Computational Exploration of the Li-Electrode|Electrolyte Interface in the Presence of a Nanometer Thick Solid-Electrolyte Interphase Layer

A nanometer thick passivation layer will spontaneously form on Li-metal in battery applications due to electrolyte reduction reactions. This passivation layer in rechargeable batteries must have “selective” transport properties: blocking electrons from attacking the electrolytes, while allowing Li+...

Full description

Saved in:
Bibliographic Details
Published inAccounts of chemical research Vol. 49; no. 10; pp. 2363 - 2370
Main Authors Li, Yunsong, Leung, Kevin, Qi, Yue
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 18.10.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A nanometer thick passivation layer will spontaneously form on Li-metal in battery applications due to electrolyte reduction reactions. This passivation layer in rechargeable batteries must have “selective” transport properties: blocking electrons from attacking the electrolytes, while allowing Li+ ion to pass through so the electrochemical reactions can continue. The classical description of the electrochemical reaction, Li+ + e → Li0, occurring at the Li-metal|electrolyte interface is now complicated by the passivation layer and will reply on the coupling of electronic and ionic degrees of freedom in the layer. This passivation layer is called “solid electrolyte interphase (SEI)” and is considered as “the most important but the least understood in rechargeable Li-ion batteries,” partly due to the lack of understanding of its structure–property relationship. Predictive modeling, starting from the ab initio level, becomes an important tool to understand the nanoscale processes and materials properties governing the interfacial charge transfer reaction at the Li-metal|SEI|electrolyte interface. Here, we demonstrate pristine Li-metal surfaces indeed dissolve in organic carbonate electrolytes without the SEI layer. Based on joint modeling and experimental results, we point out that the well-known two-layer structure of SEI also exhibits two different Li+ ion transport mechanisms. The SEI has a porous (organic) outer layer permeable to both Li+ and anions (dissolved in electrolyte), and a dense (inorganic) inner layer facilitate only Li+ transport. This two-layer/two-mechanism diffusion model suggests only the dense inorganic layer is effective at protecting Li-metal in electrolytes. This model suggests a strategy to deconvolute the structure–property relationships of the SEI by analyzing an idealized SEI composed of major components, such as Li2CO3, LiF, Li2O, and their mixtures. After sorting out the Li+ ion diffusion carriers and their diffusion pathways, we design methods to accelerate the Li+ ion conductivity by doping and by using heterogonous structure designs. We will predict the electron tunneling barriers and connect them with measurable first cycle irreversible capacity loss. Finally, we note that the SEI not only affects Li+ and e – transport, but it can also impose a potential drop near the Li-metal|SEI interface. Our challenge is to fully describe the electrochemical reactions at the Li-metal|SEI|electrolyte interface. This will be the subject of ongoing efforts.
AbstractList A nanometer thick passivation layer will spontaneously form on Li-metal in battery applications due to electrolyte reduction reactions. This passivation layer in rechargeable batteries must have "selective" transport properties: blocking electrons from attacking the electrolytes, while allowing Li ion to pass through so the electrochemical reactions can continue. The classical description of the electrochemical reaction, Li + e → Li , occurring at the Li-metal|electrolyte interface is now complicated by the passivation layer and will reply on the coupling of electronic and ionic degrees of freedom in the layer. This passivation layer is called "solid electrolyte interphase (SEI)" and is considered as "the most important but the least understood in rechargeable Li-ion batteries," partly due to the lack of understanding of its structure-property relationship. Predictive modeling, starting from the ab initio level, becomes an important tool to understand the nanoscale processes and materials properties governing the interfacial charge transfer reaction at the Li-metal|SEI|electrolyte interface. Here, we demonstrate pristine Li-metal surfaces indeed dissolve in organic carbonate electrolytes without the SEI layer. Based on joint modeling and experimental results, we point out that the well-known two-layer structure of SEI also exhibits two different Li ion transport mechanisms. The SEI has a porous (organic) outer layer permeable to both Li and anions (dissolved in electrolyte), and a dense (inorganic) inner layer facilitate only Li transport. This two-layer/two-mechanism diffusion model suggests only the dense inorganic layer is effective at protecting Li-metal in electrolytes. This model suggests a strategy to deconvolute the structure-property relationships of the SEI by analyzing an idealized SEI composed of major components, such as Li CO LiF, Li O, and their mixtures. After sorting out the Li ion diffusion carriers and their diffusion pathways, we design methods to accelerate the Li ion conductivity by doping and by using heterogonous structure designs. We will predict the electron tunneling barriers and connect them with measurable first cycle irreversible capacity loss. Finally, we note that the SEI not only affects Li and e transport, but it can also impose a potential drop near the Li-metal|SEI interface. Our challenge is to fully describe the electrochemical reactions at the Li-metal|SEI|electrolyte interface. This will be the subject of ongoing efforts.
A nanometer thick passivation layer will spontaneously form on Li-metal in battery applications due to electrolyte reduction reactions. This passivation layer in rechargeable batteries must have “selective” transport properties: blocking electrons from attacking the electrolytes, while allowing Li+ ion to pass through so the electrochemical reactions can continue. The classical description of the electrochemical reaction, Li+ + e → Li0, occurring at the Li-metal|electrolyte interface is now complicated by the passivation layer and will reply on the coupling of electronic and ionic degrees of freedom in the layer. We consider the passivation layer, called “solid electrolyte interphase (SEI)”, as “the most important but the least understood in rechargeable Li-ion batteries,” partly due to the lack of understanding of its structure–property relationship. In predictive modeling, starting from the ab initio level, we find that it is an important tool to understand the nanoscale processes and materials properties governing the interfacial charge transfer reaction at the Li-metal|SEI|electrolyte interface. Here, we demonstrate pristine Li-metal surfaces indeed dissolve in organic carbonate electrolytes without the SEI layer. Based on joint modeling and experimental results, we point out that the well-known two-layer structure of SEI also exhibits two different Li+ ion transport mechanisms. The SEI has a porous (organic) outer layer permeable to both Li+ and anions (dissolved in electrolyte), and a dense (inorganic) inner layer facilitate only Li+ transport. This two-layer/two-mechanism diffusion model suggests only the dense inorganic layer is effective at protecting Li-metal in electrolytes. This model suggests a strategy to deconvolute the structure–property relationships of the SEI by analyzing an idealized SEI composed of major components, such as Li2CO3, LiF, Li2O, and their mixtures. After sorting out the Li+ ion diffusion carriers and their diffusion pathways, we design methods to accelerate the Li+ ion conductivity by doping and by using heterogonous structure designs. We will predict the electron tunneling barriers and connect them with measurable first cycle irreversible capacity loss. We note that the SEI not only affects Li+ and e– transport, but it can also impose a potential drop near the Li-metal|SEI interface. Our challenge is to fully describe the electrochemical reactions at the Li-metal|SEI|electrolyte interface. This will be the subject of ongoing efforts.
A nanometer thick passivation layer will spontaneously form on Li-metal in battery applications due to electrolyte reduction reactions. This passivation layer in rechargeable batteries must have “selective” transport properties: blocking electrons from attacking the electrolytes, while allowing Li+ ion to pass through so the electrochemical reactions can continue. The classical description of the electrochemical reaction, Li+ + e → Li0, occurring at the Li-metal|electrolyte interface is now complicated by the passivation layer and will reply on the coupling of electronic and ionic degrees of freedom in the layer. This passivation layer is called “solid electrolyte interphase (SEI)” and is considered as “the most important but the least understood in rechargeable Li-ion batteries,” partly due to the lack of understanding of its structure–property relationship. Predictive modeling, starting from the ab initio level, becomes an important tool to understand the nanoscale processes and materials properties governing the interfacial charge transfer reaction at the Li-metal|SEI|electrolyte interface. Here, we demonstrate pristine Li-metal surfaces indeed dissolve in organic carbonate electrolytes without the SEI layer. Based on joint modeling and experimental results, we point out that the well-known two-layer structure of SEI also exhibits two different Li+ ion transport mechanisms. The SEI has a porous (organic) outer layer permeable to both Li+ and anions (dissolved in electrolyte), and a dense (inorganic) inner layer facilitate only Li+ transport. This two-layer/two-mechanism diffusion model suggests only the dense inorganic layer is effective at protecting Li-metal in electrolytes. This model suggests a strategy to deconvolute the structure–property relationships of the SEI by analyzing an idealized SEI composed of major components, such as Li2CO3, LiF, Li2O, and their mixtures. After sorting out the Li+ ion diffusion carriers and their diffusion pathways, we design methods to accelerate the Li+ ion conductivity by doping and by using heterogonous structure designs. We will predict the electron tunneling barriers and connect them with measurable first cycle irreversible capacity loss. Finally, we note that the SEI not only affects Li+ and e – transport, but it can also impose a potential drop near the Li-metal|SEI interface. Our challenge is to fully describe the electrochemical reactions at the Li-metal|SEI|electrolyte interface. This will be the subject of ongoing efforts.
A nanometer thick passivation layer will spontaneously form on Li-metal in battery applications due to electrolyte reduction reactions. This passivation layer in rechargeable batteries must have "selective" transport properties: blocking electrons from attacking the electrolytes, while allowing Li+ ion to pass through so the electrochemical reactions can continue. The classical description of the electrochemical reaction, Li+ + e → Li0, occurring at the Li-metal|electrolyte interface is now complicated by the passivation layer and will reply on the coupling of electronic and ionic degrees of freedom in the layer. This passivation layer is called "solid electrolyte interphase (SEI)" and is considered as "the most important but the least understood in rechargeable Li-ion batteries," partly due to the lack of understanding of its structure-property relationship. Predictive modeling, starting from the ab initio level, becomes an important tool to understand the nanoscale processes and materials properties governing the interfacial charge transfer reaction at the Li-metal|SEI|electrolyte interface. Here, we demonstrate pristine Li-metal surfaces indeed dissolve in organic carbonate electrolytes without the SEI layer. Based on joint modeling and experimental results, we point out that the well-known two-layer structure of SEI also exhibits two different Li+ ion transport mechanisms. The SEI has a porous (organic) outer layer permeable to both Li+ and anions (dissolved in electrolyte), and a dense (inorganic) inner layer facilitate only Li+ transport. This two-layer/two-mechanism diffusion model suggests only the dense inorganic layer is effective at protecting Li-metal in electrolytes. This model suggests a strategy to deconvolute the structure-property relationships of the SEI by analyzing an idealized SEI composed of major components, such as Li2CO3, LiF, Li2O, and their mixtures. After sorting out the Li+ ion diffusion carriers and their diffusion pathways, we design methods to accelerate the Li+ ion conductivity by doping and by using heterogonous structure designs. We will predict the electron tunneling barriers and connect them with measurable first cycle irreversible capacity loss. Finally, we note that the SEI not only affects Li+ and e- transport, but it can also impose a potential drop near the Li-metal|SEI interface. Our challenge is to fully describe the electrochemical reactions at the Li-metal|SEI|electrolyte interface. This will be the subject of ongoing efforts.A nanometer thick passivation layer will spontaneously form on Li-metal in battery applications due to electrolyte reduction reactions. This passivation layer in rechargeable batteries must have "selective" transport properties: blocking electrons from attacking the electrolytes, while allowing Li+ ion to pass through so the electrochemical reactions can continue. The classical description of the electrochemical reaction, Li+ + e → Li0, occurring at the Li-metal|electrolyte interface is now complicated by the passivation layer and will reply on the coupling of electronic and ionic degrees of freedom in the layer. This passivation layer is called "solid electrolyte interphase (SEI)" and is considered as "the most important but the least understood in rechargeable Li-ion batteries," partly due to the lack of understanding of its structure-property relationship. Predictive modeling, starting from the ab initio level, becomes an important tool to understand the nanoscale processes and materials properties governing the interfacial charge transfer reaction at the Li-metal|SEI|electrolyte interface. Here, we demonstrate pristine Li-metal surfaces indeed dissolve in organic carbonate electrolytes without the SEI layer. Based on joint modeling and experimental results, we point out that the well-known two-layer structure of SEI also exhibits two different Li+ ion transport mechanisms. The SEI has a porous (organic) outer layer permeable to both Li+ and anions (dissolved in electrolyte), and a dense (inorganic) inner layer facilitate only Li+ transport. This two-layer/two-mechanism diffusion model suggests only the dense inorganic layer is effective at protecting Li-metal in electrolytes. This model suggests a strategy to deconvolute the structure-property relationships of the SEI by analyzing an idealized SEI composed of major components, such as Li2CO3, LiF, Li2O, and their mixtures. After sorting out the Li+ ion diffusion carriers and their diffusion pathways, we design methods to accelerate the Li+ ion conductivity by doping and by using heterogonous structure designs. We will predict the electron tunneling barriers and connect them with measurable first cycle irreversible capacity loss. Finally, we note that the SEI not only affects Li+ and e- transport, but it can also impose a potential drop near the Li-metal|SEI interface. Our challenge is to fully describe the electrochemical reactions at the Li-metal|SEI|electrolyte interface. This will be the subject of ongoing efforts.
Author Li, Yunsong
Qi, Yue
Leung, Kevin
AuthorAffiliation Sandia National Laboratories
Michigan State University
Department of Chemical Engineering and Materials Science
AuthorAffiliation_xml – name: Sandia National Laboratories
– name: Michigan State University
– name: Department of Chemical Engineering and Materials Science
Author_xml – sequence: 1
  givenname: Yunsong
  surname: Li
  fullname: Li, Yunsong
– sequence: 2
  givenname: Kevin
  surname: Leung
  fullname: Leung, Kevin
– sequence: 3
  givenname: Yue
  surname: Qi
  fullname: Qi, Yue
  email: yueqi@egr.msu.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27689438$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1338679$$D View this record in Osti.gov
BookMark eNqFkd9qFDEUh4NU7Lb6BiKDV97Mmn8zk_VOlrUWFhWs1yGTOWFTM8mYZKALvoEv3XR364WCXuUc8n0nh_wu0JkPHhB6SfCSYEreKp2WSusw-5yWbY8xa9kTtCANxTUXK3GGFhhjUmpOz9FFSrelpbztnqFz2rVixZlYoF_rME5zVtkGr1y1uZtciIeuCqbKO6i2tt440DmGAX6eKrfPUF37DNEoDZX1B_JLhAS-9MVU1SflwwgFqW52Vn-vvgZnh_qvAdNOpfKI2kN8jp4a5RK8OJ2X6NuHzc36Y739fHW9fr-tFceU1YAZ73nXqIERMEaAwaIltGkNGQzpuDCiUarh1FDKBsB9Q2hBh4bgvu-0Zpfo9XFuSNnKpG0GvdPB-7KaJIyJtlsV6M0RmmL4MUPKcrRJg3PKQ5iTJII1nK9YIwr66oTO_QiDnKIdVdzLx18uAD8COoaUIpjfCMHyIUxZwpSPYcpTmEV794dWVj1kk6Oy7n8yPsoPt7dhjiXe9G_lHkpkvAo
CitedBy_id crossref_primary_10_1016_j_est_2021_103564
crossref_primary_10_1016_j_progsurf_2017_10_001
crossref_primary_10_1021_jacs_2c02494
crossref_primary_10_1016_j_ensm_2019_12_026
crossref_primary_10_1016_j_ijheatmasstransfer_2023_125069
crossref_primary_10_1016_j_cej_2024_158583
crossref_primary_10_1080_08927022_2020_1746304
crossref_primary_10_1002_anie_202110501
crossref_primary_10_1021_acs_jpcc_1c10602
crossref_primary_10_1039_C9CP06608J
crossref_primary_10_1007_s12274_019_2519_0
crossref_primary_10_1021_acsami_6b14560
crossref_primary_10_1021_acs_chemmater_1c02944
crossref_primary_10_1002_aenm_202200244
crossref_primary_10_1002_aenm_201904152
crossref_primary_10_1021_acs_jpcc_7b11472
crossref_primary_10_1021_acsami_0c14050
crossref_primary_10_1002_anie_202407906
crossref_primary_10_1016_j_cej_2019_122487
crossref_primary_10_1038_s41467_018_05986_9
crossref_primary_10_1002_batt_202300126
crossref_primary_10_1021_acsami_0c21716
crossref_primary_10_1002_celc_202300270
crossref_primary_10_1021_jacs_3c03429
crossref_primary_10_1021_acs_accounts_7b00474
crossref_primary_10_1021_acs_jpcc_7b06457
crossref_primary_10_1002_cnma_202200310
crossref_primary_10_1016_j_coelec_2019_06_003
crossref_primary_10_1021_acs_jpcc_4c08138
crossref_primary_10_1002_admi_202101734
crossref_primary_10_1021_accountsmr_3c00223
crossref_primary_10_1103_PRXEnergy_1_031001
crossref_primary_10_1021_acsenergylett_1c00907
crossref_primary_10_1021_acs_nanolett_3c00801
crossref_primary_10_1039_D2SC04025E
crossref_primary_10_1016_j_jpowsour_2024_235457
crossref_primary_10_1021_acs_accounts_0c00412
crossref_primary_10_1002_aenm_202202432
crossref_primary_10_1088_1361_648X_ac0207
crossref_primary_10_1002_adma_201806956
crossref_primary_10_1007_s10800_020_01526_w
crossref_primary_10_1149_1945_7111_abdaff
crossref_primary_10_1016_j_joule_2018_11_012
crossref_primary_10_1007_s10853_022_07624_8
crossref_primary_10_1021_acs_chemmater_7b00374
crossref_primary_10_1021_acs_accounts_1c00420
crossref_primary_10_1002_anie_202005009
crossref_primary_10_1002_qua_25795
crossref_primary_10_20964_2017_10_58
crossref_primary_10_1002_eom2_12498
crossref_primary_10_1016_j_ssi_2024_116766
crossref_primary_10_1021_acs_jpclett_8b02350
crossref_primary_10_1149_2_0241904jes
crossref_primary_10_1021_acs_nanolett_0c02371
crossref_primary_10_1016_j_jpowsour_2023_232652
crossref_primary_10_1016_j_jpowsour_2021_230158
crossref_primary_10_1039_D0EE01638A
crossref_primary_10_1002_adma_201807313
crossref_primary_10_1021_acs_langmuir_3c03060
crossref_primary_10_1002_batt_202000262
crossref_primary_10_1039_D3IM00115F
crossref_primary_10_1007_s41061_018_0187_2
crossref_primary_10_1038_s41467_023_40221_0
crossref_primary_10_3389_fchem_2022_892013
crossref_primary_10_1002_smtd_202400183
crossref_primary_10_1021_acs_jpcc_1c00867
crossref_primary_10_1021_acs_jpcc_8b01979
crossref_primary_10_1021_jacs_1c05807
crossref_primary_10_1021_acs_nanolett_3c02560
crossref_primary_10_1039_C7SC03191B
crossref_primary_10_1039_D1RA07333H
crossref_primary_10_1002_aenm_202203307
crossref_primary_10_1002_advs_202206978
crossref_primary_10_1039_D3TA05042D
crossref_primary_10_1016_j_powera_2024_100157
crossref_primary_10_1002_ange_202005009
crossref_primary_10_1021_acs_chemrev_9b00601
crossref_primary_10_1149_2_0171814jes
crossref_primary_10_1016_j_chempr_2021_02_025
crossref_primary_10_1016_j_jpowsour_2020_228449
crossref_primary_10_1002_adma_202004577
crossref_primary_10_1021_acs_jpcc_8b01839
crossref_primary_10_1039_C7TA03116E
crossref_primary_10_1149_1945_7111_ac644e
crossref_primary_10_1021_acsenergylett_0c00194
crossref_primary_10_1021_acs_jpclett_7b02734
crossref_primary_10_1016_j_jelechem_2021_115675
crossref_primary_10_1021_acs_jpcc_0c06842
crossref_primary_10_1002_cssc_201800027
crossref_primary_10_1039_C8EE03586E
crossref_primary_10_1007_s41918_018_0011_2
crossref_primary_10_1002_smtd_201800551
crossref_primary_10_1021_acs_jpcc_7b08433
crossref_primary_10_1016_j_mattod_2024_06_001
crossref_primary_10_1002_ente_202200421
crossref_primary_10_1016_j_apsusc_2022_155888
crossref_primary_10_1016_j_cej_2021_132700
crossref_primary_10_1002_ange_202407906
crossref_primary_10_1039_D3TA03606E
crossref_primary_10_1002_pssb_202100539
crossref_primary_10_1002_batt_202200067
crossref_primary_10_1016_j_carbon_2023_01_058
crossref_primary_10_1038_s41578_021_00345_5
crossref_primary_10_1007_s41918_022_00147_5
crossref_primary_10_1016_j_scib_2022_11_026
crossref_primary_10_1149_2_1111702jes
crossref_primary_10_1016_j_coelec_2018_10_013
crossref_primary_10_1021_acs_accounts_7b00524
crossref_primary_10_1016_j_est_2024_111966
crossref_primary_10_1016_j_ensm_2018_05_007
crossref_primary_10_1021_acs_accounts_7b00486
crossref_primary_10_1039_D0RA01412E
crossref_primary_10_1021_acs_jpcc_7b04247
crossref_primary_10_1021_acsami_7b15879
crossref_primary_10_1016_j_enchem_2019_100003
crossref_primary_10_1016_j_joule_2018_09_008
crossref_primary_10_1002_ente_202401118
crossref_primary_10_1002_ange_202110501
crossref_primary_10_1021_acsami_1c19097
crossref_primary_10_1002_cssc_202000867
crossref_primary_10_1016_j_ensm_2020_08_002
crossref_primary_10_1016_j_carbon_2017_11_081
crossref_primary_10_1002_sstr_202200071
crossref_primary_10_1002_adma_202100574
crossref_primary_10_1039_C8EE02601G
crossref_primary_10_1002_macp_202200152
crossref_primary_10_1002_smtd_202300168
crossref_primary_10_1016_j_nanoen_2020_104915
crossref_primary_10_1038_s41524_018_0064_0
crossref_primary_10_1039_D0CP03286G
crossref_primary_10_1016_j_electacta_2018_02_163
crossref_primary_10_1038_s41467_021_27841_0
crossref_primary_10_1039_C8TA10396H
crossref_primary_10_2477_jccj_2018_0046
crossref_primary_10_1016_j_jpowsour_2024_234705
crossref_primary_10_1021_acs_jpcc_2c02396
Cites_doi 10.1149/1.2408313
10.1021/acs.jpcc.5b01643
10.1002/cphc.201300856
10.1088/0953-8984/14/11/313
10.1103/PhysRevB.91.134116
10.1103/PhysRevB.58.7260
10.1021/jp408974k
10.1021/jp511132c
10.1016/j.cplett.2012.08.022
10.1021/jp002526b
10.1021/jp3118055
10.1021/acsnano.5b02166
10.1016/j.elecom.2011.06.026
10.1021/la1009994
10.1103/PhysRevLett.112.208301
10.1149/2.044302jes
10.1021/ct050065y
10.1021/cr500003w
10.1149/1.2054777
10.1002/adma.201101915
10.1149/1.3545977
10.1021/jp0601522
10.1038/nmat3191
10.1021/acsami.5b12030
10.1021/jp4000494
10.1080/18811248.2002.9715294
10.1149/1.2128859
10.1002/adma.200903951
10.1103/PhysRevE.86.051609
10.1142/p291
10.1021/acs.nanolett.5b05283
10.1016/S0378-7753(97)02575-5
10.1149/1.1644601
10.1021/cm901452z
10.1038/35104644
10.1016/j.jpowsour.2016.01.078
10.1016/S0378-7753(01)00595-X
10.1021/acs.chemmater.5b03358
10.1103/PhysRevB.92.214201
10.1524/zpch.2009.6086
10.1149/2.0161506jes
10.1021/jp310591u
10.1021/cr030203g
10.1021/ja305366r
10.1021/ar300145c
10.1016/S0167-2738(02)00080-2
10.1021/cr020731c
ContentType Journal Article
Copyright Copyright © 2016 American Chemical Society
Copyright_xml – notice: Copyright © 2016 American Chemical Society
CorporateAuthor Energy Frontier Research Centers (EFRC) (United States). Nanostructures for Electrical Energy Storage (NEES)
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
CorporateAuthor_xml – name: Energy Frontier Research Centers (EFRC) (United States). Nanostructures for Electrical Energy Storage (NEES)
– name: Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
DBID AAYXX
CITATION
NPM
7X8
OIOZB
OTOTI
DOI 10.1021/acs.accounts.6b00363
DatabaseName CrossRef
PubMed
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-4898
EndPage 2370
ExternalDocumentID 1338679
27689438
10_1021_acs_accounts_6b00363
b16989882
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID -
.K2
02
23M
53G
55A
5GY
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
RNS
ROL
TWZ
UI2
UPT
VF5
VG9
W1F
WH7
X
YZZ
---
-DZ
-~X
4.4
5ZA
6J9
6P2
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AFXLT
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
ZCA
~02
NPM
7X8
ABFRP
OIOZB
OTOTI
ID FETCH-LOGICAL-a4023-e034b475ad31eff8ef0861256f1df1748f85aa542f223de0b512d31d510bb7cc3
IEDL.DBID ACS
ISSN 0001-4842
1520-4898
IngestDate Mon Jul 03 03:57:36 EDT 2023
Fri Jul 11 14:05:43 EDT 2025
Mon Jul 21 05:41:44 EDT 2025
Thu Apr 24 23:01:24 EDT 2025
Tue Jul 01 03:15:58 EDT 2025
Thu Aug 27 13:43:03 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4023-e034b475ad31eff8ef0861256f1df1748f85aa542f223de0b512d31d510bb7cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
AC04-94AL85000; SC0001160
USDOE Office of Science (SC), Basic Energy Sciences (BES)
USDOE National Nuclear Security Administration (NNSA)
SAND2016-7239J
OpenAccessLink https://www.osti.gov/servlets/purl/1338679
PMID 27689438
PQID 1835449358
PQPubID 23479
PageCount 8
ParticipantIDs osti_scitechconnect_1338679
proquest_miscellaneous_1835449358
pubmed_primary_27689438
crossref_primary_10_1021_acs_accounts_6b00363
crossref_citationtrail_10_1021_acs_accounts_6b00363
acs_journals_10_1021_acs_accounts_6b00363
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-10-18
PublicationDateYYYYMMDD 2016-10-18
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-18
  day: 18
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Accounts of chemical research
PublicationTitleAlternate Acc. Chem. Res
PublicationYear 2016
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref46/cit46
ref41/cit41
ref22/cit22
ref500/ref500_1
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
Balbuena P. B. (ref7/cit7) 2004
ref24/cit24
ref38/cit38
ref44/cit44
References_xml – ident: ref17/cit17
  doi: 10.1149/1.2408313
– ident: ref39/cit39
  doi: 10.1021/acs.jpcc.5b01643
– ident: ref41/cit41
  doi: 10.1002/cphc.201300856
– ident: ref25/cit25
  doi: 10.1088/0953-8984/14/11/313
– ident: ref20/cit20
  doi: 10.1103/PhysRevB.91.134116
– ident: ref24/cit24
  doi: 10.1103/PhysRevB.58.7260
– ident: ref500/ref500_1
  doi: 10.1021/jp408974k
– ident: ref42/cit42
  doi: 10.1021/jp511132c
– ident: ref27/cit27
  doi: 10.1016/j.cplett.2012.08.022
– ident: ref47/cit47
  doi: 10.1021/jp002526b
– ident: ref36/cit36
  doi: 10.1021/jp3118055
– ident: ref15/cit15
  doi: 10.1021/acsnano.5b02166
– ident: ref28/cit28
  doi: 10.1016/j.elecom.2011.06.026
– ident: ref30/cit30
  doi: 10.1021/la1009994
– ident: ref38/cit38
  doi: 10.1103/PhysRevLett.112.208301
– ident: ref33/cit33
  doi: 10.1149/2.044302jes
– ident: ref43/cit43
  doi: 10.1021/ct050065y
– ident: ref4/cit4
  doi: 10.1021/cr500003w
– ident: ref6/cit6
  doi: 10.1149/1.2054777
– ident: ref14/cit14
  doi: 10.1002/adma.201101915
– ident: ref26/cit26
  doi: 10.1149/1.3545977
– ident: ref35/cit35
  doi: 10.1021/jp0601522
– ident: ref16/cit16
  doi: 10.1038/nmat3191
– ident: ref22/cit22
  doi: 10.1021/acsami.5b12030
– ident: ref29/cit29
  doi: 10.1021/jp4000494
– ident: ref44/cit44
  doi: 10.1080/18811248.2002.9715294
– ident: ref5/cit5
  doi: 10.1149/1.2128859
– ident: ref13/cit13
  doi: 10.1002/adma.200903951
– ident: ref46/cit46
  doi: 10.1103/PhysRevE.86.051609
– volume-title: Lithium-Ion Batteries: Solid-Electrolyte Interphase
  year: 2004
  ident: ref7/cit7
  doi: 10.1142/p291
– ident: ref23/cit23
  doi: 10.1021/acs.nanolett.5b05283
– ident: ref8/cit8
  doi: 10.1016/S0378-7753(97)02575-5
– ident: ref32/cit32
  doi: 10.1149/1.1644601
– ident: ref2/cit2
  doi: 10.1021/cm901452z
– ident: ref11/cit11
  doi: 10.1038/35104644
– ident: ref21/cit21
  doi: 10.1016/j.jpowsour.2016.01.078
– ident: ref34/cit34
  doi: 10.1016/S0378-7753(01)00595-X
– ident: ref37/cit37
  doi: 10.1021/acs.chemmater.5b03358
– ident: ref40/cit40
  doi: 10.1103/PhysRevB.92.214201
– ident: ref10/cit10
  doi: 10.1524/zpch.2009.6086
– ident: ref31/cit31
  doi: 10.1149/2.0161506jes
– ident: ref19/cit19
  doi: 10.1021/jp310591u
– ident: ref3/cit3
  doi: 10.1021/cr030203g
– ident: ref18/cit18
  doi: 10.1021/ja305366r
– ident: ref45/cit45
  doi: 10.1021/ar300145c
– ident: ref9/cit9
  doi: 10.1016/S0167-2738(02)00080-2
– ident: ref12/cit12
  doi: 10.1021/cr020731c
SSID ssj0002467
Score 2.543985
Snippet A nanometer thick passivation layer will spontaneously form on Li-metal in battery applications due to electrolyte reduction reactions. This passivation layer...
SourceID osti
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2363
SubjectTerms 30 DIRECT ENERGY CONVERSION
MATERIALS SCIENCE
Title Computational Exploration of the Li-Electrode|Electrolyte Interface in the Presence of a Nanometer Thick Solid-Electrolyte Interphase Layer
URI http://dx.doi.org/10.1021/acs.accounts.6b00363
https://www.ncbi.nlm.nih.gov/pubmed/27689438
https://www.proquest.com/docview/1835449358
https://www.osti.gov/servlets/purl/1338679
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB3BcoALLd9LCzISFw5eNrHjZI_VqlWFKkBqK_UWOfZYXXWbVGz2AOIf8KeZcZJFpaoKtySyndgZz7xnj2cA3lfGcBKkXGaJ00RQDMpqikbOfEAOhGowRAfZz-bwVH86y87-EMW_d_DT5KN1K2o6Zk5YTQxLoVH34UFqipzJ1t78eKN5U226GJlEkXWh0-Go3C2tsEFyq2sGadTQxLodbEajc7AFX4ajO52vycVk3VYT9-NmJMd_7M82PO7xp9jrBOYJ3MP6KTycD2nfnsGvLs9Dv0YoOh-9eCeaIAguiqOF3O-S53j82V8tv7co4upisA7Foo4lv8azTXRPNa0gRd5csveNODlfuAtx3CwXXt5o4OqcDKs4ssQFnsPpwf7J_FD2GRukJR6qJE6VrnSeWa8SDKHAQIyJIJQJiQ_EfYpQZNZmOg2ESjxOK4IbVNSTYqiq3Dn1AkZ1U-MrEJgoUhVJlnNMN81VvfNI7KcgHZ0pP4YPNJJlP-NWZdxMT5OSHw7DW_bDOwY1_OLS9aHPOQPH8o5aclPrqgv9cUf5HZaekqALx9917Kjk2pIXAUw-G8O7QahK-qO8LWNrbNb05bz2pnk_egwvO2nbvC8lNjjTqnj9H73dgUeE6gwb2KTYhVH7bY1vCDm11ds4XX4DtbgWZg
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6V5VAuvB9LeRgJDhy8bBLHyR44VEurLV0qpG6l3oLjh7rqNqmarFAR_4DfwV_hdzHjJIsAVRWHStziyHYcz9jzzXg8A_Ayl5KSICU8DrRABUVang-t5CPjLAVCldZ5B9k9OTkQ7w_jwzX43t2FwUFU2FPlD_F_RRcI3tA71SRQqAaSmFF2Oat37fln1NSqtzvvkKyvwnB7azae8DaZAFeoIkXcDiORiyRWJgqsc6l1COZRuksXGIewPHVprFQsQocC09hhjpIQqxrk2TxPtI6w32twHfFPSDre5nh_teGHQjahOVEzF6kIuxt6F4ya5KCufpODvRLX88UY18u67VvwYzVL3sXleLCs84H-8kcAyf9-Gm_DzRZts81medyBNVvchfVxl-TuHnxrslq0FlHWeCT6EisdQ3DMpnO-1aQKMvZr-7Q4ry3ztlSntGXzwtf86G9yYRlbKoZiqzwhXyM2O5rrY7ZfLuaG_9XB6RHCCDZVqPnch4MrmYsH0CvKwj4CZoMIN8YgTiiCnaCmRhuLul6KEimOTB9eI-Wydn-pMu86EAYZvezImbXk7EPUcVam20DvlG9kcUkrvmp12gQ6uaT-BjFthkCNog1rcsvSdUYmD5mM-vCi4-UMKUqHUKqw5RJHTpZGQafvfXjYMPnqeyHqviMRpY__4W-fw_pk9mGaTXf2djfgBuJZSdAiSJ9Arz5b2qeIGev8mV-xDD5dNW__BNNPeBs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VRQIu_EOX8mMkOHDwskkcJ3vgUG27aumqqtRW6s0k_lFX3SYrkhUq4g14El6Fp2LGSVYCVFUceuAWR7bjeMaebzzjGYA3uZSUBCnhcaAFKijS8nxoJR8ZZykQqrTOO8juy51j8fEkPlmDH91dGBxEhT1V3ohPq3phXBthIHhP77MmiUI1kMSQsstbvWcvvqC2Vn3Y3ULSvg3DyfbReIe3CQV4hmpSxO0wErlI4sxEgXUutQ4BPUp46QLjEJqnLo2zLBahQ6Fp7DBHaYhVDfJtnidaR9jvDbhJlkLS8zbHh6tNPxSyCc-J2rlIRdjd0rtk1CQLdfWbLOyVuKYvx7le3k3uwc_VTHk3l7PBss4H-usfQST_i6m8D3db1M02m2XyANZs8RBuj7tkd4_ge5Pdoj0ZZY1noi-x0jEEyWw649tNyiBjv7VP84vaMn-m6jJt2azwNQ_8jS4sY8uMofgqz8nniB2dzvQZOyznM8P_6mBxinCCTTPUgB7D8bXMxRPoFWVh14HZIMINMogTimQnqKnRxqLOl6JkiiPTh3dIOdXuM5XyLgRhoOhlR07VkrMPUcddSrcB3ynvyPyKVnzVatEEPLmi_gYxrkLARlGHNbln6VrR0YdMRn143fGzQoqSMSorbLnEkdOJoyArfB-eNoy--l6IOvBIROmzf_jbV3DrYGuiprv7extwB2GtJIQRpM-hV39e2hcIHev8pV-0DD5dN2v_Agt4ep4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+Exploration+of+the+Li-Electrode%7CElectrolyte+Interface+in+the+Presence+of+a+Nanometer+Thick+Solid-Electrolyte+Interphase+Layer+%5BComputational+exploration+of+the+Li-electrode%7Celectrolyte+interface+complicated+by+a+nanometer+thin+solid-electrolyte+interphase+%28SEI%29+layer%5D&rft.jtitle=Accounts+of+chemical+research&rft.au=Li%2C+Yunsong&rft.au=Leung%2C+Kevin&rft.au=Qi%2C+Yue&rft.date=2016-10-18&rft.pub=American+Chemical+Society&rft.issn=0001-4842&rft.eissn=1520-4898&rft.volume=49&rft.issue=10&rft_id=info:doi/10.1021%2Facs.accounts.6b00363&rft.externalDocID=1338679
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon