Reconfiguring DNA Nanotube Architectures via Selective Regulation of Terminating Structures
Molecular assemblies inside cells often undergo structural reconfiguration in response to stimuli to alter their function. Adaptive reconfiguration of cytoskeletal networks, for example, enables cellular shape change, movement, and cargo transport and plays a key role in driving complex processes su...
Saved in:
Published in | ACS nano Vol. 14; no. 10; pp. 13451 - 13462 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
27.10.2020
American Chemical Society (ACS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Molecular assemblies inside cells often undergo structural reconfiguration in response to stimuli to alter their function. Adaptive reconfiguration of cytoskeletal networks, for example, enables cellular shape change, movement, and cargo transport and plays a key role in driving complex processes such as division and differentiation. The cellular cytoskeleton is a self-assembling polymer network composed of simple filaments, so reconfiguration often occurs through the rearrangement of its component filaments’ connectivities. DNA nanotubes have emerged as promising building blocks for constructing programmable synthetic analogs of cytoskeletal networks. Nucleating seeds can control when and where nanotubes grow, and capping structures can bind nanotube ends to stop growth. Such seeding and capping structures, collectively called termini, can organize nanotubes into larger architectures. However, these structures cannot be selectively activated or inactivated in response to specific stimuli to rearrange nanotube architectures, a key property of cytoskeletal networks. Here, we demonstrate how selective regulation of the binding affinity of DNA nanotube termini for DNA nanotube monomers or nanotube ends can direct the reconfiguration of nanotube architectures. Using DNA hybridization and strand displacement reactions that specifically activate or inactivate four orthogonal nanotube termini, we demonstrate that nanotube architectures can be reconfigured by selective addition or removal of distinct termini. Finally, we show how terminus activation could be a sensitive detector and amplifier of a DNA sequence signal. These results could enable the development of adaptive and multifunctional materials or diagnostic tools. |
---|---|
AbstractList | Molecular assemblies inside cells often undergo structural reconfiguration in response to stimuli to alter their function. Adaptive reconfiguration of cytoskeletal networks, for example, enables cellular shape change, movement, and cargo transport and plays a key role in driving complex processes such as division and differentiation. The cellular cytoskeleton is a self-assembling polymer network composed of simple filaments, so reconfiguration often occurs through the rearrangement of its component filaments' connectivities. DNA nanotubes have emerged as promising building blocks for constructing programmable synthetic analogs of cytoskeletal networks. Nucleating seeds can control when and where nanotubes grow, and capping structures can bind nanotube ends to stop growth. Such seeding and capping structures, collectively called termini, can organize nanotubes into larger architectures. However, these structures cannot be selectively activated or inactivated in response to specific stimuli to rearrange nanotube architectures, a key property of cytoskeletal networks. Here, we demonstrate how selective regulation of the binding affinity of DNA nanotube termini for DNA nanotube monomers or nanotube ends can direct the reconfiguration of nanotube architectures. Using DNA hybridization and strand displacement reactions that specifically activate or inactivate four orthogonal nanotube termini, we demonstrate that nanotube architectures can be reconfigured by selective addition or removal of distinct termini. Finally, we show how terminus activation could be a sensitive detector and amplifier of a DNA sequence signal. These results could enable the development of adaptive and multifunctional materials or diagnostic tools. Molecular assemblies inside cells often undergo structural reconfiguration in response to stimuli to alter their function. Adaptive reconfiguration of cytoskeletal networks, for example, enables cellular shape change, movement, and cargo transport and plays a key role in driving complex processes such as division and differentiation. The cellular cytoskeleton is a self-assembling polymer network composed of simple filaments, so reconfiguration often occurs through the rearrangement of its component filaments' connectivities. DNA nanotubes have emerged as promising building blocks for constructing programmable synthetic analogs of cytoskeletal networks. Nucleating seeds can control when and where nanotubes grow, and capping structures can bind nanotube ends to stop growth. Such seeding and capping structures, collectively called termini, can organize nanotubes into larger architectures. However, these structures cannot be selectively activated or inactivated in response to specific stimuli to rearrange nanotube architectures, a key property of cytoskeletal networks. Here, we demonstrate how selective regulation of the binding affinity of DNA nanotube termini for DNA nanotube monomers or nanotube ends can direct the reconfiguration of nanotube architectures. Using DNA hybridization and strand displacement reactions that specifically activate or inactivate four orthogonal nanotube termini, we demonstrate that nanotube architectures can be reconfigured by selective addition or removal of distinct termini. Finally, we show how terminus activation could be a sensitive detector and amplifier of a DNA sequence signal. These results could enable the development of adaptive and multifunctional materials or diagnostic tools.Molecular assemblies inside cells often undergo structural reconfiguration in response to stimuli to alter their function. Adaptive reconfiguration of cytoskeletal networks, for example, enables cellular shape change, movement, and cargo transport and plays a key role in driving complex processes such as division and differentiation. The cellular cytoskeleton is a self-assembling polymer network composed of simple filaments, so reconfiguration often occurs through the rearrangement of its component filaments' connectivities. DNA nanotubes have emerged as promising building blocks for constructing programmable synthetic analogs of cytoskeletal networks. Nucleating seeds can control when and where nanotubes grow, and capping structures can bind nanotube ends to stop growth. Such seeding and capping structures, collectively called termini, can organize nanotubes into larger architectures. However, these structures cannot be selectively activated or inactivated in response to specific stimuli to rearrange nanotube architectures, a key property of cytoskeletal networks. Here, we demonstrate how selective regulation of the binding affinity of DNA nanotube termini for DNA nanotube monomers or nanotube ends can direct the reconfiguration of nanotube architectures. Using DNA hybridization and strand displacement reactions that specifically activate or inactivate four orthogonal nanotube termini, we demonstrate that nanotube architectures can be reconfigured by selective addition or removal of distinct termini. Finally, we show how terminus activation could be a sensitive detector and amplifier of a DNA sequence signal. These results could enable the development of adaptive and multifunctional materials or diagnostic tools. Molecular assemblies inside cells often undergo structural reconfiguration in response to stimuli to alter their function. Adaptive reconfiguration of cytoskeletal networks, for example, enables cellular shape change, movement, and cargo transport and plays a key role in driving complex processes such as division and differentiation. The cellular cytoskeleton is a self-assembling polymer network composed of simple filaments, so reconfiguration often occurs through the rearrangement of its component filaments’ connectivities. DNA nanotubes have emerged as promising building blocks for constructing programmable synthetic analogs of cytoskeletal networks. Nucleating seeds can control when and where nanotubes grow and capping structures can bind nanotube ends to stop growth. Such seeding and capping structure, collectively called termini, can organize nanotubes into larger architectures. However, these structures cannot be selectively activated or inactivated in response to specific stimuli to rearrange nanotube architectures, a key property of cytoskeletal networks. Here we demonstrate how selective regulation of the binding affinity of DNA nanotube termini for DNA nanotube monomers or nanotube ends can direct the reconfiguration of nanotube architectures. Using DNA hybridization and strand displacement reactions that specifically activate or inactivate four orthogonal nanotube termini, we demonstrate that nanotube architectures can be reconfigured by selective addition or removal of unique termini. Lastly, we show how terminus activation could be a sensitive detector and amplifier of a DNA sequence signal. These results could enable the development of adaptive and multifunctional materials or diagnostic tools. |
Author | Pacella, Michael S Murphy, Terence Schaffter, Samuel W Agrawal, Deepak K Rothchild, Eric Schneider, Joanna Schulman, Rebecca |
AuthorAffiliation | Chemistry Johns Hopkins University Chemical and Biomolecular Engineering Computer Science Material Science and Engineering |
AuthorAffiliation_xml | – name: Computer Science – name: Chemistry – name: Material Science and Engineering – name: Chemical and Biomolecular Engineering – name: Johns Hopkins University |
Author_xml | – sequence: 1 givenname: Samuel W surname: Schaffter fullname: Schaffter, Samuel W organization: Chemical and Biomolecular Engineering – sequence: 2 givenname: Joanna surname: Schneider fullname: Schneider, Joanna organization: Chemical and Biomolecular Engineering – sequence: 3 givenname: Deepak K surname: Agrawal fullname: Agrawal, Deepak K organization: Chemical and Biomolecular Engineering – sequence: 4 givenname: Michael S orcidid: 0000-0001-8919-147X surname: Pacella fullname: Pacella, Michael S organization: Chemical and Biomolecular Engineering – sequence: 5 givenname: Eric surname: Rothchild fullname: Rothchild, Eric organization: Johns Hopkins University – sequence: 6 givenname: Terence surname: Murphy fullname: Murphy, Terence – sequence: 7 givenname: Rebecca orcidid: 0000-0003-4555-3162 surname: Schulman fullname: Schulman, Rebecca email: rschulm3@jhu.edu organization: Johns Hopkins University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33048538$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1804058$$D View this record in Osti.gov |
BookMark | eNp9kctLXDEUxkNR6nPtTi6uhDKa3CQzmeVg7QNEQS0UXIQ8TsbIncTmIfjfG3unLgq6Ss7J7_s4Od8O2ggxAEIHBJ8Q3JNTZXJQIZ5ggzll-BPaJnM6nWAx_b3xdudkC-3k_IAxn4nZ9DPaohQzwanYRnfXYGJwflmTD8vu6-Wiu2yGpWroFsnc-wKm1AS5e_Kqu4Ghlf4JumtY1kEVH0MXXXcLaeVDK5vFTUl1lOyhTaeGDPvrcxf9-nZ-e_ZjcnH1_efZ4mKiGCZlYhX0bG6xsY4YYp0Wc0Onys6VtbzXrndcaGGJ0VpRrh2ABsqscMy2Fld0Fx2NvjEXL7N5nfm-_Sq0WSURmGEuGnQ8Qo8p_qmQi1z5bGAYVIBYs-wZJ4RSJmYNPVyjVa_AysfkVyo9y39ba8DpCJgUc07g3hCC5Wsucp2LXOfSFPw_RZvy7_pKUn74QPdl1LUH-RBrCm2R79IviQGlIA |
CitedBy_id | crossref_primary_10_1021_acs_nanolett_4c05452 crossref_primary_10_1021_jacs_1c06598 crossref_primary_10_1016_j_chempr_2024_01_014 crossref_primary_10_1021_acssynbio_3c00726 crossref_primary_10_1021_acs_analchem_2c04540 crossref_primary_10_1038_s41570_024_00606_1 crossref_primary_10_1098_rsfs_2023_0028 crossref_primary_10_1002_anie_202101378 crossref_primary_10_1021_acsnano_3c01342 crossref_primary_10_1007_s44258_024_00015_5 crossref_primary_10_1021_jacsau_1c00387 crossref_primary_10_1126_scirobotics_adf1274 crossref_primary_10_1002_ange_202101378 crossref_primary_10_1038_s41467_024_52986_z crossref_primary_10_1038_s41557_022_00945_w |
Cites_doi | 10.1126/science.aau3775 10.1038/ncb3220 10.1103/PhysRevLett.93.268301 10.1021/nl400881w 10.1021/bi00064a003 10.1038/s41467-019-13104-6 10.1038/nnano.2009.311 10.1126/science.1165831 10.1021/acssynbio.9b00398 10.1038/ncomms1535 10.1038/s41467-018-07805-7 10.1016/j.biomaterials.2015.02.099 10.1038/s41467-018-06218-w 10.1039/C9NR01880H 10.1039/C4RA15451G 10.1039/c2cs35115c 10.1039/C6NR06983E 10.1126/science.1157312 10.1021/acsnano.7b02256 10.1021/acsnano.9b06734 10.1021/acssynbio.6b00170 10.1021/jp302316p 10.1126/science.289.5485.1757 10.1038/nnano.2011.49 10.1021/acsnano.6b08008 10.1038/nature10889 10.1016/j.neuron.2015.05.046 10.1101/2019.12.11.873349 10.1021/ja050487h 10.1038/s41556-018-0199-8 10.1021/jacs.5b05755 10.1039/C5NR08685J 10.1021/nl101079u 10.1038/ncomms2965 10.1038/s41586-018-0289-6 10.1038/nature04586 10.1038/nature13607 10.1007/s12274-018-2094-9 10.1073/pnas.0305860101 10.1152/physrev.00018.2013 10.1126/science.1132493 10.1126/science.1202998 10.1038/nature11075 10.1021/ja906987s 10.1126/science.1227268 10.1038/nchem.575 10.1038/nnano.2016.277 10.1021/ja044319l 10.1038/nchem.957 10.1038/nature08908 |
ContentType | Journal Article |
Copyright | 2020 American Chemical Society |
Copyright_xml | – notice: 2020 American Chemical Society |
CorporateAuthor | Johns Hopkins Univ., Baltimore, MD (United States) |
CorporateAuthor_xml | – name: Johns Hopkins Univ., Baltimore, MD (United States) |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 OIOZB OTOTI |
DOI | 10.1021/acsnano.0c05340 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 13462 |
ExternalDocumentID | 1804058 33048538 10_1021_acsnano_0c05340 c759939053 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 5VS 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ F5P GNL IH9 IHE JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 4.4 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ BAANH CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7X8 ABFRP OIOZB OTOTI |
ID | FETCH-LOGICAL-a401t-dae249d0cdf1c1dfb89c36ad9add52bf2f58b8d1cbba35bfeebe34d8f4dcbb5a3 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Thu May 18 22:30:00 EDT 2023 Fri Jul 11 06:09:46 EDT 2025 Thu Apr 03 07:05:48 EDT 2025 Tue Jul 01 03:37:04 EDT 2025 Thu Apr 24 23:08:34 EDT 2025 Fri Oct 30 03:45:43 EDT 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | self-assembly DNA nanotechnology DNA origami DNA strand displacement nucleic acid diagnostics dynamic nanostructures |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a401t-dae249d0cdf1c1dfb89c36ad9add52bf2f58b8d1cbba35bfeebe34d8f4dcbb5a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE SC0010426; DGE-1232825 National Science Foundation Graduate Research Fellowship |
