces to locate the (1)ππ*/S0 and (1)ππ*/(1)nπ* conical intersections and to map (1)ππ* and (1)nπ* excited-state relaxation paths. On the basis of the results, we find that, for the trans p-MMC, the major (1)ππ* deactivation path is decaying to the dark (1)nπ* state via the in-plane (1)ππ*/(1)nπ* crossing point, which only need overcome a small barrier of 2.5 kcal/mol; the minor one is decaying to the S0 state via the (1)ππ*/S0 conical intersection induced by out-of-plane photoisomerization. For the cis p-MMC, these two decay paths are comparable (1)ππ* deactivation paths: one is decaying to the dark (1)nπ* state via the (1)ππ*/(1)nπ* crossing point, and the second is decaying to the ground state via the (1)ππ*/S0 conical intersection. One-water hydration stabilizes the (1)ππ* state and meanwhile destabilizes the (1)nπ* state. As a consequence, the (1)ππ* deactivation path to the dark (1)nπ* state is heavily inhibited. The related barriers are increased to 5.8 and 3.3 kcal/mol for the trans and cis p-MMC-W, respectively. In comparison, the barriers associated with the photoisomerization-induced (1)ππ* decay paths are reduced to 2.5 and 1.3 kcal/mol for the trans and cis p-MMC-W. Therefore, the (1)ππ* decay paths to the S0 state are dominant relaxation channels when adding one water molecule. Finally, the present work contributes a lot of knowledge to understanding the photoprotection mechanism of methylcinnamate derivatives. |
Author | Cui, Ganglong Chang, Xue-Ping Xie, Bin-Bin Li, Chun-Xiang |
AuthorAffiliation | College of Chemistry Beijing Normal University |
AuthorAffiliation_xml | – name: Beijing Normal University – name: College of Chemistry |
Author_xml | – sequence: 1 givenname: Xue-Ping surname: Chang fullname: Chang, Xue-Ping – sequence: 2 givenname: Chun-Xiang surname: Li fullname: Li, Chun-Xiang – sequence: 3 givenname: Bin-Bin surname: Xie fullname: Xie, Bin-Bin – sequence: 4 givenname: Ganglong surname: Cui fullname: Cui, Ganglong email: ganglong.cui@bnu.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26513466$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kL9OwzAQhy0Eon9gZ0IZGUg527GbsFUVUKRWVGqZI8ex1VRJHGJHIhuvwCvyJKS0MCDBdCfd9zvdfQN0XJpSIXSBYYSB4Bsh7WhbSTFiCYQBDY5QHzMCPiOYHXc9hJHPOI16aGDtFgAwJcEp6hHOMA0476PZcmOcqWrjlHSZKb2FkhtRZrbwjPaqj7f3hXIb89p6u9rmMitLUQinbr2JN52slmvirVyTtmfoRIvcqvNDHaLn-7v1dObPnx4ep5O5LwIgzqep0pqpEERASXeMjiIJOgh1IKJIcTZOOBZCpVQDk5Sk44QpSCVElGmWhJoO0dV-b3fzS6Osi4vMSpXnolSmsTEeU87HYQi8Qy8PaJMUKo2rOitE3cbf33cA7AFZG2trpX8QDPFOcNwJjneC44PgLsJ_RWTmxM6cq0WW_xe83ge_Jqapy87S3_gnVt6RKA |
CitedBy_id | crossref_primary_10_1039_C8CP04447C crossref_primary_10_1039_D1CP03994F crossref_primary_10_1039_C6FD00079G crossref_primary_10_1039_D2CP03661D crossref_primary_10_1021_acs_jpca_9b07280 crossref_primary_10_1063_1674_0068_30_cjcp1709179 crossref_primary_10_1002_bkcs_11403 crossref_primary_10_1016_j_jlumin_2018_10_111 crossref_primary_10_1039_C6CP05205C crossref_primary_10_3389_fchem_2021_812098 crossref_primary_10_1021_acs_jpclett_9b01651 crossref_primary_10_1021_acs_jpca_6b02669 crossref_primary_10_1021_acs_jpca_0c10589 crossref_primary_10_3184_003685018X15166183479666 crossref_primary_10_1021_acs_jpcb_6b01793 crossref_primary_10_1002_cphc_201600386 crossref_primary_10_1021_acs_jpca_6b05899 crossref_primary_10_3390_molecules27248796 crossref_primary_10_1016_j_jlumin_2020_117228 crossref_primary_10_1039_C8CP06536E crossref_primary_10_1080_0144235X_2019_1663062 crossref_primary_10_1002_asia_202000219 crossref_primary_10_1039_C8CP06794E crossref_primary_10_1039_C8CP00414E crossref_primary_10_1063_1674_0068_cjcp2109163 crossref_primary_10_1063_5_0046118 crossref_primary_10_1039_D0CP04402D crossref_primary_10_1016_j_saa_2017_10_025 crossref_primary_10_1021_acs_jpclett_7b00083 crossref_primary_10_1063_1674_0068_cjcp2104078 crossref_primary_10_1063_1674_0068_cjcp2211171 crossref_primary_10_1063_1_4961261 crossref_primary_10_3390_molecules26092724 crossref_primary_10_1021_acs_jpclett_6b01643 crossref_primary_10_1002_cphc_201701230 crossref_primary_10_1021_acs_jpca_1c08504 crossref_primary_10_1080_00268976_2020_1825850 crossref_primary_10_1021_acs_jpca_0c08738 crossref_primary_10_1021_acs_jpca_0c03646 crossref_primary_10_1007_s12039_025_02349_y crossref_primary_10_1039_C7CP01511A crossref_primary_10_1039_c6pp00367b crossref_primary_10_1039_C7CS00102A crossref_primary_10_1038_s41598_017_09347_2 crossref_primary_10_1039_D1CP05958K crossref_primary_10_1002_cptc_202400093 crossref_primary_10_1021_acs_jpca_7b03123 crossref_primary_10_1039_D2CP01263D crossref_primary_10_1039_C7CP00478H crossref_primary_10_1007_s10876_020_01819_2 crossref_primary_10_1016_j_molliq_2020_114725 crossref_primary_10_1016_j_chemphys_2018_07_007 crossref_primary_10_3390_M1708 crossref_primary_10_1021_acs_jpclett_9b02175 crossref_primary_10_1039_C9CP01267B crossref_primary_10_1039_C9CP07014A crossref_primary_10_1021_acs_jpca_0c01295 crossref_primary_10_1039_C7CP07692D crossref_primary_10_1098_rspa_2016_0677 |
Cites_doi | 10.1021/ar040202q 10.1007/b11767107 10.1021/acs.jpca.5b00302 10.1542/peds.2008-1862 10.1002/cphc.201402743 10.1021/jp411818j 10.1016/S0927-0256(03)00109-5 10.1021/ja8013924 10.1021/jp991657d 10.1103/PhysRevA.38.3098 10.1063/1.1674902 10.1063/1.462209 10.1007/s00198-010-1285-3 10.1021/ja904932x 10.1093/carcin/18.4.811 10.2105/AJPH.92.7.1173 10.1039/c3pp50319d 10.1002/jcc.21318 10.1021/acs.jpclett.5b00203 10.1016/j.chemphys.2004.12.016 10.1103/PhysRevB.37.785 10.1021/ja0365025 10.1021/ja078024u 10.1021/jp507282d 10.1046/j.1467-2494.2001.00071.x 10.1016/j.jphotochem.2007.04.033 10.1021/jp503865y 10.1038/nchem.2084 10.1002/cphc.201100025 10.1021/jz501140b 10.1021/jp501782v 10.1063/1.3264569 10.1021/ja039557f 10.1002/cphc.201402897 10.1016/j.cplett.2004.06.011 10.1021/jp8073464 10.1016/S1010-6030(03)00282-X 10.1016/j.cplett.2004.08.032 10.1063/1.2777146 10.1158/1055-9965.EPI-06-0352 10.1021/jp001667a 10.1063/1.4904268 10.1021/ja5059026 10.1016/S0009-2614(97)00669-6 10.1021/j100377a012 10.1063/1.4898085 10.1063/1.464304 10.1021/jp0447791 10.1021/jp108977x 10.1093/ajcn/59.1.80 10.1063/1.444267 10.1021/acs.jpca.5b01434 10.1139/p80-159 |
ContentType | Journal Article |
Copyright | Copyright © 2015 American Chemical Society |
Copyright_xml | – notice: Copyright © 2015 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acs.jpca.5b08434 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5215 |
EndPage | 11497 |
ExternalDocumentID | 26513466 10_1021_acs_jpca_5b08434 c190796925 |
Genre | Journal Article |
GroupedDBID | - .K2 02 123 29L 53G 55A 5VS 7~N 85S 8RP AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ACGFS ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CJ0 CS3 D0L DU5 EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 LG6 PZZ RNS ROL TAE TN5 UI2 UKR UPT VF5 VG9 VQA W1F WH7 X YZZ ZHY --- -~X .DC 4.4 AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK XSW YQT ~02 NPM 7X8 |
ID | FETCH-LOGICAL-a402t-3deff5e80a432324f99c0f48f4a99e657b61aaed3f05c32d7b5e0dc0935f5b8f3 |
IEDL.DBID | ACS |
ISSN | 1089-5639 1520-5215 |
IngestDate | Fri Jul 11 04:51:33 EDT 2025 Mon Jul 21 05:58:57 EDT 2025 Tue Jul 01 01:27:24 EDT 2025 Thu Apr 24 23:11:09 EDT 2025 Thu Aug 27 13:43:02 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 47 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a402t-3deff5e80a432324f99c0f48f4a99e657b61aaed3f05c32d7b5e0dc0935f5b8f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26513466 |
PQID | 1736678806 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1736678806 pubmed_primary_26513466 crossref_primary_10_1021_acs_jpca_5b08434 crossref_citationtrail_10_1021_acs_jpca_5b08434 acs_journals_10_1021_acs_jpca_5b08434 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-Nov-25 |
PublicationDateYYYYMMDD | 2015-11-25 |
PublicationDate_xml | – month: 11 year: 2015 text: 2015-Nov-25 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
PublicationTitleAlternate | J. Phys. Chem. A |
PublicationYear | 2015 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref27/cit27 Marques M. A. L. (ref48/cit48) 2006 ref16/cit16 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref17/cit17 ref10/cit10 ref35/cit35 Salamone L. M. (ref3/cit3) 1994; 59 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 Parr R. G. (ref32/cit32) 1994 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 Frisch M. J. (ref52/cit52) 2009 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref18/cit18 doi: 10.1021/ar040202q – volume-title: Time-Dependent Density Functional Theory year: 2006 ident: ref48/cit48 doi: 10.1007/b11767107 – ident: ref42/cit42 doi: 10.1021/acs.jpca.5b00302 – ident: ref5/cit5 doi: 10.1542/peds.2008-1862 – ident: ref41/cit41 doi: 10.1002/cphc.201402743 – ident: ref8/cit8 doi: 10.1021/jp411818j – ident: ref53/cit53 doi: 10.1016/S0927-0256(03)00109-5 – ident: ref20/cit20 doi: 10.1021/ja8013924 – ident: ref10/cit10 doi: 10.1021/jp991657d – ident: ref35/cit35 doi: 10.1103/PhysRevA.38.3098 – ident: ref50/cit50 doi: 10.1063/1.1674902 – ident: ref44/cit44 doi: 10.1063/1.462209 – ident: ref6/cit6 doi: 10.1007/s00198-010-1285-3 – ident: ref22/cit22 doi: 10.1021/ja904932x – ident: ref4/cit4 doi: 10.1093/carcin/18.4.811 – ident: ref2/cit2 doi: 10.2105/AJPH.92.7.1173 – ident: ref26/cit26 doi: 10.1039/c3pp50319d – ident: ref54/cit54 doi: 10.1002/jcc.21318 – ident: ref31/cit31 doi: 10.1021/acs.jpclett.5b00203 – ident: ref17/cit17 doi: 10.1016/j.chemphys.2004.12.016 – ident: ref34/cit34 doi: 10.1103/PhysRevB.37.785 – ident: ref13/cit13 doi: 10.1021/ja0365025 – ident: ref21/cit21 doi: 10.1021/ja078024u – ident: ref9/cit9 doi: 10.1021/jp507282d – ident: ref12/cit12 doi: 10.1046/j.1467-2494.2001.00071.x – ident: ref19/cit19 doi: 10.1016/j.jphotochem.2007.04.033 – ident: ref39/cit39 doi: 10.1021/jp503865y – ident: ref55/cit55 doi: 10.1038/nchem.2084 – ident: ref37/cit37 doi: 10.1002/cphc.201100025 – ident: ref29/cit29 doi: 10.1021/jz501140b – ident: ref7/cit7 doi: 10.1021/jp501782v – ident: ref23/cit23 doi: 10.1063/1.3264569 – ident: ref15/cit15 doi: 10.1021/ja039557f – ident: ref40/cit40 doi: 10.1002/cphc.201402897 – ident: ref49/cit49 doi: 10.1016/j.cplett.2004.06.011 – ident: ref24/cit24 doi: 10.1021/jp8073464 – ident: ref14/cit14 doi: 10.1016/S1010-6030(03)00282-X – ident: ref47/cit47 doi: 10.1016/j.cplett.2004.08.032 – ident: ref45/cit45 doi: 10.1063/1.2777146 – volume-title: Gaussian 09 year: 2009 ident: ref52/cit52 – ident: ref1/cit1 doi: 10.1158/1055-9965.EPI-06-0352 – ident: ref11/cit11 doi: 10.1021/jp001667a – ident: ref30/cit30 doi: 10.1063/1.4904268 – ident: ref27/cit27 doi: 10.1021/ja5059026 – ident: ref46/cit46 doi: 10.1016/S0009-2614(97)00669-6 – ident: ref43/cit43 doi: 10.1021/j100377a012 – ident: ref38/cit38 doi: 10.1063/1.4898085 – ident: ref36/cit36 doi: 10.1063/1.464304 – ident: ref16/cit16 doi: 10.1021/jp0447791 – ident: ref25/cit25 doi: 10.1021/jp108977x – volume-title: Density-Functional Theory of Atoms and Molecules year: 1994 ident: ref32/cit32 – volume: 59 start-page: 80 year: 1994 ident: ref3/cit3 publication-title: Am. J. Clin. Nutr. doi: 10.1093/ajcn/59.1.80 – ident: ref51/cit51 doi: 10.1063/1.444267 – ident: ref28/cit28 doi: 10.1021/acs.jpca.5b01434 – ident: ref33/cit33 doi: 10.1139/p80-159 |
SSID | ssj0001324 |
Score | 2.4229465 |
Snippet | p-Methoxy methylcinnamate (p-MMC) shares the same molecular skeleton with octyl methoxycinnamate sunscreen. It is recently found that adding one water to p-MMC... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 11488 |
Title | Photoprotection Mechanism of p‑Methoxy Methylcinnamate: A CASPT2 Study |
URI | http://dx.doi.org/10.1021/acs.jpca.5b08434 https://www.ncbi.nlm.nih.gov/pubmed/26513466 https://www.proquest.com/docview/1736678806 |
Volume | 119 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA4-Dnrx_VhfRNCDh65t82q9LYuyCCuCCt5Kmia4PtrFdsH15F_wL_pLnLTdFZ94KoRmaGaSzjfM5BuE9iRj0gjiO54S1KHSeI6UJHECoy08oSIseWa7Z7xzRU-v2fUHTc7XDL7vHUqVN2_7EN6z2A0ooZNo2ueBsIFWq30x_utCVEWrYvrQYeB265TkTxKsI1L5Z0f0C7osvczJfNWuKC_JCW1xyV1zUMRN9fyduvEfC1hAczXYxK1qdyyiCZ0uoZn2qMfbMuqc32RFVnM1gIVwV9ubwL38AWcG999eXru2w_TTENvn8F710lQCxtVHuIXbrYvzSx_bSsThCro6Ob5sd5y6t4IjIWIsHJJoYxjYQ1JiQZUJQ-UaGhgqw1BzJmLuSakTYlymiJ-ImGk3UTZtalgcGLKKptIs1esIwxlOwM1THScaZCcBU4ESoTahILGgrIH2QQVRfTbyqEx7-15UDoJeolovDXQ4MkikaoJy2yfj_o8ZB-MZ_Yqc4493d0c2jkDJNi0iU50N4HsE4eCyA5c30Fpl_LE0nzOPUM43_rmGTTQLiIpVlxW30FTxONDbgFqKeKfcru-ORecZ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NTtwwEB5ReqCX_kFh-4crwYFDIPFPnFTisNqClsIiJBaJW-o4tqClyarJql1OvEIfgVfhUXiSjrPZrYoo6gWpp0hWPLbHY883mvEMwIoSQlnJqBdoyT2ubOApxTIvssbBEy7jOs9sbz_sHvGPx-J4Bi4nb2FwEiVSKmsn_u_sAsGGa_s8QCtfpH7EGW_iKHfN6DtaaeXmzgfc0lVKt7f6na7XFBLwFJpHlccyY63AwRVnDkHYONa-5ZHlKo5NKGQaBkqZjFlfaEYzmQrjZ9r5CK1II8uQ7gN4iNiHOvuu3TmcXvZozPFxDH_sCdT2jSf0thk7_afLP_XfX0Btrdy2n8DVlC11TMuX9WGVruvzGxkj_2u-PYXHDbQm7fFZeAYzJn8Oc51JRbt56B6cFFXRZKZAeSQ94949n5ZfSWHJ4PriZ8_V0_4xIu47OtOnea4Q0Zv3pE067cODPiUu7nK0AEf3spAXMJsXuVkCgjdWhqCGmzQzSDuLhI60jI2NJUslFy1YRZYnzU1QJrWTnwZJ3Yj7kDT70IKNiRwkuknH7qqCnN3RY23aYzBORXLHv-8mopUgk50TSOWmGOJ8JAsRoER-2ILFscxNqdFQBIyH4ct_XMMyzHX7vb1kb2d_9xU8Qiwp3DNNKl7DbPVtaN4gXqvSt_WJIfDpvkXtF65SSy8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VIgGX8g9L-TESPXBIm8R2nFTisNqy2lK2Wqmt1Ftw_CMKbbIiWcH2xCv0IXgVHqRP0nHWuxIIKi6VOEWy4tF4PPZ8oxnPALySnEsraBxESrCASRsFUlIdpNY4eMJE1taZHe4mgwP27pAfLsGP-VsYZKJGSnUbxHeneqytrzAQbbjxT2P09HkRpowyn0u5Y6Zf0VOr32xv4bauxXH_7X5vEPhmAoFEF6kJqDbWcmRAMupQhM0yFVqWWiazzCRcFEkkpdHUhlzRWIuCm1ArFye0vEgtRbrX4LqLEjofr9vbW1z46NCxWR5_FnC0-D4a-ieOnQ1U9a828C_AtjVw_dvwcyGaNq_l8_qkKdbV6W9VI_972d2BFQ-xSXd2Ju7Ckinvwc3evLPdfRiMPlZN5StUoF6SoXHvn4_qE1JZMj7_fjZ0fbW_TYn7To_VUVlKRPZmk3RJr7s32o-Jy7-cPoCDK1nIQ1guq9I8BoI3l0Zww0yhDdLWKVepEpmxmaCFYLwDayjy3N8Idd4G--MobwdxH3K_Dx3YmOtCrnxZdtcd5PiSGa8XM8azkiSX_Ptyrl45CtkFg2RpqgnyI2iCQCUNkw48mundglqc8IiyJHnyj2t4ATdGW_38_fbuzircQkjJ3WvNmD-F5ebLxDxD2NYUz9tDQ-DDVWvaBZz6TbI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photoprotection+Mechanism+of+p-Methoxy+Methylcinnamate%3A+A+CASPT2+Study&rft.jtitle=The+journal+of+physical+chemistry.+A%2C+Molecules%2C+spectroscopy%2C+kinetics%2C+environment%2C+%26+general+theory&rft.au=Chang%2C+Xue-Ping&rft.au=Li%2C+Chun-Xiang&rft.au=Xie%2C+Bin-Bin&rft.au=Cui%2C+Ganglong&rft.date=2015-11-25&rft.eissn=1520-5215&rft.volume=119&rft.issue=47&rft.spage=11488&rft_id=info:doi/10.1021%2Facs.jpca.5b08434&rft_id=info%3Apmid%2F26513466&rft.externalDocID=26513466 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-5639&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-5639&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-5639&client=summon |