Anisotropic Electron–Phonon Interactions in Angle-Resolved Raman Study of Strained Black Phosphorus
Few-layer black phosphorus (BP) with an in-plane puckered crystalline structure has attracted intense interest for strain engineering due to both its significant anisotropy in mechanical and electrical properties and its high intrinsic strain limit. Here, we investigated the phonon response of few l...
Saved in:
Published in | ACS nano Vol. 12; no. 12; pp. 12512 - 12522 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
26.12.2018
American Chemical Society (ACS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Few-layer black phosphorus (BP) with an in-plane puckered crystalline structure has attracted intense interest for strain engineering due to both its significant anisotropy in mechanical and electrical properties and its high intrinsic strain limit. Here, we investigated the phonon response of few layer BP under uniaxial tensile strain (∼7%) with in situ polarized Raman spectroscopy. Together with the first-principles density functional theory (DFT) analysis, the anisotropic Poisson’s ratio in few-layer BP was verified as one of the primary factors that caused the large discrepancy in the trend of reported Raman frequency shift for strained BP, armchair (AC) direction in particular. By carefully including and excluding the anisotropic Poisson’s ratio in the DFT emulations, we rebuilt both trends reported for Raman mode shifts. Furthermore, the angle-resolved Raman spectroscopy was conducted in situ under tensile strain for systematic investigation of the in-plane anisotropy of BP phonon response. The experimentally observed thickness and crystallographic orientation dependence is elaborated using DFT theory as having a strong correlation between the strain-perturbated electronic-band structure and the phonon vibration modes. This study provides insight, both experimentally and theoretically, for the complex electron–phonon interaction behavior in strained BP, which enables diverse possibilities for the strain engineering of electrical and optical properties in BP and similar two-dimensional nanomaterials. |
---|---|
AbstractList | Few-layer black phosphorus (BP) with an in-plane puckered crystalline structure has attracted intense interest for strain engineering due to both its significant anisotropy in mechanical and electrical properties and its high intrinsic strain limit. Here, we investigated the phonon response of few layer BP under uniaxial tensile strain (∼7%) with in situ polarized Raman spectroscopy. Together with the first-principles density functional theory (DFT) analysis, the anisotropic Poisson's ratio in few-layer BP was verified as one of the primary factors that caused the large discrepancy in the trend of reported Raman frequency shift for strained BP, armchair (AC) direction in particular. By carefully including and excluding the anisotropic Poisson's ratio in the DFT emulations, we rebuilt both trends reported for Raman mode shifts. Furthermore, the angle-resolved Raman spectroscopy was conducted in situ under tensile strain for systematic investigation of the in-plane anisotropy of BP phonon response. The experimentally observed thickness and crystallographic orientation dependence is elaborated using DFT theory as having a strong correlation between the strain-perturbated electronic-band structure and the phonon vibration modes. This study provides insight, both experimentally and theoretically, for the complex electron-phonon interaction behavior in strained BP, which enables diverse possibilities for the strain engineering of electrical and optical properties in BP and similar two-dimensional nanomaterials.Few-layer black phosphorus (BP) with an in-plane puckered crystalline structure has attracted intense interest for strain engineering due to both its significant anisotropy in mechanical and electrical properties and its high intrinsic strain limit. Here, we investigated the phonon response of few layer BP under uniaxial tensile strain (∼7%) with in situ polarized Raman spectroscopy. Together with the first-principles density functional theory (DFT) analysis, the anisotropic Poisson's ratio in few-layer BP was verified as one of the primary factors that caused the large discrepancy in the trend of reported Raman frequency shift for strained BP, armchair (AC) direction in particular. By carefully including and excluding the anisotropic Poisson's ratio in the DFT emulations, we rebuilt both trends reported for Raman mode shifts. Furthermore, the angle-resolved Raman spectroscopy was conducted in situ under tensile strain for systematic investigation of the in-plane anisotropy of BP phonon response. The experimentally observed thickness and crystallographic orientation dependence is elaborated using DFT theory as having a strong correlation between the strain-perturbated electronic-band structure and the phonon vibration modes. This study provides insight, both experimentally and theoretically, for the complex electron-phonon interaction behavior in strained BP, which enables diverse possibilities for the strain engineering of electrical and optical properties in BP and similar two-dimensional nanomaterials. Few-layer black phosphorus (BP) with an in-plane puckered crystalline structure has attracted intense interest for strain engineering due to both its significant anisotropy in mechanical and electrical properties and its high intrinsic strain limit. Here, we investigated the phonon response of few layer BP under uniaxial tensile strain (∼7%) with in situ polarized Raman spectroscopy. Together with the first-principles density functional theory (DFT) analysis, the anisotropic Poisson's ratio in few-layer BP was verified as one of the primary factors that caused the large discrepancy in the trend of reported Raman frequency shift for strained BP, armchair (AC) direction in particular. By carefully including and excluding the anisotropic Poisson's ratio in the DFT emulations, we rebuilt both trends reported for Raman mode shifts. Furthermore, the angle-resolved Raman spectroscopy was conducted in situ under tensile strain for systematic investigation of the in-plane anisotropy of BP phonon response. The experimentally observed thickness and crystallographic orientation dependence is elaborated using DFT theory as having a strong correlation between the strain-perturbated electronic-band structure and the phonon vibration modes. This study provides insight, both experimentally and theoretically, for the complex electron-phonon interaction behavior in strained BP, which enables diverse possibilities for the strain engineering of electrical and optical properties in BP and similar two-dimensional nanomaterials. Few-layer black phosphorus (BP) with an in-plane puckered crystalline structure has attracted intense interest for strain engineering due to both its significant anisotropy in mechanical and electrical properties and its high intrinsic strain limit. Here, we investigated the phonon response of few layer BP under uniaxial tensile strain (~7%) with in situ polarized Raman spectroscopy. Together with the first-principles density functional theory (DFT) analysis, the anisotropic Poisson’s ratio in few-layer BP was verified as one of the primary factors that caused the large discrepancy in the trend of reported Raman frequency shift for strained BP, armchair (AC) direction in particular. By carefully including and excluding the anisotropic Poisson’s ratio in the DFT emulations, we rebuilt both trends reported for Raman mode shifts. Furthermore, the angle-resolved Raman spectroscopy was conducted in situ under tensile strain for systematic investigation of the in-plane anisotropy of BP phonon response. The experimentally observed thickness and crystallographic orientation dependence is elaborated using DFT theory as having a strong correlation between the strain-perturbated electronic-band structure and the phonon vibration modes. Furthermore, this study provides insight, both experimentally and theoretically, for the complex electron–phonon interaction behavior in strained BP, which enables diverse possibilities for the strain engineering of electrical and optical properties in BP and similar two-dimensional nanomaterials. |
Author | Roberts, Richard H Lin, Jung-Fu Akinwande, Deji Liang, Liangbo Zhu, Weinan |
AuthorAffiliation | The University of Texas Department of Geological Sciences, Jackson School of Geosciences Microelectronics Research Center, Department of Electrical and Computer Engineering Center for Nanophase Materials Sciences Department of Materials Science and Engineering, Texas Materials Institute |
AuthorAffiliation_xml | – name: Department of Materials Science and Engineering, Texas Materials Institute – name: Microelectronics Research Center, Department of Electrical and Computer Engineering – name: Department of Geological Sciences, Jackson School of Geosciences – name: The University of Texas – name: Center for Nanophase Materials Sciences |
Author_xml | – sequence: 1 givenname: Weinan orcidid: 0000-0002-0256-3750 surname: Zhu fullname: Zhu, Weinan organization: Microelectronics Research Center, Department of Electrical and Computer Engineering – sequence: 2 givenname: Liangbo orcidid: 0000-0003-1199-0049 surname: Liang fullname: Liang, Liangbo organization: Center for Nanophase Materials Sciences – sequence: 3 givenname: Richard H surname: Roberts fullname: Roberts, Richard H organization: The University of Texas – sequence: 4 givenname: Jung-Fu surname: Lin fullname: Lin, Jung-Fu organization: The University of Texas – sequence: 5 givenname: Deji surname: Akinwande fullname: Akinwande, Deji email: deji@ece.utexas.edu organization: The University of Texas |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30507160$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1489574$$D View this record in Osti.gov |
BookMark | eNp9kctKxDAYhYMoXkbX7qS4EqRj0iZtsxwHbyAoXsBd-JOmTrSTjEkruPMdfEOfxAwzuhB0lUPynT_JOVto1TqrEdoleEhwRo5ABQvWDSuJC07xCtokPC9SXBUPqz-akQ20FcITxqysymIdbeSY4ZIUeBPpkTXBdd7NjEpOWq2itJ_vH9cTF69KLmynPajOOBsSY5ORfWx1eqODa191ndzAFGxy2_X1W-KaKDwYG_ePW1DPSZwRZhPn-7CN1hpog95ZrgN0f3pyNz5PL6_OLsajyxQoJl3KQWKgVJYypzlvgDZMAXDJSw2klqzhKqtzlVVZXdGCRLZuqgYqTWTOZF3mA7S_mOtCZ0RQptNqopy18V-C0IqzkkboYAHNvHvpdejE1ASl2xasdn0QGaE8ZkYIi-jeEu3lVNdi5s0U_Jv4zi8CRwtAeReC180PQrCYNySWDYllQ9HBfjniK2Ee8Dy89h_f4cIXD8ST672NQf5JfwFr96f6 |
CitedBy_id | crossref_primary_10_1016_j_mseb_2024_117702 crossref_primary_10_1142_S1793545820300104 crossref_primary_10_1021_acs_jpclett_3c00145 crossref_primary_10_1021_acsnano_9b06161 crossref_primary_10_1021_acs_jpcc_2c03325 crossref_primary_10_1021_acsomega_9b02969 crossref_primary_10_1021_acsanm_2c02909 crossref_primary_10_1021_acs_jpcc_1c06261 crossref_primary_10_1088_0256_307X_41_3_037102 crossref_primary_10_1021_acs_jpcc_0c01615 crossref_primary_10_1557_mrc_2019_127 crossref_primary_10_1002_adfm_202410783 crossref_primary_10_1002_smll_202301959 crossref_primary_10_1039_D1NH00220A crossref_primary_10_1021_acs_nanolett_3c00771 crossref_primary_10_1021_acs_chemrev_3c00170 crossref_primary_10_1039_D1CP03721H crossref_primary_10_1063_5_0081127 crossref_primary_10_1002_admi_202300540 crossref_primary_10_1063_5_0110395 crossref_primary_10_1002_adma_202103571 crossref_primary_10_1002_lpor_202400485 crossref_primary_10_1007_s12274_022_5008_9 crossref_primary_10_1021_acs_nanolett_4c06408 crossref_primary_10_1063_5_0225155 crossref_primary_10_7498_aps_70_20201271 crossref_primary_10_3389_fmats_2020_578791 crossref_primary_10_1002_smtd_202401404 crossref_primary_10_1002_lpor_202100322 crossref_primary_10_1002_adfm_201903929 crossref_primary_10_1016_j_mtphys_2022_100895 crossref_primary_10_3389_fmats_2021_721514 crossref_primary_10_1016_j_apsusc_2020_147033 crossref_primary_10_1088_1361_6528_aba13e crossref_primary_10_1016_j_aca_2020_06_067 crossref_primary_10_1016_j_cej_2019_03_177 crossref_primary_10_1002_adfm_202003215 crossref_primary_10_1002_advs_202102128 |
Cites_doi | 10.1002/anie.201409400 10.1021/acsnano.6b06405 10.1103/PhysRevB.80.125422 10.1063/1.4885215 10.1007/s12274-010-1022-4 10.1109/EDSSC.2009.5394288 10.1007/s12274-015-0895-7 10.1021/acs.nanolett.6b03607 10.1038/ncomms5458 10.1039/c3nr06906k 10.1021/acs.nanolett.5b04540 10.1103/PhysRevB.63.094305 10.1088/2053-1583/1/2/025001 10.1103/PhysRevB.78.134106 10.1039/C5NR08065G 10.1038/ncomms6246 10.1103/PhysRevB.90.085402 10.1038/nphoton.2015.23 10.1063/1.96983 10.1039/C5NR04349B 10.1103/PhysRevB.78.075435 10.1002/jrs.5238 10.1021/nl5047329 10.1002/smtd.201700409 10.1016/0927-0256(96)00008-0 10.1109/IEDM.2015.7409812 10.1021/nn401429w 10.1021/acsnano.5b05151 10.1063/1.4894273 10.1038/nnano.2015.71 10.1021/acs.nanolett.5b01117 10.1021/nl500935z 10.1021/nl5032293 10.1002/smll.201700466 10.1038/srep08989 10.1021/acsnano.5b00698 10.1021/acs.nanolett.5b04768 10.1038/ncomms5475 10.1109/DRC.2015.7175628 10.1021/nn501226z 10.1021/nl5008085 10.1002/anie.201410108 10.1103/PhysRevLett.77.3865 10.1103/PhysRevB.87.081307 10.1002/adfm.201600986 10.1038/nnano.2014.35 10.1038/ncomms8315 10.1103/PhysRevLett.92.246401 |
ContentType | Journal Article |
CorporateAuthor | Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States) |
CorporateAuthor_xml | – name: Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States) |
DBID | AAYXX CITATION NPM 7X8 OIOZB OTOTI |
DOI | 10.1021/acsnano.8b06940 |
DatabaseName | CrossRef PubMed MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 12522 |
ExternalDocumentID | 1489574 30507160 10_1021_acsnano_8b06940 a412643123 |
Genre | Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 4.4 5VS 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 ABFRP OIOZB OTOTI |
ID | FETCH-LOGICAL-a401t-9ab0a44b7b3439fa4f5caa9b97ea1db5f9c2d3c282d84610a4df8fa8e1b35bd73 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Mon Jul 03 03:58:37 EDT 2023 Thu Jul 10 23:30:45 EDT 2025 Mon Jul 21 05:58:18 EDT 2025 Tue Jul 01 01:34:22 EDT 2025 Thu Apr 24 22:55:15 EDT 2025 Thu Aug 27 13:41:56 EDT 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | electron−phonon interactions strain engineering black phosphorus angle-resolved Raman spectroscopy anisotropic Poisson’s ratio |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a401t-9ab0a44b7b3439fa4f5caa9b97ea1db5f9c2d3c282d84610a4df8fa8e1b35bd73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE AC05-00OR22725 |
ORCID | 0000-0003-1199-0049 0000-0002-0256-3750 0000000202563750 0000000311990049 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1489574 |
PMID | 30507160 |
PQID | 2149851115 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | osti_scitechconnect_1489574 proquest_miscellaneous_2149851115 pubmed_primary_30507160 crossref_primary_10_1021_acsnano_8b06940 crossref_citationtrail_10_1021_acsnano_8b06940 acs_journals_10_1021_acsnano_8b06940 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-26 |
PublicationDateYYYYMMDD | 2018-12-26 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-26 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2018 |
Publisher | American Chemical Society American Chemical Society (ACS) |
Publisher_xml | – name: American Chemical Society – name: American Chemical Society (ACS) |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref13/cit13 doi: 10.1002/anie.201409400 – ident: ref50/cit50 doi: 10.1021/acsnano.6b06405 – ident: ref30/cit30 doi: 10.1103/PhysRevB.80.125422 – ident: ref24/cit24 doi: 10.1063/1.4885215 – ident: ref21/cit21 doi: 10.1007/s12274-010-1022-4 – ident: ref22/cit22 doi: 10.1109/EDSSC.2009.5394288 – ident: ref33/cit33 doi: 10.1007/s12274-015-0895-7 – ident: ref36/cit36 doi: 10.1021/acs.nanolett.6b03607 – ident: ref3/cit3 doi: 10.1038/ncomms5458 – ident: ref49/cit49 doi: 10.1039/c3nr06906k – ident: ref19/cit19 – ident: ref23/cit23 doi: 10.1021/acs.nanolett.5b04540 – ident: ref48/cit48 doi: 10.1103/PhysRevB.63.094305 – ident: ref4/cit4 doi: 10.1088/2053-1583/1/2/025001 – ident: ref47/cit47 doi: 10.1103/PhysRevB.78.134106 – ident: ref14/cit14 doi: 10.1039/C5NR08065G – ident: ref28/cit28 doi: 10.1038/ncomms6246 – ident: ref26/cit26 doi: 10.1103/PhysRevB.90.085402 – ident: ref16/cit16 doi: 10.1038/nphoton.2015.23 – ident: ref17/cit17 doi: 10.1063/1.96983 – ident: ref43/cit43 doi: 10.1039/C5NR04349B – ident: ref20/cit20 doi: 10.1103/PhysRevB.78.075435 – ident: ref40/cit40 doi: 10.1002/jrs.5238 – ident: ref10/cit10 doi: 10.1021/nl5047329 – ident: ref39/cit39 doi: 10.1002/smtd.201700409 – ident: ref44/cit44 doi: 10.1016/0927-0256(96)00008-0 – ident: ref12/cit12 doi: 10.1109/IEDM.2015.7409812 – ident: ref29/cit29 doi: 10.1021/nn401429w – ident: ref32/cit32 doi: 10.1021/acsnano.5b05151 – ident: ref27/cit27 doi: 10.1063/1.4894273 – ident: ref6/cit6 doi: 10.1038/nnano.2015.71 – ident: ref41/cit41 doi: 10.1021/acs.nanolett.5b01117 – ident: ref25/cit25 doi: 10.1021/nl500935z – ident: ref18/cit18 – ident: ref8/cit8 doi: 10.1021/nl5032293 – ident: ref34/cit34 doi: 10.1002/smll.201700466 – ident: ref7/cit7 doi: 10.1038/srep08989 – ident: ref42/cit42 doi: 10.1021/acsnano.5b00698 – ident: ref11/cit11 doi: 10.1021/acs.nanolett.5b04768 – ident: ref5/cit5 doi: 10.1038/ncomms5475 – ident: ref31/cit31 doi: 10.1109/DRC.2015.7175628 – ident: ref1/cit1 doi: 10.1021/nn501226z – ident: ref15/cit15 doi: 10.1021/nl5008085 – ident: ref38/cit38 doi: 10.1002/anie.201410108 – ident: ref45/cit45 doi: 10.1103/PhysRevLett.77.3865 – ident: ref37/cit37 doi: 10.1103/PhysRevB.87.081307 – ident: ref35/cit35 doi: 10.1002/adfm.201600986 – ident: ref2/cit2 doi: 10.1038/nnano.2014.35 – ident: ref9/cit9 doi: 10.1038/ncomms8315 – ident: ref46/cit46 doi: 10.1103/PhysRevLett.92.246401 |
SSID | ssj0057876 |
Score | 2.4668603 |
Snippet | Few-layer black phosphorus (BP) with an in-plane puckered crystalline structure has attracted intense interest for strain engineering due to both its... |
SourceID | osti proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12512 |
SubjectTerms | angle-resolved Raman spectroscopy anisotropic Poisson’s ratio black phosphorus electron−phonon interactions MATERIALS SCIENCE strain engineering |
Title | Anisotropic Electron–Phonon Interactions in Angle-Resolved Raman Study of Strained Black Phosphorus |
URI | http://dx.doi.org/10.1021/acsnano.8b06940 https://www.ncbi.nlm.nih.gov/pubmed/30507160 https://www.proquest.com/docview/2149851115 https://www.osti.gov/servlets/purl/1489574 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLZQucCBX2PQDZCRduCSrnGcxDlW06YKCYQ2KvUWPTv2Vq3YVZ0ijRP_A_8hfwnPSdoxqmpco9iJ7We_7_N7_kzIkUyUGSpVRAXXLOISWASgIdJoTEzGAn1KOOD86XM2nvCP03R6Kxb9bwSfxcegvAXrBkKGM5rIzh-yTOSBZ41OLtaLbrC7rA0gI0FGFLFR8dmqILgh5e-4oZ7D6bQbYjau5uxpm6TlG4XCkGFyPVjVcqB-bOs33t-KZ-RJBzjpqLWQ5-SBti_I479kCPeIHtmZd_XSLWaKnnb34vz--evLlbPO0mbTsD3_4OnM0pG9nOso7PvPv-uKnsM3sDTkI95QZ-hFc-kEPm-2BinW4RdXbrnyL8nk7PTryTjqrl-IAElXHRUgh8C5zGWCqMUAN6kCKGSRa4grmZpCsSpRyNkqEVTbgVdGGBA6lkkqqzzZJz38S_2aUARhJs0LrQziM5lIiaAjzUDkKlO54XGfHGEHld308WUTGWdx2fVa2fVanwzWg1aqTsI8NGq-u8CHTYFFq96x-9XDYAUlAo-gnqtCmpGqkRmJIs15n7xfG0eJ8y8EVcBqt_IlQ4oZUGuc9smr1mo2n8K1FBFcNjz4v-YdkkcIx0RIlmHZG9Krlyv9FiFPLd81xv4HZ-X-mQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB5V4QAceD_SFjBSD1w2ZHe9r2NUtQrQVkBbqTdr7LXbiNQbxZtK5cR_4B_ySzre3YSXIsHVWnv9GHu-8cx8BtiRsTJDpYqg4DoKuMQoQNQYaBKmSIY56RSf4Hx4lI5P-fuz5GwDhstcGOqEo5Zc48T_yS4QvqUyi7Ya5NKnapKRfougSOTNrdHu8fLs9eKXtn5kspMJTKzIfP5qwGsj5X7TRr2KdtV6pNlonP378GnV1ybQ5MtgUcuB-voHjeP_DOYB3OvgJxu18vIQNrR9BHd_ISV8DHpkJ66q59Vsothe90rOj2_fP15UtrKsuUJssyEcm1g2sudTHXgvwPRKl-wzXqJlPjrxmlWGHTdPUFB5c1HIqA03u6jmC_cETvf3TnbHQfcYQ4BkgtVBgXKInMtMxoRhDHKTKMRCFpnGsJSJKVRUxoosuDL3HO7IS5MbzHUo40SWWfwUetRL_RwYQTKTZIVWhtCajKUkCJKkmGcqVZnhYR92aIJEt5mcaPzkUSi6WRPdrPVhsFw7oTpCcz-o6foKb1YVZi2Xx_pPt7wwCIIhnktX-aAjVZOdlBdJxvvweikjgnajd7Gg1dXCiYgMTo9hw6QPz1rhWf2KTlbCc-lw89-G9wpuj08OD8TBu6MPW3CHgFruw2iidBt69XyhXxAYquXLRv5vAA8-Bwk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZQkRAceD_K8jDSHrikNInzOlbLVstrtWKptLdo7Ni7FcWu6hQJTvwH_iG_hJnErXioElytxLGdGc83npnPjO3LVJmxUlVUCZ1EQkISAWiINApTIuMSbQoVOL87zo9m4vVZdhaKwqgWBgfhsSffBfFJq5eNCQwD8Qtst2DdqJRUromO-mUK2pHLNTk43ey_JIJ5H0tGXxkBxZbQ568OyCIp_5tFGjjUrN1os7M60xtsth1vl2zycbRu5Uh9_YPK8X8ndJNdDzCUT3q5ucUuaXubXfuFnPAO0xM7965dueVc8cNwW86Pb99PLpx1lndHiX1VhOdzyyf2fKEjigYsPuuGv4dPYDllKX7hzvDT7ioKbO8ODDn24ZcXbrX2d9lsevjh4CgKlzJEgK5YG1UgxyCELGSKWMaAMJkCqGRVaIgbmZlKJU2q0JNrSuJyB9GY0kCpY5lmsinSe2yAo9QPGEdoZrKi0sogapOplAhFshzKQuWqMCIesn1coDoola-7eHkS12HV6rBqQzba_L9aBWJzmtRi9wvPty8se06P3Y_ukUDUCEeIU1dR8pFq0V8qq6wQQ_ZsIyc1aiWFWsBqt_Z1go4nYdk4G7L7vQBtP4U7LOK6fPzw36b3lF05eTmt3746frPHriJeKymbJskfsUG7WuvHiIla-aRTgZ97igmM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anisotropic+Electron-Phonon+Interactions+in+Angle-Resolved+Raman+Study+of+Strained+Black+Phosphorus&rft.jtitle=ACS+nano&rft.au=Zhu%2C+Weinan&rft.au=Liang%2C+Liangbo&rft.au=Roberts%2C+Richard+H&rft.au=Lin%2C+Jung-Fu&rft.date=2018-12-26&rft.issn=1936-086X&rft.eissn=1936-086X&rft.volume=12&rft.issue=12&rft.spage=12512&rft_id=info:doi/10.1021%2Facsnano.8b06940&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |