Building Highly Reliable Quantitative Structure–Activity Relationship Classification Models Using the Rivality Index Neighborhood Algorithm with Feature Selection

Dimensionality reduction of the data set representation for the construction of the quantitative structure–activity relationship classification models is an important research subject for the interpretability of the models and the computational cost efficiency of the classification algorithms. Featu...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemical information and modeling Vol. 60; no. 1; pp. 133 - 151
Main Authors Ruiz, Irene Luque, Gómez-Nieto, Miguel Ángel
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 27.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Dimensionality reduction of the data set representation for the construction of the quantitative structure–activity relationship classification models is an important research subject for the interpretability of the models and the computational cost efficiency of the classification algorithms. Feature selection techniques are appropriate as only a short number of relevant features should be used in the classification process because irrelevant and redundant features should be discarded, the same as the noninterpretable ones. In this paper, we propose an embedded feature selection technique for the construction of classification models using the rivality index neighborhood (RINH) algorithm. This technique uses a filter selection in the preprocessing stage considering the selectivity of the features as a selection criterion and a wrapper technique in the processing stage based on the improvement of the accuracy and reliability of the models generated using the RINH algorithm with LTN and GTN functions. The results obtained using the RINH algorithm with and without the selection of features and compared with those results obtained using 14 machine learning algorithms have demonstrated that the feature selection technique proposed in this paper is capable of clearly building more accurate and reliable models, reducing the data dimensionality around 90%, and generating high robust and interpretable models.
AbstractList Dimensionality reduction of the data set representation for the construction of the quantitative structure-activity relationship classification models is an important research subject for the interpretability of the models and the computational cost efficiency of the classification algorithms. Feature selection techniques are appropriate as only a short number of relevant features should be used in the classification process because irrelevant and redundant features should be discarded, the same as the noninterpretable ones. In this paper, we propose an embedded feature selection technique for the construction of classification models using the rivality index neighborhood (RINH) algorithm. This technique uses a filter selection in the preprocessing stage considering the selectivity of the features as a selection criterion and a wrapper technique in the processing stage based on the improvement of the accuracy and reliability of the models generated using the RINH algorithm with LTN and GTN functions. The results obtained using the RINH algorithm with and without the selection of features and compared with those results obtained using 14 machine learning algorithms have demonstrated that the feature selection technique proposed in this paper is capable of clearly building more accurate and reliable models, reducing the data dimensionality around 90%, and generating high robust and interpretable models.Dimensionality reduction of the data set representation for the construction of the quantitative structure-activity relationship classification models is an important research subject for the interpretability of the models and the computational cost efficiency of the classification algorithms. Feature selection techniques are appropriate as only a short number of relevant features should be used in the classification process because irrelevant and redundant features should be discarded, the same as the noninterpretable ones. In this paper, we propose an embedded feature selection technique for the construction of classification models using the rivality index neighborhood (RINH) algorithm. This technique uses a filter selection in the preprocessing stage considering the selectivity of the features as a selection criterion and a wrapper technique in the processing stage based on the improvement of the accuracy and reliability of the models generated using the RINH algorithm with LTN and GTN functions. The results obtained using the RINH algorithm with and without the selection of features and compared with those results obtained using 14 machine learning algorithms have demonstrated that the feature selection technique proposed in this paper is capable of clearly building more accurate and reliable models, reducing the data dimensionality around 90%, and generating high robust and interpretable models.
Dimensionality reduction of the data set representation for the construction of the quantitative structure–activity relationship classification models is an important research subject for the interpretability of the models and the computational cost efficiency of the classification algorithms. Feature selection techniques are appropriate as only a short number of relevant features should be used in the classification process because irrelevant and redundant features should be discarded, the same as the noninterpretable ones. In this paper, we propose an embedded feature selection technique for the construction of classification models using the rivality index neighborhood (RINH) algorithm. This technique uses a filter selection in the preprocessing stage considering the selectivity of the features as a selection criterion and a wrapper technique in the processing stage based on the improvement of the accuracy and reliability of the models generated using the RINH algorithm with LTN and GTN functions. The results obtained using the RINH algorithm with and without the selection of features and compared with those results obtained using 14 machine learning algorithms have demonstrated that the feature selection technique proposed in this paper is capable of clearly building more accurate and reliable models, reducing the data dimensionality around 90%, and generating high robust and interpretable models.
Author Ruiz, Irene Luque
Gómez-Nieto, Miguel Ángel
AuthorAffiliation Department of Computing and Numerical Analysis
AuthorAffiliation_xml – name: Department of Computing and Numerical Analysis
Author_xml – sequence: 1
  givenname: Irene Luque
  orcidid: 0000-0003-2996-7429
  surname: Ruiz
  fullname: Ruiz, Irene Luque
  email: iluque@uco.es
– sequence: 2
  givenname: Miguel Ángel
  orcidid: 0000-0002-1946-5495
  surname: Gómez-Nieto
  fullname: Gómez-Nieto, Miguel Ángel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31940204$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhSNURH9gzwpZYsOCGa4dJxMvhxGllQqIlkrsLMe5mfHIiQfbKXTHO_AKPBlPgjM_m0qwsa3r75x7dc9pdtS7HrPsOYUpBUbfKB2ma226qagBZlA-yk5owcVElPD16PAuRHmcnYawBshzUbIn2XFOBQcG_CT7_XYwtjH9klyY5crek2u0RtUWyedB9dFEFc0dkpvoBx0Hj39-_prrVDJxi6Zf14eV2ZCFVSGY1uhtiXxwDdpAbsNoHVdIrs2dsqPqsm_wB_mIqV3t_Mq5hszt0nkTVx35nk5yjmpsRW7Qoh7dnmaPW2UDPtvfZ9nt-bsvi4vJ1af3l4v51URxoHHCWYG6Eq2q2rKZQSOqvKSCoqoLXlY5MIZcswrboqgpAKhZzVuldcKrFnLIz7JXO9-Nd98GDFF2Jmi0VvXohiBZ2t9MQAFlQl8-QNdu8H2aLlG8YgUTnCbqxZ4a6g4bufGmU_5eHvafgHIHaO9C8NhKvV2566NXxkoKcgxapqDlGLTcB52E8EB48P6P5PVOsv05TPtP_C9z2cBX
CitedBy_id crossref_primary_10_1016_j_neuri_2021_100009
crossref_primary_10_4155_fmc_2020_0229
crossref_primary_10_1016_j_chemolab_2024_105278
crossref_primary_10_1016_j_neuri_2022_100059
crossref_primary_10_1021_acs_jcim_1c00519
crossref_primary_10_3390_molecules25122764
crossref_primary_10_1021_acs_jcim_9b01067
Cites_doi 10.1162/153244303322753616
10.1093/bioinformatics/btm344
10.1021/ci400573c
10.1016/j.patcog.2014.11.010
10.1007/s00044-017-1906-x
10.1016/j.artmed.2004.01.007
10.1201/9781584888796
10.1021/jm4004285
10.1016/j.chemolab.2015.04.013
10.1016/j.neucom.2019.01.017
10.1021/ci049875d
10.1007/s10115-012-0487-8
10.3390/ijms10051978
10.1021/acs.jcim.8b00188
10.1080/1062936X.2016.1250229
10.1007/s00521-013-1368-0
10.1016/j.neucom.2016.11.001
10.1002/jcc.21707
10.1016/j.eswa.2018.11.006
10.1023/A:1025667309714
10.5120/169-295
10.1016/j.asoc.2019.04.037
10.1016/j.drudis.2016.06.013
10.1016/j.compeleceng.2013.11.024
10.1016/j.neucom.2015.01.070
10.1021/ci010291a
10.2174/1389200215666140908102230
10.1002/9783527613106
10.1021/acs.jcim.9b00264
10.1021/ci600332j
10.2174/157340907782799417
10.1016/S0004-3702(97)00043-X
ContentType Journal Article
Copyright Copyright American Chemical Society Jan 27, 2020
Copyright_xml – notice: Copyright American Chemical Society Jan 27, 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
DOI 10.1021/acs.jcim.9b00706
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1549-960X
EndPage 151
ExternalDocumentID 31940204
10_1021_acs_jcim_9b00706
b496744305
Genre Journal Article
GroupedDBID -
55A
5GY
7~N
AABXI
ABFLS
ABMVS
ABUCX
ACGFS
ACIWK
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
D0L
DU5
EBS
ED
ED~
F5P
GNL
IH9
JG
JG~
P2P
PQEST
PQQKQ
RNS
ROL
UI2
VF5
VG9
W1F
X
---
-~X
4.4
5VS
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-a401t-425ec89fa8f6d70d9836191eab54683022e4c28ef55b1000a7b4facc8f68f0303
IEDL.DBID ACS
ISSN 1549-9596
1549-960X
IngestDate Thu Jul 10 17:26:41 EDT 2025
Mon Jun 30 10:53:56 EDT 2025
Mon Jul 21 06:01:44 EDT 2025
Thu Apr 24 23:08:33 EDT 2025
Tue Jul 01 03:04:37 EDT 2025
Thu Aug 27 22:10:25 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a401t-425ec89fa8f6d70d9836191eab54683022e4c28ef55b1000a7b4facc8f68f0303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2996-7429
0000-0002-1946-5495
PMID 31940204
PQID 2348252941
PQPubID 28739
PageCount 19
ParticipantIDs proquest_miscellaneous_2339790506
proquest_journals_2348252941
pubmed_primary_31940204
crossref_citationtrail_10_1021_acs_jcim_9b00706
crossref_primary_10_1021_acs_jcim_9b00706
acs_journals_10_1021_acs_jcim_9b00706
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-27
PublicationDateYYYYMMDD 2020-01-27
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-27
  day: 27
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Journal of chemical information and modeling
PublicationTitleAlternate J. Chem. Inf. Model
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
Todeschini R. (ref6/cit6) 2000
ref37/cit37
ref28/cit28
ref20/cit20
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
Jolliffe I. T. (ref15/cit15) 2002
ref22/cit22
ref13/cit13
Liu H. (ref17/cit17) 2007
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref7/cit7
References_xml – ident: ref11/cit11
  doi: 10.1162/153244303322753616
– ident: ref12/cit12
  doi: 10.1093/bioinformatics/btm344
– ident: ref18/cit18
  doi: 10.1021/ci400573c
– ident: ref21/cit21
  doi: 10.1016/j.patcog.2014.11.010
– ident: ref5/cit5
  doi: 10.1007/s00044-017-1906-x
– ident: ref19/cit19
  doi: 10.1016/j.artmed.2004.01.007
– volume-title: Computational Methods of Feature Selection
  year: 2007
  ident: ref17/cit17
  doi: 10.1201/9781584888796
– ident: ref37/cit37
– ident: ref4/cit4
  doi: 10.1021/jm4004285
– ident: ref31/cit31
  doi: 10.1016/j.chemolab.2015.04.013
– ident: ref36/cit36
– ident: ref26/cit26
  doi: 10.1016/j.neucom.2019.01.017
– ident: ref10/cit10
  doi: 10.1021/ci049875d
– ident: ref13/cit13
  doi: 10.1007/s10115-012-0487-8
– ident: ref1/cit1
  doi: 10.3390/ijms10051978
– ident: ref33/cit33
– ident: ref35/cit35
– ident: ref29/cit29
  doi: 10.1021/acs.jcim.8b00188
– ident: ref32/cit32
  doi: 10.1080/1062936X.2016.1250229
– ident: ref22/cit22
  doi: 10.1007/s00521-013-1368-0
– ident: ref20/cit20
  doi: 10.1016/j.neucom.2016.11.001
– ident: ref34/cit34
  doi: 10.1002/jcc.21707
– ident: ref27/cit27
  doi: 10.1016/j.eswa.2018.11.006
– ident: ref16/cit16
  doi: 10.1023/A:1025667309714
– ident: ref24/cit24
  doi: 10.5120/169-295
– ident: ref28/cit28
  doi: 10.1016/j.asoc.2019.04.037
– ident: ref7/cit7
  doi: 10.1016/j.drudis.2016.06.013
– ident: ref14/cit14
  doi: 10.1016/j.compeleceng.2013.11.024
– ident: ref25/cit25
  doi: 10.1016/j.neucom.2015.01.070
– ident: ref9/cit9
  doi: 10.1021/ci010291a
– ident: ref8/cit8
  doi: 10.2174/1389200215666140908102230
– volume-title: Handbook of Molecular Descriptors
  year: 2000
  ident: ref6/cit6
  doi: 10.1002/9783527613106
– ident: ref30/cit30
  doi: 10.1021/acs.jcim.9b00264
– ident: ref2/cit2
  doi: 10.1021/ci600332j
– ident: ref3/cit3
  doi: 10.2174/157340907782799417
– ident: ref23/cit23
  doi: 10.1016/S0004-3702(97)00043-X
– volume-title: Principal Component Analysis
  year: 2002
  ident: ref15/cit15
SSID ssj0033962
Score 2.3384004
Snippet Dimensionality reduction of the data set representation for the construction of the quantitative structure–activity relationship classification models is an...
Dimensionality reduction of the data set representation for the construction of the quantitative structure-activity relationship classification models is an...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 133
SubjectTerms Algorithms
Classification
Machine Learning
Model accuracy
Models, Molecular
Quantitative Structure-Activity Relationship
Reproducibility of Results
Selectivity
Title Building Highly Reliable Quantitative Structure–Activity Relationship Classification Models Using the Rivality Index Neighborhood Algorithm with Feature Selection
URI http://dx.doi.org/10.1021/acs.jcim.9b00706
https://www.ncbi.nlm.nih.gov/pubmed/31940204
https://www.proquest.com/docview/2348252941
https://www.proquest.com/docview/2339790506
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELaqcigXKC3QpaUaJDhwyDZx7I1zXFatSiUqwVKptyieOHTpNls1u0hw4h14BZ6MJ2HGSbYqP1WvieMk9nj82TP-PiFeFoipDWMMCAqUgdIJ0phTLlCoYusIcmjPM_vueHB4oo5O9ek1Tc6fEXwZ7eVY9z_j5KLP7H0Js2vfkwOT8EJrOBp3XjeOUy8eyoxjQarTLiT5rxp4IsL65kT0H3TpZ5mDh41cUe3JCTm55Ly_mNs-fvubuvEOP7AuHrRgE4aNdTwSK67aEGujTuNtU_x806piA-d7TL8CZyjzYSp4v8grf_6MvCGMPcns4sr9-v5jiI3eBCzT6M4ml-C1NTnryF8CVlib1uDzEYAgJnyYfPGAH94yOyMc84YsWR9zKsNw-ml2NZmfXQBvCgODUnoVjL1CD9X2WJwc7H8cHQatbkOQ02ptHpAbcGjSMjfloEjCIjUxLdMil1utBsw3Jp1CaVypteXwQp5YVeaIVNyU5HTiJ2K1mlVuS0BkpcE4tiUScAutNalBXUYuLNAVViU98YqaN2vHXZ35kLqMMn-R2jxr27wn9rrOzrAlP2cNjuktT7xePnHZEH_cUnans5_rT5FMG6RlqqKeeLG8Tf3LEZm8crMFl-Gwaqi5iqeN3S1fRr6R1_bq2R1_cVvcl7wXEEaBTHbEKlmGe06AaW53_Uj5Dc5qFSY
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtNAEB6VciiX8g-BAoNEDxyc2ut1bB84hECV0DYSpJV6M971mqakTlUnoHLiHXgCJJ6ER-FJmNnYrkBQcanEdb1_3pnZnZmd_QbgSaZ1rFxfO6QK5I4MQk0yJ40jtfSVIZUjsDizO8NOf0--2g_2l-Br_RaGJlFST6W9xD9DF_A2uOxQj4_aDOIXup0qjnLLnH4kK618NnhBJF0XYvPlbq_vVIkEnJTMh5lDfGl0FOdplHey0M3iyCe7wTOpCmSHAbCEkVpEJg8Cxf7uNFQyT7Wm6lFOUuBTv5fgMuk-gu27bm9Ub_a-H9ucpQx05sRBXN-E_mnGfP7p8tfz7y9KrT3cNq_C92ZZbEzL-_Z8ptr602-Ikf_1ul2D1Uq1xu5CFq7DkiluwEqvzmh3E749r3KAI0e3TE6R47H56Ri-nqeFfW1Hez-OLKTu_MT8-PylqxfZNbAJGjwYH6PNJMoxVrYIOZ_cpEQbfYGkUOOb8Qdr3uCAsShxyO5nkjVGkMbu5N30ZDw7OEJ2gSOr4DQUjmw-IurtFuxdyCLdhuViWpi7gJ4SkfZ9lWtSU12lojjSQe4ZN9MmUzJswTqRM6l2mTKxAQTCS2wh0TipaNyCjZrHEl1BvXPGkck5LZ42LY4XMCfn1F2r2fZsKoJBkgIRS68Fj5vPRF--f0oLM51zHb5EdgPu4s6C3ZvB6CRgT4a894-_-AhW-rs728n2YLh1H64I9oK4niPCNVgmLjEPSFWcqYdWWBHeXjSX_wQGQnbD
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtNAEF6VIgEX_qGBAoNEDxyc2uvd2D5wCClRQyECQqXejHe92wZSJ6oTUDnxDrwCvAoPwpMws7GNQFBxqcR1s15vdmY8v_sNYw9yrRPlh9pDU8B6QkYaZU4YT2gRKoMmh3Q4s8-Hne1d8XRP7q2wr_VdGNxEiSuVLolPUj3LbYUwEGzS-Fs9PmwTkF_kd6payh1z_AE9tfLRYAvJusF5_8nr3rZXNRPwMnQh5h7yptFxYrPYdvLIz5M4RN8hMJmSokMgWNwIzWNjpVQU884iJWymNU6PLUpCiOueYWcpS0g-Xrc3qj_4YZi4vqUEduYlMqmzoX_aMelAXf6qA_9i2DoF17_EvjVH4-pa3rUXc9XWH39Djfzvz-4yu1iZ2NBdysQVtmKKq-x8r-5sd419eVz1AgeqcpkcA9Vl0xUyeLnICnfrDnUAjBy07uLIfP_0uauXXTagKR48GM_AdRSlWis3BNRXblKCq8IANKzh1fi9c3NgQJiUMKQwNMocIUlDd7I_PRrPDw6BQuFApji-CkauLxGudp3tnsoh3WCrxbQwawwCxWMdhspqNFd9peIk1tIGxs-1yZWIWmwDyZlWX5sydYUEPEjdINI4rWjcYps1n6W6gnynziOTE5542DwxW8KdnDB3vWbdn1vhBJYkeSKCFrvf_Iz0pTxUVpjpguZQMtmXtMTNJcs3L0ONQBENcesf_-I9du7FVj99Nhju3GYXOAVD_MDj0TpbRSYxd9BinKu7Tl6BvTltJv8BJ3t5Rg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Building+Highly+Reliable+Quantitative+Structure%E2%80%93Activity+Relationship+Classification+Models+Using+the+Rivality+Index+Neighborhood+Algorithm+with+Feature+Selection&rft.jtitle=Journal+of+chemical+information+and+modeling&rft.au=Ruiz%2C+Irene+Luque&rft.au=G%C3%B3mez-Nieto%2C+Miguel+%C3%81ngel&rft.date=2020-01-27&rft.pub=American+Chemical+Society&rft.issn=1549-9596&rft.eissn=1549-960X&rft.volume=60&rft.issue=1&rft.spage=133&rft_id=info:doi/10.1021%2Facs.jcim.9b00706&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9596&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9596&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9596&client=summon