ORCID | 0000-0001-8919-147X 0000-0003-4555-3162 0000000345553162 000000018919147X |
OpenAccessLink | https://www.osti.gov/servlets/purl/1804058 |
PMID | 33048538 |
PQID | 2451133487 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | osti_scitechconnect_1804058 proquest_miscellaneous_2451133487 pubmed_primary_33048538 crossref_primary_10_1021_acsnano_0c05340 crossref_citationtrail_10_1021_acsnano_0c05340 acs_journals_10_1021_acsnano_0c05340 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-27 |
PublicationDateYYYYMMDD | 2020-10-27 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2020 |
Publisher | American Chemical Society American Chemical Society (ACS) |
Publisher_xml | – name: American Chemical Society – name: American Chemical Society (ACS) |
References | ref9/cit9 ref45/cit45 ref3/cit3 Bailey C. H. (ref6/cit6) 2008; 169 ref27/cit27 ref16/cit16 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref10/cit10 doi: 10.1126/science.aau3775 – ident: ref2/cit2 doi: 10.1038/ncb3220 – ident: ref37/cit37 doi: 10.1103/PhysRevLett.93.268301 – ident: ref14/cit14 doi: 10.1021/nl400881w – ident: ref35/cit35 doi: 10.1021/bi00064a003 – ident: ref39/cit39 doi: 10.1038/s41467-019-13104-6 – ident: ref7/cit7 doi: 10.1038/nnano.2009.311 – ident: ref34/cit34 doi: 10.1126/science.1165831 – ident: ref43/cit43 doi: 10.1021/acssynbio.9b00398 – ident: ref21/cit21 doi: 10.1038/ncomms1535 – ident: ref29/cit29 doi: 10.1038/s41467-018-07805-7 – ident: ref51/cit51 doi: 10.1016/j.biomaterials.2015.02.099 – ident: ref49/cit49 doi: 10.1038/s41467-018-06218-w – volume: 169 start-page: 179 volume-title: Progress in Brain Research year: 2008 ident: ref6/cit6 – ident: ref9/cit9 doi: 10.1039/C9NR01880H – ident: ref41/cit41 doi: 10.1039/C4RA15451G – ident: ref45/cit45 doi: 10.1039/c2cs35115c – ident: ref25/cit25 doi: 10.1039/C6NR06983E – ident: ref22/cit22 doi: 10.1126/science.1157312 – ident: ref24/cit24 doi: 10.1021/acsnano.7b02256 – ident: ref28/cit28 doi: 10.1021/acsnano.9b06734 – ident: ref42/cit42 doi: 10.1021/acssynbio.6b00170 – ident: ref30/cit30 doi: 10.1021/jp302316p – ident: ref48/cit48 doi: 10.1126/science.289.5485.1757 – ident: ref47/cit47 doi: 10.1038/nnano.2011.49 – ident: ref23/cit23 doi: 10.1021/acsnano.6b08008 – ident: ref31/cit31 doi: 10.1038/nature10889 – ident: ref5/cit5 doi: 10.1016/j.neuron.2015.05.046 – ident: ref40/cit40 doi: 10.1101/2019.12.11.873349 – ident: ref11/cit11 doi: 10.1021/ja050487h – ident: ref4/cit4 doi: 10.1038/s41556-018-0199-8 – ident: ref12/cit12 doi: 10.1021/jacs.5b05755 – ident: ref33/cit33 doi: 10.1039/C5NR08685J – ident: ref32/cit32 doi: 10.1021/nl101079u – ident: ref38/cit38 doi: 10.1038/ncomms2965 – ident: ref44/cit44 doi: 10.1038/s41586-018-0289-6 – ident: ref17/cit17 doi: 10.1038/nature04586 – ident: ref8/cit8 doi: 10.1038/nature13607 – ident: ref46/cit46 doi: 10.1007/s12274-018-2094-9 – ident: ref15/cit15 doi: 10.1073/pnas.0305860101 – ident: ref3/cit3 doi: 10.1152/physrev.00018.2013 – ident: ref50/cit50 doi: 10.1126/science.1132493 – ident: ref16/cit16 doi: 10.1126/science.1202998 – ident: ref18/cit18 doi: 10.1038/nature11075 – ident: ref36/cit36 doi: 10.1021/ja906987s – ident: ref19/cit19 doi: 10.1126/science.1227268 – ident: ref20/cit20 doi: 10.1038/nchem.575 – ident: ref26/cit26 doi: 10.1038/nnano.2016.277 – ident: ref13/cit13 doi: 10.1021/ja044319l – ident: ref27/cit27 doi: 10.1038/nchem.957 – ident: ref1/cit1 doi: 10.1038/nature08908 |
SSID | ssj0057876 |
Score | 2.421551 |
Snippet | Molecular assemblies inside cells often undergo structural reconfiguration in response to stimuli to alter their function. Adaptive reconfiguration of... |
SourceID | osti proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 13451 |
SubjectTerms | BASIC BIOLOGICAL SCIENCES carbon nanotubes chemical structure DNA DNA nanotechnology DNA origami DNA strand displacement dynamic nanostructures genetics Macromolecular Substances monomers Nanostructures Nanotechnology Nanotubes Nucleic Acid Conformation nucleic acid diagnostics self-assembly |
Title | Reconfiguring DNA Nanotube Architectures via Selective Regulation of Terminating Structures |
URI | http://dx.doi.org/10.1021/acsnano.0c05340 https://www.ncbi.nlm.nih.gov/pubmed/33048538 https://www.proquest.com/docview/2451133487 https://www.osti.gov/servlets/purl/1804058 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELaq5dIeeJRCl4XKSBy4ZNk4L-e4ol2hSuXQBWmlHix7bCNElSAly4Ffz0ySXZauVvSSQxQnsmc8801m_A1jZ8To7UQOQa7xEsfeBCbULkB0aoV1We4aJqZf1-nVbfxzlsxeyaL_zeCL8EJDVeiiHI4A9SXG6HxLpDKjOGt8OV0YXdK7tE0gY4CMKGLJ4rP2AnJDUL1xQ70St9NmiNm4mslOW6RVNQyFVGHyMJzXZgjP6_yN789il213gJOPWw3ZYx9c8Zl9WqEh3Gd_KAYt_P1dc2SRf78eczS6ZT03jo9XEg0Vf7rXfNp0zkEjyX-3fexRsrz0_KYtq6Eyaj5tWGlpyBd2O_lxc3kVdE0XAo2hVh1Y7TAisyOwPoTQeiNziFJtczSEiTBe-EQaaUMwRkeJ8Q61IIqt9LHFW4mODlivKAv3lfGR9GhBAJywJobU5T4CE0eZBGMzHaV9dobLorpNU6kmHy5C1a2V6taqz4YLUSnoiMupf8bfzQPOlwMeW86OzY8OSPYK4QZx5gIVF0GtQom2LZF9drpQCYW7jlIpunDlvFKCaN3oEHPWZ4etriw_RX-IEATJo_-b3oB9FBTDoz8U2THroYDcCQKd2nxrVPwFwa77_w |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6h7QE40PLslhaMxIFLlo3zco4rWrS8VoJdJCQOlp8VapUgJdtDf33HTnZ5VCvBJQcrdvwYj7_JjL8BOHSM3obmKsgFPuLYykCGwgSITjXVJsuNZ2K6GqXD2_j8Lrlbgv7sLgx2osKWKu_Ef2IXCI-xrBBF2esrFJsYjfQPCEWoM7cGJ-OZ7nXilzZ-ZLSTEUzMyXz-a8CdRqp6cRp1StxVi5GmP3FOP8L1vK8-0ORXb1rLnvr7isbxPYP5BGst_CSDRl7WYckUG7D6jJRwE-6dRVrYh5_-AiP5PhoQVMFlPZWGDJ65HSry50GQsc-jgyqT3DRZ7XGdSWnJpAmycUHVZOw5al2VLbg9_TE5GQZtCoZAoOFVB1oYtM90X2kbqlBbyXIVpULnqBYTKi21CZNMh0pKESXSGpSJKNbMxhqLEhFtQ6coC_MZSJ9Z1CdKGaplrFKT20jJOMqYkjoTUdqFQ5wW3m6hinvvOA15O1e8nasu9GYrxlVLY-6yafxeXOFoXuGxYfBY_OquEwGO4MMx6CoXaqRqHjLUdAnrwsFMMjjuQedYEYUppxWnjuTNXWnOurDTiMz8U-5_EUIi9uVtw9uH5eHk6pJfno0udmGFOuseT0qafYUOLpb5hhColnte6v8BDzcEbw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB5VQargAJRHCX2wSD1wcYjXr_Uxahu1BSJEGqkSh9U-UQWyK9nhwK_vzNqJCihSe_Fh5V3vY2Z2xjPzDcARIXo7XpqoVPhIU68jHSsXoXZquXVF6QIS05dZfrZIL66yqz4pjHJhcBINjtQEJz5x9Y31PcJA_BHbK1XVo7FB0knRUH9ETjsyuSbH85X8JRLMO18y2sqoUKwBff4bgG4k0_x1Iw1q5KzN2ma4dabPYLGebwg2-Tlatnpk_vwD5fjQBT2Hp70ayiYd3ezAlqtewJM74IQv4TtZppW__hESGdnJbMJQFNftUjs2ueN-aNjva8XmoZ4Oik72ratuj-fNas8uu2AbCq5m84BVS11ewWJ6enl8FvWlGCKFBlgbWeXQTrNjY31sYuu1KE2SK1uieMy49txnQgsbG61VkmnvkDaS1AqfWmzKVPIaBlVduTfAxsKjXDHGcatTk7vSJ0anSSGMtoVK8iEc4bbInpUaGbzkPJb9Xsl-r4YwWp2aND2cOVXV-LW5w4d1h5sOyWPzq3tEBhKVEELSNRRyZFoZC5R4mRjC-xV1SORFcrCoytXLRnICe6PU5mIIux3ZrD9F_41QNRJv77e8d7D99WQqP5_PPu3BY05GPl6YvNiHAZ6VO0BNqNWHgfBvAV7nBvI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconfiguring+DNA+Nanotube+Architectures+via+Selective+Regulation+of+Terminating+Structures&rft.jtitle=ACS+nano&rft.au=Schaffter%2C+Samuel+W&rft.au=Schneider%2C+Joanna&rft.au=Agrawal%2C+Deepak+K&rft.au=Pacella%2C+Michael+S&rft.date=2020-10-27&rft.eissn=1936-086X&rft.volume=14&rft.issue=10&rft.spage=13451&rft_id=info:doi/10.1021%2Facsnano.0c05340&rft_id=info%3Apmid%2F33048538&rft.externalDocID=33048538 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |