Building Highly Reliable Quantitative Structure–Activity Relationship Classification Models Using the Rivality Index Neighborhood Algorithm with Feature Selection
Dimensionality reduction of the data set representation for the construction of the quantitative structure–activity relationship classification models is an important research subject for the interpretability of the models and the computational cost efficiency of the classification algorithms. Featu...
Saved in:
Published in | Journal of chemical information and modeling Vol. 60; no. 1; pp. 133 - 151 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
27.01.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Dimensionality reduction of the data set representation for the construction of the quantitative structure–activity relationship classification models is an important research subject for the interpretability of the models and the computational cost efficiency of the classification algorithms. Feature selection techniques are appropriate as only a short number of relevant features should be used in the classification process because irrelevant and redundant features should be discarded, the same as the noninterpretable ones. In this paper, we propose an embedded feature selection technique for the construction of classification models using the rivality index neighborhood (RINH) algorithm. This technique uses a filter selection in the preprocessing stage considering the selectivity of the features as a selection criterion and a wrapper technique in the processing stage based on the improvement of the accuracy and reliability of the models generated using the RINH algorithm with LTN and GTN functions. The results obtained using the RINH algorithm with and without the selection of features and compared with those results obtained using 14 machine learning algorithms have demonstrated that the feature selection technique proposed in this paper is capable of clearly building more accurate and reliable models, reducing the data dimensionality around 90%, and generating high robust and interpretable models. |
---|---|
AbstractList | Dimensionality reduction of the data set representation for the construction of the quantitative structure-activity relationship classification models is an important research subject for the interpretability of the models and the computational cost efficiency of the classification algorithms. Feature selection techniques are appropriate as only a short number of relevant features should be used in the classification process because irrelevant and redundant features should be discarded, the same as the noninterpretable ones. In this paper, we propose an embedded feature selection technique for the construction of classification models using the rivality index neighborhood (RINH) algorithm. This technique uses a filter selection in the preprocessing stage considering the selectivity of the features as a selection criterion and a wrapper technique in the processing stage based on the improvement of the accuracy and reliability of the models generated using the RINH algorithm with LTN and GTN functions. The results obtained using the RINH algorithm with and without the selection of features and compared with those results obtained using 14 machine learning algorithms have demonstrated that the feature selection technique proposed in this paper is capable of clearly building more accurate and reliable models, reducing the data dimensionality around 90%, and generating high robust and interpretable models.Dimensionality reduction of the data set representation for the construction of the quantitative structure-activity relationship classification models is an important research subject for the interpretability of the models and the computational cost efficiency of the classification algorithms. Feature selection techniques are appropriate as only a short number of relevant features should be used in the classification process because irrelevant and redundant features should be discarded, the same as the noninterpretable ones. In this paper, we propose an embedded feature selection technique for the construction of classification models using the rivality index neighborhood (RINH) algorithm. This technique uses a filter selection in the preprocessing stage considering the selectivity of the features as a selection criterion and a wrapper technique in the processing stage based on the improvement of the accuracy and reliability of the models generated using the RINH algorithm with LTN and GTN functions. The results obtained using the RINH algorithm with and without the selection of features and compared with those results obtained using 14 machine learning algorithms have demonstrated that the feature selection technique proposed in this paper is capable of clearly building more accurate and reliable models, reducing the data dimensionality around 90%, and generating high robust and interpretable models. Dimensionality reduction of the data set representation for the construction of the quantitative structure–activity relationship classification models is an important research subject for the interpretability of the models and the computational cost efficiency of the classification algorithms. Feature selection techniques are appropriate as only a short number of relevant features should be used in the classification process because irrelevant and redundant features should be discarded, the same as the noninterpretable ones. In this paper, we propose an embedded feature selection technique for the construction of classification models using the rivality index neighborhood (RINH) algorithm. This technique uses a filter selection in the preprocessing stage considering the selectivity of the features as a selection criterion and a wrapper technique in the processing stage based on the improvement of the accuracy and reliability of the models generated using the RINH algorithm with LTN and GTN functions. The results obtained using the RINH algorithm with and without the selection of features and compared with those results obtained using 14 machine learning algorithms have demonstrated that the feature selection technique proposed in this paper is capable of clearly building more accurate and reliable models, reducing the data dimensionality around 90%, and generating high robust and interpretable models. |
Author | Ruiz, Irene Luque Gómez-Nieto, Miguel Ángel |
AuthorAffiliation | Department of Computing and Numerical Analysis |
AuthorAffiliation_xml | – name: Department of Computing and Numerical Analysis |
Author_xml | – sequence: 1 givenname: Irene Luque orcidid: 0000-0003-2996-7429 surname: Ruiz fullname: Ruiz, Irene Luque email: iluque@uco.es – sequence: 2 givenname: Miguel Ángel orcidid: 0000-0002-1946-5495 surname: Gómez-Nieto fullname: Gómez-Nieto, Miguel Ángel |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31940204$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1u1DAUhSNURH9gzwpZYsOCGa4dJxMvhxGllQqIlkrsLMe5mfHIiQfbKXTHO_AKPBlPgjM_m0qwsa3r75x7dc9pdtS7HrPsOYUpBUbfKB2ma226qagBZlA-yk5owcVElPD16PAuRHmcnYawBshzUbIn2XFOBQcG_CT7_XYwtjH9klyY5crek2u0RtUWyedB9dFEFc0dkpvoBx0Hj39-_prrVDJxi6Zf14eV2ZCFVSGY1uhtiXxwDdpAbsNoHVdIrs2dsqPqsm_wB_mIqV3t_Mq5hszt0nkTVx35nk5yjmpsRW7Qoh7dnmaPW2UDPtvfZ9nt-bsvi4vJ1af3l4v51URxoHHCWYG6Eq2q2rKZQSOqvKSCoqoLXlY5MIZcswrboqgpAKhZzVuldcKrFnLIz7JXO9-Nd98GDFF2Jmi0VvXohiBZ2t9MQAFlQl8-QNdu8H2aLlG8YgUTnCbqxZ4a6g4bufGmU_5eHvafgHIHaO9C8NhKvV2566NXxkoKcgxapqDlGLTcB52E8EB48P6P5PVOsv05TPtP_C9z2cBX |
CitedBy_id | crossref_primary_10_1016_j_neuri_2021_100009 crossref_primary_10_4155_fmc_2020_0229 crossref_primary_10_1016_j_chemolab_2024_105278 crossref_primary_10_1016_j_neuri_2022_100059 crossref_primary_10_1021_acs_jcim_1c00519 crossref_primary_10_3390_molecules25122764 crossref_primary_10_1021_acs_jcim_9b01067 |
Cites_doi | 10.1162/153244303322753616 10.1093/bioinformatics/btm344 10.1021/ci400573c 10.1016/j.patcog.2014.11.010 10.1007/s00044-017-1906-x 10.1016/j.artmed.2004.01.007 10.1201/9781584888796 10.1021/jm4004285 10.1016/j.chemolab.2015.04.013 10.1016/j.neucom.2019.01.017 10.1021/ci049875d 10.1007/s10115-012-0487-8 10.3390/ijms10051978 10.1021/acs.jcim.8b00188 10.1080/1062936X.2016.1250229 10.1007/s00521-013-1368-0 10.1016/j.neucom.2016.11.001 10.1002/jcc.21707 10.1016/j.eswa.2018.11.006 10.1023/A:1025667309714 10.5120/169-295 10.1016/j.asoc.2019.04.037 10.1016/j.drudis.2016.06.013 10.1016/j.compeleceng.2013.11.024 10.1016/j.neucom.2015.01.070 10.1021/ci010291a 10.2174/1389200215666140908102230 10.1002/9783527613106 10.1021/acs.jcim.9b00264 10.1021/ci600332j 10.2174/157340907782799417 10.1016/S0004-3702(97)00043-X |
ContentType | Journal Article |
Copyright | Copyright American Chemical Society Jan 27, 2020 |
Copyright_xml | – notice: Copyright American Chemical Society Jan 27, 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 |
DOI | 10.1021/acs.jcim.9b00706 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1549-960X |
EndPage | 151 |
ExternalDocumentID | 31940204 10_1021_acs_jcim_9b00706 b496744305 |
Genre | Journal Article |
GroupedDBID | - 55A 5GY 7~N AABXI ABFLS ABMVS ABUCX ACGFS ACIWK ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ D0L DU5 EBS ED ED~ F5P GNL IH9 JG JG~ P2P PQEST PQQKQ RNS ROL UI2 VF5 VG9 W1F X --- -~X 4.4 5VS AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-a401t-425ec89fa8f6d70d9836191eab54683022e4c28ef55b1000a7b4facc8f68f0303 |
IEDL.DBID | ACS |
ISSN | 1549-9596 1549-960X |
IngestDate | Thu Jul 10 17:26:41 EDT 2025 Mon Jun 30 10:53:56 EDT 2025 Mon Jul 21 06:01:44 EDT 2025 Thu Apr 24 23:08:33 EDT 2025 Tue Jul 01 03:04:37 EDT 2025 Thu Aug 27 22:10:25 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a401t-425ec89fa8f6d70d9836191eab54683022e4c28ef55b1000a7b4facc8f68f0303 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2996-7429 0000-0002-1946-5495 |
PMID | 31940204 |
PQID | 2348252941 |
PQPubID | 28739 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_2339790506 proquest_journals_2348252941 pubmed_primary_31940204 crossref_citationtrail_10_1021_acs_jcim_9b00706 crossref_primary_10_1021_acs_jcim_9b00706 acs_journals_10_1021_acs_jcim_9b00706 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-27 |
PublicationDateYYYYMMDD | 2020-01-27 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Journal of chemical information and modeling |
PublicationTitleAlternate | J. Chem. Inf. Model |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 Todeschini R. (ref6/cit6) 2000 ref37/cit37 ref28/cit28 ref20/cit20 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 Jolliffe I. T. (ref15/cit15) 2002 ref22/cit22 ref13/cit13 Liu H. (ref17/cit17) 2007 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref7/cit7 |
References_xml | – ident: ref11/cit11 doi: 10.1162/153244303322753616 – ident: ref12/cit12 doi: 10.1093/bioinformatics/btm344 – ident: ref18/cit18 doi: 10.1021/ci400573c – ident: ref21/cit21 doi: 10.1016/j.patcog.2014.11.010 – ident: ref5/cit5 doi: 10.1007/s00044-017-1906-x – ident: ref19/cit19 doi: 10.1016/j.artmed.2004.01.007 – volume-title: Computational Methods of Feature Selection year: 2007 ident: ref17/cit17 doi: 10.1201/9781584888796 – ident: ref37/cit37 – ident: ref4/cit4 doi: 10.1021/jm4004285 – ident: ref31/cit31 doi: 10.1016/j.chemolab.2015.04.013 – ident: ref36/cit36 – ident: ref26/cit26 doi: 10.1016/j.neucom.2019.01.017 – ident: ref10/cit10 doi: 10.1021/ci049875d – ident: ref13/cit13 doi: 10.1007/s10115-012-0487-8 – ident: ref1/cit1 doi: 10.3390/ijms10051978 – ident: ref33/cit33 – ident: ref35/cit35 – ident: ref29/cit29 doi: 10.1021/acs.jcim.8b00188 – ident: ref32/cit32 doi: 10.1080/1062936X.2016.1250229 – ident: ref22/cit22 doi: 10.1007/s00521-013-1368-0 – ident: ref20/cit20 doi: 10.1016/j.neucom.2016.11.001 – ident: ref34/cit34 doi: 10.1002/jcc.21707 – ident: ref27/cit27 doi: 10.1016/j.eswa.2018.11.006 – ident: ref16/cit16 doi: 10.1023/A:1025667309714 – ident: ref24/cit24 doi: 10.5120/169-295 – ident: ref28/cit28 doi: 10.1016/j.asoc.2019.04.037 – ident: ref7/cit7 doi: 10.1016/j.drudis.2016.06.013 – ident: ref14/cit14 doi: 10.1016/j.compeleceng.2013.11.024 – ident: ref25/cit25 doi: 10.1016/j.neucom.2015.01.070 – ident: ref9/cit9 doi: 10.1021/ci010291a – ident: ref8/cit8 doi: 10.2174/1389200215666140908102230 – volume-title: Handbook of Molecular Descriptors year: 2000 ident: ref6/cit6 doi: 10.1002/9783527613106 – ident: ref30/cit30 doi: 10.1021/acs.jcim.9b00264 – ident: ref2/cit2 doi: 10.1021/ci600332j – ident: ref3/cit3 doi: 10.2174/157340907782799417 – ident: ref23/cit23 doi: 10.1016/S0004-3702(97)00043-X – volume-title: Principal Component Analysis year: 2002 ident: ref15/cit15 |
SSID | ssj0033962 |
Score | 2.3384004 |
Snippet | Dimensionality reduction of the data set representation for the construction of the quantitative structure–activity relationship classification models is an... Dimensionality reduction of the data set representation for the construction of the quantitative structure-activity relationship classification models is an... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 133 |
SubjectTerms | Algorithms Classification Machine Learning Model accuracy Models, Molecular Quantitative Structure-Activity Relationship Reproducibility of Results Selectivity |
Title | Building Highly Reliable Quantitative Structure–Activity Relationship Classification Models Using the Rivality Index Neighborhood Algorithm with Feature Selection |
URI | http://dx.doi.org/10.1021/acs.jcim.9b00706 https://www.ncbi.nlm.nih.gov/pubmed/31940204 https://www.proquest.com/docview/2348252941 https://www.proquest.com/docview/2339790506 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELaqcigXKC3QpaUaJDhwyDZx7I1zXFatSiUqwVKptyieOHTpNls1u0hw4h14BZ6MJ2HGSbYqP1WvieMk9nj82TP-PiFeFoipDWMMCAqUgdIJ0phTLlCoYusIcmjPM_vueHB4oo5O9ek1Tc6fEXwZ7eVY9z_j5KLP7H0Js2vfkwOT8EJrOBp3XjeOUy8eyoxjQarTLiT5rxp4IsL65kT0H3TpZ5mDh41cUe3JCTm55Ly_mNs-fvubuvEOP7AuHrRgE4aNdTwSK67aEGujTuNtU_x806piA-d7TL8CZyjzYSp4v8grf_6MvCGMPcns4sr9-v5jiI3eBCzT6M4ml-C1NTnryF8CVlib1uDzEYAgJnyYfPGAH94yOyMc84YsWR9zKsNw-ml2NZmfXQBvCgODUnoVjL1CD9X2WJwc7H8cHQatbkOQ02ptHpAbcGjSMjfloEjCIjUxLdMil1utBsw3Jp1CaVypteXwQp5YVeaIVNyU5HTiJ2K1mlVuS0BkpcE4tiUScAutNalBXUYuLNAVViU98YqaN2vHXZ35kLqMMn-R2jxr27wn9rrOzrAlP2cNjuktT7xePnHZEH_cUnans5_rT5FMG6RlqqKeeLG8Tf3LEZm8crMFl-Gwaqi5iqeN3S1fRr6R1_bq2R1_cVvcl7wXEEaBTHbEKlmGe06AaW53_Uj5Dc5qFSY |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtNAEB6VciiX8g-BAoNEDxyc2ut1bB84hECV0DYSpJV6M971mqakTlUnoHLiHXgCJJ6ER-FJmNnYrkBQcanEdb1_3pnZnZmd_QbgSaZ1rFxfO6QK5I4MQk0yJ40jtfSVIZUjsDizO8NOf0--2g_2l-Br_RaGJlFST6W9xD9DF_A2uOxQj4_aDOIXup0qjnLLnH4kK618NnhBJF0XYvPlbq_vVIkEnJTMh5lDfGl0FOdplHey0M3iyCe7wTOpCmSHAbCEkVpEJg8Cxf7uNFQyT7Wm6lFOUuBTv5fgMuk-gu27bm9Ub_a-H9ucpQx05sRBXN-E_mnGfP7p8tfz7y9KrT3cNq_C92ZZbEzL-_Z8ptr602-Ikf_1ul2D1Uq1xu5CFq7DkiluwEqvzmh3E749r3KAI0e3TE6R47H56Ri-nqeFfW1Hez-OLKTu_MT8-PylqxfZNbAJGjwYH6PNJMoxVrYIOZ_cpEQbfYGkUOOb8Qdr3uCAsShxyO5nkjVGkMbu5N30ZDw7OEJ2gSOr4DQUjmw-IurtFuxdyCLdhuViWpi7gJ4SkfZ9lWtSU12lojjSQe4ZN9MmUzJswTqRM6l2mTKxAQTCS2wh0TipaNyCjZrHEl1BvXPGkck5LZ42LY4XMCfn1F2r2fZsKoJBkgIRS68Fj5vPRF--f0oLM51zHb5EdgPu4s6C3ZvB6CRgT4a894-_-AhW-rs728n2YLh1H64I9oK4niPCNVgmLjEPSFWcqYdWWBHeXjSX_wQGQnbD |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtNAEF6VIgEX_qGBAoNEDxyc2uvd2D5wCClRQyECQqXejHe92wZSJ6oTUDnxDrwCvAoPwpMws7GNQFBxqcR1s15vdmY8v_sNYw9yrRPlh9pDU8B6QkYaZU4YT2gRKoMmh3Q4s8-Hne1d8XRP7q2wr_VdGNxEiSuVLolPUj3LbYUwEGzS-Fs9PmwTkF_kd6payh1z_AE9tfLRYAvJusF5_8nr3rZXNRPwMnQh5h7yptFxYrPYdvLIz5M4RN8hMJmSokMgWNwIzWNjpVQU884iJWymNU6PLUpCiOueYWcpS0g-Xrc3qj_4YZi4vqUEduYlMqmzoX_aMelAXf6qA_9i2DoF17_EvjVH4-pa3rUXc9XWH39Djfzvz-4yu1iZ2NBdysQVtmKKq-x8r-5sd419eVz1AgeqcpkcA9Vl0xUyeLnICnfrDnUAjBy07uLIfP_0uauXXTagKR48GM_AdRSlWis3BNRXblKCq8IANKzh1fi9c3NgQJiUMKQwNMocIUlDd7I_PRrPDw6BQuFApji-CkauLxGudp3tnsoh3WCrxbQwawwCxWMdhspqNFd9peIk1tIGxs-1yZWIWmwDyZlWX5sydYUEPEjdINI4rWjcYps1n6W6gnynziOTE5542DwxW8KdnDB3vWbdn1vhBJYkeSKCFrvf_Iz0pTxUVpjpguZQMtmXtMTNJcs3L0ONQBENcesf_-I9du7FVj99Nhju3GYXOAVD_MDj0TpbRSYxd9BinKu7Tl6BvTltJv8BJ3t5Rg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Building+Highly+Reliable+Quantitative+Structure%E2%80%93Activity+Relationship+Classification+Models+Using+the+Rivality+Index+Neighborhood+Algorithm+with+Feature+Selection&rft.jtitle=Journal+of+chemical+information+and+modeling&rft.au=Ruiz%2C+Irene+Luque&rft.au=G%C3%B3mez-Nieto%2C+Miguel+%C3%81ngel&rft.date=2020-01-27&rft.pub=American+Chemical+Society&rft.issn=1549-9596&rft.eissn=1549-960X&rft.volume=60&rft.issue=1&rft.spage=133&rft_id=info:doi/10.1021%2Facs.jcim.9b00706&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9596&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9596&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9596&client=summon |