Photoprotection Mechanism of p‑Methoxy Methylcinnamate: A CASPT2 Study

p-Methoxy methylcinnamate (p-MMC) shares the same molecular skeleton with octyl methoxycinnamate sunscreen. It is recently found that adding one water to p-MMC can significantly enhance the photoprotection efficiency. However, the physical origin is elusive. Herein we have employed multireference co...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Vol. 119; no. 47; pp. 11488 - 11497
Main Authors Chang, Xue-Ping, Li, Chun-Xiang, Xie, Bin-Bin, Cui, Ganglong
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 25.11.2015
Online AccessGet full text

Cover

Loading…
Abstract p-Methoxy methylcinnamate (p-MMC) shares the same molecular skeleton with octyl methoxycinnamate sunscreen. It is recently found that adding one water to p-MMC can significantly enhance the photoprotection efficiency. However, the physical origin is elusive. Herein we have employed multireference complete active space self-consistent field (CASSCF) and multistate complete active-space second-order perturbation (MS-CASPT2) methods to scrutinize the photophysical and photochemical mechanism of p-MMC and its one-water complex p-MMC–W. Specifically, we optimize the stationary-point structures on the 1ππ*, 1nπ*, and S0 potential energy surfaces to locate the 1ππ*/S0 and 1ππ*/1nπ* conical intersections and to map 1ππ* and 1nπ* excited-state relaxation paths. On the basis of the results, we find that, for the trans p-MMC, the major 1ππ* deactivation path is decaying to the dark 1nπ* state via the in-plane 1ππ*/1nπ* crossing point, which only need overcome a small barrier of 2.5 kcal/mol; the minor one is decaying to the S0 state via the 1ππ*/S0 conical intersection induced by out-of-plane photoisomerization. For the cis p-MMC, these two decay paths are comparable 1ππ* deactivation paths: one is decaying to the dark 1nπ* state via the 1ππ*/1nπ* crossing point, and the second is decaying to the ground state via the 1ππ*/S0 conical intersection. One-water hydration stabilizes the 1ππ* state and meanwhile destabilizes the 1nπ* state. As a consequence, the 1ππ* deactivation path to the dark 1nπ* state is heavily inhibited. The related barriers are increased to 5.8 and 3.3 kcal/mol for the trans and cis p-MMC–W, respectively. In comparison, the barriers associated with the photoisomerization-induced 1ππ* decay paths are reduced to 2.5 and 1.3 kcal/mol for the trans and cis p-MMC–W. Therefore, the 1ππ* decay paths to the S0 state are dominant relaxation channels when adding one water molecule. Finally, the present work contributes a lot of knowledge to understanding the photoprotection mechanism of methylcinnamate derivatives.
AbstractList p-Methoxy methylcinnamate (p-MMC) shares the same molecular skeleton with octyl methoxycinnamate sunscreen. It is recently found that adding one water to p-MMC can significantly enhance the photoprotection efficiency. However, the physical origin is elusive. Herein we have employed multireference complete active space self-consistent field (CASSCF) and multistate complete active-space second-order perturbation (MS-CASPT2) methods to scrutinize the photophysical and photochemical mechanism of p-MMC and its one-water complex p-MMC-W. Specifically, we optimize the stationary-point structures on the (1)ππ*, (1)nπ*, and S0 potential energy surfaces to locate the (1)ππ*/S0 and (1)ππ*/(1)nπ* conical intersections and to map (1)ππ* and (1)nπ* excited-state relaxation paths. On the basis of the results, we find that, for the trans p-MMC, the major (1)ππ* deactivation path is decaying to the dark (1)nπ* state via the in-plane (1)ππ*/(1)nπ* crossing point, which only need overcome a small barrier of 2.5 kcal/mol; the minor one is decaying to the S0 state via the (1)ππ*/S0 conical intersection induced by out-of-plane photoisomerization. For the cis p-MMC, these two decay paths are comparable (1)ππ* deactivation paths: one is decaying to the dark (1)nπ* state via the (1)ππ*/(1)nπ* crossing point, and the second is decaying to the ground state via the (1)ππ*/S0 conical intersection. One-water hydration stabilizes the (1)ππ* state and meanwhile destabilizes the (1)nπ* state. As a consequence, the (1)ππ* deactivation path to the dark (1)nπ* state is heavily inhibited. The related barriers are increased to 5.8 and 3.3 kcal/mol for the trans and cis p-MMC-W, respectively. In comparison, the barriers associated with the photoisomerization-induced (1)ππ* decay paths are reduced to 2.5 and 1.3 kcal/mol for the trans and cis p-MMC-W. Therefore, the (1)ππ* decay paths to the S0 state are dominant relaxation channels when adding one water molecule. Finally, the present work contributes a lot of knowledge to understanding the photoprotection mechanism of methylcinnamate derivatives.p-Methoxy methylcinnamate (p-MMC) shares the same molecular skeleton with octyl methoxycinnamate sunscreen. It is recently found that adding one water to p-MMC can significantly enhance the photoprotection efficiency. However, the physical origin is elusive. Herein we have employed multireference complete active space self-consistent field (CASSCF) and multistate complete active-space second-order perturbation (MS-CASPT2) methods to scrutinize the photophysical and photochemical mechanism of p-MMC and its one-water complex p-MMC-W. Specifically, we optimize the stationary-point structures on the (1)ππ*, (1)nπ*, and S0 potential energy surfaces to locate the (1)ππ*/S0 and (1)ππ*/(1)nπ* conical intersections and to map (1)ππ* and (1)nπ* excited-state relaxation paths. On the basis of the results, we find that, for the trans p-MMC, the major (1)ππ* deactivation path is decaying to the dark (1)nπ* state via the in-plane (1)ππ*/(1)nπ* crossing point, which only need overcome a small barrier of 2.5 kcal/mol; the minor one is decaying to the S0 state via the (1)ππ*/S0 conical intersection induced by out-of-plane photoisomerization. For the cis p-MMC, these two decay paths are comparable (1)ππ* deactivation paths: one is decaying to the dark (1)nπ* state via the (1)ππ*/(1)nπ* crossing point, and the second is decaying to the ground state via the (1)ππ*/S0 conical intersection. One-water hydration stabilizes the (1)ππ* state and meanwhile destabilizes the (1)nπ* state. As a consequence, the (1)ππ* deactivation path to the dark (1)nπ* state is heavily inhibited. The related barriers are increased to 5.8 and 3.3 kcal/mol for the trans and cis p-MMC-W, respectively. In comparison, the barriers associated with the photoisomerization-induced (1)ππ* decay paths are reduced to 2.5 and 1.3 kcal/mol for the trans and cis p-MMC-W. Therefore, the (1)ππ* decay paths to the S0 state are dominant relaxation channels when adding one water molecule. Finally, the present work contributes a lot of knowledge to understanding the photoprotection mechanism of methylcinnamate derivatives.
p-Methoxy methylcinnamate (p-MMC) shares the same molecular skeleton with octyl methoxycinnamate sunscreen. It is recently found that adding one water to p-MMC can significantly enhance the photoprotection efficiency. However, the physical origin is elusive. Herein we have employed multireference complete active space self-consistent field (CASSCF) and multistate complete active-space second-order perturbation (MS-CASPT2) methods to scrutinize the photophysical and photochemical mechanism of p-MMC and its one-water complex p-MMC–W. Specifically, we optimize the stationary-point structures on the 1ππ*, 1nπ*, and S0 potential energy surfaces to locate the 1ππ*/S0 and 1ππ*/1nπ* conical intersections and to map 1ππ* and 1nπ* excited-state relaxation paths. On the basis of the results, we find that, for the trans p-MMC, the major 1ππ* deactivation path is decaying to the dark 1nπ* state via the in-plane 1ππ*/1nπ* crossing point, which only need overcome a small barrier of 2.5 kcal/mol; the minor one is decaying to the S0 state via the 1ππ*/S0 conical intersection induced by out-of-plane photoisomerization. For the cis p-MMC, these two decay paths are comparable 1ππ* deactivation paths: one is decaying to the dark 1nπ* state via the 1ππ*/1nπ* crossing point, and the second is decaying to the ground state via the 1ππ*/S0 conical intersection. One-water hydration stabilizes the 1ππ* state and meanwhile destabilizes the 1nπ* state. As a consequence, the 1ππ* deactivation path to the dark 1nπ* state is heavily inhibited. The related barriers are increased to 5.8 and 3.3 kcal/mol for the trans and cis p-MMC–W, respectively. In comparison, the barriers associated with the photoisomerization-induced 1ππ* decay paths are reduced to 2.5 and 1.3 kcal/mol for the trans and cis p-MMC–W. Therefore, the 1ππ* decay paths to the S0 state are dominant relaxation channels when adding one water molecule. Finally, the present work contributes a lot of knowledge to understanding the photoprotection mechanism of methylcinnamate derivatives.
p-Methoxy methylcinnamate (p-MMC) shares the same molecular skeleton with octyl methoxycinnamate sunscreen. It is recently found that adding one water to p-MMC can significantly enhance the photoprotection efficiency. However, the physical origin is elusive. Herein we have employed multireference complete active space self-consistent field (CASSCF) and multistate complete active-space second-order perturbation (MS-CASPT2) methods to scrutinize the photophysical and photochemical mechanism of p-MMC and its one-water complex p-MMC-W. Specifically, we optimize the stationary-point structures on the (1)ππ*, (1)nπ*, and S0 potential energy surfaces to locate the (1)ππ*/S0 and (1)ππ*/(1)nπ* conical intersections and to map (1)ππ* and (1)nπ* excited-state relaxation paths. On the basis of the results, we find that, for the trans p-MMC, the major (1)ππ* deactivation path is decaying to the dark (1)nπ* state via the in-plane (1)ππ*/(1)nπ* crossing point, which only need overcome a small barrier of 2.5 kcal/mol; the minor one is decaying to the S0 state via the (1)ππ*/S0 conical intersection induced by out-of-plane photoisomerization. For the cis p-MMC, these two decay paths are comparable (1)ππ* deactivation paths: one is decaying to the dark (1)nπ* state via the (1)ππ*/(1)nπ* crossing point, and the second is decaying to the ground state via the (1)ππ*/S0 conical intersection. One-water hydration stabilizes the (1)ππ* state and meanwhile destabilizes the (1)nπ* state. As a consequence, the (1)ππ* deactivation path to the dark (1)nπ* state is heavily inhibited. The related barriers are increased to 5.8 and 3.3 kcal/mol for the trans and cis p-MMC-W, respectively. In comparison, the barriers associated with the photoisomerization-induced (1)ππ* decay paths are reduced to 2.5 and 1.3 kcal/mol for the trans and cis p-MMC-W. Therefore, the (1)ππ* decay paths to the S0 state are dominant relaxation channels when adding one water molecule. Finally, the present work contributes a lot of knowledge to understanding the photoprotection mechanism of methylcinnamate derivatives.
Author Cui, Ganglong
Chang, Xue-Ping
Xie, Bin-Bin
Li, Chun-Xiang
AuthorAffiliation College of Chemistry
Beijing Normal University
AuthorAffiliation_xml – name: Beijing Normal University
– name: College of Chemistry
Author_xml – sequence: 1
  givenname: Xue-Ping
  surname: Chang
  fullname: Chang, Xue-Ping
– sequence: 2
  givenname: Chun-Xiang
  surname: Li
  fullname: Li, Chun-Xiang
– sequence: 3
  givenname: Bin-Bin
  surname: Xie
  fullname: Xie, Bin-Bin
– sequence: 4
  givenname: Ganglong
  surname: Cui
  fullname: Cui, Ganglong
  email: ganglong.cui@bnu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26513466$$D View this record in MEDLINE/PubMed
BookMark eNp9kL9OwzAQhy0Eon9gZ0IZGUg527GbsFUVUKRWVGqZI8ex1VRJHGJHIhuvwCvyJKS0MCDBdCfd9zvdfQN0XJpSIXSBYYSB4Bsh7WhbSTFiCYQBDY5QHzMCPiOYHXc9hJHPOI16aGDtFgAwJcEp6hHOMA0476PZcmOcqWrjlHSZKb2FkhtRZrbwjPaqj7f3hXIb89p6u9rmMitLUQinbr2JN52slmvirVyTtmfoRIvcqvNDHaLn-7v1dObPnx4ep5O5LwIgzqep0pqpEERASXeMjiIJOgh1IKJIcTZOOBZCpVQDk5Sk44QpSCVElGmWhJoO0dV-b3fzS6Osi4vMSpXnolSmsTEeU87HYQi8Qy8PaJMUKo2rOitE3cbf33cA7AFZG2trpX8QDPFOcNwJjneC44PgLsJ_RWTmxM6cq0WW_xe83ge_Jqapy87S3_gnVt6RKA
CitedBy_id crossref_primary_10_1039_C8CP04447C
crossref_primary_10_1039_D1CP03994F
crossref_primary_10_1039_C6FD00079G
crossref_primary_10_1039_D2CP03661D
crossref_primary_10_1021_acs_jpca_9b07280
crossref_primary_10_1063_1674_0068_30_cjcp1709179
crossref_primary_10_1002_bkcs_11403
crossref_primary_10_1016_j_jlumin_2018_10_111
crossref_primary_10_1039_C6CP05205C
crossref_primary_10_3389_fchem_2021_812098
crossref_primary_10_1021_acs_jpclett_9b01651
crossref_primary_10_1021_acs_jpca_6b02669
crossref_primary_10_1021_acs_jpca_0c10589
crossref_primary_10_3184_003685018X15166183479666
crossref_primary_10_1021_acs_jpcb_6b01793
crossref_primary_10_1002_cphc_201600386
crossref_primary_10_1021_acs_jpca_6b05899
crossref_primary_10_3390_molecules27248796
crossref_primary_10_1016_j_jlumin_2020_117228
crossref_primary_10_1039_C8CP06536E
crossref_primary_10_1080_0144235X_2019_1663062
crossref_primary_10_1002_asia_202000219
crossref_primary_10_1039_C8CP06794E
crossref_primary_10_1039_C8CP00414E
crossref_primary_10_1063_1674_0068_cjcp2109163
crossref_primary_10_1063_5_0046118
crossref_primary_10_1039_D0CP04402D
crossref_primary_10_1016_j_saa_2017_10_025
crossref_primary_10_1021_acs_jpclett_7b00083
crossref_primary_10_1063_1674_0068_cjcp2104078
crossref_primary_10_1063_1674_0068_cjcp2211171
crossref_primary_10_1063_1_4961261
crossref_primary_10_3390_molecules26092724
crossref_primary_10_1021_acs_jpclett_6b01643
crossref_primary_10_1002_cphc_201701230
crossref_primary_10_1021_acs_jpca_1c08504
crossref_primary_10_1080_00268976_2020_1825850
crossref_primary_10_1021_acs_jpca_0c08738
crossref_primary_10_1021_acs_jpca_0c03646
crossref_primary_10_1007_s12039_025_02349_y
crossref_primary_10_1039_C7CP01511A
crossref_primary_10_1039_c6pp00367b
crossref_primary_10_1039_C7CS00102A
crossref_primary_10_1038_s41598_017_09347_2
crossref_primary_10_1039_D1CP05958K
crossref_primary_10_1002_cptc_202400093
crossref_primary_10_1021_acs_jpca_7b03123
crossref_primary_10_1039_D2CP01263D
crossref_primary_10_1039_C7CP00478H
crossref_primary_10_1007_s10876_020_01819_2
crossref_primary_10_1016_j_molliq_2020_114725
crossref_primary_10_1016_j_chemphys_2018_07_007
crossref_primary_10_3390_M1708
crossref_primary_10_1021_acs_jpclett_9b02175
crossref_primary_10_1039_C9CP01267B
crossref_primary_10_1039_C9CP07014A
crossref_primary_10_1021_acs_jpca_0c01295
crossref_primary_10_1039_C7CP07692D
crossref_primary_10_1098_rspa_2016_0677
Cites_doi 10.1021/ar040202q
10.1007/b11767107
10.1021/acs.jpca.5b00302
10.1542/peds.2008-1862
10.1002/cphc.201402743
10.1021/jp411818j
10.1016/S0927-0256(03)00109-5
10.1021/ja8013924
10.1021/jp991657d
10.1103/PhysRevA.38.3098
10.1063/1.1674902
10.1063/1.462209
10.1007/s00198-010-1285-3
10.1021/ja904932x
10.1093/carcin/18.4.811
10.2105/AJPH.92.7.1173
10.1039/c3pp50319d
10.1002/jcc.21318
10.1021/acs.jpclett.5b00203
10.1016/j.chemphys.2004.12.016
10.1103/PhysRevB.37.785
10.1021/ja0365025
10.1021/ja078024u
10.1021/jp507282d
10.1046/j.1467-2494.2001.00071.x
10.1016/j.jphotochem.2007.04.033
10.1021/jp503865y
10.1038/nchem.2084
10.1002/cphc.201100025
10.1021/jz501140b
10.1021/jp501782v
10.1063/1.3264569
10.1021/ja039557f
10.1002/cphc.201402897
10.1016/j.cplett.2004.06.011
10.1021/jp8073464
10.1016/S1010-6030(03)00282-X
10.1016/j.cplett.2004.08.032
10.1063/1.2777146
10.1158/1055-9965.EPI-06-0352
10.1021/jp001667a
10.1063/1.4904268
10.1021/ja5059026
10.1016/S0009-2614(97)00669-6
10.1021/j100377a012
10.1063/1.4898085
10.1063/1.464304
10.1021/jp0447791
10.1021/jp108977x
10.1093/ajcn/59.1.80
10.1063/1.444267
10.1021/acs.jpca.5b01434
10.1139/p80-159
ContentType Journal Article
Copyright Copyright © 2015 American Chemical Society
Copyright_xml – notice: Copyright © 2015 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acs.jpca.5b08434
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5215
EndPage 11497
ExternalDocumentID 26513466
10_1021_acs_jpca_5b08434
c190796925
Genre Journal Article
GroupedDBID -
.K2
02
123
29L
53G
55A
5VS
7~N
85S
8RP
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ACGFS
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CJ0
CS3
D0L
DU5
EBS
ED
ED~
EJD
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
PZZ
RNS
ROL
TAE
TN5
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
YZZ
ZHY
---
-~X
.DC
4.4
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
XSW
YQT
~02
NPM
7X8
ID FETCH-LOGICAL-a402t-3deff5e80a432324f99c0f48f4a99e657b61aaed3f05c32d7b5e0dc0935f5b8f3
IEDL.DBID ACS
ISSN 1089-5639
1520-5215
IngestDate Fri Jul 11 04:51:33 EDT 2025
Mon Jul 21 05:58:57 EDT 2025
Tue Jul 01 01:27:24 EDT 2025
Thu Apr 24 23:11:09 EDT 2025
Thu Aug 27 13:43:02 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 47
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a402t-3deff5e80a432324f99c0f48f4a99e657b61aaed3f05c32d7b5e0dc0935f5b8f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26513466
PQID 1736678806
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1736678806
pubmed_primary_26513466
crossref_primary_10_1021_acs_jpca_5b08434
crossref_citationtrail_10_1021_acs_jpca_5b08434
acs_journals_10_1021_acs_jpca_5b08434
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-Nov-25
PublicationDateYYYYMMDD 2015-11-25
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-Nov-25
  day: 25
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
PublicationTitleAlternate J. Phys. Chem. A
PublicationYear 2015
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref27/cit27
Marques M. A. L. (ref48/cit48) 2006
ref16/cit16
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref17/cit17
ref10/cit10
ref35/cit35
Salamone L. M. (ref3/cit3) 1994; 59
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
Parr R. G. (ref32/cit32) 1994
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
Frisch M. J. (ref52/cit52) 2009
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref18/cit18
  doi: 10.1021/ar040202q
– volume-title: Time-Dependent Density Functional Theory
  year: 2006
  ident: ref48/cit48
  doi: 10.1007/b11767107
– ident: ref42/cit42
  doi: 10.1021/acs.jpca.5b00302
– ident: ref5/cit5
  doi: 10.1542/peds.2008-1862
– ident: ref41/cit41
  doi: 10.1002/cphc.201402743
– ident: ref8/cit8
  doi: 10.1021/jp411818j
– ident: ref53/cit53
  doi: 10.1016/S0927-0256(03)00109-5
– ident: ref20/cit20
  doi: 10.1021/ja8013924
– ident: ref10/cit10
  doi: 10.1021/jp991657d
– ident: ref35/cit35
  doi: 10.1103/PhysRevA.38.3098
– ident: ref50/cit50
  doi: 10.1063/1.1674902
– ident: ref44/cit44
  doi: 10.1063/1.462209
– ident: ref6/cit6
  doi: 10.1007/s00198-010-1285-3
– ident: ref22/cit22
  doi: 10.1021/ja904932x
– ident: ref4/cit4
  doi: 10.1093/carcin/18.4.811
– ident: ref2/cit2
  doi: 10.2105/AJPH.92.7.1173
– ident: ref26/cit26
  doi: 10.1039/c3pp50319d
– ident: ref54/cit54
  doi: 10.1002/jcc.21318
– ident: ref31/cit31
  doi: 10.1021/acs.jpclett.5b00203
– ident: ref17/cit17
  doi: 10.1016/j.chemphys.2004.12.016
– ident: ref34/cit34
  doi: 10.1103/PhysRevB.37.785
– ident: ref13/cit13
  doi: 10.1021/ja0365025
– ident: ref21/cit21
  doi: 10.1021/ja078024u
– ident: ref9/cit9
  doi: 10.1021/jp507282d
– ident: ref12/cit12
  doi: 10.1046/j.1467-2494.2001.00071.x
– ident: ref19/cit19
  doi: 10.1016/j.jphotochem.2007.04.033
– ident: ref39/cit39
  doi: 10.1021/jp503865y
– ident: ref55/cit55
  doi: 10.1038/nchem.2084
– ident: ref37/cit37
  doi: 10.1002/cphc.201100025
– ident: ref29/cit29
  doi: 10.1021/jz501140b
– ident: ref7/cit7
  doi: 10.1021/jp501782v
– ident: ref23/cit23
  doi: 10.1063/1.3264569
– ident: ref15/cit15
  doi: 10.1021/ja039557f
– ident: ref40/cit40
  doi: 10.1002/cphc.201402897
– ident: ref49/cit49
  doi: 10.1016/j.cplett.2004.06.011
– ident: ref24/cit24
  doi: 10.1021/jp8073464
– ident: ref14/cit14
  doi: 10.1016/S1010-6030(03)00282-X
– ident: ref47/cit47
  doi: 10.1016/j.cplett.2004.08.032
– ident: ref45/cit45
  doi: 10.1063/1.2777146
– volume-title: Gaussian 09
  year: 2009
  ident: ref52/cit52
– ident: ref1/cit1
  doi: 10.1158/1055-9965.EPI-06-0352
– ident: ref11/cit11
  doi: 10.1021/jp001667a
– ident: ref30/cit30
  doi: 10.1063/1.4904268
– ident: ref27/cit27
  doi: 10.1021/ja5059026
– ident: ref46/cit46
  doi: 10.1016/S0009-2614(97)00669-6
– ident: ref43/cit43
  doi: 10.1021/j100377a012
– ident: ref38/cit38
  doi: 10.1063/1.4898085
– ident: ref36/cit36
  doi: 10.1063/1.464304
– ident: ref16/cit16
  doi: 10.1021/jp0447791
– ident: ref25/cit25
  doi: 10.1021/jp108977x
– volume-title: Density-Functional Theory of Atoms and Molecules
  year: 1994
  ident: ref32/cit32
– volume: 59
  start-page: 80
  year: 1994
  ident: ref3/cit3
  publication-title: Am. J. Clin. Nutr.
  doi: 10.1093/ajcn/59.1.80
– ident: ref51/cit51
  doi: 10.1063/1.444267
– ident: ref28/cit28
  doi: 10.1021/acs.jpca.5b01434
– ident: ref33/cit33
  doi: 10.1139/p80-159
SSID ssj0001324
Score 2.4229465
Snippet p-Methoxy methylcinnamate (p-MMC) shares the same molecular skeleton with octyl methoxycinnamate sunscreen. It is recently found that adding one water to p-MMC...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11488
Title Photoprotection Mechanism of p‑Methoxy Methylcinnamate: A CASPT2 Study
URI http://dx.doi.org/10.1021/acs.jpca.5b08434
https://www.ncbi.nlm.nih.gov/pubmed/26513466
https://www.proquest.com/docview/1736678806
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA4-Dnrx_VhfRNCDh65t82q9LYuyCCuCCt5Kmia4PtrFdsH15F_wL_pLnLTdFZ94KoRmaGaSzjfM5BuE9iRj0gjiO54S1KHSeI6UJHECoy08oSIseWa7Z7xzRU-v2fUHTc7XDL7vHUqVN2_7EN6z2A0ooZNo2ueBsIFWq30x_utCVEWrYvrQYeB265TkTxKsI1L5Z0f0C7osvczJfNWuKC_JCW1xyV1zUMRN9fyduvEfC1hAczXYxK1qdyyiCZ0uoZn2qMfbMuqc32RFVnM1gIVwV9ubwL38AWcG999eXru2w_TTENvn8F710lQCxtVHuIXbrYvzSx_bSsThCro6Ob5sd5y6t4IjIWIsHJJoYxjYQ1JiQZUJQ-UaGhgqw1BzJmLuSakTYlymiJ-ImGk3UTZtalgcGLKKptIs1esIwxlOwM1THScaZCcBU4ESoTahILGgrIH2QQVRfTbyqEx7-15UDoJeolovDXQ4MkikaoJy2yfj_o8ZB-MZ_Yqc4493d0c2jkDJNi0iU50N4HsE4eCyA5c30Fpl_LE0nzOPUM43_rmGTTQLiIpVlxW30FTxONDbgFqKeKfcru-ORecZ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NTtwwEB5ReqCX_kFh-4crwYFDIPFPnFTisNqClsIiJBaJW-o4tqClyarJql1OvEIfgVfhUXiSjrPZrYoo6gWpp0hWPLbHY883mvEMwIoSQlnJqBdoyT2ubOApxTIvssbBEy7jOs9sbz_sHvGPx-J4Bi4nb2FwEiVSKmsn_u_sAsGGa_s8QCtfpH7EGW_iKHfN6DtaaeXmzgfc0lVKt7f6na7XFBLwFJpHlccyY63AwRVnDkHYONa-5ZHlKo5NKGQaBkqZjFlfaEYzmQrjZ9r5CK1II8uQ7gN4iNiHOvuu3TmcXvZozPFxDH_sCdT2jSf0thk7_afLP_XfX0Btrdy2n8DVlC11TMuX9WGVruvzGxkj_2u-PYXHDbQm7fFZeAYzJn8Oc51JRbt56B6cFFXRZKZAeSQ94949n5ZfSWHJ4PriZ8_V0_4xIu47OtOnea4Q0Zv3pE067cODPiUu7nK0AEf3spAXMJsXuVkCgjdWhqCGmzQzSDuLhI60jI2NJUslFy1YRZYnzU1QJrWTnwZJ3Yj7kDT70IKNiRwkuknH7qqCnN3RY23aYzBORXLHv-8mopUgk50TSOWmGOJ8JAsRoER-2ILFscxNqdFQBIyH4ct_XMMyzHX7vb1kb2d_9xU8Qiwp3DNNKl7DbPVtaN4gXqvSt_WJIfDpvkXtF65SSy8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VIgGX8g9L-TESPXBIm8R2nFTisNqy2lK2Wqmt1Ftw_CMKbbIiWcH2xCv0IXgVHqRP0nHWuxIIKi6VOEWy4tF4PPZ8oxnPALySnEsraBxESrCASRsFUlIdpNY4eMJE1taZHe4mgwP27pAfLsGP-VsYZKJGSnUbxHeneqytrzAQbbjxT2P09HkRpowyn0u5Y6Zf0VOr32xv4bauxXH_7X5vEPhmAoFEF6kJqDbWcmRAMupQhM0yFVqWWiazzCRcFEkkpdHUhlzRWIuCm1ArFye0vEgtRbrX4LqLEjofr9vbW1z46NCxWR5_FnC0-D4a-ieOnQ1U9a828C_AtjVw_dvwcyGaNq_l8_qkKdbV6W9VI_972d2BFQ-xSXd2Ju7Ckinvwc3evLPdfRiMPlZN5StUoF6SoXHvn4_qE1JZMj7_fjZ0fbW_TYn7To_VUVlKRPZmk3RJr7s32o-Jy7-cPoCDK1nIQ1guq9I8BoI3l0Zww0yhDdLWKVepEpmxmaCFYLwDayjy3N8Idd4G--MobwdxH3K_Dx3YmOtCrnxZdtcd5PiSGa8XM8azkiSX_Ptyrl45CtkFg2RpqgnyI2iCQCUNkw48mundglqc8IiyJHnyj2t4ATdGW_38_fbuzircQkjJ3WvNmD-F5ebLxDxD2NYUz9tDQ-DDVWvaBZz6TbI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photoprotection+Mechanism+of+p-Methoxy+Methylcinnamate%3A+A+CASPT2+Study&rft.jtitle=The+journal+of+physical+chemistry.+A%2C+Molecules%2C+spectroscopy%2C+kinetics%2C+environment%2C+%26+general+theory&rft.au=Chang%2C+Xue-Ping&rft.au=Li%2C+Chun-Xiang&rft.au=Xie%2C+Bin-Bin&rft.au=Cui%2C+Ganglong&rft.date=2015-11-25&rft.eissn=1520-5215&rft.volume=119&rft.issue=47&rft.spage=11488&rft_id=info:doi/10.1021%2Facs.jpca.5b08434&rft_id=info%3Apmid%2F26513466&rft.externalDocID=26513466
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-5639&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-5639&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-5639&client=summon