Computational Exploration of the Li-Electrode|Electrolyte Interface in the Presence of a Nanometer Thick Solid-Electrolyte Interphase Layer
A nanometer thick passivation layer will spontaneously form on Li-metal in battery applications due to electrolyte reduction reactions. This passivation layer in rechargeable batteries must have “selective” transport properties: blocking electrons from attacking the electrolytes, while allowing Li+...
Saved in:
Published in | Accounts of chemical research Vol. 49; no. 10; pp. 2363 - 2370 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
18.10.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A nanometer thick passivation layer will spontaneously form on Li-metal in battery applications due to electrolyte reduction reactions. This passivation layer in rechargeable batteries must have “selective” transport properties: blocking electrons from attacking the electrolytes, while allowing Li+ ion to pass through so the electrochemical reactions can continue. The classical description of the electrochemical reaction, Li+ + e → Li0, occurring at the Li-metal|electrolyte interface is now complicated by the passivation layer and will reply on the coupling of electronic and ionic degrees of freedom in the layer. This passivation layer is called “solid electrolyte interphase (SEI)” and is considered as “the most important but the least understood in rechargeable Li-ion batteries,” partly due to the lack of understanding of its structure–property relationship. Predictive modeling, starting from the ab initio level, becomes an important tool to understand the nanoscale processes and materials properties governing the interfacial charge transfer reaction at the Li-metal|SEI|electrolyte interface. Here, we demonstrate pristine Li-metal surfaces indeed dissolve in organic carbonate electrolytes without the SEI layer. Based on joint modeling and experimental results, we point out that the well-known two-layer structure of SEI also exhibits two different Li+ ion transport mechanisms. The SEI has a porous (organic) outer layer permeable to both Li+ and anions (dissolved in electrolyte), and a dense (inorganic) inner layer facilitate only Li+ transport. This two-layer/two-mechanism diffusion model suggests only the dense inorganic layer is effective at protecting Li-metal in electrolytes. This model suggests a strategy to deconvolute the structure–property relationships of the SEI by analyzing an idealized SEI composed of major components, such as Li2CO3, LiF, Li2O, and their mixtures. After sorting out the Li+ ion diffusion carriers and their diffusion pathways, we design methods to accelerate the Li+ ion conductivity by doping and by using heterogonous structure designs. We will predict the electron tunneling barriers and connect them with measurable first cycle irreversible capacity loss. Finally, we note that the SEI not only affects Li+ and e – transport, but it can also impose a potential drop near the Li-metal|SEI interface. Our challenge is to fully describe the electrochemical reactions at the Li-metal|SEI|electrolyte interface. This will be the subject of ongoing efforts. |
---|---|
AbstractList | A nanometer thick passivation layer will spontaneously form on Li-metal in battery applications due to electrolyte reduction reactions. This passivation layer in rechargeable batteries must have "selective" transport properties: blocking electrons from attacking the electrolytes, while allowing Li
ion to pass through so the electrochemical reactions can continue. The classical description of the electrochemical reaction, Li
+ e → Li
, occurring at the Li-metal|electrolyte interface is now complicated by the passivation layer and will reply on the coupling of electronic and ionic degrees of freedom in the layer. This passivation layer is called "solid electrolyte interphase (SEI)" and is considered as "the most important but the least understood in rechargeable Li-ion batteries," partly due to the lack of understanding of its structure-property relationship. Predictive modeling, starting from the ab initio level, becomes an important tool to understand the nanoscale processes and materials properties governing the interfacial charge transfer reaction at the Li-metal|SEI|electrolyte interface. Here, we demonstrate pristine Li-metal surfaces indeed dissolve in organic carbonate electrolytes without the SEI layer. Based on joint modeling and experimental results, we point out that the well-known two-layer structure of SEI also exhibits two different Li
ion transport mechanisms. The SEI has a porous (organic) outer layer permeable to both Li
and anions (dissolved in electrolyte), and a dense (inorganic) inner layer facilitate only Li
transport. This two-layer/two-mechanism diffusion model suggests only the dense inorganic layer is effective at protecting Li-metal in electrolytes. This model suggests a strategy to deconvolute the structure-property relationships of the SEI by analyzing an idealized SEI composed of major components, such as Li
CO
LiF, Li
O, and their mixtures. After sorting out the Li
ion diffusion carriers and their diffusion pathways, we design methods to accelerate the Li
ion conductivity by doping and by using heterogonous structure designs. We will predict the electron tunneling barriers and connect them with measurable first cycle irreversible capacity loss. Finally, we note that the SEI not only affects Li
and e
transport, but it can also impose a potential drop near the Li-metal|SEI interface. Our challenge is to fully describe the electrochemical reactions at the Li-metal|SEI|electrolyte interface. This will be the subject of ongoing efforts. A nanometer thick passivation layer will spontaneously form on Li-metal in battery applications due to electrolyte reduction reactions. This passivation layer in rechargeable batteries must have “selective” transport properties: blocking electrons from attacking the electrolytes, while allowing Li+ ion to pass through so the electrochemical reactions can continue. The classical description of the electrochemical reaction, Li+ + e → Li0, occurring at the Li-metal|electrolyte interface is now complicated by the passivation layer and will reply on the coupling of electronic and ionic degrees of freedom in the layer. We consider the passivation layer, called “solid electrolyte interphase (SEI)”, as “the most important but the least understood in rechargeable Li-ion batteries,” partly due to the lack of understanding of its structure–property relationship. In predictive modeling, starting from the ab initio level, we find that it is an important tool to understand the nanoscale processes and materials properties governing the interfacial charge transfer reaction at the Li-metal|SEI|electrolyte interface. Here, we demonstrate pristine Li-metal surfaces indeed dissolve in organic carbonate electrolytes without the SEI layer. Based on joint modeling and experimental results, we point out that the well-known two-layer structure of SEI also exhibits two different Li+ ion transport mechanisms. The SEI has a porous (organic) outer layer permeable to both Li+ and anions (dissolved in electrolyte), and a dense (inorganic) inner layer facilitate only Li+ transport. This two-layer/two-mechanism diffusion model suggests only the dense inorganic layer is effective at protecting Li-metal in electrolytes. This model suggests a strategy to deconvolute the structure–property relationships of the SEI by analyzing an idealized SEI composed of major components, such as Li2CO3, LiF, Li2O, and their mixtures. After sorting out the Li+ ion diffusion carriers and their diffusion pathways, we design methods to accelerate the Li+ ion conductivity by doping and by using heterogonous structure designs. We will predict the electron tunneling barriers and connect them with measurable first cycle irreversible capacity loss. We note that the SEI not only affects Li+ and e– transport, but it can also impose a potential drop near the Li-metal|SEI interface. Our challenge is to fully describe the electrochemical reactions at the Li-metal|SEI|electrolyte interface. This will be the subject of ongoing efforts. A nanometer thick passivation layer will spontaneously form on Li-metal in battery applications due to electrolyte reduction reactions. This passivation layer in rechargeable batteries must have “selective” transport properties: blocking electrons from attacking the electrolytes, while allowing Li+ ion to pass through so the electrochemical reactions can continue. The classical description of the electrochemical reaction, Li+ + e → Li0, occurring at the Li-metal|electrolyte interface is now complicated by the passivation layer and will reply on the coupling of electronic and ionic degrees of freedom in the layer. This passivation layer is called “solid electrolyte interphase (SEI)” and is considered as “the most important but the least understood in rechargeable Li-ion batteries,” partly due to the lack of understanding of its structure–property relationship. Predictive modeling, starting from the ab initio level, becomes an important tool to understand the nanoscale processes and materials properties governing the interfacial charge transfer reaction at the Li-metal|SEI|electrolyte interface. Here, we demonstrate pristine Li-metal surfaces indeed dissolve in organic carbonate electrolytes without the SEI layer. Based on joint modeling and experimental results, we point out that the well-known two-layer structure of SEI also exhibits two different Li+ ion transport mechanisms. The SEI has a porous (organic) outer layer permeable to both Li+ and anions (dissolved in electrolyte), and a dense (inorganic) inner layer facilitate only Li+ transport. This two-layer/two-mechanism diffusion model suggests only the dense inorganic layer is effective at protecting Li-metal in electrolytes. This model suggests a strategy to deconvolute the structure–property relationships of the SEI by analyzing an idealized SEI composed of major components, such as Li2CO3, LiF, Li2O, and their mixtures. After sorting out the Li+ ion diffusion carriers and their diffusion pathways, we design methods to accelerate the Li+ ion conductivity by doping and by using heterogonous structure designs. We will predict the electron tunneling barriers and connect them with measurable first cycle irreversible capacity loss. Finally, we note that the SEI not only affects Li+ and e – transport, but it can also impose a potential drop near the Li-metal|SEI interface. Our challenge is to fully describe the electrochemical reactions at the Li-metal|SEI|electrolyte interface. This will be the subject of ongoing efforts. A nanometer thick passivation layer will spontaneously form on Li-metal in battery applications due to electrolyte reduction reactions. This passivation layer in rechargeable batteries must have "selective" transport properties: blocking electrons from attacking the electrolytes, while allowing Li+ ion to pass through so the electrochemical reactions can continue. The classical description of the electrochemical reaction, Li+ + e → Li0, occurring at the Li-metal|electrolyte interface is now complicated by the passivation layer and will reply on the coupling of electronic and ionic degrees of freedom in the layer. This passivation layer is called "solid electrolyte interphase (SEI)" and is considered as "the most important but the least understood in rechargeable Li-ion batteries," partly due to the lack of understanding of its structure-property relationship. Predictive modeling, starting from the ab initio level, becomes an important tool to understand the nanoscale processes and materials properties governing the interfacial charge transfer reaction at the Li-metal|SEI|electrolyte interface. Here, we demonstrate pristine Li-metal surfaces indeed dissolve in organic carbonate electrolytes without the SEI layer. Based on joint modeling and experimental results, we point out that the well-known two-layer structure of SEI also exhibits two different Li+ ion transport mechanisms. The SEI has a porous (organic) outer layer permeable to both Li+ and anions (dissolved in electrolyte), and a dense (inorganic) inner layer facilitate only Li+ transport. This two-layer/two-mechanism diffusion model suggests only the dense inorganic layer is effective at protecting Li-metal in electrolytes. This model suggests a strategy to deconvolute the structure-property relationships of the SEI by analyzing an idealized SEI composed of major components, such as Li2CO3, LiF, Li2O, and their mixtures. After sorting out the Li+ ion diffusion carriers and their diffusion pathways, we design methods to accelerate the Li+ ion conductivity by doping and by using heterogonous structure designs. We will predict the electron tunneling barriers and connect them with measurable first cycle irreversible capacity loss. Finally, we note that the SEI not only affects Li+ and e- transport, but it can also impose a potential drop near the Li-metal|SEI interface. Our challenge is to fully describe the electrochemical reactions at the Li-metal|SEI|electrolyte interface. This will be the subject of ongoing efforts.A nanometer thick passivation layer will spontaneously form on Li-metal in battery applications due to electrolyte reduction reactions. This passivation layer in rechargeable batteries must have "selective" transport properties: blocking electrons from attacking the electrolytes, while allowing Li+ ion to pass through so the electrochemical reactions can continue. The classical description of the electrochemical reaction, Li+ + e → Li0, occurring at the Li-metal|electrolyte interface is now complicated by the passivation layer and will reply on the coupling of electronic and ionic degrees of freedom in the layer. This passivation layer is called "solid electrolyte interphase (SEI)" and is considered as "the most important but the least understood in rechargeable Li-ion batteries," partly due to the lack of understanding of its structure-property relationship. Predictive modeling, starting from the ab initio level, becomes an important tool to understand the nanoscale processes and materials properties governing the interfacial charge transfer reaction at the Li-metal|SEI|electrolyte interface. Here, we demonstrate pristine Li-metal surfaces indeed dissolve in organic carbonate electrolytes without the SEI layer. Based on joint modeling and experimental results, we point out that the well-known two-layer structure of SEI also exhibits two different Li+ ion transport mechanisms. The SEI has a porous (organic) outer layer permeable to both Li+ and anions (dissolved in electrolyte), and a dense (inorganic) inner layer facilitate only Li+ transport. This two-layer/two-mechanism diffusion model suggests only the dense inorganic layer is effective at protecting Li-metal in electrolytes. This model suggests a strategy to deconvolute the structure-property relationships of the SEI by analyzing an idealized SEI composed of major components, such as Li2CO3, LiF, Li2O, and their mixtures. After sorting out the Li+ ion diffusion carriers and their diffusion pathways, we design methods to accelerate the Li+ ion conductivity by doping and by using heterogonous structure designs. We will predict the electron tunneling barriers and connect them with measurable first cycle irreversible capacity loss. Finally, we note that the SEI not only affects Li+ and e- transport, but it can also impose a potential drop near the Li-metal|SEI interface. Our challenge is to fully describe the electrochemical reactions at the Li-metal|SEI|electrolyte interface. This will be the subject of ongoing efforts. |
Author | Li, Yunsong Qi, Yue Leung, Kevin |
AuthorAffiliation | Sandia National Laboratories Michigan State University Department of Chemical Engineering and Materials Science |
AuthorAffiliation_xml | – name: Sandia National Laboratories – name: Michigan State University – name: Department of Chemical Engineering and Materials Science |
Author_xml | – sequence: 1 givenname: Yunsong surname: Li fullname: Li, Yunsong – sequence: 2 givenname: Kevin surname: Leung fullname: Leung, Kevin – sequence: 3 givenname: Yue surname: Qi fullname: Qi, Yue email: yueqi@egr.msu.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27689438$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1338679$$D View this record in Osti.gov |
BookMark | eNqFkd9qFDEUh4NU7Lb6BiKDV97Mmn8zk_VOlrUWFhWs1yGTOWFTM8mYZKALvoEv3XR364WCXuUc8n0nh_wu0JkPHhB6SfCSYEreKp2WSusw-5yWbY8xa9kTtCANxTUXK3GGFhhjUmpOz9FFSrelpbztnqFz2rVixZlYoF_rME5zVtkGr1y1uZtciIeuCqbKO6i2tt440DmGAX6eKrfPUF37DNEoDZX1B_JLhAS-9MVU1SflwwgFqW52Vn-vvgZnh_qvAdNOpfKI2kN8jp4a5RK8OJ2X6NuHzc36Y739fHW9fr-tFceU1YAZ73nXqIERMEaAwaIltGkNGQzpuDCiUarh1FDKBsB9Q2hBh4bgvu-0Zpfo9XFuSNnKpG0GvdPB-7KaJIyJtlsV6M0RmmL4MUPKcrRJg3PKQ5iTJII1nK9YIwr66oTO_QiDnKIdVdzLx18uAD8COoaUIpjfCMHyIUxZwpSPYcpTmEV794dWVj1kk6Oy7n8yPsoPt7dhjiXe9G_lHkpkvAo |
CitedBy_id | crossref_primary_10_1016_j_est_2021_103564 crossref_primary_10_1016_j_progsurf_2017_10_001 crossref_primary_10_1021_jacs_2c02494 crossref_primary_10_1016_j_ensm_2019_12_026 crossref_primary_10_1016_j_ijheatmasstransfer_2023_125069 crossref_primary_10_1016_j_cej_2024_158583 crossref_primary_10_1080_08927022_2020_1746304 crossref_primary_10_1002_anie_202110501 crossref_primary_10_1021_acs_jpcc_1c10602 crossref_primary_10_1039_C9CP06608J crossref_primary_10_1007_s12274_019_2519_0 crossref_primary_10_1021_acsami_6b14560 crossref_primary_10_1021_acs_chemmater_1c02944 crossref_primary_10_1002_aenm_202200244 crossref_primary_10_1002_aenm_201904152 crossref_primary_10_1021_acs_jpcc_7b11472 crossref_primary_10_1021_acsami_0c14050 crossref_primary_10_1002_anie_202407906 crossref_primary_10_1016_j_cej_2019_122487 crossref_primary_10_1038_s41467_018_05986_9 crossref_primary_10_1002_batt_202300126 crossref_primary_10_1021_acsami_0c21716 crossref_primary_10_1002_celc_202300270 crossref_primary_10_1021_jacs_3c03429 crossref_primary_10_1021_acs_accounts_7b00474 crossref_primary_10_1021_acs_jpcc_7b06457 crossref_primary_10_1002_cnma_202200310 crossref_primary_10_1016_j_coelec_2019_06_003 crossref_primary_10_1021_acs_jpcc_4c08138 crossref_primary_10_1002_admi_202101734 crossref_primary_10_1021_accountsmr_3c00223 crossref_primary_10_1103_PRXEnergy_1_031001 crossref_primary_10_1021_acsenergylett_1c00907 crossref_primary_10_1021_acs_nanolett_3c00801 crossref_primary_10_1039_D2SC04025E crossref_primary_10_1016_j_jpowsour_2024_235457 crossref_primary_10_1021_acs_accounts_0c00412 crossref_primary_10_1002_aenm_202202432 crossref_primary_10_1088_1361_648X_ac0207 crossref_primary_10_1002_adma_201806956 crossref_primary_10_1007_s10800_020_01526_w crossref_primary_10_1149_1945_7111_abdaff crossref_primary_10_1016_j_joule_2018_11_012 crossref_primary_10_1007_s10853_022_07624_8 crossref_primary_10_1021_acs_chemmater_7b00374 crossref_primary_10_1021_acs_accounts_1c00420 crossref_primary_10_1002_anie_202005009 crossref_primary_10_1002_qua_25795 crossref_primary_10_20964_2017_10_58 crossref_primary_10_1002_eom2_12498 crossref_primary_10_1016_j_ssi_2024_116766 crossref_primary_10_1021_acs_jpclett_8b02350 crossref_primary_10_1149_2_0241904jes crossref_primary_10_1021_acs_nanolett_0c02371 crossref_primary_10_1016_j_jpowsour_2023_232652 crossref_primary_10_1016_j_jpowsour_2021_230158 crossref_primary_10_1039_D0EE01638A crossref_primary_10_1002_adma_201807313 crossref_primary_10_1021_acs_langmuir_3c03060 crossref_primary_10_1002_batt_202000262 crossref_primary_10_1039_D3IM00115F crossref_primary_10_1007_s41061_018_0187_2 crossref_primary_10_1038_s41467_023_40221_0 crossref_primary_10_3389_fchem_2022_892013 crossref_primary_10_1002_smtd_202400183 crossref_primary_10_1021_acs_jpcc_1c00867 crossref_primary_10_1021_acs_jpcc_8b01979 crossref_primary_10_1021_jacs_1c05807 crossref_primary_10_1021_acs_nanolett_3c02560 crossref_primary_10_1039_C7SC03191B crossref_primary_10_1039_D1RA07333H crossref_primary_10_1002_aenm_202203307 crossref_primary_10_1002_advs_202206978 crossref_primary_10_1039_D3TA05042D crossref_primary_10_1016_j_powera_2024_100157 crossref_primary_10_1002_ange_202005009 crossref_primary_10_1021_acs_chemrev_9b00601 crossref_primary_10_1149_2_0171814jes crossref_primary_10_1016_j_chempr_2021_02_025 crossref_primary_10_1016_j_jpowsour_2020_228449 crossref_primary_10_1002_adma_202004577 crossref_primary_10_1021_acs_jpcc_8b01839 crossref_primary_10_1039_C7TA03116E crossref_primary_10_1149_1945_7111_ac644e crossref_primary_10_1021_acsenergylett_0c00194 crossref_primary_10_1021_acs_jpclett_7b02734 crossref_primary_10_1016_j_jelechem_2021_115675 crossref_primary_10_1021_acs_jpcc_0c06842 crossref_primary_10_1002_cssc_201800027 crossref_primary_10_1039_C8EE03586E crossref_primary_10_1007_s41918_018_0011_2 crossref_primary_10_1002_smtd_201800551 crossref_primary_10_1021_acs_jpcc_7b08433 crossref_primary_10_1016_j_mattod_2024_06_001 crossref_primary_10_1002_ente_202200421 crossref_primary_10_1016_j_apsusc_2022_155888 crossref_primary_10_1016_j_cej_2021_132700 crossref_primary_10_1002_ange_202407906 crossref_primary_10_1039_D3TA03606E crossref_primary_10_1002_pssb_202100539 crossref_primary_10_1002_batt_202200067 crossref_primary_10_1016_j_carbon_2023_01_058 crossref_primary_10_1038_s41578_021_00345_5 crossref_primary_10_1007_s41918_022_00147_5 crossref_primary_10_1016_j_scib_2022_11_026 crossref_primary_10_1149_2_1111702jes crossref_primary_10_1016_j_coelec_2018_10_013 crossref_primary_10_1021_acs_accounts_7b00524 crossref_primary_10_1016_j_est_2024_111966 crossref_primary_10_1016_j_ensm_2018_05_007 crossref_primary_10_1021_acs_accounts_7b00486 crossref_primary_10_1039_D0RA01412E crossref_primary_10_1021_acs_jpcc_7b04247 crossref_primary_10_1021_acsami_7b15879 crossref_primary_10_1016_j_enchem_2019_100003 crossref_primary_10_1016_j_joule_2018_09_008 crossref_primary_10_1002_ente_202401118 crossref_primary_10_1002_ange_202110501 crossref_primary_10_1021_acsami_1c19097 crossref_primary_10_1002_cssc_202000867 crossref_primary_10_1016_j_ensm_2020_08_002 crossref_primary_10_1016_j_carbon_2017_11_081 crossref_primary_10_1002_sstr_202200071 crossref_primary_10_1002_adma_202100574 crossref_primary_10_1039_C8EE02601G crossref_primary_10_1002_macp_202200152 crossref_primary_10_1002_smtd_202300168 crossref_primary_10_1016_j_nanoen_2020_104915 crossref_primary_10_1038_s41524_018_0064_0 crossref_primary_10_1039_D0CP03286G crossref_primary_10_1016_j_electacta_2018_02_163 crossref_primary_10_1038_s41467_021_27841_0 crossref_primary_10_1039_C8TA10396H crossref_primary_10_2477_jccj_2018_0046 crossref_primary_10_1016_j_jpowsour_2024_234705 crossref_primary_10_1021_acs_jpcc_2c02396 |
Cites_doi | 10.1149/1.2408313 10.1021/acs.jpcc.5b01643 10.1002/cphc.201300856 10.1088/0953-8984/14/11/313 10.1103/PhysRevB.91.134116 10.1103/PhysRevB.58.7260 10.1021/jp408974k 10.1021/jp511132c 10.1016/j.cplett.2012.08.022 10.1021/jp002526b 10.1021/jp3118055 10.1021/acsnano.5b02166 10.1016/j.elecom.2011.06.026 10.1021/la1009994 10.1103/PhysRevLett.112.208301 10.1149/2.044302jes 10.1021/ct050065y 10.1021/cr500003w 10.1149/1.2054777 10.1002/adma.201101915 10.1149/1.3545977 10.1021/jp0601522 10.1038/nmat3191 10.1021/acsami.5b12030 10.1021/jp4000494 10.1080/18811248.2002.9715294 10.1149/1.2128859 10.1002/adma.200903951 10.1103/PhysRevE.86.051609 10.1142/p291 10.1021/acs.nanolett.5b05283 10.1016/S0378-7753(97)02575-5 10.1149/1.1644601 10.1021/cm901452z 10.1038/35104644 10.1016/j.jpowsour.2016.01.078 10.1016/S0378-7753(01)00595-X 10.1021/acs.chemmater.5b03358 10.1103/PhysRevB.92.214201 10.1524/zpch.2009.6086 10.1149/2.0161506jes 10.1021/jp310591u 10.1021/cr030203g 10.1021/ja305366r 10.1021/ar300145c 10.1016/S0167-2738(02)00080-2 10.1021/cr020731c |
ContentType | Journal Article |
Copyright | Copyright © 2016 American Chemical Society |
Copyright_xml | – notice: Copyright © 2016 American Chemical Society |
CorporateAuthor | Energy Frontier Research Centers (EFRC) (United States). Nanostructures for Electrical Energy Storage (NEES) Sandia National Lab. (SNL-NM), Albuquerque, NM (United States) |
CorporateAuthor_xml | – name: Energy Frontier Research Centers (EFRC) (United States). Nanostructures for Electrical Energy Storage (NEES) – name: Sandia National Lab. (SNL-NM), Albuquerque, NM (United States) |
DBID | AAYXX CITATION NPM 7X8 OIOZB OTOTI |
DOI | 10.1021/acs.accounts.6b00363 |
DatabaseName | CrossRef PubMed MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-4898 |
EndPage | 2370 |
ExternalDocumentID | 1338679 27689438 10_1021_acs_accounts_6b00363 b16989882 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | - .K2 02 23M 53G 55A 5GY 5VS 7~N 85S AABXI ABFLS ABMVS ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 P2P RNS ROL TWZ UI2 UPT VF5 VG9 W1F WH7 X YZZ --- -DZ -~X 4.4 5ZA 6J9 6P2 AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AFXLT AGXLV AHGAQ CITATION CUPRZ GGK IH2 XSW ZCA ~02 NPM 7X8 ABFRP OIOZB OTOTI |
ID | FETCH-LOGICAL-a4023-e034b475ad31eff8ef0861256f1df1748f85aa542f223de0b512d31d510bb7cc3 |
IEDL.DBID | ACS |
ISSN | 0001-4842 1520-4898 |
IngestDate | Mon Jul 03 03:57:36 EDT 2023 Fri Jul 11 14:05:43 EDT 2025 Mon Jul 21 05:41:44 EDT 2025 Thu Apr 24 23:01:24 EDT 2025 Tue Jul 01 03:15:58 EDT 2025 Thu Aug 27 13:43:03 EDT 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a4023-e034b475ad31eff8ef0861256f1df1748f85aa542f223de0b512d31d510bb7cc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 AC04-94AL85000; SC0001160 USDOE Office of Science (SC), Basic Energy Sciences (BES) USDOE National Nuclear Security Administration (NNSA) SAND2016-7239J |
OpenAccessLink | https://www.osti.gov/servlets/purl/1338679 |
PMID | 27689438 |
PQID | 1835449358 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | osti_scitechconnect_1338679 proquest_miscellaneous_1835449358 pubmed_primary_27689438 crossref_primary_10_1021_acs_accounts_6b00363 crossref_citationtrail_10_1021_acs_accounts_6b00363 acs_journals_10_1021_acs_accounts_6b00363 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-10-18 |
PublicationDateYYYYMMDD | 2016-10-18 |
PublicationDate_xml | – month: 10 year: 2016 text: 2016-10-18 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Accounts of chemical research |
PublicationTitleAlternate | Acc. Chem. Res |
PublicationYear | 2016 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref46/cit46 ref41/cit41 ref22/cit22 ref500/ref500_1 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 Balbuena P. B. (ref7/cit7) 2004 ref24/cit24 ref38/cit38 ref44/cit44 |
References_xml | – ident: ref17/cit17 doi: 10.1149/1.2408313 – ident: ref39/cit39 doi: 10.1021/acs.jpcc.5b01643 – ident: ref41/cit41 doi: 10.1002/cphc.201300856 – ident: ref25/cit25 doi: 10.1088/0953-8984/14/11/313 – ident: ref20/cit20 doi: 10.1103/PhysRevB.91.134116 – ident: ref24/cit24 doi: 10.1103/PhysRevB.58.7260 – ident: ref500/ref500_1 doi: 10.1021/jp408974k – ident: ref42/cit42 doi: 10.1021/jp511132c – ident: ref27/cit27 doi: 10.1016/j.cplett.2012.08.022 – ident: ref47/cit47 doi: 10.1021/jp002526b – ident: ref36/cit36 doi: 10.1021/jp3118055 – ident: ref15/cit15 doi: 10.1021/acsnano.5b02166 – ident: ref28/cit28 doi: 10.1016/j.elecom.2011.06.026 – ident: ref30/cit30 doi: 10.1021/la1009994 – ident: ref38/cit38 doi: 10.1103/PhysRevLett.112.208301 – ident: ref33/cit33 doi: 10.1149/2.044302jes – ident: ref43/cit43 doi: 10.1021/ct050065y – ident: ref4/cit4 doi: 10.1021/cr500003w – ident: ref6/cit6 doi: 10.1149/1.2054777 – ident: ref14/cit14 doi: 10.1002/adma.201101915 – ident: ref26/cit26 doi: 10.1149/1.3545977 – ident: ref35/cit35 doi: 10.1021/jp0601522 – ident: ref16/cit16 doi: 10.1038/nmat3191 – ident: ref22/cit22 doi: 10.1021/acsami.5b12030 – ident: ref29/cit29 doi: 10.1021/jp4000494 – ident: ref44/cit44 doi: 10.1080/18811248.2002.9715294 – ident: ref5/cit5 doi: 10.1149/1.2128859 – ident: ref13/cit13 doi: 10.1002/adma.200903951 – ident: ref46/cit46 doi: 10.1103/PhysRevE.86.051609 – volume-title: Lithium-Ion Batteries: Solid-Electrolyte Interphase year: 2004 ident: ref7/cit7 doi: 10.1142/p291 – ident: ref23/cit23 doi: 10.1021/acs.nanolett.5b05283 – ident: ref8/cit8 doi: 10.1016/S0378-7753(97)02575-5 – ident: ref32/cit32 doi: 10.1149/1.1644601 – ident: ref2/cit2 doi: 10.1021/cm901452z – ident: ref11/cit11 doi: 10.1038/35104644 – ident: ref21/cit21 doi: 10.1016/j.jpowsour.2016.01.078 – ident: ref34/cit34 doi: 10.1016/S0378-7753(01)00595-X – ident: ref37/cit37 doi: 10.1021/acs.chemmater.5b03358 – ident: ref40/cit40 doi: 10.1103/PhysRevB.92.214201 – ident: ref10/cit10 doi: 10.1524/zpch.2009.6086 – ident: ref31/cit31 doi: 10.1149/2.0161506jes – ident: ref19/cit19 doi: 10.1021/jp310591u – ident: ref3/cit3 doi: 10.1021/cr030203g – ident: ref18/cit18 doi: 10.1021/ja305366r – ident: ref45/cit45 doi: 10.1021/ar300145c – ident: ref9/cit9 doi: 10.1016/S0167-2738(02)00080-2 – ident: ref12/cit12 doi: 10.1021/cr020731c |
SSID | ssj0002467 |
Score | 2.543985 |
Snippet | A nanometer thick passivation layer will spontaneously form on Li-metal in battery applications due to electrolyte reduction reactions. This passivation layer... |
SourceID | osti proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2363 |
SubjectTerms | 30 DIRECT ENERGY CONVERSION MATERIALS SCIENCE |
Title | Computational Exploration of the Li-Electrode|Electrolyte Interface in the Presence of a Nanometer Thick Solid-Electrolyte Interphase Layer |
URI | http://dx.doi.org/10.1021/acs.accounts.6b00363 https://www.ncbi.nlm.nih.gov/pubmed/27689438 https://www.proquest.com/docview/1835449358 https://www.osti.gov/servlets/purl/1338679 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB3BcoALLd9LCzISFw5eNrHjZI_VqlWFKkBqK_UWOfZYXXWbVGz2AOIf8KeZcZJFpaoKtySyndgZz7xnj2cA3lfGcBKkXGaJ00RQDMpqikbOfEAOhGowRAfZz-bwVH86y87-EMW_d_DT5KN1K2o6Zk5YTQxLoVH34UFqipzJ1t78eKN5U226GJlEkXWh0-Go3C2tsEFyq2sGadTQxLodbEajc7AFX4ajO52vycVk3VYT9-NmJMd_7M82PO7xp9jrBOYJ3MP6KTycD2nfnsGvLs9Dv0YoOh-9eCeaIAguiqOF3O-S53j82V8tv7co4upisA7Foo4lv8azTXRPNa0gRd5csveNODlfuAtx3CwXXt5o4OqcDKs4ssQFnsPpwf7J_FD2GRukJR6qJE6VrnSeWa8SDKHAQIyJIJQJiQ_EfYpQZNZmOg2ESjxOK4IbVNSTYqiq3Dn1AkZ1U-MrEJgoUhVJlnNMN81VvfNI7KcgHZ0pP4YPNJJlP-NWZdxMT5OSHw7DW_bDOwY1_OLS9aHPOQPH8o5aclPrqgv9cUf5HZaekqALx9917Kjk2pIXAUw-G8O7QahK-qO8LWNrbNb05bz2pnk_egwvO2nbvC8lNjjTqnj9H73dgUeE6gwb2KTYhVH7bY1vCDm11ds4XX4DtbgWZg |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6V5VAuvB9LeRgJDhy8bBLHyR44VEurLV0qpG6l3oLjh7rqNqmarFAR_4DfwV_hdzHjJIsAVRWHStziyHYcz9jzzXg8A_Ayl5KSICU8DrRABUVang-t5CPjLAVCldZ5B9k9OTkQ7w_jwzX43t2FwUFU2FPlD_F_RRcI3tA71SRQqAaSmFF2Oat37fln1NSqtzvvkKyvwnB7azae8DaZAFeoIkXcDiORiyRWJgqsc6l1COZRuksXGIewPHVprFQsQocC09hhjpIQqxrk2TxPtI6w32twHfFPSDre5nh_teGHQjahOVEzF6kIuxt6F4ya5KCufpODvRLX88UY18u67VvwYzVL3sXleLCs84H-8kcAyf9-Gm_DzRZts81medyBNVvchfVxl-TuHnxrslq0FlHWeCT6EisdQ3DMpnO-1aQKMvZr-7Q4ry3ztlSntGXzwtf86G9yYRlbKoZiqzwhXyM2O5rrY7ZfLuaG_9XB6RHCCDZVqPnch4MrmYsH0CvKwj4CZoMIN8YgTiiCnaCmRhuLul6KEimOTB9eI-Wydn-pMu86EAYZvezImbXk7EPUcVam20DvlG9kcUkrvmp12gQ6uaT-BjFthkCNog1rcsvSdUYmD5mM-vCi4-UMKUqHUKqw5RJHTpZGQafvfXjYMPnqeyHqviMRpY__4W-fw_pk9mGaTXf2djfgBuJZSdAiSJ9Arz5b2qeIGev8mV-xDD5dNW__BNNPeBs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VRQIu_EOX8mMkOHDwskkcJ3vgUG27aumqqtRW6s0k_lFX3SYrkhUq4g14El6Fp2LGSVYCVFUceuAWR7bjeMaebzzjGYA3uZSUBCnhcaAFKijS8nxoJR8ZZykQqrTOO8juy51j8fEkPlmDH91dGBxEhT1V3ohPq3phXBthIHhP77MmiUI1kMSQsstbvWcvvqC2Vn3Y3ULSvg3DyfbReIe3CQV4hmpSxO0wErlI4sxEgXUutQ4BPUp46QLjEJqnLo2zLBahQ6Fp7DBHaYhVDfJtnidaR9jvDbhJlkLS8zbHh6tNPxSyCc-J2rlIRdjd0rtk1CQLdfWbLOyVuKYvx7le3k3uwc_VTHk3l7PBss4H-usfQST_i6m8D3db1M02m2XyANZs8RBuj7tkd4_ge5Pdoj0ZZY1noi-x0jEEyWw649tNyiBjv7VP84vaMn-m6jJt2azwNQ_8jS4sY8uMofgqz8nniB2dzvQZOyznM8P_6mBxinCCTTPUgB7D8bXMxRPoFWVh14HZIMINMogTimQnqKnRxqLOl6JkiiPTh3dIOdXuM5XyLgRhoOhlR07VkrMPUcddSrcB3ynvyPyKVnzVatEEPLmi_gYxrkLARlGHNbln6VrR0YdMRn143fGzQoqSMSorbLnEkdOJoyArfB-eNoy--l6IOvBIROmzf_jbV3DrYGuiprv7extwB2GtJIQRpM-hV39e2hcIHev8pV-0DD5dN2v_Agt4ep4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+Exploration+of+the+Li-Electrode%7CElectrolyte+Interface+in+the+Presence+of+a+Nanometer+Thick+Solid-Electrolyte+Interphase+Layer+%5BComputational+exploration+of+the+Li-electrode%7Celectrolyte+interface+complicated+by+a+nanometer+thin+solid-electrolyte+interphase+%28SEI%29+layer%5D&rft.jtitle=Accounts+of+chemical+research&rft.au=Li%2C+Yunsong&rft.au=Leung%2C+Kevin&rft.au=Qi%2C+Yue&rft.date=2016-10-18&rft.pub=American+Chemical+Society&rft.issn=0001-4842&rft.eissn=1520-4898&rft.volume=49&rft.issue=10&rft_id=info:doi/10.1021%2Facs.accounts.6b00363&rft.externalDocID=1338679 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon |