Dephasing Mechanisms of Topologically Protected 2D Surface Carriers in Sputtered SnTe Thin Films
Tin telluride (SnTe), a topological crystalline insulator, features two-dimensional (2D) surface charge carriers with topological protection and 3D bulk charge carriers. The outstanding electronic properties of the 2D carriers are often obscured in experiments due to their relatively low number. We...
Saved in:
Published in | Nano letters Vol. 25; no. 31; pp. 11811 - 11818 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
06.08.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tin telluride (SnTe), a topological crystalline insulator, features two-dimensional (2D) surface charge carriers with topological protection and 3D bulk charge carriers. The outstanding electronic properties of the 2D carriers are often obscured in experiments due to their relatively low number. We address this by using nanocrystalline sputtered SnTe thin films deposited at room temperature, which increase the proportion of 2D carriers. Here, we correlate the structural and electronic parameters and investigate the dephasing mechanisms of these 2D electrons. The dephasing mechanisms vary from quasi-1D electron–electron interactions in the thinnest film studied to 2D electron–electron interactions and finally to electron–phonon interactions in thicker films. Using THz time domain spectroscopy, we measured the scattering rates of the 2D charge carriers and found excellent agreement with the Hikami-Larkin-Nagaoka (HLN) model. |
---|---|
AbstractList | Tin telluride (SnTe), a topological crystalline insulator, features two-dimensional (2D) surface charge carriers with topological protection and 3D bulk charge carriers. The outstanding electronic properties of the 2D carriers are often obscured in experiments due to their relatively low number. We address this by using nanocrystalline sputtered SnTe thin films deposited at room temperature, which increase the proportion of 2D carriers. Here, we correlate the structural and electronic parameters and investigate the dephasing mechanisms of these 2D electrons. The dephasing mechanisms vary from quasi-1D electron-electron interactions in the thinnest film studied to 2D electron-electron interactions and finally to electron-phonon interactions in thicker films. Using THz time domain spectroscopy, we measured the scattering rates of the 2D charge carriers and found excellent agreement with the Hikami-Larkin-Nagaoka (HLN) model. Tin telluride (SnTe), a topological crystalline insulator, features two-dimensional (2D) surface charge carriers with topological protection and 3D bulk charge carriers. The outstanding electronic properties of the 2D carriers are often obscured in experiments due to their relatively low number. We address this by using nanocrystalline sputtered SnTe thin films deposited at room temperature, which increase the proportion of 2D carriers. Here, we correlate the structural and electronic parameters and investigate the dephasing mechanisms of these 2D electrons. The dephasing mechanisms vary from quasi-1D electron-electron interactions in the thinnest film studied to 2D electron-electron interactions and finally to electron-phonon interactions in thicker films. Using THz time domain spectroscopy, we measured the scattering rates of the 2D charge carriers and found excellent agreement with the Hikami-Larkin-Nagaoka (HLN) model.Tin telluride (SnTe), a topological crystalline insulator, features two-dimensional (2D) surface charge carriers with topological protection and 3D bulk charge carriers. The outstanding electronic properties of the 2D carriers are often obscured in experiments due to their relatively low number. We address this by using nanocrystalline sputtered SnTe thin films deposited at room temperature, which increase the proportion of 2D carriers. Here, we correlate the structural and electronic parameters and investigate the dephasing mechanisms of these 2D electrons. The dephasing mechanisms vary from quasi-1D electron-electron interactions in the thinnest film studied to 2D electron-electron interactions and finally to electron-phonon interactions in thicker films. Using THz time domain spectroscopy, we measured the scattering rates of the 2D charge carriers and found excellent agreement with the Hikami-Larkin-Nagaoka (HLN) model. Tin telluride (SnTe), a topological crystalline insulator, features two-dimensional (2D) surface charge carriers with topological protection and 3D bulk charge carriers. The outstanding electronic properties of the 2D carriers are often obscured in experiments due to their relatively low number. We address this by using nanocrystalline sputtered SnTe thin films deposited at room temperature, which increase the proportion of 2D carriers. Here, we correlate the structural and electronic parameters and investigate the dephasing mechanisms of these 2D electrons. The dephasing mechanisms vary from quasi-1D electron–electron interactions in the thinnest film studied to 2D electron–electron interactions and finally to electron–phonon interactions in thicker films. Using THz time domain spectroscopy, we measured the scattering rates of the 2D charge carriers and found excellent agreement with the Hikami-Larkin-Nagaoka (HLN) model. |
Author | Schierning, Gabi Izadi, Sepideh Dittler, Michael Biedinger, Jan Reiss, Günter Hütten, Andreas Bramowicz, Miroslaw Kulesza, Sławomir Westphal, Michael Rott, Karsten Mittendorff, Martin Solaymani, Shahram Ennen, Inga Schnatmann, Lauritz Wortmann, Martin Beryani Nezafat, Negin Bhattacharya, Ahana |
AuthorAffiliation | University of Warmia and Mazury in Olsztyn Quantum Technologies Research Center (QTRC), SR.C University of Duisburg-Essen Faculty of Technical Sciences Islamic Azad University Institute for Energy and Materials Processes Applied Quantum Materials Center for Nanointegration Duisburg-Essen (CENIDE) and Nano Energie Technik Zentrum (NETZ) Research Center Future Energy Materials and Systems, Research Alliance Ruhr Department of Physics |
AuthorAffiliation_xml | – name: University of Duisburg-Essen – name: Center for Nanointegration Duisburg-Essen (CENIDE) and Nano Energie Technik Zentrum (NETZ) – name: Institute for Energy and Materials Processes Applied Quantum Materials – name: Quantum Technologies Research Center (QTRC), SR.C – name: Islamic Azad University – name: Department of Physics – name: University of Warmia and Mazury in Olsztyn – name: Research Center Future Energy Materials and Systems, Research Alliance Ruhr – name: Faculty of Technical Sciences |
Author_xml | – sequence: 1 givenname: Negin surname: Beryani Nezafat fullname: Beryani Nezafat, Negin organization: Research Center Future Energy Materials and Systems, Research Alliance Ruhr – sequence: 2 givenname: Ahana surname: Bhattacharya fullname: Bhattacharya, Ahana organization: University of Duisburg-Essen – sequence: 3 givenname: Sepideh surname: Izadi fullname: Izadi, Sepideh organization: Research Center Future Energy Materials and Systems, Research Alliance Ruhr – sequence: 4 givenname: Inga surname: Ennen fullname: Ennen, Inga organization: Department of Physics – sequence: 5 givenname: Martin surname: Wortmann fullname: Wortmann, Martin organization: Department of Physics – sequence: 6 givenname: Lauritz surname: Schnatmann fullname: Schnatmann, Lauritz organization: Department of Physics – sequence: 7 givenname: Shahram surname: Solaymani fullname: Solaymani, Shahram organization: Islamic Azad University – sequence: 8 givenname: Sławomir surname: Kulesza fullname: Kulesza, Sławomir organization: University of Warmia and Mazury in Olsztyn – sequence: 9 givenname: Miroslaw surname: Bramowicz fullname: Bramowicz, Miroslaw organization: University of Warmia and Mazury in Olsztyn – sequence: 10 givenname: Michael surname: Westphal fullname: Westphal, Michael organization: Department of Physics – sequence: 11 givenname: Jan surname: Biedinger fullname: Biedinger, Jan organization: Department of Physics – sequence: 12 givenname: Karsten surname: Rott fullname: Rott, Karsten organization: Department of Physics – sequence: 13 givenname: Michael surname: Dittler fullname: Dittler, Michael organization: University of Duisburg-Essen – sequence: 14 givenname: Andreas surname: Hütten fullname: Hütten, Andreas organization: Department of Physics – sequence: 15 givenname: Günter surname: Reiss fullname: Reiss, Günter organization: Department of Physics – sequence: 16 givenname: Martin surname: Mittendorff fullname: Mittendorff, Martin organization: University of Duisburg-Essen – sequence: 17 givenname: Gabi orcidid: 0000-0003-2591-2463 surname: Schierning fullname: Schierning, Gabi email: gabi.schierning@uni-due.de organization: Center for Nanointegration Duisburg-Essen (CENIDE) and Nano Energie Technik Zentrum (NETZ) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40713027$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1vEzEQhi1URL_4Bwj5yCVh_LGJ94RQSgtSEZUSzsbrnU1cee3F9iL133ejpBFcOM1o5nnfkea9JGchBiTkHYM5A84-GpvnwYTosZR5ZYHVwF-RC1YJmC3qmp-deiXPyWXOjwBQiwrekHMJSyaALy_Irxscdia7sKXf0e5McLnPNHZ0E4fo49ZZ4_0TfUixoC3YUn5D12PqjEW6Mik5TJm6QNfDWAqmCViHDdLNbprdOt_na_K6Mz7j22O9Ij9vv2xWX2f3P-6-rT7fz4wEVmbYNpK3rBOoUAnGKlk1qmmEtGhZI42qWlVb2SmQAEuzkLblFYJUql0AghBX5NPBdxibHluLoSTj9ZBcb9KTjsbpfzfB7fQ2_tGMCyEk8Mnhw9Ehxd8j5qJ7ly16bwLGMWvBJwxA8j36_u9jpysvf50AeQBsijkn7E4IA72PT0_x6Zf49DG-SQYH2X77GMcUppf9X_IMYEWiRg |
Cites_doi | 10.1021/acsanm.0c02076 10.1021/nl4030193 10.1002/smll.202103281 10.1016/j.jallcom.2023.170144 10.1103/PhysRevB.90.165140 10.1016/j.jallcom.2017.12.011 10.1021/acs.nanolett.0c01955 10.48550/arXiv.2504.06875 10.1002/pssb.201800240 10.1038/ncomms1969 10.1103/PhysRevB.103.155408 10.1038/nphys2442 10.1143/PTP.63.707 10.1103/PhysRev.108.243 10.1103/PhysRevB.68.085413 10.1021/acs.nanolett.8b01462 10.1038/nmat3449 10.1039/D1NR08375A 10.1038/srep20323 10.1016/j.actamat.2012.02.010 10.1103/PhysRevB.95.195113 10.1016/j.physb.2016.11.026 10.1016/0167-577X(90)90072-T 10.1021/acsaelm.1c00214 10.3390/cryst12060773 10.4236/jmp.2010.15048 10.1021/acsaelm.3c01449 10.1088/1361-648X/acd50a 10.1103/PhysRevB.41.7386 10.1103/PhysRevB.88.241303 10.1016/j.elspec.2016.10.003 10.1021/acs.nanolett.3c03280 10.1063/1.4895456 10.1103/PhysRevMaterials.6.044203 |
ContentType | Journal Article |
Copyright | 2025 The Authors. Published by American Chemical Society 2025 The Authors. Published by American Chemical Society 2025 The Authors |
Copyright_xml | – notice: 2025 The Authors. Published by American Chemical Society – notice: 2025 The Authors. Published by American Chemical Society 2025 The Authors |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1021/acs.nanolett.5c01902 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1530-6992 |
EndPage | 11818 |
ExternalDocumentID | PMC12333402 40713027 10_1021_acs_nanolett_5c01902 b966879307 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: 863823320 – fundername: ; grantid: INST 215/619-1 FUGG – fundername: ; grantid: 278162697 - SFB 1242 – fundername: ; grantid: SCHI 1010/12-1 |
GroupedDBID | --- -~X .K2 123 4.4 55A 5VS 6P2 7~N AABXI AAHBH ABBLG ABJNI ABLBI ABMVS ABQRX ABUCX ACBEA ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 CUPRZ DU5 EBS ED~ F5P GGK GNL IH9 IHE JG~ RNS ROL TN5 UI2 VF5 VG9 W1F AAYXX CITATION NPM 7X8 5PM |
ID | FETCH-LOGICAL-a401t-edb42d1f3e8e8311545b8bb34cec1b4a85d89c4f804007a64cd25e0488d60e033 |
IEDL.DBID | ACS |
ISSN | 1530-6984 1530-6992 |
IngestDate | Thu Aug 21 18:27:57 EDT 2025 Mon Jul 28 18:31:51 EDT 2025 Mon Aug 11 01:32:05 EDT 2025 Thu Aug 14 00:12:44 EDT 2025 Thu Aug 07 06:54:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 31 |
Keywords | Thin films Topological insulator Electron−electron interaction Weak antilocalization |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 This article is licensed under CC-BY-NC-ND 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a401t-edb42d1f3e8e8311545b8bb34cec1b4a85d89c4f804007a64cd25e0488d60e033 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2591-2463 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC12333402 |
PMID | 40713027 |
PQID | 3234000422 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_12333402 proquest_miscellaneous_3234000422 pubmed_primary_40713027 crossref_primary_10_1021_acs_nanolett_5c01902 acs_journals_10_1021_acs_nanolett_5c01902 |
PublicationCentury | 2000 |
PublicationDate | 2025-08-06 |
PublicationDateYYYYMMDD | 2025-08-06 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Nano letters |
PublicationTitleAlternate | Nano Lett |
PublicationYear | 2025 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref7/cit7 |
References_xml | – ident: ref13/cit13 doi: 10.1021/acsanm.0c02076 – ident: ref14/cit14 doi: 10.1021/nl4030193 – ident: ref25/cit25 doi: 10.1002/smll.202103281 – ident: ref20/cit20 doi: 10.1016/j.jallcom.2023.170144 – ident: ref24/cit24 doi: 10.1103/PhysRevB.90.165140 – ident: ref22/cit22 doi: 10.1016/j.jallcom.2017.12.011 – ident: ref12/cit12 doi: 10.1021/acs.nanolett.0c01955 – ident: ref15/cit15 doi: 10.48550/arXiv.2504.06875 – ident: ref16/cit16 doi: 10.1002/pssb.201800240 – ident: ref1/cit1 doi: 10.1038/ncomms1969 – ident: ref6/cit6 doi: 10.1103/PhysRevB.103.155408 – ident: ref32/cit32 doi: 10.1038/nphys2442 – ident: ref23/cit23 doi: 10.1143/PTP.63.707 – ident: ref27/cit27 doi: 10.1103/PhysRev.108.243 – ident: ref5/cit5 doi: 10.1103/PhysRevB.68.085413 – ident: ref26/cit26 doi: 10.1021/acs.nanolett.8b01462 – ident: ref4/cit4 doi: 10.1038/nmat3449 – ident: ref11/cit11 doi: 10.1039/D1NR08375A – ident: ref34/cit34 doi: 10.1038/srep20323 – ident: ref18/cit18 doi: 10.1016/j.actamat.2012.02.010 – ident: ref30/cit30 doi: 10.1103/PhysRevB.95.195113 – ident: ref17/cit17 doi: 10.1016/j.physb.2016.11.026 – ident: ref21/cit21 doi: 10.1016/0167-577X(90)90072-T – ident: ref10/cit10 doi: 10.1021/acsaelm.1c00214 – ident: ref29/cit29 doi: 10.3390/cryst12060773 – ident: ref19/cit19 doi: 10.4236/jmp.2010.15048 – ident: ref9/cit9 doi: 10.1021/acsaelm.3c01449 – ident: ref8/cit8 doi: 10.1088/1361-648X/acd50a – ident: ref28/cit28 doi: 10.1103/PhysRevB.41.7386 – ident: ref2/cit2 doi: 10.1103/PhysRevB.88.241303 – ident: ref31/cit31 doi: 10.1016/j.elspec.2016.10.003 – ident: ref33/cit33 doi: 10.1021/acs.nanolett.3c03280 – ident: ref3/cit3 doi: 10.1063/1.4895456 – ident: ref7/cit7 doi: 10.1103/PhysRevMaterials.6.044203 |
SSID | ssj0009350 |
Score | 2.4845257 |
Snippet | Tin telluride (SnTe), a topological crystalline insulator, features two-dimensional (2D) surface charge carriers with topological protection and 3D bulk charge... Tin telluride (SnTe), a topological crystalline insulator, features two-dimensional (2D) surface charge carriers with topological protection and 3D bulk charge... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 11811 |
SubjectTerms | Letter |
Title | Dephasing Mechanisms of Topologically Protected 2D Surface Carriers in Sputtered SnTe Thin Films |
URI | http://dx.doi.org/10.1021/acs.nanolett.5c01902 https://www.ncbi.nlm.nih.gov/pubmed/40713027 https://www.proquest.com/docview/3234000422 https://pubmed.ncbi.nlm.nih.gov/PMC12333402 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swELYm9rI9wGCDdb_kSXvZQ7rEdlLzOJVVCAmY1CLxlp3ts6gGbtWkD-yvny9pgIIm2GtsWbLvzneX830fY18K54p0IIpEGasTlYFIQEoT7QoBIfprn1Pv8PFJcXimjs7z89tE8X4FX2TfwFb9AGEWt1H3c0u9z_HKfS6KaMcUCg3HtyC7smFkjUYcU6J9rbpWuX-sQg7JVusO6UGUef-x5B3vM9pip10PT_vo5Hd_WZu-_fMQ0vGJG3vFNleBKP_eas42e4Zhh728A0_4mv06wPkF0M8EfozUITytrio-83zSMiuQfC-v-c8W6gEdFwd8vFx4sMiHsCAuvIpPAx_PGzbsOGEcJsiJKpSPppdX1Rt2NvoxGR4mK0aGBGIeVifojBIu8xI1asLpUbnRxkhl0WZGgc6d3rfKa7oaBlAo60SOdElEjcBUyl22EWYB3zJuwKEE4YHIgmOcBBpS533mB9qlUqse-xoPqFxZVFU2xXKRlfSxO7VydWo9lnQiLOctSMcj8z93ci6jNVGJBALOllUphVRpg4vWY3ut3G9WpNSXqrw9ptc04mYCIXWvj4TpRYPYHcMDGRcW7_5jU-_ZC0Fcw_Q8pfjANurFEj_GAKg2nxqt_wtVGQSA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB5V5QAc2vJsystIXDhs2LW9G_dYpY0CNBVSUtTb4qca0TpRvDnAr8ezm02bIoR69VojP2Y84x3P9wF8KIwp0h4tEq60SHgmaSIZU9GurLQy-muXY-3w6KwYnvMvF_nFFuRtLUwcRIiSQp3Ev0EXyD5hm5d-FmdTdXONJdDx5H0Q4xGKin3UH99g7bKamDXacrwZHQreVsz9Qwr6JR02_dJfwebdN5O3nNBgF76vh1-_PfnZXVaqq3_fQXa89_z2YGcVlpKjRo-ewJb1T-HxLbDCZ_Dj2M4vJf5aICOL9cLTcB3IzJFJw7OAu331i3xrgB-sIfSYjJcLJ7UlfblAZrxApp6M5zU3duww9hNLkDiUDKZX1-E5nA9OJv1hsuJnSGS8lVWJNYpTkzlmhRWI2sNzJZRiXFudKS5FbsSh5k7gQdGTBdeG5haPjKgfNmXsBWz7mbf7QJQ0lknqJFIHx6hJCpka5zLXEyZlgnfgY1ygcmVfoaxT5zQrsbFdtXK1ah1I2p0s5w1kx3_6v2-3u4y2hQkT6e1sGUpGGU9rlLQOvGy2fy0RL8KY8-2A2FCMdQfE7d784qeXNX53DBZYFEwP7jGpd_BwOBmdlqefz76-gkcUWYjx4UrxGrarxdK-iaFRpd7WhvAHiisM4Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfQkBA8ABtf5WN4Ei88pCS2k3qPU0u1jW2a1E6aeAn-OGsVm1vV6QP89fiStGuHEILXxDrl7DvfOef7_Qj5UFhbpD1WJEIbmYhMsURxrqNfgQIV47XLsXf49Kw4vBDHl_nlGtVX_IgQJYW6iI9ePbOuRRjIPuFzr_w0alR1c4Nt0HH3vY-VOzTug_7oFm-X1-Ss0Z_j6WhfimXX3B-kYGwyYTM2_ZZw3r03uRaIhk_I15UK9f2T791Fpbvm5x10x__S8Sl53Kan9KCxp21yD_wOebQGWviMfBvA7ErhLwZ6Ctg3PAk3gU4dHTd8C7jq1z_oeQMAAZayAR0t5k4ZoH01R4a8QCeejmY1R3YcMPJjoEggSoeT65vwnFwMP4_7h0nL05CoeDqrErBaMJs5DhIkoveIXEutuTBgMi2UzK3cN8JJ3DB6qhDGshxw64h2AinnL8iWn3p4RahWFrhiTiGFcMyelFSpdS5zPWlTLkWHfIwTVLZ-Fsq6hM6yEh8uZ61sZ61DkuVqlrMGuuMv4_eWS15GH8PCifIwXYSSMy7SGi2tQ142JrCSiAdirP12iNwwjtUAxO_efOMnVzWOd0waeBTMXv-DUu_Jg_PBsDw5OvvyhjxkSEaM91eKt2Srmi_gXcyQKr1b-8IvGKEPZA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dephasing+Mechanisms+of+Topologically+Protected+2D+Surface+Carriers+in+Sputtered+SnTe+Thin+Films&rft.jtitle=Nano+letters&rft.au=Beryani+Nezafat%2C+Negin&rft.au=Bhattacharya%2C+Ahana&rft.au=Izadi%2C+Sepideh&rft.au=Ennen%2C+Inga&rft.date=2025-08-06&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=25&rft.issue=31&rft.spage=11811&rft.epage=11818&rft_id=info:doi/10.1021%2Facs.nanolett.5c01902&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_nanolett_5c01902 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |