Effect of Arabic Gum and Xanthan Gum on the Stability of Pesticide in Water Emulsion
The effect of arabic gum (AG) and xanthan gum (XG) on the physicochemical properties of 2% pesticide avermyctin in water emulsions was systematically investigated by measuring creaming stability, droplet size, zeta potential, and rheology. Addition of AG and XG had significant influence on the physi...
Saved in:
Published in | Journal of agricultural and food chemistry Vol. 59; no. 4; pp. 1308 - 1315 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
23.02.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The effect of arabic gum (AG) and xanthan gum (XG) on the physicochemical properties of 2% pesticide avermyctin in water emulsions was systematically investigated by measuring creaming stability, droplet size, zeta potential, and rheology. Addition of AG and XG had significant influence on the physicochemical properties of emulsions. Emulsions showed high stability throughout the storage time in the AG concentration range of 0−0.14%. In contrast, addition of XG induced the apparent creaming of emulsion as the XG concentration increased from 0.011 to 0.15%, which might be well explained by the depletion flocculation of droplets. The droplet diameter increased progressively with increasing AG concentration; however, it sharply grew initially with XG concentration and reached a maximum, followed by a gradual decrease. Zeta potential increased gradually as AG concentration was lower than 0.081%, followed by a slight decrease, whereas it reduced dramatically as XG concentration increased from 0.011 to 0.040% and then remained almost unchanged. In the AG concentration range of 0−0.14%, the emulsion exhibited typical Newtonian flow behavior and the viscosity decreased a little. The XG emulsion exhibited Newtonian flow behavior at low XG concentrations (≤0.019%), whereas, non-Newtonian flow behavior was displayed at relatively high XG concentrations (>0.019%), wherein viscosity value and yield value increased gradually as XG concentration increased. In addition, the curves of shear stress versus shear rate for XG emulsion and solution were well fitted by a power law model and the Herschel−Bulkley model; the Herschel−Bulkley model fitted much better. The present study would provide useful information for the reasonable application of AG and XG in making stable pesticide emulsion. |
---|---|
AbstractList | The effect of arabic gum (AG) and xanthan gum (XG) on the physicochemical properties of 2% pesticide avermyctin in water emulsions was systematically investigated by measuring creaming stability, droplet size, zeta potential, and rheology. Addition of AG and XG had significant influence on the physicochemical properties of emulsions. Emulsions showed high stability throughout the storage time in the AG concentration range of 0−0.14%. In contrast, addition of XG induced the apparent creaming of emulsion as the XG concentration increased from 0.011 to 0.15%, which might be well explained by the depletion flocculation of droplets. The droplet diameter increased progressively with increasing AG concentration; however, it sharply grew initially with XG concentration and reached a maximum, followed by a gradual decrease. Zeta potential increased gradually as AG concentration was lower than 0.081%, followed by a slight decrease, whereas it reduced dramatically as XG concentration increased from 0.011 to 0.040% and then remained almost unchanged. In the AG concentration range of 0−0.14%, the emulsion exhibited typical Newtonian flow behavior and the viscosity decreased a little. The XG emulsion exhibited Newtonian flow behavior at low XG concentrations (≤0.019%), whereas, non-Newtonian flow behavior was displayed at relatively high XG concentrations (>0.019%), wherein viscosity value and yield value increased gradually as XG concentration increased. In addition, the curves of shear stress versus shear rate for XG emulsion and solution were well fitted by a power law model and the Herschel−Bulkley model; the Herschel−Bulkley model fitted much better. The present study would provide useful information for the reasonable application of AG and XG in making stable pesticide emulsion. The effect of arabic gum (AG) and xanthan gum (XG) on the physicochemical properties of 2% pesticide avermyctin in water emulsions was systematically investigated by measuring creaming stability, droplet size, zeta potential, and rheology. Addition of AG and XG had significant influence on the physicochemical properties of emulsions. Emulsions showed high stability throughout the storage time in the AG concentration range of 0-0.14%. In contrast, addition of XG induced the apparent creaming of emulsion as the XG concentration increased from 0.011 to 0.15%, which might be well explained by the depletion flocculation of droplets. The droplet diameter increased progressively with increasing AG concentration; however, it sharply grew initially with XG concentration and reached a maximum, followed by a gradual decrease. Zeta potential increased gradually as AG concentration was lower than 0.081%, followed by a slight decrease, whereas it reduced dramatically as XG concentration increased from 0.011 to 0.040% and then remained almost unchanged. In the AG concentration range of 0-0.14%, the emulsion exhibited typical Newtonian flow behavior and the viscosity decreased a little. The XG emulsion exhibited Newtonian flow behavior at low XG concentrations (≤0.019%), whereas, non-Newtonian flow behavior was displayed at relatively high XG concentrations (>0.019%), wherein viscosity value and yield value increased gradually as XG concentration increased. In addition, the curves of shear stress versus shear rate for XG emulsion and solution were well fitted by a power law model and the Herschel-Bulkley model; the Herschel-Bulkley model fitted much better. The present study would provide useful information for the reasonable application of AG and XG in making stable pesticide emulsion. The effect of arabic gum (AG) and xanthan gum (XG) on the physicochemical properties of 2% pesticide avermyctin in water emulsions was systematically investigated by measuring creaming stability, droplet size, zeta potential, and rheology. Addition of AG and XG had significant influence on the physicochemical properties of emulsions. Emulsions showed high stability throughout the storage time in the AG concentration range of 0-0.14%. In contrast, addition of XG induced the apparent creaming of emulsion as the XG concentration increased from 0.011 to 0.15%, which might be well explained by the depletion flocculation of droplets. The droplet diameter increased progressively with increasing AG concentration; however, it sharply grew initially with XG concentration and reached a maximum, followed by a gradual decrease. Zeta potential increased gradually as AG concentration was lower than 0.081%, followed by a slight decrease, whereas it reduced dramatically as XG concentration increased from 0.011 to 0.040% and then remained almost unchanged. In the AG concentration range of 0-0.14%, the emulsion exhibited typical Newtonian flow behavior and the viscosity decreased a little. The XG emulsion exhibited Newtonian flow behavior at low XG concentrations (≤0.019%), whereas, non-Newtonian flow behavior was displayed at relatively high XG concentrations (>0.019%), wherein viscosity value and yield value increased gradually as XG concentration increased. In addition, the curves of shear stress versus shear rate for XG emulsion and solution were well fitted by a power law model and the Herschel-Bulkley model; the Herschel-Bulkley model fitted much better. The present study would provide useful information for the reasonable application of AG and XG in making stable pesticide emulsion.The effect of arabic gum (AG) and xanthan gum (XG) on the physicochemical properties of 2% pesticide avermyctin in water emulsions was systematically investigated by measuring creaming stability, droplet size, zeta potential, and rheology. Addition of AG and XG had significant influence on the physicochemical properties of emulsions. Emulsions showed high stability throughout the storage time in the AG concentration range of 0-0.14%. In contrast, addition of XG induced the apparent creaming of emulsion as the XG concentration increased from 0.011 to 0.15%, which might be well explained by the depletion flocculation of droplets. The droplet diameter increased progressively with increasing AG concentration; however, it sharply grew initially with XG concentration and reached a maximum, followed by a gradual decrease. Zeta potential increased gradually as AG concentration was lower than 0.081%, followed by a slight decrease, whereas it reduced dramatically as XG concentration increased from 0.011 to 0.040% and then remained almost unchanged. In the AG concentration range of 0-0.14%, the emulsion exhibited typical Newtonian flow behavior and the viscosity decreased a little. The XG emulsion exhibited Newtonian flow behavior at low XG concentrations (≤0.019%), whereas, non-Newtonian flow behavior was displayed at relatively high XG concentrations (>0.019%), wherein viscosity value and yield value increased gradually as XG concentration increased. In addition, the curves of shear stress versus shear rate for XG emulsion and solution were well fitted by a power law model and the Herschel-Bulkley model; the Herschel-Bulkley model fitted much better. The present study would provide useful information for the reasonable application of AG and XG in making stable pesticide emulsion. |
Author | Zhang, Xiaoguang Liu, Jiexiang |
AuthorAffiliation | School of Chemical Engineering Nankai University College of Chemistry Hebei University of Technology |
AuthorAffiliation_xml | – name: School of Chemical Engineering – name: Hebei University of Technology – name: College of Chemistry – name: Nankai University |
Author_xml | – sequence: 1 givenname: Xiaoguang surname: Zhang fullname: Zhang, Xiaoguang email: xgzhang@nankai.edu.cn – sequence: 2 givenname: Jiexiang surname: Liu fullname: Liu, Jiexiang |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23890540$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21226518$$D View this record in MEDLINE/PubMed |
BookMark | eNp90U9LHDEUAPBQLHW1PfQLtLkU7WHqSyaZmRxFVi0ICirtLbzNJDXLTEaTzMFv39hdKxRpLiHk9_7w3h7ZCVOwhHxk8I0BZ0drx6AWQqo3ZMEkh0oy1u2QBZTPqpMN2yV7Ka0BoJMtvCO7nHHeSNYtyM3SOWsynRw9jrjyhp7NI8XQ058Y8h2GP-8p0Hxn6XUuYvD58Ylf2ZS98b2lPtAfmG2ky3Eekp_Ce_LW4ZDsh-29T25Plzcn59XF5dn3k-OLCgWwXPUChKxb1SvVWtlKbnvDuFPO9dDXNfRSuFo00rLGrFqLCKpF4Kp10nJUst4nB5u893F6mEs_evTJ2GHAYKc56U5yKQBEU-ThfyVT5Ugh267QT1s6r0bb6_voR4yP-nlmBXzZAkwGBxcxGJ9eXN0pKGWLO9o4E6eUonXa-Iy5zCdH9INmoJ-2p_9ur0R8_SfiOelr9vPGOpw0_oqlg9trDqwGpiSTtXjpE03S62mOoezilUy_ASAYqsM |
CODEN | JAFCAU |
CitedBy_id | crossref_primary_10_1016_j_cropro_2017_10_004 crossref_primary_10_1016_j_foodhyd_2012_07_006 crossref_primary_10_1515_tsd_2021_2391 crossref_primary_10_1016_j_colsurfa_2013_10_062 crossref_primary_10_4014_jmb_2002_02065 crossref_primary_10_1371_journal_pone_0191742 crossref_primary_10_1016_j_ijbiomac_2024_131159 crossref_primary_10_1007_s42824_024_00108_x crossref_primary_10_1038_s41598_019_49735_4 crossref_primary_10_1080_01932691_2023_2297797 crossref_primary_10_1016_j_lwt_2020_109804 crossref_primary_10_1016_j_jclepro_2021_129173 crossref_primary_10_1016_j_colsurfa_2013_01_046 crossref_primary_10_1016_j_colsurfa_2016_09_040 crossref_primary_10_1016_j_foodhyd_2019_105477 crossref_primary_10_1039_D0SM00638F crossref_primary_10_1016_j_foodhyd_2023_109511 crossref_primary_10_1016_j_fuel_2019_04_038 crossref_primary_10_1002_jsfa_14234 crossref_primary_10_1016_j_foodhyd_2012_12_018 crossref_primary_10_1007_s13197_014_1380_0 crossref_primary_10_1016_j_mtcomm_2020_101999 crossref_primary_10_1080_07373937_2013_766619 crossref_primary_10_1016_j_foodres_2017_12_047 crossref_primary_10_1007_s10340_024_01846_2 crossref_primary_10_1016_j_foodhyd_2017_04_008 crossref_primary_10_1016_j_jngse_2016_12_018 crossref_primary_10_1002_app_40839 crossref_primary_10_1080_03235408_2012_734719 crossref_primary_10_1016_j_colsurfa_2019_123906 crossref_primary_10_3390_ma17246090 crossref_primary_10_1016_j_jcis_2014_12_028 crossref_primary_10_1371_journal_pone_0160877 crossref_primary_10_1007_s00449_023_02932_y crossref_primary_10_1016_j_ijbiomac_2024_136562 crossref_primary_10_1039_c3sm27900f crossref_primary_10_1080_01932691_2024_2387618 crossref_primary_10_1016_j_cattod_2012_01_042 crossref_primary_10_1007_s10068_016_0248_7 crossref_primary_10_1016_j_reactfunctpolym_2022_105288 crossref_primary_10_1016_j_cis_2021_102552 crossref_primary_10_1002_vjch_202300238 |
Cites_doi | 10.1080/01932690601062291 10.1016/j.foodhyd.2008.02.007 10.1016/S0268-005X(97)80048-3 10.1021/jf0257244 10.1016/S0268-005X(01)00075-3 10.1016/j.colsurfa.2004.02.020 10.1016/j.carbpol.2006.01.016 10.1021/jf0352834 10.1021/jf030762o 10.1006/jcis.1998.5802 10.1021/jf052153h 10.1016/j.indcrop.2009.09.010 10.1016/j.foodhyd.2008.01.004 10.1007/BF02908257 10.1016/S0268-005X(03)00016-X 10.1016/S0268-005X(99)00029-6 10.1016/j.jfoodeng.2003.10.018 10.1021/jf061306d 10.1039/9781847551474-00115 10.1016/S0268-005X(03)00026-2 10.1016/S0268-005X(09)80263-4 10.1016/j.colsurfa.2007.07.007 10.1016/j.foodhyd.2003.11.010 10.3866/PKU.WHXB20100313 10.1021/ma00204a031 10.1016/j.jfoodeng.2005.07.024 10.1006/jcis.1998.5801 10.1021/jf020664n 10.1016/j.foodhyd.2006.06.003 |
ContentType | Journal Article |
Copyright | Copyright © 2011 American Chemical Society 2015 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2011 American Chemical Society – notice: 2015 INIST-CNRS |
DBID | FBQ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 |
DOI | 10.1021/jf1034459 |
DatabaseName | AGRIS CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1520-5118 |
EndPage | 1315 |
ExternalDocumentID | 21226518 23890540 10_1021_jf1034459 US201301951534 a355475384 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 4.4 53G 55A 5GY 5VS 7~N 85S AABXI ABFLS ABMVS ABUCX ACGFS ACJ ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL GX1 IH9 JG JG~ LG6 P2P ROL TWZ UI2 VF5 VG9 W1F WH7 X --- -~X .55 .GJ .K2 1WB AAHBH AAYJJ ABBLG ABDPE ABHMW ABJNI ABQRX ACGFO ACKIV ACRPL ADHLV ADNMO AEYZD AFFNX AGQPQ AGXLV AHGAQ ANPPW ANTXH CUPRZ FBQ GGK IHE MVM NHB OHT RNS X7M ZCG AAYXX ABLBI CITATION IQODW CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-a401t-d4045379d997e5752edc12f9ffd0d330d54f3465e16cb7eaa097a0297f5e2a953 |
IEDL.DBID | ACS |
ISSN | 0021-8561 1520-5118 |
IngestDate | Fri Jul 11 16:31:52 EDT 2025 Fri Jul 11 10:32:09 EDT 2025 Thu Jan 02 22:11:52 EST 2025 Mon Jul 21 09:15:41 EDT 2025 Thu Apr 24 23:03:01 EDT 2025 Tue Jul 01 02:05:56 EDT 2025 Wed May 07 08:23:36 EDT 2025 Thu Aug 27 13:42:11 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | xanthan gum depletion flocculation arabic gum droplet diameter zeta potential Emulsion stability Water Stability Pesticides Xanthan gum Food additive Gum arabic Droplet Gelling agent Emulsion Flocculation Quality |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a401t-d4045379d997e5752edc12f9ffd0d330d54f3465e16cb7eaa097a0297f5e2a953 |
Notes | http://dx.doi.org/ 10.1021/jf1034459 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 21226518 |
PQID | 1999954578 |
PQPubID | 24069 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_852540046 proquest_miscellaneous_1999954578 pubmed_primary_21226518 pascalfrancis_primary_23890540 crossref_citationtrail_10_1021_jf1034459 crossref_primary_10_1021_jf1034459 fao_agris_US201301951534 acs_journals_10_1021_jf1034459 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-02-23 |
PublicationDateYYYYMMDD | 2011-02-23 |
PublicationDate_xml | – month: 02 year: 2011 text: 2011-02-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States |
PublicationTitle | Journal of agricultural and food chemistry |
PublicationTitleAlternate | J. Agric. Food Chem |
PublicationYear | 2011 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Singh H. (ref21/cit21) 2003; 17 Mirhosseini H. (ref8/cit8) 2008; 315 Robins M. M. (ref1/cit1) 1998 Parker A. (ref5/cit5) 1995; 9 Song K. W. (ref32/cit32) 2006; 7 Sun C. H. (ref6/cit6) 2007; 21 Tan C. T. (ref26/cit26) 1990 Vélez G. (ref20/cit20) 2003; 51 Ye A. (ref27/cit27) 2004; 18 Hayati N. I. (ref36/cit36) 2009; 23 Zhang X. G. (ref18/cit18) 2010; 26 Radford S. J. (ref4/cit4) 2004; 238 Hemar Y. (ref7/cit7) 2001; 15 Singh H. (ref22/cit22) 2003; 17 Manoj P. (ref23/cit23) 1998; 207 Elshafei G. M. S. (ref16/cit16) 2010; 31 Ingersen K. (ref30/cit30) 1990; 23 Islam A. M. (ref2/cit2) 1997; 11 Mirhosseini H. (ref9/cit9) 2009; 23 Chen D. (ref17/cit17) 2008; 7 Casanova H. (ref11/cit11) 2005; 53 Shen J. (ref13/cit13) 2008; 10 Liu Y. (ref15/cit15) 2009 Manoj P. (ref34/cit34) 1998; 207 Ma J. K. (ref14/cit14) 2009; 8 Acedo-Carrillo J. I. (ref25/cit25) 2006; 65 Mandala I. G. (ref35/cit35) 2004; 64 Jayme M. L. (ref3/cit3) 1999; 13 Song Q. (ref19/cit19) 2009; 11 Gu Y. S. (ref28/cit28) 2004; 52 Drakos A. (ref24/cit24) 2006; 54 McClements D. J. (ref33/cit33) 1999 Peamprasart T. (ref31/cit31) 2006; 77 Waghmare J. T. (ref10/cit10) 2007; 28 Casanova H. (ref12/cit12) 2002; 50 Ye A. (ref29/cit29) 2004; 52 |
References_xml | – volume: 28 start-page: 323 issue: 2 year: 2007 ident: ref10/cit10 publication-title: J. Dispersion Sci. Technol. doi: 10.1080/01932690601062291 – volume: 23 start-page: 271 year: 2009 ident: ref9/cit9 publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2008.02.007 – start-page: 445 volume-title: Food Emulsions year: 1990 ident: ref26/cit26 – volume: 11 start-page: 493 year: 1997 ident: ref2/cit2 publication-title: Food Hydrocolloids doi: 10.1016/S0268-005X(97)80048-3 – volume: 50 start-page: 6389 year: 2002 ident: ref12/cit12 publication-title: J. Agric. Food Chem. doi: 10.1021/jf0257244 – volume: 15 start-page: 513 year: 2001 ident: ref7/cit7 publication-title: Food Hydrocolloids doi: 10.1016/S0268-005X(01)00075-3 – start-page: 235 volume-title: Food Emulsions—Principles, Practice and Techniques year: 1999 ident: ref33/cit33 – volume: 238 start-page: 71 year: 2004 ident: ref4/cit4 publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2004.02.020 – volume: 65 start-page: 327 year: 2006 ident: ref25/cit25 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2006.01.016 – volume: 52 start-page: 3626 year: 2004 ident: ref28/cit28 publication-title: J. Agric. Food Chem. doi: 10.1021/jf0352834 – volume: 52 start-page: 5491 year: 2004 ident: ref29/cit29 publication-title: J. Agric. Food Chem. doi: 10.1021/jf030762o – volume: 207 start-page: 294 year: 1998 ident: ref34/cit34 publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1998.5802 – volume: 53 start-page: 9949 year: 2005 ident: ref11/cit11 publication-title: J. Agric. Food Chem. doi: 10.1021/jf052153h – volume: 11 start-page: 392 issue: 3 year: 2009 ident: ref19/cit19 publication-title: Chin. J. Pestic. Sci. – volume: 31 start-page: 99 year: 2010 ident: ref16/cit16 publication-title: Ind. Crop Prod. doi: 10.1016/j.indcrop.2009.09.010 – volume: 23 start-page: 233 year: 2009 ident: ref36/cit36 publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2008.01.004 – volume-title: Study on the Physical Stability of Dichlorbenzuron 20% SC [D] year: 2009 ident: ref15/cit15 – volume: 7 start-page: 129 issue: 2 year: 2006 ident: ref32/cit32 publication-title: Fiber. Polym. doi: 10.1007/BF02908257 – volume: 17 start-page: 549 year: 2003 ident: ref22/cit22 publication-title: Food Hydrocolloids doi: 10.1016/S0268-005X(03)00016-X – volume: 13 start-page: 459 year: 1999 ident: ref3/cit3 publication-title: Food Hydrocolloids doi: 10.1016/S0268-005X(99)00029-6 – volume: 64 start-page: 335 year: 2004 ident: ref35/cit35 publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2003.10.018 – volume: 54 start-page: 10164 year: 2006 ident: ref24/cit24 publication-title: J. Agric. Food Chem. doi: 10.1021/jf061306d – start-page: 115 volume-title: Modern Aspects of Emulsion Science year: 1998 ident: ref1/cit1 doi: 10.1039/9781847551474-00115 – volume: 17 start-page: 539 year: 2003 ident: ref21/cit21 publication-title: Food Hydrocolloids doi: 10.1016/S0268-005X(03)00026-2 – volume: 9 start-page: 333 year: 1995 ident: ref5/cit5 publication-title: Food Hydrocolloids doi: 10.1016/S0268-005X(09)80263-4 – volume: 315 start-page: 47 year: 2008 ident: ref8/cit8 publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2007.07.007 – volume: 18 start-page: 737 year: 2004 ident: ref27/cit27 publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2003.11.010 – volume: 26 start-page: 617 issue: 3 year: 2010 ident: ref18/cit18 publication-title: Acta Phys. Chim. Sin. doi: 10.3866/PKU.WHXB20100313 – volume: 23 start-page: 548 year: 1990 ident: ref30/cit30 publication-title: Macromolecules doi: 10.1021/ma00204a031 – volume: 77 start-page: 653 year: 2006 ident: ref31/cit31 publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2005.07.024 – volume: 207 start-page: 283 year: 1998 ident: ref23/cit23 publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1998.5801 – volume: 7 start-page: 25 issue: 4 year: 2008 ident: ref17/cit17 publication-title: Mod. Agrochem. – volume: 51 start-page: 265 year: 2003 ident: ref20/cit20 publication-title: J. Agric. Food Chem. doi: 10.1021/jf020664n – volume: 21 start-page: 555 year: 2007 ident: ref6/cit6 publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2006.06.003 – volume: 8 start-page: 15 issue: 3 year: 2009 ident: ref14/cit14 publication-title: Mod. Agrochem. – volume: 10 start-page: 354 issue: 3 year: 2008 ident: ref13/cit13 publication-title: Chin. J. Pestic. Sci. |
SSID | ssj0008570 |
Score | 2.227536 |
Snippet | The effect of arabic gum (AG) and xanthan gum (XG) on the physicochemical properties of 2% pesticide avermyctin in water emulsions was systematically... |
SourceID | proquest pubmed pascalfrancis crossref fao acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1308 |
SubjectTerms | Biological and medical sciences Chemical Phenomena creaming Crop and Animal Protection Chemistry droplet size droplets Drug Stability electricity emulsifiable concentrates emulsions Emulsions - chemistry flocculation Food additives Food industries Fundamental and applied biological sciences. Psychology General aspects gum arabic Gum Arabic - pharmacology mathematical models pesticide mixtures Pesticides - chemistry physicochemical properties Polysaccharides, Bacterial - pharmacology Rheology shear stress shelf life Solutions - chemistry storage time viscosity Water xanthan gum |
Title | Effect of Arabic Gum and Xanthan Gum on the Stability of Pesticide in Water Emulsion |
URI | http://dx.doi.org/10.1021/jf1034459 https://www.ncbi.nlm.nih.gov/pubmed/21226518 https://www.proquest.com/docview/1999954578 https://www.proquest.com/docview/852540046 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhZ3Lb9QwEIdHbbnAoZRnA21lHgcuLhs7Tuzjqg8qJBBSu2JvkRPbsNAm1e7mAH89M3ksVHThGGnyGo_tb_z4GeA15sXSh1HCS20ETwqZ8cLKgmtrpEo11T_a4PzhY3o2Sd5P1XQDXq2ZwRfx228hJlk6ZTbhjkh1RhnW-Oh81dySQnu3jiPmGmlgkA_681bqesrFja5nM9iaFkLaBfoidIdYrKfMtrc5vQ_Hw56dbpHJ98NmWRyWP_-WcPzXj-zAdk-bbNyFxwPY8NVDuDf-Mu8VN_wjuOj0i1kd0MwWs5K9a66YrRybotO_2qq9riuGpMgQTdvFtD_I_BMJdJQz59msYp-RWefs5Kq5pOG3xzA5Pbk4OuP9UQvcYoK15C5BtJOZccZkHglOeFfGIpgQ3MhJOXIqCTJJlY_Tssi8tSOTWTr3KigvrFHyCWxVdeV3gTli0FB4E5DVAranaZlq71KMBW0R2CI4wLLI-6qyyNtZcIFZyOCeCN4MxZSXvVA5nZdxeZvpy5XpdafOcZvRLpZ1btG3i3xyLmiuNkawVJK-5UYArB6CIGMIZiN4MUREjvWOJlNs5esGPxvJ2iB-ZjoCtsZGK0y_aQQigqddNP1-QYzcq2L97H_eeA53u2FswYXcg63lvPH7yEHL4qCtB78AaIv6Sw |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzZ1Lb9QwEMdHpRygh_Juw6MYBBKXtBsnTuIDh1Vp2dKHkLor9hac2C5L2wRtNkLlo_BV-HLM5LGlqBWnShwjjRLHHnt-E0_-BniFebFvbC9ws1hyN0j9yE2Vn7qxkr4IY5p_9IPz_kE4GAUfxmK8AD-7f2GwESXeqaw38c_VBbyNr9YjdToh2wLKXXP2HdOz8u3OOxzL15xvbw03B257goCrMG-YuTpAYvEjqaWMDIIJNzrzuJXW6p7GTF6LwPpBKIwXZmlklOrJSNFxTlYYriSdCIHL-02EHk6JXX_zcL7KkzB8Uz7iuTFCSKda9GdTKeJl5YWId8OqguovVYlDYJuzM66G2zrIbd-BX_PuqWtbjterWbqe_fhLOfL_7L-7sNyyNes3k-EeLJj8Piz1j6atvoh5AMNGrZkVFs1UOsnY--qUqVyzMbrYF5XX10XOkIsZgnhdOnxG5h9JjiSbaMMmOfuEhD5lW6fVCX1sfAija3mtR7CYF7lZBaaJuG1qpEUytRg9wiyMjQ7R82OFeOrAGo5G0i4MZVLv-XPMubrhcOBN5x1J1sqy0-kgJ5eZvpybfmu0SC4zWkUXSxT2bZmMDjntTHuI0cKntlzwu_lNENskobsDLzpHTHCVoa0jlZuiwmZjHiERtqPYAXaFTSy4oIgQOrDSOPH5AzykfOHFj__VG8_h1mC4v5fs7RzsPoHbzQd87nL_KSzOppV5hgQ4S9fqqcjg83X77m8R4Vwt |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VIiE48IaGRzEIJC4pGydO4gOHVdulpVBValfsLTh-wEKbVJuNUPkx_BX-GjN5LBS14lSJY6SR49gznm8y428AnmNcHFo3iHydSu5HeZj4uQpzP1UyFHFK9kcXnN_vxlvj6O1ETJbgR38XBidR4UhVk8Qnqz42rmMYCF59cQEx1AnZFVHu2JNvGKJVr7c3cD9fcD7aPFjf8rsuAr7C2GHumwhRS5hII2ViEZxwa3TAnXTODAxG80ZELoxiYYNY54lVaiATRS2dnLBcSeoKgUf8ZUoPUnA3XN9fnPREDt-WkAR-ikCkZy76c6rk9XR1yutdcqqkGkxV4Ta4tn_G-QC3cXSjG_BzsURNfcvXtXqer-nvf7FH_r9reBOudxibDVujuAVLtrgN14afZh3PiL0DBy1rMysdiql8qtmb-oipwrAJqtpnVTTPZcEQHzME5E0J8QmJ7xEtiZ4ay6YF-4BIfcY2j-pD-ul4F8YX8ln3YLkoC7sCzBDydrmVDhGqQy8S6zi1JkYLSBXCVA9WcUey7oCosib3zzH26rfDg5e9hmS6o2enLiGHZ4k-W4get5wkZwmtoJplCte2ysb7nDLUAcJpEdJcTuneYhCEb5IgvAdPe2XM8LShFJIqbFnjtDGekAi6k9QDdo5MKrggzxB7cL9V5N8vCBDtiyB98K_VeAJX9jZG2bvt3Z2HcLX9j899Hj6C5fmsto8RCM7z1cYaGXy8aNX9Bc-EXrA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Arabic+Gum+and+Xanthan+Gum+on+the+Stability+of+Pesticide+in+Water+Emulsion&rft.jtitle=Journal+of+agricultural+and+food+chemistry&rft.au=Zhang%2C+Xiaoguang&rft.au=Liu%2C+Jiexiang&rft.date=2011-02-23&rft.issn=0021-8561&rft.volume=59&rft.issue=4&rft_id=info:doi/10.1021%2Fjf1034459&rft.externalDocID=US201301951534 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8561&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8561&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8561&client=summon |