Anisotropic Electron–Phonon Interactions in Angle-Resolved Raman Study of Strained Black Phosphorus

Few-layer black phosphorus (BP) with an in-plane puckered crystalline structure has attracted intense interest for strain engineering due to both its significant anisotropy in mechanical and electrical properties and its high intrinsic strain limit. Here, we investigated the phonon response of few l...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 12; no. 12; pp. 12512 - 12522
Main Authors Zhu, Weinan, Liang, Liangbo, Roberts, Richard H, Lin, Jung-Fu, Akinwande, Deji
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 26.12.2018
American Chemical Society (ACS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Few-layer black phosphorus (BP) with an in-plane puckered crystalline structure has attracted intense interest for strain engineering due to both its significant anisotropy in mechanical and electrical properties and its high intrinsic strain limit. Here, we investigated the phonon response of few layer BP under uniaxial tensile strain (∼7%) with in situ polarized Raman spectroscopy. Together with the first-principles density functional theory (DFT) analysis, the anisotropic Poisson’s ratio in few-layer BP was verified as one of the primary factors that caused the large discrepancy in the trend of reported Raman frequency shift for strained BP, armchair (AC) direction in particular. By carefully including and excluding the anisotropic Poisson’s ratio in the DFT emulations, we rebuilt both trends reported for Raman mode shifts. Furthermore, the angle-resolved Raman spectroscopy was conducted in situ under tensile strain for systematic investigation of the in-plane anisotropy of BP phonon response. The experimentally observed thickness and crystallographic orientation dependence is elaborated using DFT theory as having a strong correlation between the strain-perturbated electronic-band structure and the phonon vibration modes. This study provides insight, both experimentally and theoretically, for the complex electron–phonon interaction behavior in strained BP, which enables diverse possibilities for the strain engineering of electrical and optical properties in BP and similar two-dimensional nanomaterials.
AbstractList Few-layer black phosphorus (BP) with an in-plane puckered crystalline structure has attracted intense interest for strain engineering due to both its significant anisotropy in mechanical and electrical properties and its high intrinsic strain limit. Here, we investigated the phonon response of few layer BP under uniaxial tensile strain (∼7%) with in situ polarized Raman spectroscopy. Together with the first-principles density functional theory (DFT) analysis, the anisotropic Poisson's ratio in few-layer BP was verified as one of the primary factors that caused the large discrepancy in the trend of reported Raman frequency shift for strained BP, armchair (AC) direction in particular. By carefully including and excluding the anisotropic Poisson's ratio in the DFT emulations, we rebuilt both trends reported for Raman mode shifts. Furthermore, the angle-resolved Raman spectroscopy was conducted in situ under tensile strain for systematic investigation of the in-plane anisotropy of BP phonon response. The experimentally observed thickness and crystallographic orientation dependence is elaborated using DFT theory as having a strong correlation between the strain-perturbated electronic-band structure and the phonon vibration modes. This study provides insight, both experimentally and theoretically, for the complex electron-phonon interaction behavior in strained BP, which enables diverse possibilities for the strain engineering of electrical and optical properties in BP and similar two-dimensional nanomaterials.Few-layer black phosphorus (BP) with an in-plane puckered crystalline structure has attracted intense interest for strain engineering due to both its significant anisotropy in mechanical and electrical properties and its high intrinsic strain limit. Here, we investigated the phonon response of few layer BP under uniaxial tensile strain (∼7%) with in situ polarized Raman spectroscopy. Together with the first-principles density functional theory (DFT) analysis, the anisotropic Poisson's ratio in few-layer BP was verified as one of the primary factors that caused the large discrepancy in the trend of reported Raman frequency shift for strained BP, armchair (AC) direction in particular. By carefully including and excluding the anisotropic Poisson's ratio in the DFT emulations, we rebuilt both trends reported for Raman mode shifts. Furthermore, the angle-resolved Raman spectroscopy was conducted in situ under tensile strain for systematic investigation of the in-plane anisotropy of BP phonon response. The experimentally observed thickness and crystallographic orientation dependence is elaborated using DFT theory as having a strong correlation between the strain-perturbated electronic-band structure and the phonon vibration modes. This study provides insight, both experimentally and theoretically, for the complex electron-phonon interaction behavior in strained BP, which enables diverse possibilities for the strain engineering of electrical and optical properties in BP and similar two-dimensional nanomaterials.
Few-layer black phosphorus (BP) with an in-plane puckered crystalline structure has attracted intense interest for strain engineering due to both its significant anisotropy in mechanical and electrical properties and its high intrinsic strain limit. Here, we investigated the phonon response of few layer BP under uniaxial tensile strain (∼7%) with in situ polarized Raman spectroscopy. Together with the first-principles density functional theory (DFT) analysis, the anisotropic Poisson's ratio in few-layer BP was verified as one of the primary factors that caused the large discrepancy in the trend of reported Raman frequency shift for strained BP, armchair (AC) direction in particular. By carefully including and excluding the anisotropic Poisson's ratio in the DFT emulations, we rebuilt both trends reported for Raman mode shifts. Furthermore, the angle-resolved Raman spectroscopy was conducted in situ under tensile strain for systematic investigation of the in-plane anisotropy of BP phonon response. The experimentally observed thickness and crystallographic orientation dependence is elaborated using DFT theory as having a strong correlation between the strain-perturbated electronic-band structure and the phonon vibration modes. This study provides insight, both experimentally and theoretically, for the complex electron-phonon interaction behavior in strained BP, which enables diverse possibilities for the strain engineering of electrical and optical properties in BP and similar two-dimensional nanomaterials.
Few-layer black phosphorus (BP) with an in-plane puckered crystalline structure has attracted intense interest for strain engineering due to both its significant anisotropy in mechanical and electrical properties and its high intrinsic strain limit. Here, we investigated the phonon response of few layer BP under uniaxial tensile strain (~7%) with in situ polarized Raman spectroscopy. Together with the first-principles density functional theory (DFT) analysis, the anisotropic Poisson’s ratio in few-layer BP was verified as one of the primary factors that caused the large discrepancy in the trend of reported Raman frequency shift for strained BP, armchair (AC) direction in particular. By carefully including and excluding the anisotropic Poisson’s ratio in the DFT emulations, we rebuilt both trends reported for Raman mode shifts. Furthermore, the angle-resolved Raman spectroscopy was conducted in situ under tensile strain for systematic investigation of the in-plane anisotropy of BP phonon response. The experimentally observed thickness and crystallographic orientation dependence is elaborated using DFT theory as having a strong correlation between the strain-perturbated electronic-band structure and the phonon vibration modes. Furthermore, this study provides insight, both experimentally and theoretically, for the complex electron–phonon interaction behavior in strained BP, which enables diverse possibilities for the strain engineering of electrical and optical properties in BP and similar two-dimensional nanomaterials.
Author Roberts, Richard H
Lin, Jung-Fu
Akinwande, Deji
Liang, Liangbo
Zhu, Weinan
AuthorAffiliation The University of Texas
Department of Geological Sciences, Jackson School of Geosciences
Microelectronics Research Center, Department of Electrical and Computer Engineering
Center for Nanophase Materials Sciences
Department of Materials Science and Engineering, Texas Materials Institute
AuthorAffiliation_xml – name: Department of Materials Science and Engineering, Texas Materials Institute
– name: Microelectronics Research Center, Department of Electrical and Computer Engineering
– name: Department of Geological Sciences, Jackson School of Geosciences
– name: The University of Texas
– name: Center for Nanophase Materials Sciences
Author_xml – sequence: 1
  givenname: Weinan
  orcidid: 0000-0002-0256-3750
  surname: Zhu
  fullname: Zhu, Weinan
  organization: Microelectronics Research Center, Department of Electrical and Computer Engineering
– sequence: 2
  givenname: Liangbo
  orcidid: 0000-0003-1199-0049
  surname: Liang
  fullname: Liang, Liangbo
  organization: Center for Nanophase Materials Sciences
– sequence: 3
  givenname: Richard H
  surname: Roberts
  fullname: Roberts, Richard H
  organization: The University of Texas
– sequence: 4
  givenname: Jung-Fu
  surname: Lin
  fullname: Lin, Jung-Fu
  organization: The University of Texas
– sequence: 5
  givenname: Deji
  surname: Akinwande
  fullname: Akinwande, Deji
  email: deji@ece.utexas.edu
  organization: The University of Texas
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30507160$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1489574$$D View this record in Osti.gov
BookMark eNp9kctKxDAYhYMoXkbX7qS4EqRj0iZtsxwHbyAoXsBd-JOmTrSTjEkruPMdfEOfxAwzuhB0lUPynT_JOVto1TqrEdoleEhwRo5ABQvWDSuJC07xCtokPC9SXBUPqz-akQ20FcITxqysymIdbeSY4ZIUeBPpkTXBdd7NjEpOWq2itJ_vH9cTF69KLmynPajOOBsSY5ORfWx1eqODa191ndzAFGxy2_X1W-KaKDwYG_ePW1DPSZwRZhPn-7CN1hpog95ZrgN0f3pyNz5PL6_OLsajyxQoJl3KQWKgVJYypzlvgDZMAXDJSw2klqzhKqtzlVVZXdGCRLZuqgYqTWTOZF3mA7S_mOtCZ0RQptNqopy18V-C0IqzkkboYAHNvHvpdejE1ASl2xasdn0QGaE8ZkYIi-jeEu3lVNdi5s0U_Jv4zi8CRwtAeReC180PQrCYNySWDYllQ9HBfjniK2Ee8Dy89h_f4cIXD8ST672NQf5JfwFr96f6
CitedBy_id crossref_primary_10_1016_j_mseb_2024_117702
crossref_primary_10_1142_S1793545820300104
crossref_primary_10_1021_acs_jpclett_3c00145
crossref_primary_10_1021_acsnano_9b06161
crossref_primary_10_1021_acs_jpcc_2c03325
crossref_primary_10_1021_acsomega_9b02969
crossref_primary_10_1021_acsanm_2c02909
crossref_primary_10_1021_acs_jpcc_1c06261
crossref_primary_10_1088_0256_307X_41_3_037102
crossref_primary_10_1021_acs_jpcc_0c01615
crossref_primary_10_1557_mrc_2019_127
crossref_primary_10_1002_adfm_202410783
crossref_primary_10_1002_smll_202301959
crossref_primary_10_1039_D1NH00220A
crossref_primary_10_1021_acs_nanolett_3c00771
crossref_primary_10_1021_acs_chemrev_3c00170
crossref_primary_10_1039_D1CP03721H
crossref_primary_10_1063_5_0081127
crossref_primary_10_1002_admi_202300540
crossref_primary_10_1063_5_0110395
crossref_primary_10_1002_adma_202103571
crossref_primary_10_1002_lpor_202400485
crossref_primary_10_1007_s12274_022_5008_9
crossref_primary_10_1021_acs_nanolett_4c06408
crossref_primary_10_1063_5_0225155
crossref_primary_10_7498_aps_70_20201271
crossref_primary_10_3389_fmats_2020_578791
crossref_primary_10_1002_smtd_202401404
crossref_primary_10_1002_lpor_202100322
crossref_primary_10_1002_adfm_201903929
crossref_primary_10_1016_j_mtphys_2022_100895
crossref_primary_10_3389_fmats_2021_721514
crossref_primary_10_1016_j_apsusc_2020_147033
crossref_primary_10_1088_1361_6528_aba13e
crossref_primary_10_1016_j_aca_2020_06_067
crossref_primary_10_1016_j_cej_2019_03_177
crossref_primary_10_1002_adfm_202003215
crossref_primary_10_1002_advs_202102128
Cites_doi 10.1002/anie.201409400
10.1021/acsnano.6b06405
10.1103/PhysRevB.80.125422
10.1063/1.4885215
10.1007/s12274-010-1022-4
10.1109/EDSSC.2009.5394288
10.1007/s12274-015-0895-7
10.1021/acs.nanolett.6b03607
10.1038/ncomms5458
10.1039/c3nr06906k
10.1021/acs.nanolett.5b04540
10.1103/PhysRevB.63.094305
10.1088/2053-1583/1/2/025001
10.1103/PhysRevB.78.134106
10.1039/C5NR08065G
10.1038/ncomms6246
10.1103/PhysRevB.90.085402
10.1038/nphoton.2015.23
10.1063/1.96983
10.1039/C5NR04349B
10.1103/PhysRevB.78.075435
10.1002/jrs.5238
10.1021/nl5047329
10.1002/smtd.201700409
10.1016/0927-0256(96)00008-0
10.1109/IEDM.2015.7409812
10.1021/nn401429w
10.1021/acsnano.5b05151
10.1063/1.4894273
10.1038/nnano.2015.71
10.1021/acs.nanolett.5b01117
10.1021/nl500935z
10.1021/nl5032293
10.1002/smll.201700466
10.1038/srep08989
10.1021/acsnano.5b00698
10.1021/acs.nanolett.5b04768
10.1038/ncomms5475
10.1109/DRC.2015.7175628
10.1021/nn501226z
10.1021/nl5008085
10.1002/anie.201410108
10.1103/PhysRevLett.77.3865
10.1103/PhysRevB.87.081307
10.1002/adfm.201600986
10.1038/nnano.2014.35
10.1038/ncomms8315
10.1103/PhysRevLett.92.246401
ContentType Journal Article
CorporateAuthor Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
CorporateAuthor_xml – name: Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
DBID AAYXX
CITATION
NPM
7X8
OIOZB
OTOTI
DOI 10.1021/acsnano.8b06940
DatabaseName CrossRef
PubMed
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 12522
ExternalDocumentID 1489574
30507160
10_1021_acsnano_8b06940
a412643123
Genre Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
4.4
5VS
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
ABFRP
OIOZB
OTOTI
ID FETCH-LOGICAL-a401t-9ab0a44b7b3439fa4f5caa9b97ea1db5f9c2d3c282d84610a4df8fa8e1b35bd73
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Mon Jul 03 03:58:37 EDT 2023
Thu Jul 10 23:30:45 EDT 2025
Mon Jul 21 05:58:18 EDT 2025
Tue Jul 01 01:34:22 EDT 2025
Thu Apr 24 22:55:15 EDT 2025
Thu Aug 27 13:41:56 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords electron−phonon interactions
strain engineering
black phosphorus
angle-resolved Raman spectroscopy
anisotropic Poisson’s ratio
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a401t-9ab0a44b7b3439fa4f5caa9b97ea1db5f9c2d3c282d84610a4df8fa8e1b35bd73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE
AC05-00OR22725
ORCID 0000-0003-1199-0049
0000-0002-0256-3750
0000000202563750
0000000311990049
OpenAccessLink https://www.osti.gov/servlets/purl/1489574
PMID 30507160
PQID 2149851115
PQPubID 23479
PageCount 11
ParticipantIDs osti_scitechconnect_1489574
proquest_miscellaneous_2149851115
pubmed_primary_30507160
crossref_primary_10_1021_acsnano_8b06940
crossref_citationtrail_10_1021_acsnano_8b06940
acs_journals_10_1021_acsnano_8b06940
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-26
PublicationDateYYYYMMDD 2018-12-26
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-26
  day: 26
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2018
Publisher American Chemical Society
American Chemical Society (ACS)
Publisher_xml – name: American Chemical Society
– name: American Chemical Society (ACS)
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref13/cit13
  doi: 10.1002/anie.201409400
– ident: ref50/cit50
  doi: 10.1021/acsnano.6b06405
– ident: ref30/cit30
  doi: 10.1103/PhysRevB.80.125422
– ident: ref24/cit24
  doi: 10.1063/1.4885215
– ident: ref21/cit21
  doi: 10.1007/s12274-010-1022-4
– ident: ref22/cit22
  doi: 10.1109/EDSSC.2009.5394288
– ident: ref33/cit33
  doi: 10.1007/s12274-015-0895-7
– ident: ref36/cit36
  doi: 10.1021/acs.nanolett.6b03607
– ident: ref3/cit3
  doi: 10.1038/ncomms5458
– ident: ref49/cit49
  doi: 10.1039/c3nr06906k
– ident: ref19/cit19
– ident: ref23/cit23
  doi: 10.1021/acs.nanolett.5b04540
– ident: ref48/cit48
  doi: 10.1103/PhysRevB.63.094305
– ident: ref4/cit4
  doi: 10.1088/2053-1583/1/2/025001
– ident: ref47/cit47
  doi: 10.1103/PhysRevB.78.134106
– ident: ref14/cit14
  doi: 10.1039/C5NR08065G
– ident: ref28/cit28
  doi: 10.1038/ncomms6246
– ident: ref26/cit26
  doi: 10.1103/PhysRevB.90.085402
– ident: ref16/cit16
  doi: 10.1038/nphoton.2015.23
– ident: ref17/cit17
  doi: 10.1063/1.96983
– ident: ref43/cit43
  doi: 10.1039/C5NR04349B
– ident: ref20/cit20
  doi: 10.1103/PhysRevB.78.075435
– ident: ref40/cit40
  doi: 10.1002/jrs.5238
– ident: ref10/cit10
  doi: 10.1021/nl5047329
– ident: ref39/cit39
  doi: 10.1002/smtd.201700409
– ident: ref44/cit44
  doi: 10.1016/0927-0256(96)00008-0
– ident: ref12/cit12
  doi: 10.1109/IEDM.2015.7409812
– ident: ref29/cit29
  doi: 10.1021/nn401429w
– ident: ref32/cit32
  doi: 10.1021/acsnano.5b05151
– ident: ref27/cit27
  doi: 10.1063/1.4894273
– ident: ref6/cit6
  doi: 10.1038/nnano.2015.71
– ident: ref41/cit41
  doi: 10.1021/acs.nanolett.5b01117
– ident: ref25/cit25
  doi: 10.1021/nl500935z
– ident: ref18/cit18
– ident: ref8/cit8
  doi: 10.1021/nl5032293
– ident: ref34/cit34
  doi: 10.1002/smll.201700466
– ident: ref7/cit7
  doi: 10.1038/srep08989
– ident: ref42/cit42
  doi: 10.1021/acsnano.5b00698
– ident: ref11/cit11
  doi: 10.1021/acs.nanolett.5b04768
– ident: ref5/cit5
  doi: 10.1038/ncomms5475
– ident: ref31/cit31
  doi: 10.1109/DRC.2015.7175628
– ident: ref1/cit1
  doi: 10.1021/nn501226z
– ident: ref15/cit15
  doi: 10.1021/nl5008085
– ident: ref38/cit38
  doi: 10.1002/anie.201410108
– ident: ref45/cit45
  doi: 10.1103/PhysRevLett.77.3865
– ident: ref37/cit37
  doi: 10.1103/PhysRevB.87.081307
– ident: ref35/cit35
  doi: 10.1002/adfm.201600986
– ident: ref2/cit2
  doi: 10.1038/nnano.2014.35
– ident: ref9/cit9
  doi: 10.1038/ncomms8315
– ident: ref46/cit46
  doi: 10.1103/PhysRevLett.92.246401
SSID ssj0057876
Score 2.4668603
Snippet Few-layer black phosphorus (BP) with an in-plane puckered crystalline structure has attracted intense interest for strain engineering due to both its...
SourceID osti
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12512
SubjectTerms angle-resolved Raman spectroscopy
anisotropic Poisson’s ratio
black phosphorus
electron−phonon interactions
MATERIALS SCIENCE
strain engineering
Title Anisotropic Electron–Phonon Interactions in Angle-Resolved Raman Study of Strained Black Phosphorus
URI http://dx.doi.org/10.1021/acsnano.8b06940
https://www.ncbi.nlm.nih.gov/pubmed/30507160
https://www.proquest.com/docview/2149851115
https://www.osti.gov/servlets/purl/1489574
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLZQucCBX2PQDZCRduCSrnGcxDlW06YKCYQ2KvUWPTv2Vq3YVZ0ijRP_A_8hfwnPSdoxqmpco9iJ7We_7_N7_kzIkUyUGSpVRAXXLOISWASgIdJoTEzGAn1KOOD86XM2nvCP03R6Kxb9bwSfxcegvAXrBkKGM5rIzh-yTOSBZ41OLtaLbrC7rA0gI0FGFLFR8dmqILgh5e-4oZ7D6bQbYjau5uxpm6TlG4XCkGFyPVjVcqB-bOs33t-KZ-RJBzjpqLWQ5-SBti_I479kCPeIHtmZd_XSLWaKnnb34vz--evLlbPO0mbTsD3_4OnM0pG9nOso7PvPv-uKnsM3sDTkI95QZ-hFc-kEPm-2BinW4RdXbrnyL8nk7PTryTjqrl-IAElXHRUgh8C5zGWCqMUAN6kCKGSRa4grmZpCsSpRyNkqEVTbgVdGGBA6lkkqqzzZJz38S_2aUARhJs0LrQziM5lIiaAjzUDkKlO54XGfHGEHld308WUTGWdx2fVa2fVanwzWg1aqTsI8NGq-u8CHTYFFq96x-9XDYAUlAo-gnqtCmpGqkRmJIs15n7xfG0eJ8y8EVcBqt_IlQ4oZUGuc9smr1mo2n8K1FBFcNjz4v-YdkkcIx0RIlmHZG9Krlyv9FiFPLd81xv4HZ-X-mQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB5V4QAceD_SFjBSD1w2ZHe9r2NUtQrQVkBbqTdr7LXbiNQbxZtK5cR_4B_ySzre3YSXIsHVWnv9GHu-8cx8BtiRsTJDpYqg4DoKuMQoQNQYaBKmSIY56RSf4Hx4lI5P-fuz5GwDhstcGOqEo5Zc48T_yS4QvqUyi7Ya5NKnapKRfougSOTNrdHu8fLs9eKXtn5kspMJTKzIfP5qwGsj5X7TRr2KdtV6pNlonP378GnV1ybQ5MtgUcuB-voHjeP_DOYB3OvgJxu18vIQNrR9BHd_ISV8DHpkJ66q59Vsothe90rOj2_fP15UtrKsuUJssyEcm1g2sudTHXgvwPRKl-wzXqJlPjrxmlWGHTdPUFB5c1HIqA03u6jmC_cETvf3TnbHQfcYQ4BkgtVBgXKInMtMxoRhDHKTKMRCFpnGsJSJKVRUxoosuDL3HO7IS5MbzHUo40SWWfwUetRL_RwYQTKTZIVWhtCajKUkCJKkmGcqVZnhYR92aIJEt5mcaPzkUSi6WRPdrPVhsFw7oTpCcz-o6foKb1YVZi2Xx_pPt7wwCIIhnktX-aAjVZOdlBdJxvvweikjgnajd7Gg1dXCiYgMTo9hw6QPz1rhWf2KTlbCc-lw89-G9wpuj08OD8TBu6MPW3CHgFruw2iidBt69XyhXxAYquXLRv5vAA8-Bwk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZQkRAceD_K8jDSHrikNInzOlbLVstrtWKptLdo7Ni7FcWu6hQJTvwH_iG_hJnErXioElytxLGdGc83npnPjO3LVJmxUlVUCZ1EQkISAWiINApTIuMSbQoVOL87zo9m4vVZdhaKwqgWBgfhsSffBfFJq5eNCQwD8Qtst2DdqJRUromO-mUK2pHLNTk43ey_JIJ5H0tGXxkBxZbQ568OyCIp_5tFGjjUrN1os7M60xtsth1vl2zycbRu5Uh9_YPK8X8ndJNdDzCUT3q5ucUuaXubXfuFnPAO0xM7965dueVc8cNwW86Pb99PLpx1lndHiX1VhOdzyyf2fKEjigYsPuuGv4dPYDllKX7hzvDT7ioKbO8ODDn24ZcXbrX2d9lsevjh4CgKlzJEgK5YG1UgxyCELGSKWMaAMJkCqGRVaIgbmZlKJU2q0JNrSuJyB9GY0kCpY5lmsinSe2yAo9QPGEdoZrKi0sogapOplAhFshzKQuWqMCIesn1coDoola-7eHkS12HV6rBqQzba_L9aBWJzmtRi9wvPty8se06P3Y_ukUDUCEeIU1dR8pFq0V8qq6wQQ_ZsIyc1aiWFWsBqt_Z1go4nYdk4G7L7vQBtP4U7LOK6fPzw36b3lF05eTmt3746frPHriJeKymbJskfsUG7WuvHiIla-aRTgZ97igmM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anisotropic+Electron-Phonon+Interactions+in+Angle-Resolved+Raman+Study+of+Strained+Black+Phosphorus&rft.jtitle=ACS+nano&rft.au=Zhu%2C+Weinan&rft.au=Liang%2C+Liangbo&rft.au=Roberts%2C+Richard+H&rft.au=Lin%2C+Jung-Fu&rft.date=2018-12-26&rft.issn=1936-086X&rft.eissn=1936-086X&rft.volume=12&rft.issue=12&rft.spage=12512&rft_id=info:doi/10.1021%2Facsnano.8b06940&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon