Contamination of heterogeneous lower crust in Hannuoba tholeiite; evidence from in situ trace elements and strontium isotopes of plagioclase
The Hannuoba basalt, located in the northern margin of the North China Craton, is a typical intra-continental basalt with ocean island basalt-like geochemical features and has been extensively studied. However, its origin and deep processes, such as magma mixing and crystallization conditions, are s...
Saved in:
Published in | The American mineralogist Vol. 108; no. 3; pp. 485 - 497 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Washington
Mineralogical Society of America
01.03.2023
Walter de Gruyter GmbH |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Hannuoba basalt, located in the northern margin of the North China Craton, is a typical intra-continental basalt with ocean island basalt-like geochemical features and has been extensively studied. However, its origin and deep processes, such as magma mixing and crystallization conditions, are still unclear. To further understand the mechanisms leading to the compositional heterogeneity and magmatic processes of Hannuoba basalt at crustal and/or mantle depth, in situ major element, trace element, and 87Sr/86Sr compositional heterogeneity of four representative plagioclase crystals in three Hannuoba tholeiite samples, as well as whole-rock major and trace element data, are reported. According to the petrographic characteristics, the basalts are divided into fine-grained and coarse-grained groups. The anorthite content in plagioclase of samples varies in a small range (56-64%), but the content of trace elements in plagioclase from the coarse-grained samples is generally higher than that of the fine-grained samples. Clinopyroxene-melt equilibrium thermobarometer and plagioclase-clinopyroxene magnesium and rare earth element exchange thermometers show that the magma for the two types of basalt was stored and crystallized at a similar depth, and crystallized within a 20 °C (fine-grained basalt) and 50 °C (coarse-grained basalt) temperature window, which may be a reason for the grain size differences between the two types of basalts. We found that 87Sr/86Sr of all the studied plagioclase crystals varied from 0.70333 ± 0.00018 (2SE) to 0.70556 ± 0.00031 (2SE), a much large range than the whole rock of Hannuoba basalts reported previously and consistent with that of Cenozoic basalts in North China. Therefore, at least two kinds of melts with significant differences in isotope and minor heterogeneity in major and trace elements are injected into each magma plumbing system. The content of trace elements in the Hanuoba tholeiite is between the Hanuoba alkaline basalt and the lower crust, which may be explained by the mixing of the alkaline basalt and the lower crust, but the low 87Sr/86Sr (<0.704) characteristics of plagioclase cannot be derived from alkaline basalts, because trace element abundances in the plagioclase are not in equilibrium with the alkaline basalt. Therefore, we believe that the compositional heterogeneity of Hannuoba tholeiitic basalt is caused by the mixing of heterogeneous lower crust rather than different mantle-derived melts. In turn this indicates that the contribution of the continental lower crust to the continental basalt is more complicated than previously recognized. |
---|---|
AbstractList | The Hannuoba basalt, located in the northern margin of the North China Craton, is a typical intra-continental basalt with ocean island basalt-like geochemical features and has been extensively studied. However, its origin and deep processes, such as magma mixing and crystallization conditions, are still unclear. To further understand the mechanisms leading to the compositional heterogeneity and magmatic processes of Hannuoba basalt at crustal and/or mantle depth, in situ major element, trace element, and 87Sr/86Sr compositional heterogeneity of four representative plagioclase crystals in three Hannuoba tholeiite samples, as well as whole-rock major and trace element data, are reported. According to the petrographic characteristics, the basalts are divided into fine-grained and coarse-grained groups. The anorthite content in plagioclase of samples varies in a small range (56–64%), but the content of trace elements in plagioclase from the coarse-grained samples is generally higher than that of the fine-grained samples. Clinopyroxene-melt equilibrium thermobarometer and plagioclase-clinopyroxene magnesium and rare earth element exchange thermometers show that the magma for the two types of basalt was stored and crystallized at a similar depth, and crystallized within a 20 °C (fine-grained basalt) and 50 °C (coarse-grained basalt) temperature window, which may be a reason for the grain size diferences between the two types of basalts. We found that 87Sr/86Sr of all the studied plagioclase crystals varied from 0.70333 ± 0.00018 (2SE) to 0.70556 ± 0.00031 (2SE), a much large range than the whole rock of Hannuoba basalts reported previously and consistent with that of Cenozoic basalts in North China. Therefore, at least two kinds of melts with significant differences in isotope and minor heterogeneity in major and trace elements are injected into each magma plumbing system. The content of trace elements in the Hanuoba tholeiite is between the Hanuoba alkaline basalt and the lower crust, which may be explained by the mixing of the alkaline basalt and the lower crust, but the low 87Sr/86Sr (<0.704) characteristics of plagioclase cannot be derived from alkaline basalts, because trace element abundances in the plagioclase are not in equilibrium with the alkaline basalt. Therefore, we believe that the compositional heterogeneity of Hannuoba tholeiitic basalt is caused by the mixing of heterogeneous lower crust rather than different mantle-derived melts. In turn this indicates that the contribution of the continental lower crust to the continental basalt is more complicated than previously recognized. The Hannuoba basalt, located in the northern margin of the North China Craton, is a typical intra-continental basalt with ocean island basalt-like geochemical features and has been extensively studied. However, its origin and deep processes, such as magma mixing and crystallization conditions, are still unclear. To further understand the mechanisms leading to the compositional heterogeneity and magmatic processes of Hannuoba basalt at crustal and/or mantle depth, in situ major element, trace element, and 87Sr/86Sr compositional heterogeneity of four representative plagioclase crystals in three Hannuoba tholeiite samples, as well as whole-rock major and trace element data, are reported. According to the petrographic characteristics, the basalts are divided into fine-grained and coarse-grained groups. The anorthite content in plagioclase of samples varies in a small range (56-64%), but the content of trace elements in plagioclase from the coarse-grained samples is generally higher than that of the fine-grained samples. Clinopyroxene-melt equilibrium thermobarometer and plagioclase-clinopyroxene magnesium and rare earth element exchange thermometers show that the magma for the two types of basalt was stored and crystallized at a similar depth, and crystallized within a 20 °C (fine-grained basalt) and 50 °C (coarse-grained basalt) temperature window, which may be a reason for the grain size differences between the two types of basalts. We found that 87Sr/86Sr of all the studied plagioclase crystals varied from 0.70333 ± 0.00018 (2SE) to 0.70556 ± 0.00031 (2SE), a much large range than the whole rock of Hannuoba basalts reported previously and consistent with that of Cenozoic basalts in North China. Therefore, at least two kinds of melts with significant differences in isotope and minor heterogeneity in major and trace elements are injected into each magma plumbing system. The content of trace elements in the Hanuoba tholeiite is between the Hanuoba alkaline basalt and the lower crust, which may be explained by the mixing of the alkaline basalt and the lower crust, but the low 87Sr/86Sr (<0.704) characteristics of plagioclase cannot be derived from alkaline basalts, because trace element abundances in the plagioclase are not in equilibrium with the alkaline basalt. Therefore, we believe that the compositional heterogeneity of Hannuoba tholeiitic basalt is caused by the mixing of heterogeneous lower crust rather than different mantle-derived melts. In turn this indicates that the contribution of the continental lower crust to the continental basalt is more complicated than previously recognized. The Hannuoba basalt, located in the northern margin of the North China Craton, is a typical intra-continental basalt with ocean island basalt-like geochemical features and has been extensively studied. However, its origin and deep processes, such as magma mixing and crystallization conditions, are still unclear. To further understand the mechanisms leading to the compositional heterogeneity and magmatic processes of Hannuoba basalt at crustal and/or mantle depth, in situ major element, trace element, and Sr/ Sr compositional heterogeneity of four representative plagioclase crystals in three Hannuoba tholeiite samples, as well as whole-rock major and trace element data, are reported. According to the petrographic characteristics, the basalts are divided into fine-grained and coarse-grained groups. The anorthite content in plagioclase of samples varies in a small range (56–64%), but the content of trace elements in plagioclase from the coarse-grained samples is generally higher than that of the fine-grained samples. Clinopyroxene-melt equilibrium thermobarometer and plagioclase-clinopyroxene magnesium and rare earth element exchange thermometers show that the magma for the two types of basalt was stored and crystallized at a similar depth, and crystallized within a 20 °C (fine-grained basalt) and 50 °C (coarse-grained basalt) temperature window, which may be a reason for the grain size diferences between the two types of basalts. We found that Sr/ Sr of all the studied plagioclase crystals varied from 0.70333 ± 0.00018 (2SE) to 0.70556 ± 0.00031 (2SE), a much large range than the whole rock of Hannuoba basalts reported previously and consistent with that of Cenozoic basalts in North China. Therefore, at least two kinds of melts with significant differences in isotope and minor heterogeneity in major and trace elements are injected into each magma plumbing system. The content of trace elements in the Hanuoba tholeiite is between the Hanuoba alkaline basalt and the lower crust, which may be explained by the mixing of the alkaline basalt and the lower crust, but the low Sr/ Sr (<0.704) characteristics of plagioclase cannot be derived from alkaline basalts, because trace element abundances in the plagioclase are not in equilibrium with the alkaline basalt. Therefore, we believe that the compositional heterogeneity of Hannuoba tholeiitic basalt is caused by the mixing of heterogeneous lower crust rather than different mantle-derived melts. In turn this indicates that the contribution of the continental lower crust to the continental basalt is more complicated than previously recognized. |
Author | Su Yutong, Su Yutong Li Peipei, Li Peipei Yang Zongfeng, Yang Zongfeng Guo Shuangyan, Guo Shuangyan |
Author_xml | – sequence: 1 fullname: Su Yutong, Su Yutong – sequence: 2 fullname: Yang Zongfeng, Yang Zongfeng – sequence: 3 fullname: Guo Shuangyan, Guo Shuangyan – sequence: 4 fullname: Li Peipei, Li Peipei |
BookMark | eNp9ksFu1DAQhi1UJLalNx7AEkdIGdvJ2lFPaAUUqVIvIPUWzTqTravEXmyHVd-Bh8bpIoEQ9GTL_n7_M_P7lJ344ImxVwIupFDmHU6VBCkrI5v6GVuJtm4qBVKfsBUAqAqgvn3BTlO6h4Kppl2xH5vgM07OY3bB8zDwO8oUw448hTnxMRwochvnlLnz_Aq9n8MWeb4LIzmX6ZLTd9eTt8SHGKYFSi7PPEcsRzTSRD4njr7nKcdi5uYCpZDDntLitx9x54IdMdFL9nzAMdH5r_WMff344cvmqrq--fR58_66whpkrpSwhoZmbdtm0AjYa42iaeutEFtLpS8pcIB2Da0dJIHC5R7E2lhttDRWnbHXx3f3MXybKeXuPszRF8tOiXXbtI1p5FOU1Aa0hgIW6u2RsjGkFGno9tFNGB86Ad2SSodTt6TSLakUXP6FW5cfZ18G5sb_iS6PogOOJZyednF-KJvfBf1LJsCo2iwVvjmqdxSSdUtUhxDH_o92QKoOVPkUrfoJZsa2AA |
CitedBy_id | crossref_primary_10_1016_j_palaeo_2024_112136 |
Cites_doi | 10.1016/j.chemgeo.2007.10.016 10.1126/science.255.5040.72 10.1007/s00410-016-1326-9 10.1111/j.1751-908X.2011.00120.x 10.1093/petrology/41.9.1397 10.1016/j.chemgeo.2014.07.012 10.1093/petrology/32.4.765 10.1016/0009-2541(94)90039-6 10.1016/j.earscirev.2005.03.004 10.1016/j.gca.2006.05.003 10.1016/0009-2541(94)00140-4 10.1029/91JB00175 10.1016/S0016-7037(98)00047-7 10.2138/am-2017-5968 10.1016/j.epsl.2010.12.026 10.1016/0009-2541(90)90101-C 10.2138/rmg.2008.69.3 10.1130/G45639.1 10.1016/j.chemgeo.2004.06.023 10.1016/S0012-821X(98)00140-X 10.1038/srep01856 10.1016/S0012-821X(00)00333-2 10.1111/j.1751-908X.2005.tb00901.x 10.1093/petrology/egu023 10.1016/j.chemgeo.2004.06.025 10.1016/S0016-7037(03)00416-2 10.1016/j.epsl.2018.01.032 10.1016/j.jseaes.2020.104511 10.1016/j.lithos.2017.01.022 10.1016/j.gca.2008.02.018 10.1016/j.chemgeo.2005.08.004 10.1016/S0301-9268(00)00154-6 10.1016/j.chemgeo.2015.02.018 10.1016/j.epsl.2019.01.040 10.1016/j.earscirev.2013.03.006 10.1038/385219a0 10.1130/G21512.1 10.1016/j.jseaes.2018.03.025 10.1016/j.lithos.2018.12.023 10.1016/0012-821X(91)90127-4 10.1016/0016-7037(91)90411-W 10.1126/science.275.5301.826 10.1016/0009-2541(90)90102-D 10.1016/j.lithos.2016.12.024 10.1039/c1ja10172b 10.1016/S0016-7037(99)00383-X 10.1130/G33739.1 10.1093/petrology/egi008 10.1029/95RG01302 10.1016/j.earscirev.2019.05.017 10.1016/j.earscirev.2016.04.001 |
ContentType | Journal Article |
Copyright | GeoRef, Copyright 2023, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Abstract, copyright, Mineralogical Society of America 2023 by Mineralogical Society of America |
Copyright_xml | – notice: GeoRef, Copyright 2023, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Abstract, copyright, Mineralogical Society of America – notice: 2023 by Mineralogical Society of America |
DBID | AAYXX CITATION 7TN F1W H96 L.G |
DOI | 10.2138/am-2022-8254 |
DatabaseName | CrossRef Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1945-3027 |
EndPage | 497 |
ExternalDocumentID | 10_2138_am_2022_8254 10_2138_am_2022_82541083485 2023_030029 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | -DZ -~X .DC 0R~ 23M 4.4 5GY 6J9 7XC 8FE 8FH 8G5 AAAEU AAFPC AAGVJ AAKRG AALGR AAPJK AAQCX AASQH AAWFE AAXCG AAXMT ABABW ABAQN ABEFU ABFKT ABJNI ABPLS ABPPZ ABVMU ABWLS ACEFL ACGFS ACGOD ACNCT ACPMA ACZBO ADEQT ADFRT ADGQD ADGYE ADOZN AEGVQ AEICA AENEX AEQDQ AERZL AFBAA AFCXV AFKRA AFRAH AFYRI AGBEV AGWTP AHVWV AHXUK AKXKS ALMA_UNASSIGNED_HOLDINGS ASYPN ATCPS AZQEC BAKPI BBCWN BBDJO BCIFA BENPR BHPHI BPHCQ CS3 DBYYV EBS EJD FRP GOHGZ GUQSH HCIFZ HZ~ IY9 KDIRW LK5 M2O M2P M7R MV1 O9- OK1 PADUT PATMY PCBAR PQQKQ PROAC PYCSY QD8 R05 RGW RMN RNS SLJYH TAE TN5 UK5 WH7 WTRAM XJT ZCA ~02 ACDEB ACUND AECWL AFBDD AIWOI H13 AAYXX CITATION 7TN ADNPR F1W H96 L.G |
ID | FETCH-LOGICAL-a402t-31c8ef56c95f7a0ad77a1594b11bce23521af09609cf2e03a77a10168c78728c3 |
ISSN | 0003-004X |
IngestDate | Sat Aug 16 19:51:19 EDT 2025 Sat Aug 16 17:21:01 EDT 2025 Thu Apr 24 23:05:06 EDT 2025 Tue Jul 01 03:21:05 EDT 2025 Thu Jul 10 10:31:55 EDT 2025 Tue Oct 29 04:53:19 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a402t-31c8ef56c95f7a0ad77a1594b11bce23521af09609cf2e03a77a10168c78728c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4374-2189 |
PQID | 2780770595 |
PQPubID | 4640 |
PageCount | 13 |
ParticipantIDs | proquest_journals_3169595852 proquest_journals_2780770595 crossref_primary_10_2138_am_2022_8254 crossref_citationtrail_10_2138_am_2022_8254 walterdegruyter_journals_10_2138_am_2022_82541083485 geoscienceworld_journals_2023_030029 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | The American mineralogist |
PublicationYear | 2023 |
Publisher | Mineralogical Society of America Walter de Gruyter GmbH |
Publisher_xml | – name: Mineralogical Society of America – name: Walter de Gruyter GmbH |
References | Gao (2023030103250549300_) 1998; 161 Jiang (2023030103250549300_) 2010; 26 Liu (2023030103250549300_) 2004; 211 Song (2023030103250549300_) 1990; 88 Fan (2023030103250549300_) 1991; 32 Glazner (2023030103250549300_) 1991; 96 Paton (2023030103250549300_) 2011; 26 Liu (2023030103250549300_) 2008; 247 Tepley (2023030103250549300_) 2000; 41 Rudnick (2023030103250549300_) 1995; 33 Guo (2023030103250549300_) 2016 Blundy (2023030103250549300_) 1991; 55 Jiang (2023030103250549300_) 2013; 122 Neave (2023030103250549300_) 2017; 102 Bindeman (2023030103250549300_) 1998; 62 Jochum (2023030103250549300_) 2011; 35 Chu (2023030103250549300_) 2017; 278–281 Zou (2023030103250549300_) 2000; 64 Xu (2023030103250549300_) 2005; 224 Yang (2023030103250549300_) 2016; 157 Zhi (2023030103250549300_) 1990; 88 Ramos (2023030103250549300_) 2005; 46 Putirka (2023030103250549300_) 2008; 69 Huang (2023030103250549300_) 2004; 68 Ramos (2023030103250549300_) 2004; 211 Xu (2023030103250549300_) 2017; 274–275 Yan (2023030103250549300_) 2020; 201 Edwards (2023030103250549300_) 2019; 511 Lange (2023030103250549300_) 2013; 41 Yang (2023030103250549300_) 2013; 3 Davidson (2023030103250549300_) 2001; 184 McDonough (2023030103250549300_) 1995; 120 Lustrino (2023030103250549300_) 2005; 72 Qian (2023030103250549300_) 2015; 401 Sun (2023030103250549300_) 2017; 172 Davidson (2023030103250549300_) 1997; 275 Zeng (2023030103250549300_) 2011; 302 Bédard (2023030103250549300_) 2006; 70 Liu (2023030103250549300_) 1994; 114 Li (2023030103250549300_) 2018; 160 Ramos (2023030103250549300_) 2005; 33 Sun (2023030103250549300_) 2018; 487 Ginibre (2023030103250549300_) 2014; 55 Jochum (2023030103250549300_) 2005; 29 Liu (2023030103250549300_) 2019; 196 Hofmann (2023030103250549300_) 1997; 385 Yang (2023030103250549300_) 2014; 385 Hagen-Peter (2023030103250549300_) 2019; 47 Zhang (2023030103250549300_) 2019; 326-327 Basu (2023030103250549300_) 1991; 105 Zhao (2023030103250549300_) 2001; 107 Glazner (2023030103250549300_) 1992; 255 Liu (2023030103250549300_) 2008; 72 |
References_xml | – volume: 247 start-page: 133 year: 2008 ident: 2023030103250549300_ article-title: Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: Subduction and ultrahigh-pressure metamorphism of lower crustal cumulates publication-title: Chemical Geology doi: 10.1016/j.chemgeo.2007.10.016 – volume: 255 start-page: 72 year: 1992 ident: 2023030103250549300_ article-title: Production of isotopic variability in continental basalts by cryptic crustal contamination publication-title: Science doi: 10.1126/science.255.5040.72 – volume: 172 start-page: 24 year: 2017 ident: 2023030103250549300_ article-title: A REE-in-plagioclase–clinopyroxene thermometer for crustal rocks publication-title: Contributions to Mineralogy and Petrology doi: 10.1007/s00410-016-1326-9 – volume: 35 start-page: 397 year: 2011 ident: 2023030103250549300_ article-title: Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines publication-title: Geostandards and Geoanalytical Research doi: 10.1111/j.1751-908X.2011.00120.x – volume: 41 start-page: 1397 year: 2000 ident: 2023030103250549300_ article-title: Magma mixing, recharge and eruption histories recorded in plagioclase phenocrysts from El Chichón Volcano, Mexico publication-title: Journal of Petrology doi: 10.1093/petrology/41.9.1397 – volume: 385 start-page: 35 year: 2014 ident: 2023030103250549300_ article-title: Sr and Nd isotopic compositions of apatite reference materials used in U-Th-Pb geochronology publication-title: Chemical Geology doi: 10.1016/j.chemgeo.2014.07.012 – volume: 32 start-page: 765 year: 1991 ident: 2023030103250549300_ article-title: The Cenozoic basaltic rocks of Eastern China—Petrology and chemical-composition publication-title: Journal of Petrology doi: 10.1093/petrology/32.4.765 – volume: 114 start-page: 19 year: 1994 ident: 2023030103250549300_ article-title: Major- and trace-element compositions of Cenozoic basalts in Eastern China—Petrogenesis and mantle source publication-title: Chemical Geology doi: 10.1016/0009-2541(94)90039-6 – volume: 72 start-page: 21 year: 2005 ident: 2023030103250549300_ article-title: How the delamination and detachment of lower crust can influence basaltic magmatism publication-title: Earth-Science Reviews doi: 10.1016/j.earscirev.2005.03.004 – volume: 70 start-page: 3717 year: 2006 ident: 2023030103250549300_ article-title: Trace element partitioning in plagioclase feldspar publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/j.gca.2006.05.003 – volume: 120 start-page: 223 year: 1995 ident: 2023030103250549300_ article-title: The composition of the Earth publication-title: Chemical Geology doi: 10.1016/0009-2541(94)00140-4 – volume: 96 start-page: 13673 issue: B8 year: 1991 ident: 2023030103250549300_ article-title: Contamination of basaltic magma by mafic crust at Amboy and Pisgah Craters, Mojave Desert, California publication-title: Journal of Geophysical Research doi: 10.1029/91JB00175 – volume: 62 start-page: 1175 year: 1998 ident: 2023030103250549300_ article-title: Ion microprobe study of plagioclase-basalt partition experiments at natural concentration levels of trace elements publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/S0016-7037(98)00047-7 – volume: 102 start-page: 777 year: 2017 ident: 2023030103250549300_ article-title: A new clinopyroxene-liquid barometer, and implications for magma storage pressures under Icelandic rift zones publication-title: American Mineralogist doi: 10.2138/am-2017-5968 – volume: 302 start-page: 359 year: 2011 ident: 2023030103250549300_ article-title: Crust recycling in the sources of two parallel volcanic chains in Shandong, North China publication-title: Earth and Planetary Science Letters doi: 10.1016/j.epsl.2010.12.026 – volume: 88 start-page: 1 year: 1990 ident: 2023030103250549300_ article-title: Geochemistry of Hannuoba basalts, eastern China: Constraints on the origin of continental alkalic and tholeiitic basalt publication-title: Chemical Geology doi: 10.1016/0009-2541(90)90101-C – volume: 69 start-page: 61 year: 2008 ident: 2023030103250549300_ article-title: Thermometers and barometers for volcanic systems publication-title: Reviews in Mineralogy and Geochemistry doi: 10.2138/rmg.2008.69.3 – volume: 47 start-page: 313 year: 2019 ident: 2023030103250549300_ article-title: Strontium isotope systematics for plagioclase of the Skaergaard intrusion (East Greenland): A window to crustal assimilation, differentiation, and magma dynamics publication-title: Geology doi: 10.1130/G45639.1 – volume: 211 start-page: 87 year: 2004 ident: 2023030103250549300_ article-title: U-Pb zircon ages and Nd, Sr, and Pb isotopes of lower crustal xenoliths from North China Craton: Insights on evolution of lower continental crust publication-title: Chemical Geology doi: 10.1016/j.chemgeo.2004.06.023 – volume: 161 start-page: 101 year: 1998 ident: 2023030103250549300_ article-title: How mafic is the lower continental crust? publication-title: Earth and Planetary Science Letters doi: 10.1016/S0012-821X(98)00140-X – volume: 3 start-page: 1856 year: 2013 ident: 2023030103250549300_ article-title: Can we identify source lithology of basalt? publication-title: Scientific Reports doi: 10.1038/srep01856 – volume: 26 start-page: 1265 year: 2010 ident: 2023030103250549300_ article-title: Re-Os isotope geochemistry of basalts from Hannuoba, North China: Evidence for Re volatile loss and crust-mantle interaction publication-title: Yanshi Xuebao – volume: 184 start-page: 427 year: 2001 ident: 2023030103250549300_ article-title: Magma recharge, contamination and residence times revealed by in situ laser ablation isotopic analysis of feldspar in volcanic rocks publication-title: Earth and Planetary Science Letters doi: 10.1016/S0012-821X(00)00333-2 – volume: 29 start-page: 285 year: 2005 ident: 2023030103250549300_ article-title: Chemical characterisation of the USGS reference glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G using EPMA, ID-TIMS, ID-ICPMS and LA-ICP-MS publication-title: Geostandards Newsletter doi: 10.1111/j.1751-908X.2005.tb00901.x – volume: 55 start-page: 1203 year: 2014 ident: 2023030103250549300_ article-title: Sr isotope zoning in plagioclase from Parinacota Volcano (Northern Chile): Quantifying magma mixing and crustal contamination publication-title: Journal of Petrology doi: 10.1093/petrology/egu023 – volume: 211 start-page: 135 year: 2004 ident: 2023030103250549300_ article-title: Measuring Sr-87/Sr-86 variations in minerals and groundmass from basalts using LA-MC-ICPMS publication-title: Chemical Geology doi: 10.1016/j.chemgeo.2004.06.025 – volume: 68 start-page: 127 year: 2004 ident: 2023030103250549300_ article-title: Geochronology, petrology and geo-chemistry of the granulite xenoliths from Nushan, east China: Implication for a heterogeneous lower crust beneath the Sino-Korean Craton publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/S0016-7037(03)00416-2 – volume: 487 start-page: 165 year: 2018 ident: 2023030103250549300_ article-title: Formation of fast-spreading lower oceanic crust as revealed by a new Mg–REE coupled geospeedometer publication-title: Earth and Planetary Science Letters doi: 10.1016/j.epsl.2018.01.032 – volume: 201 start-page: 104511 year: 2020 ident: 2023030103250549300_ article-title: Magma recharge processes of the Yandangshan volcanic-plutonic caldera complex in the coastal SE China: Constraint from inter-grain variation of Sr isotope of plagioclase publication-title: Journal of Asian Earth Sciences doi: 10.1016/j.jseaes.2020.104511 – volume: 278–281 start-page: 72 year: 2017 ident: 2023030103250549300_ article-title: Petrogenesis of Cenozoic basalts in central-eastern China: Constraints from Re–Os and PGE geo-chemistry publication-title: Lithos doi: 10.1016/j.lithos.2017.01.022 – volume: 72 start-page: 2349 year: 2008 ident: 2023030103250549300_ article-title: Recycled crust controls contrasting source compositions of Mesozoic and Cenozoic basalts in the North China Craton publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/j.gca.2008.02.018 – volume: 224 start-page: 247 year: 2005 ident: 2023030103250549300_ article-title: Role of lithosphere-asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong, western North China Craton publication-title: Chemical Geology doi: 10.1016/j.chemgeo.2005.08.004 – volume: 107 start-page: 45 year: 2001 ident: 2023030103250549300_ article-title: Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P-T path constraints and tectonic evolution publication-title: Precambrian Research doi: 10.1016/S0301-9268(00)00154-6 – start-page: 240 year: 2016 ident: 2023030103250549300_ article-title: The origin of Cenozoic basalts from central Inner Mongolia, East China: The consequence of recent mantle metasomatism genetically associated with seismically observed paleo-Pacific slab in the mantle transition zone publication-title: Lithos – volume: 401 start-page: 111 year: 2015 ident: 2023030103250549300_ article-title: Chemical and Pb isotope composition of olivine-hosted melt inclusions from the Hannuoba basalts, North China Craton: Implications for petrogenesis and mantle source publication-title: Chemical Geology doi: 10.1016/j.chemgeo.2015.02.018 – volume: 511 start-page: 190 year: 2019 ident: 2023030103250549300_ article-title: Extreme enriched and heterogeneous 87Sr/86Sr ratios recorded in magmatic plagioclase from the Samoan hotspot publication-title: Earth and Planetary Science Letters doi: 10.1016/j.epsl.2019.01.040 – volume: 122 start-page: 1 year: 2013 ident: 2023030103250549300_ article-title: Nature and evolution of the lower crust in the eastern North China craton: A review publication-title: Earth-Science Reviews doi: 10.1016/j.earscirev.2013.03.006 – volume: 385 start-page: 219 year: 1997 ident: 2023030103250549300_ article-title: Mantle geochemistry: The message from oceanic volcanism publication-title: Nature doi: 10.1038/385219a0 – volume: 33 start-page: 457 year: 2005 ident: 2023030103250549300_ article-title: Sr isotope disequilibrium in Columbia River flood basalts: Evidence for rapid shallow-level open-system processes publication-title: Geology doi: 10.1130/G21512.1 – volume: 160 start-page: 38 year: 2018 ident: 2023030103250549300_ article-title: In-situ Sr isotopic measurement of scheelite using fs-LA-MC-ICPMS publication-title: Journal of Asian Earth Sciences doi: 10.1016/j.jseaes.2018.03.025 – volume: 326-327 start-page: 144 year: 2019 ident: 2023030103250549300_ article-title: Late Cretaceous volcanic rocks in the Sangri area, southern Lhasa Terrane, Tibet: Evidence for oceanic ridge subduction publication-title: Lithos doi: 10.1016/j.lithos.2018.12.023 – volume: 105 start-page: 149 year: 1991 ident: 2023030103250549300_ article-title: Major element, Ree, and Pb, Nd and Sr isotopic geochemistry of cenozoic volcanic-rocks of Eastern China—Implications for their origin from suboceanic-type mantle reservoirs publication-title: Earth and Planetary Science Letters doi: 10.1016/0012-821X(91)90127-4 – volume: 55 start-page: 193 year: 1991 ident: 2023030103250549300_ article-title: Crystal-chemical controls on the partitioning of Sr and Ba between plagioclase feldspar, silicate melts, and hydrothermal solutions publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/0016-7037(91)90411-W – volume: 275 start-page: 826 year: 1997 ident: 2023030103250549300_ article-title: Recharge in volcanic systems: Evidence from isotope profiles of phenocrysts publication-title: Science doi: 10.1126/science.275.5301.826 – volume: 88 start-page: 35 year: 1990 ident: 2023030103250549300_ article-title: Isotopic characteristics of Hannuoba Basalts, Eastern China—Implications for their petrogenesis and the composition of sub-continental mantle publication-title: Chemical Geology doi: 10.1016/0009-2541(90)90102-D – volume: 274–275 start-page: 383 year: 2017 ident: 2023030103250549300_ article-title: Crust recycling induced compositional-temporal-spatial variations of Cenozoic basalts in the Trans-North China Orogen publication-title: Lithos doi: 10.1016/j.lithos.2016.12.024 – volume: 26 start-page: 2508 year: 2011 ident: 2023030103250549300_ article-title: Iolite: Freeware for the visualisation and processing of mass spectrometric data publication-title: Journal of Analytical Atomic Spectrometry doi: 10.1039/c1ja10172b – volume: 64 start-page: 1095 year: 2000 ident: 2023030103250549300_ article-title: Modeling of trace element fractionation during non-modal dynamic melting with linear variations in mineral/melt distribution coefficients publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/S0016-7037(99)00383-X – volume: 41 start-page: 279 year: 2013 ident: 2023030103250549300_ article-title: Diverse Sr isotope signatures preserved in mid-oceanic-ridge basalt plagioclase publication-title: Geology doi: 10.1130/G33739.1 – volume: 46 start-page: 999 year: 2005 ident: 2023030103250549300_ article-title: Distinguishing melting of heterogeneous mantle sources from crustal contamination: Insights from Sr isotopes at the phenocryst scale, Pisgah Crater, California publication-title: Journal of Petrology doi: 10.1093/petrology/egi008 – volume: 33 start-page: 267 year: 1995 ident: 2023030103250549300_ article-title: Nature and composition of the continental-crust—A lower crustal perspective publication-title: Reviews of Geophysics doi: 10.1029/95RG01302 – volume: 196 start-page: 102873 year: 2019 ident: 2023030103250549300_ article-title: Thinning and destruction of the lithospheric mantle root beneath the North China Craton: A review publication-title: Earth-Science Reviews doi: 10.1016/j.earscirev.2019.05.017 – volume: 157 start-page: 18 year: 2016 ident: 2023030103250549300_ article-title: On the chemical markers of pyroxenite contributions in continental basalts in Eastern China: Implications for source lithology and the origin of basalts publication-title: Earth-Science Reviews doi: 10.1016/j.earscirev.2016.04.001 |
SSID | ssj0022359 |
Score | 2.3925273 |
Snippet | The Hannuoba basalt, located in the northern margin of the North China Craton, is a typical intra-continental basalt with ocean island basalt-like geochemical... |
SourceID | proquest crossref walterdegruyter geoscienceworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 485 |
SubjectTerms | alkaline earth metals Anorthite Asia Basalt basalts Calcium aluminum silicates Cenozoic China Contamination Cratons crust Crystallization Crystals Earth mantle Far East feldspar group framework silicates Geochemistry Grain size Hannuoba Hannuoba China Heterogeneity heterogeneous materials igneous and metamorphic rocks igneous rocks in situ Isotopes Lava lower continental crust lower crust Magma magma contamination magmatic process Magnesium Melts metals microstructure North China Platform P-T conditions Petrology Plagioclase Rare earth elements Rocks silicates Sr/Sr Strontium Strontium 87 strontium isotope Strontium isotopes textures Thermometers Tholeiite Tholeiitic basalt Trace elements volcanic rocks |
Title | Contamination of heterogeneous lower crust in Hannuoba tholeiite; evidence from in situ trace elements and strontium isotopes of plagioclase |
URI | https://pubs.geoscienceworld.org/ammin/article/108/3/485/620561/Contamination-of-heterogeneous-lower-crust-in https://www.degruyter.com/doi/10.2138/am-2022-8254 https://www.proquest.com/docview/2780770595 https://www.proquest.com/docview/3169595852 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKrpC4VDxFYUE-LKcqS-K8uRW0tEKCC120cIkc1-kGtU21TYSW38Df4f8xYydOUhVp4dCossdN4_ky47HnQchpLIOFl_HACmJMqo1-NKCG0AlAZIxzWKEyjHf--CmYXXgfLv3LweB3x2upKtMz8fNgXMn_cBXagK8YJfsPnDU_Cg3wHfgLV-AwXG_FY0wtxdGXpV32wTQVQC_Rs3WFFdDGAqMqcFtjhlHB8PqOcSdU5lgYz52Mm7KiOtAEyHZ5WWHlCGiS2rdcp3He4aZ5mVdAtCvKYquz1W5XfJkXYtUc8nxv0WcOg9a5Sm1tYo30IZQS_pU1L2rdiaKn3rz-Bm0WzLTpmFZqR_fzVQUU1teOH1GunYxzCz7dHQzmti5cRipDg609Nc-kFsSx51t4ptqT1HbUgaTbkbuervtTq3BPu_zuawfmqFzwfA0gAhMcbeNWCzYn_3vK0bgsgrGE4xO-TnB0gqPvkGMG1gmI1-PJ9O35F2PpM9ePTalGeDAdcYHjX3fv3lsLDZeyTl8qVbLcnskz_KGcJxZyeV3dlM1hvVoDze-TYW280IlG4gMykJuH5O5UFYe-eUR-9fBIi4z28EgVHqnCI803tMEjNXh8Qxs0UkQjEiEaqUIjbdBIAY3UoJE2aMT7ddD4mFy8P5-_m1l1tQ-LezYrYTEgIpn5gYj9LOQ2X4Qhh7W2lzpOKiTMKHN4phIkghSRtsuxHwyWSIDOYZFwn5CjTbGRTwl1ghQ1mQTj3PWCIOJpKnjgCIlR557gIzJu5j0RdSp8rMiySg5xeUReGeqtTgHzF7rTPRYmtazYIZGbgD61WTwiJw1fO_1hZIchmDr-wW7XCWLoi3w2It4eFFqqQ38KXhl4aP_ZLZ_hObnXvqEn5Ki8ruQLWHWX6csa438AqxXbrg |
linkProvider | Walter de Gruyter |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VVAguKX8VgQJ7aE8ojX_XNlIPBdqm9OfUotzMer1OLRI7iteqwjPwMH2VvhEzsR3aUC5IPXDNjp31zuzOjP3NNwCbgeKxkwje5QGRahOOBt0QgQBkYgmBEapF9c4np7x_7nwZuIMVuGpqYQhWGavhtJzpiiG1F-eypBdlDdeAZdp-T4xRvZhGUX7Tu9DjUQ2rPFKzS0zaip3Dz6jhLcva3zv71O_WfQW6ArMljceO9FXichm4iScMEXueQK_uRKYZSWVhSGKKZE7FhvNVhi1oHEMjX6J1W7608b4PYNUn3pcWrO4efNz7ukjy8PJg0aXPcAYV2P6PSd9yg-2hqpkr1Zwn9Va0276cfzdfLMoN97e_BtfNwlWol-_bpY625Y8lTsn_aWWfQLuOxdlutXmeworKnsHDg3mv49lz-EnMXYKgQmS8LE_YBWGHctxyKi8LNqIGc0xS0QpLM9anoms8HRm9aFYphvIfWNOzlVEVDwkVqS6Zngr8SVXA_YKJLGYFfZHQaYlCRa7ziSro_yYjMUxziQmOegHn97IU69DK8ky9BGbyiA5mhbmm7XDuiyiSgptSURG1I0UH3je2FMqa2Z0ajIxCzPBIqaEYh6TUkJTaga2F9KRiNPmL3OaSWYb18VaQkB2iezCsoAMbja3eGPd8w_MwcnfvHLZNHuCY71odcJbM-7fUXZMyMWNwfPfVv132Dh71z06Ow-PD06PX8JieooITbkBLT0v1BuNLHb2ttzSDb_dt678A1yWFyw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VVCAuafkTKaXsoT2hNPbaXttIPRTaNKVQcaAoN3e9XgerqR3FtqrwDLwLr8IjMRPboQ3lgtQD1-zYWe_M7szY33wDsO1rEdmxFF3hE6k24WjQDREIQMVcSoxQOdU7fzwVgzP7_dAZrsCPphaGYJWRHk3LWVExpPaiTJX0oqzhGuCm5fXkJaoX0yjKb3qTKK5RlSd6doU5W753fIAK3uG8f_j53aBbtxXoSkyWCjx1lKdjRyjfiV1pyMh1JTp1OzTNUGmOEYkp4zkTG05XG5akcYyMPIXGzT1l4X3vwapnm4bXgtX9o7eHXxY5Hl7uL5r0Gfawwtr_MecbXrA90jVxpZ7TpN4IdttX88_mizW55v36a_CzWbcK9HKxWxbhrvq2RCn5Hy3sOrTrSJztV1vnEazo9DHcP5p3Op49ge_E2yUJKESmy7KYfSXkUIYbTmdlzsbUXo4pKllhScoGVHKNZyOj18w6wUD-DWs6tjKq4SGhPClKVkwl_qQr2H7OZBqxnL5HFEmJQnlWZBOd0_9NxnKUZArTG_0Uzu5kKZ5BK81S_RyYKUI6ljVmmpYthCfDUElhKk0l1LaSHXjdmFKgal53ai8yDjC_I50G8jIgnQak0w7sLKQnFZ_JX-S2l6wyqA-3nISsAJ2Dwf0ObDamem3c9QzXxbjduXXYMoWPY57DO2AvWfdvqdsmhRsOH9rZ-LfLXsGDTwf94MPx6ckLeEgPUWEJN6FVTEv9EoPLItyqNzSD87s29V-e9YRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contamination+of+heterogeneous+lower+crust+in+Hannuoba+tholeiite%3A+Evidence+from+in+situ+trace+elements+and+strontium+isotopes+of+plagioclase&rft.jtitle=The+American+mineralogist&rft.au=Su%2C+Yu-Tong&rft.au=Yang%2C+Zong-Feng&rft.au=Guo%2C+Shuang-Yan&rft.au=Li%2C+Pei-Pei&rft.date=2023-03-01&rft.issn=0003-004X&rft.eissn=1945-3027&rft.volume=108&rft.issue=3&rft.spage=485&rft.epage=497&rft_id=info:doi/10.2138%2Fam-2022-8254&rft.externalDBID=n%2Fa&rft.externalDocID=10_2138_am_2022_8254 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-004X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-004X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-004X&client=summon |