Reconfiguring DNA Nanotube Architectures via Selective Regulation of Terminating Structures

Molecular assemblies inside cells often undergo structural reconfiguration in response to stimuli to alter their function. Adaptive reconfiguration of cytoskeletal networks, for example, enables cellular shape change, movement, and cargo transport and plays a key role in driving complex processes su...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 14; no. 10; pp. 13451 - 13462
Main Authors Schaffter, Samuel W, Schneider, Joanna, Agrawal, Deepak K, Pacella, Michael S, Rothchild, Eric, Murphy, Terence, Schulman, Rebecca
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 27.10.2020
American Chemical Society (ACS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Molecular assemblies inside cells often undergo structural reconfiguration in response to stimuli to alter their function. Adaptive reconfiguration of cytoskeletal networks, for example, enables cellular shape change, movement, and cargo transport and plays a key role in driving complex processes such as division and differentiation. The cellular cytoskeleton is a self-assembling polymer network composed of simple filaments, so reconfiguration often occurs through the rearrangement of its component filaments’ connectivities. DNA nanotubes have emerged as promising building blocks for constructing programmable synthetic analogs of cytoskeletal networks. Nucleating seeds can control when and where nanotubes grow, and capping structures can bind nanotube ends to stop growth. Such seeding and capping structures, collectively called termini, can organize nanotubes into larger architectures. However, these structures cannot be selectively activated or inactivated in response to specific stimuli to rearrange nanotube architectures, a key property of cytoskeletal networks. Here, we demonstrate how selective regulation of the binding affinity of DNA nanotube termini for DNA nanotube monomers or nanotube ends can direct the reconfiguration of nanotube architectures. Using DNA hybridization and strand displacement reactions that specifically activate or inactivate four orthogonal nanotube termini, we demonstrate that nanotube architectures can be reconfigured by selective addition or removal of distinct termini. Finally, we show how terminus activation could be a sensitive detector and amplifier of a DNA sequence signal. These results could enable the development of adaptive and multifunctional materials or diagnostic tools.
AbstractList Molecular assemblies inside cells often undergo structural reconfiguration in response to stimuli to alter their function. Adaptive reconfiguration of cytoskeletal networks, for example, enables cellular shape change, movement, and cargo transport and plays a key role in driving complex processes such as division and differentiation. The cellular cytoskeleton is a self-assembling polymer network composed of simple filaments, so reconfiguration often occurs through the rearrangement of its component filaments' connectivities. DNA nanotubes have emerged as promising building blocks for constructing programmable synthetic analogs of cytoskeletal networks. Nucleating seeds can control when and where nanotubes grow, and capping structures can bind nanotube ends to stop growth. Such seeding and capping structures, collectively called termini, can organize nanotubes into larger architectures. However, these structures cannot be selectively activated or inactivated in response to specific stimuli to rearrange nanotube architectures, a key property of cytoskeletal networks. Here, we demonstrate how selective regulation of the binding affinity of DNA nanotube termini for DNA nanotube monomers or nanotube ends can direct the reconfiguration of nanotube architectures. Using DNA hybridization and strand displacement reactions that specifically activate or inactivate four orthogonal nanotube termini, we demonstrate that nanotube architectures can be reconfigured by selective addition or removal of distinct termini. Finally, we show how terminus activation could be a sensitive detector and amplifier of a DNA sequence signal. These results could enable the development of adaptive and multifunctional materials or diagnostic tools.
Molecular assemblies inside cells often undergo structural reconfiguration in response to stimuli to alter their function. Adaptive reconfiguration of cytoskeletal networks, for example, enables cellular shape change, movement, and cargo transport and plays a key role in driving complex processes such as division and differentiation. The cellular cytoskeleton is a self-assembling polymer network composed of simple filaments, so reconfiguration often occurs through the rearrangement of its component filaments' connectivities. DNA nanotubes have emerged as promising building blocks for constructing programmable synthetic analogs of cytoskeletal networks. Nucleating seeds can control when and where nanotubes grow, and capping structures can bind nanotube ends to stop growth. Such seeding and capping structures, collectively called termini, can organize nanotubes into larger architectures. However, these structures cannot be selectively activated or inactivated in response to specific stimuli to rearrange nanotube architectures, a key property of cytoskeletal networks. Here, we demonstrate how selective regulation of the binding affinity of DNA nanotube termini for DNA nanotube monomers or nanotube ends can direct the reconfiguration of nanotube architectures. Using DNA hybridization and strand displacement reactions that specifically activate or inactivate four orthogonal nanotube termini, we demonstrate that nanotube architectures can be reconfigured by selective addition or removal of distinct termini. Finally, we show how terminus activation could be a sensitive detector and amplifier of a DNA sequence signal. These results could enable the development of adaptive and multifunctional materials or diagnostic tools.Molecular assemblies inside cells often undergo structural reconfiguration in response to stimuli to alter their function. Adaptive reconfiguration of cytoskeletal networks, for example, enables cellular shape change, movement, and cargo transport and plays a key role in driving complex processes such as division and differentiation. The cellular cytoskeleton is a self-assembling polymer network composed of simple filaments, so reconfiguration often occurs through the rearrangement of its component filaments' connectivities. DNA nanotubes have emerged as promising building blocks for constructing programmable synthetic analogs of cytoskeletal networks. Nucleating seeds can control when and where nanotubes grow, and capping structures can bind nanotube ends to stop growth. Such seeding and capping structures, collectively called termini, can organize nanotubes into larger architectures. However, these structures cannot be selectively activated or inactivated in response to specific stimuli to rearrange nanotube architectures, a key property of cytoskeletal networks. Here, we demonstrate how selective regulation of the binding affinity of DNA nanotube termini for DNA nanotube monomers or nanotube ends can direct the reconfiguration of nanotube architectures. Using DNA hybridization and strand displacement reactions that specifically activate or inactivate four orthogonal nanotube termini, we demonstrate that nanotube architectures can be reconfigured by selective addition or removal of distinct termini. Finally, we show how terminus activation could be a sensitive detector and amplifier of a DNA sequence signal. These results could enable the development of adaptive and multifunctional materials or diagnostic tools.
Molecular assemblies inside cells often undergo structural reconfiguration in response to stimuli to alter their function. Adaptive reconfiguration of cytoskeletal networks, for example, enables cellular shape change, movement, and cargo transport and plays a key role in driving complex processes such as division and differentiation. The cellular cytoskeleton is a self-assembling polymer network composed of simple filaments, so reconfiguration often occurs through the rearrangement of its component filaments’ connectivities. DNA nanotubes have emerged as promising building blocks for constructing programmable synthetic analogs of cytoskeletal networks. Nucleating seeds can control when and where nanotubes grow and capping structures can bind nanotube ends to stop growth. Such seeding and capping structure, collectively called termini, can organize nanotubes into larger architectures. However, these structures cannot be selectively activated or inactivated in response to specific stimuli to rearrange nanotube architectures, a key property of cytoskeletal networks. Here we demonstrate how selective regulation of the binding affinity of DNA nanotube termini for DNA nanotube monomers or nanotube ends can direct the reconfiguration of nanotube architectures. Using DNA hybridization and strand displacement reactions that specifically activate or inactivate four orthogonal nanotube termini, we demonstrate that nanotube architectures can be reconfigured by selective addition or removal of unique termini. Lastly, we show how terminus activation could be a sensitive detector and amplifier of a DNA sequence signal. These results could enable the development of adaptive and multifunctional materials or diagnostic tools.
Author Pacella, Michael S
Murphy, Terence
Schaffter, Samuel W
Agrawal, Deepak K
Rothchild, Eric
Schneider, Joanna
Schulman, Rebecca
AuthorAffiliation Chemistry
Johns Hopkins University
Chemical and Biomolecular Engineering
Computer Science
Material Science and Engineering
AuthorAffiliation_xml – name: Computer Science
– name: Chemistry
– name: Material Science and Engineering
– name: Chemical and Biomolecular Engineering
– name: Johns Hopkins University
Author_xml – sequence: 1
  givenname: Samuel W
  surname: Schaffter
  fullname: Schaffter, Samuel W
  organization: Chemical and Biomolecular Engineering
– sequence: 2
  givenname: Joanna
  surname: Schneider
  fullname: Schneider, Joanna
  organization: Chemical and Biomolecular Engineering
– sequence: 3
  givenname: Deepak K
  surname: Agrawal
  fullname: Agrawal, Deepak K
  organization: Chemical and Biomolecular Engineering
– sequence: 4
  givenname: Michael S
  orcidid: 0000-0001-8919-147X
  surname: Pacella
  fullname: Pacella, Michael S
  organization: Chemical and Biomolecular Engineering
– sequence: 5
  givenname: Eric
  surname: Rothchild
  fullname: Rothchild, Eric
  organization: Johns Hopkins University
– sequence: 6
  givenname: Terence
  surname: Murphy
  fullname: Murphy, Terence
– sequence: 7
  givenname: Rebecca
  orcidid: 0000-0003-4555-3162
  surname: Schulman
  fullname: Schulman, Rebecca
  email: rschulm3@jhu.edu
  organization: Johns Hopkins University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33048538$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1804058$$D View this record in Osti.gov
BookMark eNp9kctLXDEUxkNR6nPtTi6uhDKa3CQzmeVg7QNEQS0UXIQ8TsbIncTmIfjfG3unLgq6Ss7J7_s4Od8O2ggxAEIHBJ8Q3JNTZXJQIZ5ggzll-BPaJnM6nWAx_b3xdudkC-3k_IAxn4nZ9DPaohQzwanYRnfXYGJwflmTD8vu6-Wiu2yGpWroFsnc-wKm1AS5e_Kqu4Ghlf4JumtY1kEVH0MXXXcLaeVDK5vFTUl1lOyhTaeGDPvrcxf9-nZ-e_ZjcnH1_efZ4mKiGCZlYhX0bG6xsY4YYp0Wc0Onys6VtbzXrndcaGGJ0VpRrh2ABsqscMy2Fld0Fx2NvjEXL7N5nfm-_Sq0WSURmGEuGnQ8Qo8p_qmQi1z5bGAYVIBYs-wZJ4RSJmYNPVyjVa_AysfkVyo9y39ba8DpCJgUc07g3hCC5Wsucp2LXOfSFPw_RZvy7_pKUn74QPdl1LUH-RBrCm2R79IviQGlIA
CitedBy_id crossref_primary_10_1021_acs_nanolett_4c05452
crossref_primary_10_1021_jacs_1c06598
crossref_primary_10_1016_j_chempr_2024_01_014
crossref_primary_10_1021_acssynbio_3c00726
crossref_primary_10_1021_acs_analchem_2c04540
crossref_primary_10_1038_s41570_024_00606_1
crossref_primary_10_1098_rsfs_2023_0028
crossref_primary_10_1002_anie_202101378
crossref_primary_10_1021_acsnano_3c01342
crossref_primary_10_1007_s44258_024_00015_5
crossref_primary_10_1021_jacsau_1c00387
crossref_primary_10_1126_scirobotics_adf1274
crossref_primary_10_1002_ange_202101378
crossref_primary_10_1038_s41467_024_52986_z
crossref_primary_10_1038_s41557_022_00945_w
Cites_doi 10.1126/science.aau3775
10.1038/ncb3220
10.1103/PhysRevLett.93.268301
10.1021/nl400881w
10.1021/bi00064a003
10.1038/s41467-019-13104-6
10.1038/nnano.2009.311
10.1126/science.1165831
10.1021/acssynbio.9b00398
10.1038/ncomms1535
10.1038/s41467-018-07805-7
10.1016/j.biomaterials.2015.02.099
10.1038/s41467-018-06218-w
10.1039/C9NR01880H
10.1039/C4RA15451G
10.1039/c2cs35115c
10.1039/C6NR06983E
10.1126/science.1157312
10.1021/acsnano.7b02256
10.1021/acsnano.9b06734
10.1021/acssynbio.6b00170
10.1021/jp302316p
10.1126/science.289.5485.1757
10.1038/nnano.2011.49
10.1021/acsnano.6b08008
10.1038/nature10889
10.1016/j.neuron.2015.05.046
10.1101/2019.12.11.873349
10.1021/ja050487h
10.1038/s41556-018-0199-8
10.1021/jacs.5b05755
10.1039/C5NR08685J
10.1021/nl101079u
10.1038/ncomms2965
10.1038/s41586-018-0289-6
10.1038/nature04586
10.1038/nature13607
10.1007/s12274-018-2094-9
10.1073/pnas.0305860101
10.1152/physrev.00018.2013
10.1126/science.1132493
10.1126/science.1202998
10.1038/nature11075
10.1021/ja906987s
10.1126/science.1227268
10.1038/nchem.575
10.1038/nnano.2016.277
10.1021/ja044319l
10.1038/nchem.957
10.1038/nature08908
ContentType Journal Article
Copyright 2020 American Chemical Society
Copyright_xml – notice: 2020 American Chemical Society
CorporateAuthor Johns Hopkins Univ., Baltimore, MD (United States)
CorporateAuthor_xml – name: Johns Hopkins Univ., Baltimore, MD (United States)
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
OIOZB
OTOTI
DOI 10.1021/acsnano.0c05340
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 13462
ExternalDocumentID 1804058
33048538
10_1021_acsnano_0c05340
c759939053
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID -
23M
53G
55A
5GY
5VS
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
F5P
GNL
IH9
IHE
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
4.4
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ABFRP
OIOZB
OTOTI
ID FETCH-LOGICAL-a401t-dae249d0cdf1c1dfb89c36ad9add52bf2f58b8d1cbba35bfeebe34d8f4dcbb5a3
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Thu May 18 22:30:00 EDT 2023
Fri Jul 11 06:09:46 EDT 2025
Thu Apr 03 07:05:48 EDT 2025
Tue Jul 01 03:37:04 EDT 2025
Thu Apr 24 23:08:34 EDT 2025
Fri Oct 30 03:45:43 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords self-assembly
DNA nanotechnology
DNA origami
DNA strand displacement
nucleic acid diagnostics
dynamic nanostructures
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a401t-dae249d0cdf1c1dfb89c36ad9add52bf2f58b8d1cbba35bfeebe34d8f4dcbb5a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE
SC0010426; DGE-1232825
National Science Foundation Graduate Research Fellowship
ORCID 0000-0001-8919-147X
0000-0003-4555-3162
0000000345553162
000000018919147X
OpenAccessLink https://www.osti.gov/servlets/purl/1804058
PMID 33048538
PQID 2451133487
PQPubID 23479
PageCount 12
ParticipantIDs osti_scitechconnect_1804058
proquest_miscellaneous_2451133487
pubmed_primary_33048538
crossref_primary_10_1021_acsnano_0c05340
crossref_citationtrail_10_1021_acsnano_0c05340
acs_journals_10_1021_acsnano_0c05340
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-27
PublicationDateYYYYMMDD 2020-10-27
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-27
  day: 27
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2020
Publisher American Chemical Society
American Chemical Society (ACS)
Publisher_xml – name: American Chemical Society
– name: American Chemical Society (ACS)
References ref9/cit9
ref45/cit45
ref3/cit3
Bailey C. H. (ref6/cit6) 2008; 169
ref27/cit27
ref16/cit16
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref10/cit10
  doi: 10.1126/science.aau3775
– ident: ref2/cit2
  doi: 10.1038/ncb3220
– ident: ref37/cit37
  doi: 10.1103/PhysRevLett.93.268301
– ident: ref14/cit14
  doi: 10.1021/nl400881w
– ident: ref35/cit35
  doi: 10.1021/bi00064a003
– ident: ref39/cit39
  doi: 10.1038/s41467-019-13104-6
– ident: ref7/cit7
  doi: 10.1038/nnano.2009.311
– ident: ref34/cit34
  doi: 10.1126/science.1165831
– ident: ref43/cit43
  doi: 10.1021/acssynbio.9b00398
– ident: ref21/cit21
  doi: 10.1038/ncomms1535
– ident: ref29/cit29
  doi: 10.1038/s41467-018-07805-7
– ident: ref51/cit51
  doi: 10.1016/j.biomaterials.2015.02.099
– ident: ref49/cit49
  doi: 10.1038/s41467-018-06218-w
– volume: 169
  start-page: 179
  volume-title: Progress in Brain Research
  year: 2008
  ident: ref6/cit6
– ident: ref9/cit9
  doi: 10.1039/C9NR01880H
– ident: ref41/cit41
  doi: 10.1039/C4RA15451G
– ident: ref45/cit45
  doi: 10.1039/c2cs35115c
– ident: ref25/cit25
  doi: 10.1039/C6NR06983E
– ident: ref22/cit22
  doi: 10.1126/science.1157312
– ident: ref24/cit24
  doi: 10.1021/acsnano.7b02256
– ident: ref28/cit28
  doi: 10.1021/acsnano.9b06734
– ident: ref42/cit42
  doi: 10.1021/acssynbio.6b00170
– ident: ref30/cit30
  doi: 10.1021/jp302316p
– ident: ref48/cit48
  doi: 10.1126/science.289.5485.1757
– ident: ref47/cit47
  doi: 10.1038/nnano.2011.49
– ident: ref23/cit23
  doi: 10.1021/acsnano.6b08008
– ident: ref31/cit31
  doi: 10.1038/nature10889
– ident: ref5/cit5
  doi: 10.1016/j.neuron.2015.05.046
– ident: ref40/cit40
  doi: 10.1101/2019.12.11.873349
– ident: ref11/cit11
  doi: 10.1021/ja050487h
– ident: ref4/cit4
  doi: 10.1038/s41556-018-0199-8
– ident: ref12/cit12
  doi: 10.1021/jacs.5b05755
– ident: ref33/cit33
  doi: 10.1039/C5NR08685J
– ident: ref32/cit32
  doi: 10.1021/nl101079u
– ident: ref38/cit38
  doi: 10.1038/ncomms2965
– ident: ref44/cit44
  doi: 10.1038/s41586-018-0289-6
– ident: ref17/cit17
  doi: 10.1038/nature04586
– ident: ref8/cit8
  doi: 10.1038/nature13607
– ident: ref46/cit46
  doi: 10.1007/s12274-018-2094-9
– ident: ref15/cit15
  doi: 10.1073/pnas.0305860101
– ident: ref3/cit3
  doi: 10.1152/physrev.00018.2013
– ident: ref50/cit50
  doi: 10.1126/science.1132493
– ident: ref16/cit16
  doi: 10.1126/science.1202998
– ident: ref18/cit18
  doi: 10.1038/nature11075
– ident: ref36/cit36
  doi: 10.1021/ja906987s
– ident: ref19/cit19
  doi: 10.1126/science.1227268
– ident: ref20/cit20
  doi: 10.1038/nchem.575
– ident: ref26/cit26
  doi: 10.1038/nnano.2016.277
– ident: ref13/cit13
  doi: 10.1021/ja044319l
– ident: ref27/cit27
  doi: 10.1038/nchem.957
– ident: ref1/cit1
  doi: 10.1038/nature08908
SSID ssj0057876
Score 2.421551
Snippet Molecular assemblies inside cells often undergo structural reconfiguration in response to stimuli to alter their function. Adaptive reconfiguration of...
SourceID osti
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 13451
SubjectTerms BASIC BIOLOGICAL SCIENCES
carbon nanotubes
chemical structure
DNA
DNA nanotechnology
DNA origami
DNA strand displacement
dynamic nanostructures
genetics
Macromolecular Substances
monomers
Nanostructures
Nanotechnology
Nanotubes
Nucleic Acid Conformation
nucleic acid diagnostics
self-assembly
Title Reconfiguring DNA Nanotube Architectures via Selective Regulation of Terminating Structures
URI http://dx.doi.org/10.1021/acsnano.0c05340
https://www.ncbi.nlm.nih.gov/pubmed/33048538
https://www.proquest.com/docview/2451133487
https://www.osti.gov/servlets/purl/1804058
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELaq5dIeeJRCl4XKSBy4ZNk4L-e4ol2hSuXQBWmlHix7bCNElSAly4Ffz0ySXZauVvSSQxQnsmc8801m_A1jZ8To7UQOQa7xEsfeBCbULkB0aoV1We4aJqZf1-nVbfxzlsxeyaL_zeCL8EJDVeiiHI4A9SXG6HxLpDKjOGt8OV0YXdK7tE0gY4CMKGLJ4rP2AnJDUL1xQ70St9NmiNm4mslOW6RVNQyFVGHyMJzXZgjP6_yN789il213gJOPWw3ZYx9c8Zl9WqEh3Gd_KAYt_P1dc2SRf78eczS6ZT03jo9XEg0Vf7rXfNp0zkEjyX-3fexRsrz0_KYtq6Eyaj5tWGlpyBd2O_lxc3kVdE0XAo2hVh1Y7TAisyOwPoTQeiNziFJtczSEiTBe-EQaaUMwRkeJ8Q61IIqt9LHFW4mODlivKAv3lfGR9GhBAJywJobU5T4CE0eZBGMzHaV9dobLorpNU6kmHy5C1a2V6taqz4YLUSnoiMupf8bfzQPOlwMeW86OzY8OSPYK4QZx5gIVF0GtQom2LZF9drpQCYW7jlIpunDlvFKCaN3oEHPWZ4etriw_RX-IEATJo_-b3oB9FBTDoz8U2THroYDcCQKd2nxrVPwFwa77_w
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6h7QE40PLslhaMxIFLlo3zco4rWrS8VoJdJCQOlp8VapUgJdtDf33HTnZ5VCvBJQcrdvwYj7_JjL8BOHSM3obmKsgFPuLYykCGwgSITjXVJsuNZ2K6GqXD2_j8Lrlbgv7sLgx2osKWKu_Ef2IXCI-xrBBF2esrFJsYjfQPCEWoM7cGJ-OZ7nXilzZ-ZLSTEUzMyXz-a8CdRqp6cRp1StxVi5GmP3FOP8L1vK8-0ORXb1rLnvr7isbxPYP5BGst_CSDRl7WYckUG7D6jJRwE-6dRVrYh5_-AiP5PhoQVMFlPZWGDJ65HSry50GQsc-jgyqT3DRZ7XGdSWnJpAmycUHVZOw5al2VLbg9_TE5GQZtCoZAoOFVB1oYtM90X2kbqlBbyXIVpULnqBYTKi21CZNMh0pKESXSGpSJKNbMxhqLEhFtQ6coC_MZSJ9Z1CdKGaplrFKT20jJOMqYkjoTUdqFQ5wW3m6hinvvOA15O1e8nasu9GYrxlVLY-6yafxeXOFoXuGxYfBY_OquEwGO4MMx6CoXaqRqHjLUdAnrwsFMMjjuQedYEYUppxWnjuTNXWnOurDTiMz8U-5_EUIi9uVtw9uH5eHk6pJfno0udmGFOuseT0qafYUOLpb5hhColnte6v8BDzcEbw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB5VQargAJRHCX2wSD1wcYjXr_Uxahu1BSJEGqkSh9U-UQWyK9nhwK_vzNqJCihSe_Fh5V3vY2Z2xjPzDcARIXo7XpqoVPhIU68jHSsXoXZquXVF6QIS05dZfrZIL66yqz4pjHJhcBINjtQEJz5x9Y31PcJA_BHbK1XVo7FB0knRUH9ETjsyuSbH85X8JRLMO18y2sqoUKwBff4bgG4k0_x1Iw1q5KzN2ma4dabPYLGebwg2-Tlatnpk_vwD5fjQBT2Hp70ayiYd3ezAlqtewJM74IQv4TtZppW__hESGdnJbMJQFNftUjs2ueN-aNjva8XmoZ4Oik72ratuj-fNas8uu2AbCq5m84BVS11ewWJ6enl8FvWlGCKFBlgbWeXQTrNjY31sYuu1KE2SK1uieMy49txnQgsbG61VkmnvkDaS1AqfWmzKVPIaBlVduTfAxsKjXDHGcatTk7vSJ0anSSGMtoVK8iEc4bbInpUaGbzkPJb9Xsl-r4YwWp2aND2cOVXV-LW5w4d1h5sOyWPzq3tEBhKVEELSNRRyZFoZC5R4mRjC-xV1SORFcrCoytXLRnICe6PU5mIIux3ZrD9F_41QNRJv77e8d7D99WQqP5_PPu3BY05GPl6YvNiHAZ6VO0BNqNWHgfBvAV7nBvI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconfiguring+DNA+Nanotube+Architectures+via+Selective+Regulation+of+Terminating+Structures&rft.jtitle=ACS+nano&rft.au=Schaffter%2C+Samuel+W&rft.au=Schneider%2C+Joanna&rft.au=Agrawal%2C+Deepak+K&rft.au=Pacella%2C+Michael+S&rft.date=2020-10-27&rft.eissn=1936-086X&rft.volume=14&rft.issue=10&rft.spage=13451&rft_id=info:doi/10.1021%2Facsnano.0c05340&rft_id=info%3Apmid%2F33048538&rft.externalDocID=33048538
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon