Contamination of heterogeneous lower crust in Hannuoba tholeiite; evidence from in situ trace elements and strontium isotopes of plagioclase

The Hannuoba basalt, located in the northern margin of the North China Craton, is a typical intra-continental basalt with ocean island basalt-like geochemical features and has been extensively studied. However, its origin and deep processes, such as magma mixing and crystallization conditions, are s...

Full description

Saved in:
Bibliographic Details
Published inThe American mineralogist Vol. 108; no. 3; pp. 485 - 497
Main Authors Su Yutong, Su Yutong, Yang Zongfeng, Yang Zongfeng, Guo Shuangyan, Guo Shuangyan, Li Peipei, Li Peipei
Format Journal Article
LanguageEnglish
Published Washington Mineralogical Society of America 01.03.2023
Walter de Gruyter GmbH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Hannuoba basalt, located in the northern margin of the North China Craton, is a typical intra-continental basalt with ocean island basalt-like geochemical features and has been extensively studied. However, its origin and deep processes, such as magma mixing and crystallization conditions, are still unclear. To further understand the mechanisms leading to the compositional heterogeneity and magmatic processes of Hannuoba basalt at crustal and/or mantle depth, in situ major element, trace element, and 87Sr/86Sr compositional heterogeneity of four representative plagioclase crystals in three Hannuoba tholeiite samples, as well as whole-rock major and trace element data, are reported. According to the petrographic characteristics, the basalts are divided into fine-grained and coarse-grained groups. The anorthite content in plagioclase of samples varies in a small range (56-64%), but the content of trace elements in plagioclase from the coarse-grained samples is generally higher than that of the fine-grained samples. Clinopyroxene-melt equilibrium thermobarometer and plagioclase-clinopyroxene magnesium and rare earth element exchange thermometers show that the magma for the two types of basalt was stored and crystallized at a similar depth, and crystallized within a 20 °C (fine-grained basalt) and 50 °C (coarse-grained basalt) temperature window, which may be a reason for the grain size differences between the two types of basalts. We found that 87Sr/86Sr of all the studied plagioclase crystals varied from 0.70333 ± 0.00018 (2SE) to 0.70556 ± 0.00031 (2SE), a much large range than the whole rock of Hannuoba basalts reported previously and consistent with that of Cenozoic basalts in North China. Therefore, at least two kinds of melts with significant differences in isotope and minor heterogeneity in major and trace elements are injected into each magma plumbing system. The content of trace elements in the Hanuoba tholeiite is between the Hanuoba alkaline basalt and the lower crust, which may be explained by the mixing of the alkaline basalt and the lower crust, but the low 87Sr/86Sr (<0.704) characteristics of plagioclase cannot be derived from alkaline basalts, because trace element abundances in the plagioclase are not in equilibrium with the alkaline basalt. Therefore, we believe that the compositional heterogeneity of Hannuoba tholeiitic basalt is caused by the mixing of heterogeneous lower crust rather than different mantle-derived melts. In turn this indicates that the contribution of the continental lower crust to the continental basalt is more complicated than previously recognized.
AbstractList The Hannuoba basalt, located in the northern margin of the North China Craton, is a typical intra-continental basalt with ocean island basalt-like geochemical features and has been extensively studied. However, its origin and deep processes, such as magma mixing and crystallization conditions, are still unclear. To further understand the mechanisms leading to the compositional heterogeneity and magmatic processes of Hannuoba basalt at crustal and/or mantle depth, in situ major element, trace element, and 87Sr/86Sr compositional heterogeneity of four representative plagioclase crystals in three Hannuoba tholeiite samples, as well as whole-rock major and trace element data, are reported. According to the petrographic characteristics, the basalts are divided into fine-grained and coarse-grained groups. The anorthite content in plagioclase of samples varies in a small range (56–64%), but the content of trace elements in plagioclase from the coarse-grained samples is generally higher than that of the fine-grained samples. Clinopyroxene-melt equilibrium thermobarometer and plagioclase-clinopyroxene magnesium and rare earth element exchange thermometers show that the magma for the two types of basalt was stored and crystallized at a similar depth, and crystallized within a 20 °C (fine-grained basalt) and 50 °C (coarse-grained basalt) temperature window, which may be a reason for the grain size diferences between the two types of basalts. We found that 87Sr/86Sr of all the studied plagioclase crystals varied from 0.70333 ± 0.00018 (2SE) to 0.70556 ± 0.00031 (2SE), a much large range than the whole rock of Hannuoba basalts reported previously and consistent with that of Cenozoic basalts in North China. Therefore, at least two kinds of melts with significant differences in isotope and minor heterogeneity in major and trace elements are injected into each magma plumbing system. The content of trace elements in the Hanuoba tholeiite is between the Hanuoba alkaline basalt and the lower crust, which may be explained by the mixing of the alkaline basalt and the lower crust, but the low 87Sr/86Sr (<0.704) characteristics of plagioclase cannot be derived from alkaline basalts, because trace element abundances in the plagioclase are not in equilibrium with the alkaline basalt. Therefore, we believe that the compositional heterogeneity of Hannuoba tholeiitic basalt is caused by the mixing of heterogeneous lower crust rather than different mantle-derived melts. In turn this indicates that the contribution of the continental lower crust to the continental basalt is more complicated than previously recognized.
The Hannuoba basalt, located in the northern margin of the North China Craton, is a typical intra-continental basalt with ocean island basalt-like geochemical features and has been extensively studied. However, its origin and deep processes, such as magma mixing and crystallization conditions, are still unclear. To further understand the mechanisms leading to the compositional heterogeneity and magmatic processes of Hannuoba basalt at crustal and/or mantle depth, in situ major element, trace element, and 87Sr/86Sr compositional heterogeneity of four representative plagioclase crystals in three Hannuoba tholeiite samples, as well as whole-rock major and trace element data, are reported. According to the petrographic characteristics, the basalts are divided into fine-grained and coarse-grained groups. The anorthite content in plagioclase of samples varies in a small range (56-64%), but the content of trace elements in plagioclase from the coarse-grained samples is generally higher than that of the fine-grained samples. Clinopyroxene-melt equilibrium thermobarometer and plagioclase-clinopyroxene magnesium and rare earth element exchange thermometers show that the magma for the two types of basalt was stored and crystallized at a similar depth, and crystallized within a 20 °C (fine-grained basalt) and 50 °C (coarse-grained basalt) temperature window, which may be a reason for the grain size differences between the two types of basalts. We found that 87Sr/86Sr of all the studied plagioclase crystals varied from 0.70333 ± 0.00018 (2SE) to 0.70556 ± 0.00031 (2SE), a much large range than the whole rock of Hannuoba basalts reported previously and consistent with that of Cenozoic basalts in North China. Therefore, at least two kinds of melts with significant differences in isotope and minor heterogeneity in major and trace elements are injected into each magma plumbing system. The content of trace elements in the Hanuoba tholeiite is between the Hanuoba alkaline basalt and the lower crust, which may be explained by the mixing of the alkaline basalt and the lower crust, but the low 87Sr/86Sr (<0.704) characteristics of plagioclase cannot be derived from alkaline basalts, because trace element abundances in the plagioclase are not in equilibrium with the alkaline basalt. Therefore, we believe that the compositional heterogeneity of Hannuoba tholeiitic basalt is caused by the mixing of heterogeneous lower crust rather than different mantle-derived melts. In turn this indicates that the contribution of the continental lower crust to the continental basalt is more complicated than previously recognized.
The Hannuoba basalt, located in the northern margin of the North China Craton, is a typical intra-continental basalt with ocean island basalt-like geochemical features and has been extensively studied. However, its origin and deep processes, such as magma mixing and crystallization conditions, are still unclear. To further understand the mechanisms leading to the compositional heterogeneity and magmatic processes of Hannuoba basalt at crustal and/or mantle depth, in situ major element, trace element, and Sr/ Sr compositional heterogeneity of four representative plagioclase crystals in three Hannuoba tholeiite samples, as well as whole-rock major and trace element data, are reported. According to the petrographic characteristics, the basalts are divided into fine-grained and coarse-grained groups. The anorthite content in plagioclase of samples varies in a small range (56–64%), but the content of trace elements in plagioclase from the coarse-grained samples is generally higher than that of the fine-grained samples. Clinopyroxene-melt equilibrium thermobarometer and plagioclase-clinopyroxene magnesium and rare earth element exchange thermometers show that the magma for the two types of basalt was stored and crystallized at a similar depth, and crystallized within a 20 °C (fine-grained basalt) and 50 °C (coarse-grained basalt) temperature window, which may be a reason for the grain size diferences between the two types of basalts. We found that Sr/ Sr of all the studied plagioclase crystals varied from 0.70333 ± 0.00018 (2SE) to 0.70556 ± 0.00031 (2SE), a much large range than the whole rock of Hannuoba basalts reported previously and consistent with that of Cenozoic basalts in North China. Therefore, at least two kinds of melts with significant differences in isotope and minor heterogeneity in major and trace elements are injected into each magma plumbing system. The content of trace elements in the Hanuoba tholeiite is between the Hanuoba alkaline basalt and the lower crust, which may be explained by the mixing of the alkaline basalt and the lower crust, but the low Sr/ Sr (<0.704) characteristics of plagioclase cannot be derived from alkaline basalts, because trace element abundances in the plagioclase are not in equilibrium with the alkaline basalt. Therefore, we believe that the compositional heterogeneity of Hannuoba tholeiitic basalt is caused by the mixing of heterogeneous lower crust rather than different mantle-derived melts. In turn this indicates that the contribution of the continental lower crust to the continental basalt is more complicated than previously recognized.
Author Su Yutong, Su Yutong
Li Peipei, Li Peipei
Yang Zongfeng, Yang Zongfeng
Guo Shuangyan, Guo Shuangyan
Author_xml – sequence: 1
  fullname: Su Yutong, Su Yutong
– sequence: 2
  fullname: Yang Zongfeng, Yang Zongfeng
– sequence: 3
  fullname: Guo Shuangyan, Guo Shuangyan
– sequence: 4
  fullname: Li Peipei, Li Peipei
BookMark eNp9ksFu1DAQhi1UJLalNx7AEkdIGdvJ2lFPaAUUqVIvIPUWzTqTravEXmyHVd-Bh8bpIoEQ9GTL_n7_M_P7lJ344ImxVwIupFDmHU6VBCkrI5v6GVuJtm4qBVKfsBUAqAqgvn3BTlO6h4Kppl2xH5vgM07OY3bB8zDwO8oUw448hTnxMRwochvnlLnz_Aq9n8MWeb4LIzmX6ZLTd9eTt8SHGKYFSi7PPEcsRzTSRD4njr7nKcdi5uYCpZDDntLitx9x54IdMdFL9nzAMdH5r_WMff344cvmqrq--fR58_66whpkrpSwhoZmbdtm0AjYa42iaeutEFtLpS8pcIB2Da0dJIHC5R7E2lhttDRWnbHXx3f3MXybKeXuPszRF8tOiXXbtI1p5FOU1Aa0hgIW6u2RsjGkFGno9tFNGB86Ad2SSodTt6TSLakUXP6FW5cfZ18G5sb_iS6PogOOJZyednF-KJvfBf1LJsCo2iwVvjmqdxSSdUtUhxDH_o92QKoOVPkUrfoJZsa2AA
CitedBy_id crossref_primary_10_1016_j_palaeo_2024_112136
Cites_doi 10.1016/j.chemgeo.2007.10.016
10.1126/science.255.5040.72
10.1007/s00410-016-1326-9
10.1111/j.1751-908X.2011.00120.x
10.1093/petrology/41.9.1397
10.1016/j.chemgeo.2014.07.012
10.1093/petrology/32.4.765
10.1016/0009-2541(94)90039-6
10.1016/j.earscirev.2005.03.004
10.1016/j.gca.2006.05.003
10.1016/0009-2541(94)00140-4
10.1029/91JB00175
10.1016/S0016-7037(98)00047-7
10.2138/am-2017-5968
10.1016/j.epsl.2010.12.026
10.1016/0009-2541(90)90101-C
10.2138/rmg.2008.69.3
10.1130/G45639.1
10.1016/j.chemgeo.2004.06.023
10.1016/S0012-821X(98)00140-X
10.1038/srep01856
10.1016/S0012-821X(00)00333-2
10.1111/j.1751-908X.2005.tb00901.x
10.1093/petrology/egu023
10.1016/j.chemgeo.2004.06.025
10.1016/S0016-7037(03)00416-2
10.1016/j.epsl.2018.01.032
10.1016/j.jseaes.2020.104511
10.1016/j.lithos.2017.01.022
10.1016/j.gca.2008.02.018
10.1016/j.chemgeo.2005.08.004
10.1016/S0301-9268(00)00154-6
10.1016/j.chemgeo.2015.02.018
10.1016/j.epsl.2019.01.040
10.1016/j.earscirev.2013.03.006
10.1038/385219a0
10.1130/G21512.1
10.1016/j.jseaes.2018.03.025
10.1016/j.lithos.2018.12.023
10.1016/0012-821X(91)90127-4
10.1016/0016-7037(91)90411-W
10.1126/science.275.5301.826
10.1016/0009-2541(90)90102-D
10.1016/j.lithos.2016.12.024
10.1039/c1ja10172b
10.1016/S0016-7037(99)00383-X
10.1130/G33739.1
10.1093/petrology/egi008
10.1029/95RG01302
10.1016/j.earscirev.2019.05.017
10.1016/j.earscirev.2016.04.001
ContentType Journal Article
Copyright GeoRef, Copyright 2023, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Abstract, copyright, Mineralogical Society of America
2023 by Mineralogical Society of America
Copyright_xml – notice: GeoRef, Copyright 2023, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Abstract, copyright, Mineralogical Society of America
– notice: 2023 by Mineralogical Society of America
DBID AAYXX
CITATION
7TN
F1W
H96
L.G
DOI 10.2138/am-2022-8254
DatabaseName CrossRef
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional

DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1945-3027
EndPage 497
ExternalDocumentID 10_2138_am_2022_8254
10_2138_am_2022_82541083485
2023_030029
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID -DZ
-~X
.DC
0R~
23M
4.4
5GY
6J9
7XC
8FE
8FH
8G5
AAAEU
AAFPC
AAGVJ
AAKRG
AALGR
AAPJK
AAQCX
AASQH
AAWFE
AAXCG
AAXMT
ABABW
ABAQN
ABEFU
ABFKT
ABJNI
ABPLS
ABPPZ
ABVMU
ABWLS
ACEFL
ACGFS
ACGOD
ACNCT
ACPMA
ACZBO
ADEQT
ADFRT
ADGQD
ADGYE
ADOZN
AEGVQ
AEICA
AENEX
AEQDQ
AERZL
AFBAA
AFCXV
AFKRA
AFRAH
AFYRI
AGBEV
AGWTP
AHVWV
AHXUK
AKXKS
ALMA_UNASSIGNED_HOLDINGS
ASYPN
ATCPS
AZQEC
BAKPI
BBCWN
BBDJO
BCIFA
BENPR
BHPHI
BPHCQ
CS3
DBYYV
EBS
EJD
FRP
GOHGZ
GUQSH
HCIFZ
HZ~
IY9
KDIRW
LK5
M2O
M2P
M7R
MV1
O9-
OK1
PADUT
PATMY
PCBAR
PQQKQ
PROAC
PYCSY
QD8
R05
RGW
RMN
RNS
SLJYH
TAE
TN5
UK5
WH7
WTRAM
XJT
ZCA
~02
ACDEB
ACUND
AECWL
AFBDD
AIWOI
H13
AAYXX
CITATION
7TN
ADNPR
F1W
H96
L.G
ID FETCH-LOGICAL-a402t-31c8ef56c95f7a0ad77a1594b11bce23521af09609cf2e03a77a10168c78728c3
ISSN 0003-004X
IngestDate Sat Aug 16 19:51:19 EDT 2025
Sat Aug 16 17:21:01 EDT 2025
Thu Apr 24 23:05:06 EDT 2025
Tue Jul 01 03:21:05 EDT 2025
Thu Jul 10 10:31:55 EDT 2025
Tue Oct 29 04:53:19 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a402t-31c8ef56c95f7a0ad77a1594b11bce23521af09609cf2e03a77a10168c78728c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4374-2189
PQID 2780770595
PQPubID 4640
PageCount 13
ParticipantIDs proquest_journals_3169595852
proquest_journals_2780770595
crossref_primary_10_2138_am_2022_8254
crossref_citationtrail_10_2138_am_2022_8254
walterdegruyter_journals_10_2138_am_2022_82541083485
geoscienceworld_journals_2023_030029
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle The American mineralogist
PublicationYear 2023
Publisher Mineralogical Society of America
Walter de Gruyter GmbH
Publisher_xml – name: Mineralogical Society of America
– name: Walter de Gruyter GmbH
References Gao (2023030103250549300_) 1998; 161
Jiang (2023030103250549300_) 2010; 26
Liu (2023030103250549300_) 2004; 211
Song (2023030103250549300_) 1990; 88
Fan (2023030103250549300_) 1991; 32
Glazner (2023030103250549300_) 1991; 96
Paton (2023030103250549300_) 2011; 26
Liu (2023030103250549300_) 2008; 247
Tepley (2023030103250549300_) 2000; 41
Rudnick (2023030103250549300_) 1995; 33
Guo (2023030103250549300_) 2016
Blundy (2023030103250549300_) 1991; 55
Jiang (2023030103250549300_) 2013; 122
Neave (2023030103250549300_) 2017; 102
Bindeman (2023030103250549300_) 1998; 62
Jochum (2023030103250549300_) 2011; 35
Chu (2023030103250549300_) 2017; 278–281
Zou (2023030103250549300_) 2000; 64
Xu (2023030103250549300_) 2005; 224
Yang (2023030103250549300_) 2016; 157
Zhi (2023030103250549300_) 1990; 88
Ramos (2023030103250549300_) 2005; 46
Putirka (2023030103250549300_) 2008; 69
Huang (2023030103250549300_) 2004; 68
Ramos (2023030103250549300_) 2004; 211
Xu (2023030103250549300_) 2017; 274–275
Yan (2023030103250549300_) 2020; 201
Edwards (2023030103250549300_) 2019; 511
Lange (2023030103250549300_) 2013; 41
Yang (2023030103250549300_) 2013; 3
Davidson (2023030103250549300_) 2001; 184
McDonough (2023030103250549300_) 1995; 120
Lustrino (2023030103250549300_) 2005; 72
Qian (2023030103250549300_) 2015; 401
Sun (2023030103250549300_) 2017; 172
Davidson (2023030103250549300_) 1997; 275
Zeng (2023030103250549300_) 2011; 302
Bédard (2023030103250549300_) 2006; 70
Liu (2023030103250549300_) 1994; 114
Li (2023030103250549300_) 2018; 160
Ramos (2023030103250549300_) 2005; 33
Sun (2023030103250549300_) 2018; 487
Ginibre (2023030103250549300_) 2014; 55
Jochum (2023030103250549300_) 2005; 29
Liu (2023030103250549300_) 2019; 196
Hofmann (2023030103250549300_) 1997; 385
Yang (2023030103250549300_) 2014; 385
Hagen-Peter (2023030103250549300_) 2019; 47
Zhang (2023030103250549300_) 2019; 326-327
Basu (2023030103250549300_) 1991; 105
Zhao (2023030103250549300_) 2001; 107
Glazner (2023030103250549300_) 1992; 255
Liu (2023030103250549300_) 2008; 72
References_xml – volume: 247
  start-page: 133
  year: 2008
  ident: 2023030103250549300_
  article-title: Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: Subduction and ultrahigh-pressure metamorphism of lower crustal cumulates
  publication-title: Chemical Geology
  doi: 10.1016/j.chemgeo.2007.10.016
– volume: 255
  start-page: 72
  year: 1992
  ident: 2023030103250549300_
  article-title: Production of isotopic variability in continental basalts by cryptic crustal contamination
  publication-title: Science
  doi: 10.1126/science.255.5040.72
– volume: 172
  start-page: 24
  year: 2017
  ident: 2023030103250549300_
  article-title: A REE-in-plagioclase–clinopyroxene thermometer for crustal rocks
  publication-title: Contributions to Mineralogy and Petrology
  doi: 10.1007/s00410-016-1326-9
– volume: 35
  start-page: 397
  year: 2011
  ident: 2023030103250549300_
  article-title: Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines
  publication-title: Geostandards and Geoanalytical Research
  doi: 10.1111/j.1751-908X.2011.00120.x
– volume: 41
  start-page: 1397
  year: 2000
  ident: 2023030103250549300_
  article-title: Magma mixing, recharge and eruption histories recorded in plagioclase phenocrysts from El Chichón Volcano, Mexico
  publication-title: Journal of Petrology
  doi: 10.1093/petrology/41.9.1397
– volume: 385
  start-page: 35
  year: 2014
  ident: 2023030103250549300_
  article-title: Sr and Nd isotopic compositions of apatite reference materials used in U-Th-Pb geochronology
  publication-title: Chemical Geology
  doi: 10.1016/j.chemgeo.2014.07.012
– volume: 32
  start-page: 765
  year: 1991
  ident: 2023030103250549300_
  article-title: The Cenozoic basaltic rocks of Eastern China—Petrology and chemical-composition
  publication-title: Journal of Petrology
  doi: 10.1093/petrology/32.4.765
– volume: 114
  start-page: 19
  year: 1994
  ident: 2023030103250549300_
  article-title: Major- and trace-element compositions of Cenozoic basalts in Eastern China—Petrogenesis and mantle source
  publication-title: Chemical Geology
  doi: 10.1016/0009-2541(94)90039-6
– volume: 72
  start-page: 21
  year: 2005
  ident: 2023030103250549300_
  article-title: How the delamination and detachment of lower crust can influence basaltic magmatism
  publication-title: Earth-Science Reviews
  doi: 10.1016/j.earscirev.2005.03.004
– volume: 70
  start-page: 3717
  year: 2006
  ident: 2023030103250549300_
  article-title: Trace element partitioning in plagioclase feldspar
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/j.gca.2006.05.003
– volume: 120
  start-page: 223
  year: 1995
  ident: 2023030103250549300_
  article-title: The composition of the Earth
  publication-title: Chemical Geology
  doi: 10.1016/0009-2541(94)00140-4
– volume: 96
  start-page: 13673
  issue: B8
  year: 1991
  ident: 2023030103250549300_
  article-title: Contamination of basaltic magma by mafic crust at Amboy and Pisgah Craters, Mojave Desert, California
  publication-title: Journal of Geophysical Research
  doi: 10.1029/91JB00175
– volume: 62
  start-page: 1175
  year: 1998
  ident: 2023030103250549300_
  article-title: Ion microprobe study of plagioclase-basalt partition experiments at natural concentration levels of trace elements
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/S0016-7037(98)00047-7
– volume: 102
  start-page: 777
  year: 2017
  ident: 2023030103250549300_
  article-title: A new clinopyroxene-liquid barometer, and implications for magma storage pressures under Icelandic rift zones
  publication-title: American Mineralogist
  doi: 10.2138/am-2017-5968
– volume: 302
  start-page: 359
  year: 2011
  ident: 2023030103250549300_
  article-title: Crust recycling in the sources of two parallel volcanic chains in Shandong, North China
  publication-title: Earth and Planetary Science Letters
  doi: 10.1016/j.epsl.2010.12.026
– volume: 88
  start-page: 1
  year: 1990
  ident: 2023030103250549300_
  article-title: Geochemistry of Hannuoba basalts, eastern China: Constraints on the origin of continental alkalic and tholeiitic basalt
  publication-title: Chemical Geology
  doi: 10.1016/0009-2541(90)90101-C
– volume: 69
  start-page: 61
  year: 2008
  ident: 2023030103250549300_
  article-title: Thermometers and barometers for volcanic systems
  publication-title: Reviews in Mineralogy and Geochemistry
  doi: 10.2138/rmg.2008.69.3
– volume: 47
  start-page: 313
  year: 2019
  ident: 2023030103250549300_
  article-title: Strontium isotope systematics for plagioclase of the Skaergaard intrusion (East Greenland): A window to crustal assimilation, differentiation, and magma dynamics
  publication-title: Geology
  doi: 10.1130/G45639.1
– volume: 211
  start-page: 87
  year: 2004
  ident: 2023030103250549300_
  article-title: U-Pb zircon ages and Nd, Sr, and Pb isotopes of lower crustal xenoliths from North China Craton: Insights on evolution of lower continental crust
  publication-title: Chemical Geology
  doi: 10.1016/j.chemgeo.2004.06.023
– volume: 161
  start-page: 101
  year: 1998
  ident: 2023030103250549300_
  article-title: How mafic is the lower continental crust?
  publication-title: Earth and Planetary Science Letters
  doi: 10.1016/S0012-821X(98)00140-X
– volume: 3
  start-page: 1856
  year: 2013
  ident: 2023030103250549300_
  article-title: Can we identify source lithology of basalt?
  publication-title: Scientific Reports
  doi: 10.1038/srep01856
– volume: 26
  start-page: 1265
  year: 2010
  ident: 2023030103250549300_
  article-title: Re-Os isotope geochemistry of basalts from Hannuoba, North China: Evidence for Re volatile loss and crust-mantle interaction
  publication-title: Yanshi Xuebao
– volume: 184
  start-page: 427
  year: 2001
  ident: 2023030103250549300_
  article-title: Magma recharge, contamination and residence times revealed by in situ laser ablation isotopic analysis of feldspar in volcanic rocks
  publication-title: Earth and Planetary Science Letters
  doi: 10.1016/S0012-821X(00)00333-2
– volume: 29
  start-page: 285
  year: 2005
  ident: 2023030103250549300_
  article-title: Chemical characterisation of the USGS reference glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G using EPMA, ID-TIMS, ID-ICPMS and LA-ICP-MS
  publication-title: Geostandards Newsletter
  doi: 10.1111/j.1751-908X.2005.tb00901.x
– volume: 55
  start-page: 1203
  year: 2014
  ident: 2023030103250549300_
  article-title: Sr isotope zoning in plagioclase from Parinacota Volcano (Northern Chile): Quantifying magma mixing and crustal contamination
  publication-title: Journal of Petrology
  doi: 10.1093/petrology/egu023
– volume: 211
  start-page: 135
  year: 2004
  ident: 2023030103250549300_
  article-title: Measuring Sr-87/Sr-86 variations in minerals and groundmass from basalts using LA-MC-ICPMS
  publication-title: Chemical Geology
  doi: 10.1016/j.chemgeo.2004.06.025
– volume: 68
  start-page: 127
  year: 2004
  ident: 2023030103250549300_
  article-title: Geochronology, petrology and geo-chemistry of the granulite xenoliths from Nushan, east China: Implication for a heterogeneous lower crust beneath the Sino-Korean Craton
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/S0016-7037(03)00416-2
– volume: 487
  start-page: 165
  year: 2018
  ident: 2023030103250549300_
  article-title: Formation of fast-spreading lower oceanic crust as revealed by a new Mg–REE coupled geospeedometer
  publication-title: Earth and Planetary Science Letters
  doi: 10.1016/j.epsl.2018.01.032
– volume: 201
  start-page: 104511
  year: 2020
  ident: 2023030103250549300_
  article-title: Magma recharge processes of the Yandangshan volcanic-plutonic caldera complex in the coastal SE China: Constraint from inter-grain variation of Sr isotope of plagioclase
  publication-title: Journal of Asian Earth Sciences
  doi: 10.1016/j.jseaes.2020.104511
– volume: 278–281
  start-page: 72
  year: 2017
  ident: 2023030103250549300_
  article-title: Petrogenesis of Cenozoic basalts in central-eastern China: Constraints from Re–Os and PGE geo-chemistry
  publication-title: Lithos
  doi: 10.1016/j.lithos.2017.01.022
– volume: 72
  start-page: 2349
  year: 2008
  ident: 2023030103250549300_
  article-title: Recycled crust controls contrasting source compositions of Mesozoic and Cenozoic basalts in the North China Craton
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/j.gca.2008.02.018
– volume: 224
  start-page: 247
  year: 2005
  ident: 2023030103250549300_
  article-title: Role of lithosphere-asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong, western North China Craton
  publication-title: Chemical Geology
  doi: 10.1016/j.chemgeo.2005.08.004
– volume: 107
  start-page: 45
  year: 2001
  ident: 2023030103250549300_
  article-title: Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P-T path constraints and tectonic evolution
  publication-title: Precambrian Research
  doi: 10.1016/S0301-9268(00)00154-6
– start-page: 240
  year: 2016
  ident: 2023030103250549300_
  article-title: The origin of Cenozoic basalts from central Inner Mongolia, East China: The consequence of recent mantle metasomatism genetically associated with seismically observed paleo-Pacific slab in the mantle transition zone
  publication-title: Lithos
– volume: 401
  start-page: 111
  year: 2015
  ident: 2023030103250549300_
  article-title: Chemical and Pb isotope composition of olivine-hosted melt inclusions from the Hannuoba basalts, North China Craton: Implications for petrogenesis and mantle source
  publication-title: Chemical Geology
  doi: 10.1016/j.chemgeo.2015.02.018
– volume: 511
  start-page: 190
  year: 2019
  ident: 2023030103250549300_
  article-title: Extreme enriched and heterogeneous 87Sr/86Sr ratios recorded in magmatic plagioclase from the Samoan hotspot
  publication-title: Earth and Planetary Science Letters
  doi: 10.1016/j.epsl.2019.01.040
– volume: 122
  start-page: 1
  year: 2013
  ident: 2023030103250549300_
  article-title: Nature and evolution of the lower crust in the eastern North China craton: A review
  publication-title: Earth-Science Reviews
  doi: 10.1016/j.earscirev.2013.03.006
– volume: 385
  start-page: 219
  year: 1997
  ident: 2023030103250549300_
  article-title: Mantle geochemistry: The message from oceanic volcanism
  publication-title: Nature
  doi: 10.1038/385219a0
– volume: 33
  start-page: 457
  year: 2005
  ident: 2023030103250549300_
  article-title: Sr isotope disequilibrium in Columbia River flood basalts: Evidence for rapid shallow-level open-system processes
  publication-title: Geology
  doi: 10.1130/G21512.1
– volume: 160
  start-page: 38
  year: 2018
  ident: 2023030103250549300_
  article-title: In-situ Sr isotopic measurement of scheelite using fs-LA-MC-ICPMS
  publication-title: Journal of Asian Earth Sciences
  doi: 10.1016/j.jseaes.2018.03.025
– volume: 326-327
  start-page: 144
  year: 2019
  ident: 2023030103250549300_
  article-title: Late Cretaceous volcanic rocks in the Sangri area, southern Lhasa Terrane, Tibet: Evidence for oceanic ridge subduction
  publication-title: Lithos
  doi: 10.1016/j.lithos.2018.12.023
– volume: 105
  start-page: 149
  year: 1991
  ident: 2023030103250549300_
  article-title: Major element, Ree, and Pb, Nd and Sr isotopic geochemistry of cenozoic volcanic-rocks of Eastern China—Implications for their origin from suboceanic-type mantle reservoirs
  publication-title: Earth and Planetary Science Letters
  doi: 10.1016/0012-821X(91)90127-4
– volume: 55
  start-page: 193
  year: 1991
  ident: 2023030103250549300_
  article-title: Crystal-chemical controls on the partitioning of Sr and Ba between plagioclase feldspar, silicate melts, and hydrothermal solutions
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/0016-7037(91)90411-W
– volume: 275
  start-page: 826
  year: 1997
  ident: 2023030103250549300_
  article-title: Recharge in volcanic systems: Evidence from isotope profiles of phenocrysts
  publication-title: Science
  doi: 10.1126/science.275.5301.826
– volume: 88
  start-page: 35
  year: 1990
  ident: 2023030103250549300_
  article-title: Isotopic characteristics of Hannuoba Basalts, Eastern China—Implications for their petrogenesis and the composition of sub-continental mantle
  publication-title: Chemical Geology
  doi: 10.1016/0009-2541(90)90102-D
– volume: 274–275
  start-page: 383
  year: 2017
  ident: 2023030103250549300_
  article-title: Crust recycling induced compositional-temporal-spatial variations of Cenozoic basalts in the Trans-North China Orogen
  publication-title: Lithos
  doi: 10.1016/j.lithos.2016.12.024
– volume: 26
  start-page: 2508
  year: 2011
  ident: 2023030103250549300_
  article-title: Iolite: Freeware for the visualisation and processing of mass spectrometric data
  publication-title: Journal of Analytical Atomic Spectrometry
  doi: 10.1039/c1ja10172b
– volume: 64
  start-page: 1095
  year: 2000
  ident: 2023030103250549300_
  article-title: Modeling of trace element fractionation during non-modal dynamic melting with linear variations in mineral/melt distribution coefficients
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/S0016-7037(99)00383-X
– volume: 41
  start-page: 279
  year: 2013
  ident: 2023030103250549300_
  article-title: Diverse Sr isotope signatures preserved in mid-oceanic-ridge basalt plagioclase
  publication-title: Geology
  doi: 10.1130/G33739.1
– volume: 46
  start-page: 999
  year: 2005
  ident: 2023030103250549300_
  article-title: Distinguishing melting of heterogeneous mantle sources from crustal contamination: Insights from Sr isotopes at the phenocryst scale, Pisgah Crater, California
  publication-title: Journal of Petrology
  doi: 10.1093/petrology/egi008
– volume: 33
  start-page: 267
  year: 1995
  ident: 2023030103250549300_
  article-title: Nature and composition of the continental-crust—A lower crustal perspective
  publication-title: Reviews of Geophysics
  doi: 10.1029/95RG01302
– volume: 196
  start-page: 102873
  year: 2019
  ident: 2023030103250549300_
  article-title: Thinning and destruction of the lithospheric mantle root beneath the North China Craton: A review
  publication-title: Earth-Science Reviews
  doi: 10.1016/j.earscirev.2019.05.017
– volume: 157
  start-page: 18
  year: 2016
  ident: 2023030103250549300_
  article-title: On the chemical markers of pyroxenite contributions in continental basalts in Eastern China: Implications for source lithology and the origin of basalts
  publication-title: Earth-Science Reviews
  doi: 10.1016/j.earscirev.2016.04.001
SSID ssj0022359
Score 2.3925273
Snippet The Hannuoba basalt, located in the northern margin of the North China Craton, is a typical intra-continental basalt with ocean island basalt-like geochemical...
SourceID proquest
crossref
walterdegruyter
geoscienceworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 485
SubjectTerms alkaline earth metals
Anorthite
Asia
Basalt
basalts
Calcium aluminum silicates
Cenozoic
China
Contamination
Cratons
crust
Crystallization
Crystals
Earth mantle
Far East
feldspar group
framework silicates
Geochemistry
Grain size
Hannuoba
Hannuoba China
Heterogeneity
heterogeneous materials
igneous and metamorphic rocks
igneous rocks
in situ
Isotopes
Lava
lower continental crust
lower crust
Magma
magma contamination
magmatic process
Magnesium
Melts
metals
microstructure
North China Platform
P-T conditions
Petrology
Plagioclase
Rare earth elements
Rocks
silicates
Sr/Sr
Strontium
Strontium 87
strontium isotope
Strontium isotopes
textures
Thermometers
Tholeiite
Tholeiitic basalt
Trace elements
volcanic rocks
Title Contamination of heterogeneous lower crust in Hannuoba tholeiite; evidence from in situ trace elements and strontium isotopes of plagioclase
URI https://pubs.geoscienceworld.org/ammin/article/108/3/485/620561/Contamination-of-heterogeneous-lower-crust-in
https://www.degruyter.com/doi/10.2138/am-2022-8254
https://www.proquest.com/docview/2780770595
https://www.proquest.com/docview/3169595852
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKrpC4VDxFYUE-LKcqS-K8uRW0tEKCC120cIkc1-kGtU21TYSW38Df4f8xYydOUhVp4dCossdN4_ky47HnQchpLIOFl_HACmJMqo1-NKCG0AlAZIxzWKEyjHf--CmYXXgfLv3LweB3x2upKtMz8fNgXMn_cBXagK8YJfsPnDU_Cg3wHfgLV-AwXG_FY0wtxdGXpV32wTQVQC_Rs3WFFdDGAqMqcFtjhlHB8PqOcSdU5lgYz52Mm7KiOtAEyHZ5WWHlCGiS2rdcp3He4aZ5mVdAtCvKYquz1W5XfJkXYtUc8nxv0WcOg9a5Sm1tYo30IZQS_pU1L2rdiaKn3rz-Bm0WzLTpmFZqR_fzVQUU1teOH1GunYxzCz7dHQzmti5cRipDg609Nc-kFsSx51t4ptqT1HbUgaTbkbuervtTq3BPu_zuawfmqFzwfA0gAhMcbeNWCzYn_3vK0bgsgrGE4xO-TnB0gqPvkGMG1gmI1-PJ9O35F2PpM9ePTalGeDAdcYHjX3fv3lsLDZeyTl8qVbLcnskz_KGcJxZyeV3dlM1hvVoDze-TYW280IlG4gMykJuH5O5UFYe-eUR-9fBIi4z28EgVHqnCI803tMEjNXh8Qxs0UkQjEiEaqUIjbdBIAY3UoJE2aMT7ddD4mFy8P5-_m1l1tQ-LezYrYTEgIpn5gYj9LOQ2X4Qhh7W2lzpOKiTMKHN4phIkghSRtsuxHwyWSIDOYZFwn5CjTbGRTwl1ghQ1mQTj3PWCIOJpKnjgCIlR557gIzJu5j0RdSp8rMiySg5xeUReGeqtTgHzF7rTPRYmtazYIZGbgD61WTwiJw1fO_1hZIchmDr-wW7XCWLoi3w2It4eFFqqQ38KXhl4aP_ZLZ_hObnXvqEn5Ki8ruQLWHWX6csa438AqxXbrg
linkProvider Walter de Gruyter
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VVAguKX8VgQJ7aE8ojX_XNlIPBdqm9OfUotzMer1OLRI7iteqwjPwMH2VvhEzsR3aUC5IPXDNjp31zuzOjP3NNwCbgeKxkwje5QGRahOOBt0QgQBkYgmBEapF9c4np7x_7nwZuIMVuGpqYQhWGavhtJzpiiG1F-eypBdlDdeAZdp-T4xRvZhGUX7Tu9DjUQ2rPFKzS0zaip3Dz6jhLcva3zv71O_WfQW6ArMljceO9FXichm4iScMEXueQK_uRKYZSWVhSGKKZE7FhvNVhi1oHEMjX6J1W7608b4PYNUn3pcWrO4efNz7ukjy8PJg0aXPcAYV2P6PSd9yg-2hqpkr1Zwn9Va0276cfzdfLMoN97e_BtfNwlWol-_bpY625Y8lTsn_aWWfQLuOxdlutXmeworKnsHDg3mv49lz-EnMXYKgQmS8LE_YBWGHctxyKi8LNqIGc0xS0QpLM9anoms8HRm9aFYphvIfWNOzlVEVDwkVqS6Zngr8SVXA_YKJLGYFfZHQaYlCRa7ziSro_yYjMUxziQmOegHn97IU69DK8ky9BGbyiA5mhbmm7XDuiyiSgptSURG1I0UH3je2FMqa2Z0ajIxCzPBIqaEYh6TUkJTaga2F9KRiNPmL3OaSWYb18VaQkB2iezCsoAMbja3eGPd8w_MwcnfvHLZNHuCY71odcJbM-7fUXZMyMWNwfPfVv132Dh71z06Ow-PD06PX8JieooITbkBLT0v1BuNLHb2ttzSDb_dt678A1yWFyw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VVCAuafkTKaXsoT2hNPbaXttIPRTaNKVQcaAoN3e9XgerqR3FtqrwDLwLr8IjMRPboQ3lgtQD1-zYWe_M7szY33wDsO1rEdmxFF3hE6k24WjQDREIQMVcSoxQOdU7fzwVgzP7_dAZrsCPphaGYJWRHk3LWVExpPaiTJX0oqzhGuCm5fXkJaoX0yjKb3qTKK5RlSd6doU5W753fIAK3uG8f_j53aBbtxXoSkyWCjx1lKdjRyjfiV1pyMh1JTp1OzTNUGmOEYkp4zkTG05XG5akcYyMPIXGzT1l4X3vwapnm4bXgtX9o7eHXxY5Hl7uL5r0Gfawwtr_MecbXrA90jVxpZ7TpN4IdttX88_mizW55v36a_CzWbcK9HKxWxbhrvq2RCn5Hy3sOrTrSJztV1vnEazo9DHcP5p3Op49ge_E2yUJKESmy7KYfSXkUIYbTmdlzsbUXo4pKllhScoGVHKNZyOj18w6wUD-DWs6tjKq4SGhPClKVkwl_qQr2H7OZBqxnL5HFEmJQnlWZBOd0_9NxnKUZArTG_0Uzu5kKZ5BK81S_RyYKUI6ljVmmpYthCfDUElhKk0l1LaSHXjdmFKgal53ai8yDjC_I50G8jIgnQak0w7sLKQnFZ_JX-S2l6wyqA-3nISsAJ2Dwf0ObDamem3c9QzXxbjduXXYMoWPY57DO2AvWfdvqdsmhRsOH9rZ-LfLXsGDTwf94MPx6ckLeEgPUWEJN6FVTEv9EoPLItyqNzSD87s29V-e9YRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contamination+of+heterogeneous+lower+crust+in+Hannuoba+tholeiite%3A+Evidence+from+in+situ+trace+elements+and+strontium+isotopes+of+plagioclase&rft.jtitle=The+American+mineralogist&rft.au=Su%2C+Yu-Tong&rft.au=Yang%2C+Zong-Feng&rft.au=Guo%2C+Shuang-Yan&rft.au=Li%2C+Pei-Pei&rft.date=2023-03-01&rft.issn=0003-004X&rft.eissn=1945-3027&rft.volume=108&rft.issue=3&rft.spage=485&rft.epage=497&rft_id=info:doi/10.2138%2Fam-2022-8254&rft.externalDBID=n%2Fa&rft.externalDocID=10_2138_am_2022_8254
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-004X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-004X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-004X&client=summon