Bioturbation and erosion rates along the soil‐hillslope conveyor belt, part 1: Insights from single‐grain feldspar luminescence
The interplay of bioturbation, soil production and long‐term erosion–deposition in soil and landscape co‐evolution is poorly understood. Single‐grain post‐infrared infrared stimulated luminescence (post‐IR IRSL) measurements on sand‐sized grains of feldspar from the soil matrix can provide direct in...
Saved in:
Published in | Earth surface processes and landforms Vol. 44; no. 10; pp. 2051 - 2065 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Wiley Subscription Services, Inc
01.08.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0197-9337 1096-9837 |
DOI | 10.1002/esp.4628 |
Cover
Loading…
Abstract | The interplay of bioturbation, soil production and long‐term erosion–deposition in soil and landscape co‐evolution is poorly understood. Single‐grain post‐infrared infrared stimulated luminescence (post‐IR IRSL) measurements on sand‐sized grains of feldspar from the soil matrix can provide direct information on all three processes. To explore the potential of this novel method, we propose a conceptual model of how post‐IR IRSL‐derived burial age and fraction of surface‐visiting grains change with soil depth and along a hillslope catena. We then tested this conceptual model by comparison with post‐IR IRSL results for 15 samples taken at different depths within four soil profiles along a hillslope catena in the Santa Clotilde Critical Zone Observatory (southern Spain).
In our work, we observed clear differences in apparent post‐IR IRSL burial age distributions with depth along the catena, with younger ages and more linear age–depth structure for the hill‐base profile, indicating the influence of lateral deposition processes. We noted shallower soils and truncated burial age–depth functions for the two erosional mid‐slope profiles, and an exponential decline of burial age with depth for the hill‐top profile. We suggest that the downslope increase in the fraction of surface‐visiting grains at intermediate depths (20 cm) indicates creep to be the dominant erosion process.
Our study demonstrates that single‐grain feldspar luminescence signature‐depth profiles provide a new way of tracing vertical and lateral soil mixing and transport processes. In addition, we propose a new objective luminescence‐based criterion for mapping the soil‐bedrock boundary, thus producing soil depths in better agreement with geomorphological process considerations. Our work highlights the possibilities of feldspar single grain techniques to provide quantitative insights into soil production, bioturbation and erosion–deposition. © 2019 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd.
We successfully reconstruct soil reworking using feldspar single‐grain luminescence.
A new conceptual model explains the observed luminescence trends along a hillslope catena.
We are able to disentangle bioturbation, soil production and erosion/ deposition based on two luminescence proxies.
Luminescence data provides more robust measures of soil thickness than field observations. |
---|---|
AbstractList | The interplay of bioturbation, soil production and long‐term erosion–deposition in soil and landscape co‐evolution is poorly understood. Single‐grain post‐infrared infrared stimulated luminescence (post‐IR IRSL) measurements on sand‐sized grains of feldspar from the soil matrix can provide direct information on all three processes. To explore the potential of this novel method, we propose a conceptual model of how post‐IR IRSL‐derived burial age and fraction of surface‐visiting grains change with soil depth and along a hillslope catena. We then tested this conceptual model by comparison with post‐IR IRSL results for 15 samples taken at different depths within four soil profiles along a hillslope catena in the Santa Clotilde Critical Zone Observatory (southern Spain).
In our work, we observed clear differences in apparent post‐IR IRSL burial age distributions with depth along the catena, with younger ages and more linear age–depth structure for the hill‐base profile, indicating the influence of lateral deposition processes. We noted shallower soils and truncated burial age–depth functions for the two erosional mid‐slope profiles, and an exponential decline of burial age with depth for the hill‐top profile. We suggest that the downslope increase in the fraction of surface‐visiting grains at intermediate depths (20 cm) indicates creep to be the dominant erosion process.
Our study demonstrates that single‐grain feldspar luminescence signature‐depth profiles provide a new way of tracing vertical and lateral soil mixing and transport processes. In addition, we propose a new objective luminescence‐based criterion for mapping the soil‐bedrock boundary, thus producing soil depths in better agreement with geomorphological process considerations. Our work highlights the possibilities of feldspar single grain techniques to provide quantitative insights into soil production, bioturbation and erosion–deposition. © 2019 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd.
We successfully reconstruct soil reworking using feldspar single‐grain luminescence.
A new conceptual model explains the observed luminescence trends along a hillslope catena.
We are able to disentangle bioturbation, soil production and erosion/ deposition based on two luminescence proxies.
Luminescence data provides more robust measures of soil thickness than field observations. The interplay of bioturbation, soil production and long-term erosion–deposition in soil and landscape co-evolution is poorly understood. Single-grain post-infrared infrared stimulated luminescence (post-IR IRSL) measurements on sand-sized grains of feldspar from the soil matrix can provide direct information on all three processes. To explore the potential of this novel method, we propose a conceptual model of how post-IR IRSL-derived burial age and fraction of surface-visiting grains change with soil depth and along a hillslope catena. We then tested this conceptual model by comparison with post-IR IRSL results for 15 samples taken at different depths within four soil profiles along a hillslope catena in the Santa Clotilde Critical Zone Observatory (southern Spain). In our work, we observed clear differences in apparent post-IR IRSL burial age distributions with depth along the catena, with younger ages and more linear age–depth structure for the hill-base profile, indicating the influence of lateral deposition processes. We noted shallower soils and truncated burial age–depth functions for the two erosional mid-slope profiles, and an exponential decline of burial age with depth for the hill-top profile. We suggest that the downslope increase in the fraction of surface-visiting grains at intermediate depths (20 cm) indicates creep to be the dominant erosion process. Our study demonstrates that single-grain feldspar luminescence signature-depth profiles provide a new way of tracing vertical and lateral soil mixing and transport processes. In addition, we propose a new objective luminescence-based criterion for mapping the soil-bedrock boundary, thus producing soil depths in better agreement with geomorphological process considerations. Our work highlights the possibilities of feldspar single grain techniques to provide quantitative insights into soil production, bioturbation and erosion–deposition. The interplay of bioturbation, soil production and long‐term erosion–deposition in soil and landscape co‐evolution is poorly understood. Single‐grain post‐infrared infrared stimulated luminescence (post‐IR IRSL) measurements on sand‐sized grains of feldspar from the soil matrix can provide direct information on all three processes. To explore the potential of this novel method, we propose a conceptual model of how post‐IR IRSL‐derived burial age and fraction of surface‐visiting grains change with soil depth and along a hillslope catena. We then tested this conceptual model by comparison with post‐IR IRSL results for 15 samples taken at different depths within four soil profiles along a hillslope catena in the Santa Clotilde Critical Zone Observatory (southern Spain). In our work, we observed clear differences in apparent post‐IR IRSL burial age distributions with depth along the catena, with younger ages and more linear age–depth structure for the hill‐base profile, indicating the influence of lateral deposition processes. We noted shallower soils and truncated burial age–depth functions for the two erosional mid‐slope profiles, and an exponential decline of burial age with depth for the hill‐top profile. We suggest that the downslope increase in the fraction of surface‐visiting grains at intermediate depths (20 cm) indicates creep to be the dominant erosion process. Our study demonstrates that single‐grain feldspar luminescence signature‐depth profiles provide a new way of tracing vertical and lateral soil mixing and transport processes. In addition, we propose a new objective luminescence‐based criterion for mapping the soil‐bedrock boundary, thus producing soil depths in better agreement with geomorphological process considerations. Our work highlights the possibilities of feldspar single grain techniques to provide quantitative insights into soil production, bioturbation and erosion–deposition. © 2019 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd. The interplay of bioturbation, soil production and long‐term erosion–deposition in soil and landscape co‐evolution is poorly understood. Single‐grain post‐infrared infrared stimulated luminescence (post‐IR IRSL) measurements on sand‐sized grains of feldspar from the soil matrix can provide direct information on all three processes. To explore the potential of this novel method, we propose a conceptual model of how post‐IR IRSL‐derived burial age and fraction of surface‐visiting grains change with soil depth and along a hillslope catena. We then tested this conceptual model by comparison with post‐IR IRSL results for 15 samples taken at different depths within four soil profiles along a hillslope catena in the Santa Clotilde Critical Zone Observatory (southern Spain).In our work, we observed clear differences in apparent post‐IR IRSL burial age distributions with depth along the catena, with younger ages and more linear age–depth structure for the hill‐base profile, indicating the influence of lateral deposition processes. We noted shallower soils and truncated burial age–depth functions for the two erosional mid‐slope profiles, and an exponential decline of burial age with depth for the hill‐top profile. We suggest that the downslope increase in the fraction of surface‐visiting grains at intermediate depths (20 cm) indicates creep to be the dominant erosion process.Our study demonstrates that single‐grain feldspar luminescence signature‐depth profiles provide a new way of tracing vertical and lateral soil mixing and transport processes. In addition, we propose a new objective luminescence‐based criterion for mapping the soil‐bedrock boundary, thus producing soil depths in better agreement with geomorphological process considerations. Our work highlights the possibilities of feldspar single grain techniques to provide quantitative insights into soil production, bioturbation and erosion–deposition. © 2019 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd. |
Author | Reimann, Tony Román‐Sánchez, Andrea Vanwalleghem, Tom Wallinga, Jakob |
Author_xml | – sequence: 1 givenname: Andrea orcidid: 0000-0001-5176-1051 surname: Román‐Sánchez fullname: Román‐Sánchez, Andrea organization: Wageningen University – sequence: 2 givenname: Tony orcidid: 0000-0002-9253-4418 surname: Reimann fullname: Reimann, Tony email: tony.reimann@wur.nl organization: Wageningen University – sequence: 3 givenname: Jakob surname: Wallinga fullname: Wallinga, Jakob organization: Wageningen University – sequence: 4 givenname: Tom surname: Vanwalleghem fullname: Vanwalleghem, Tom organization: University of Cordoba |
BookMark | eNp1kc9qFTEYxYNU8LYKPkLAjQvnmmT-Jd1pqW2hoKCuQ5L5Zm5KbjImGcvdCb6Az-iTmOntSnT1ncXvHA7fOUUnPnhA6CUlW0oIewtp3jYd40_QhhLRVYLX_QnaECr6StR1_wydpnRHCKUNFxv0870NeYlaZRs8Vn7AEENadVQZElYu-AnnHeAUrPv949fOOpdcmAGb4L_DIUSsweU3eFYxY3qOb3yy0y4nPMawx8n6yUHxTVFZj0dwQyokdsveekgGvIHn6OmoXIIXj_cMff1w-eXiurr9eHVz8e62Ug2hvKpBj7w1jEHXUUpaqnStOyHIQNtWiEYoblSvx4H0LWHEDHoQpqi-59ByQuszdH7MvVcT-FIMvPQqGptkUFY6q6OKB3m_ROndeuZFJ9m2jLCumF8dzXMM3xZIWd6FJfrSVzLW9T3jddMU6vWRMuWLKcIo52j3ayolct1Hln3kuk9Bt3-hxuaHGXJ5lfuXoXqsbx0c_hssLz9_euD_AMRjqEM |
CitedBy_id | crossref_primary_10_1002_esp_5016 crossref_primary_10_1002_esp_5357 crossref_primary_10_5194_soil_10_567_2024 crossref_primary_10_1002_esp_4982 crossref_primary_10_1016_j_earscirev_2024_104804 crossref_primary_10_5194_soil_11_51_2025 crossref_primary_10_1016_j_geoderma_2020_114753 crossref_primary_10_1016_j_soilbio_2023_109289 crossref_primary_10_1016_j_catena_2021_105430 crossref_primary_10_1111_bor_12679 crossref_primary_10_1016_j_geomorph_2020_107296 crossref_primary_10_1016_j_catena_2025_108963 crossref_primary_10_1016_j_earscirev_2025_105103 crossref_primary_10_1073_pnas_1914140117 crossref_primary_10_5194_gchron_5_241_2023 crossref_primary_10_1016_j_catena_2022_106709 crossref_primary_10_1007_s10668_024_05673_4 crossref_primary_10_1038_s41598_023_32005_9 crossref_primary_10_1016_j_geoderma_2020_114261 crossref_primary_10_1016_j_quageo_2024_101585 crossref_primary_10_1016_j_quageo_2022_101343 crossref_primary_10_5194_bg_20_3367_2023 crossref_primary_10_1016_j_earscirev_2022_103945 crossref_primary_10_1186_s40677_020_00158_8 crossref_primary_10_2139_ssrn_4118119 crossref_primary_10_1002_ldr_3443 crossref_primary_10_1016_j_quageo_2024_101502 crossref_primary_10_1111_ejss_12982 crossref_primary_10_5194_soil_8_319_2022 crossref_primary_10_1016_j_catena_2024_108554 |
Cites_doi | 10.1016/j.geomorph.2008.08.025 10.1016/j.quageo.2014.09.001 10.1016/S0016-7037(03)00382-X 10.1130/G24285A.1 10.1016/j.geomorph.2014.12.031 10.1139/e01-013 10.1016/0277-3791(88)90033-9 10.1126/science.1244908 10.1016/j.quageo.2017.07.002 10.1079/9780851993942.0025 10.1016/j.radmeas.2008.06.002 10.1146/annurev.earth.31.100901.141314 10.1016/j.quageo.2015.02.026 10.1071/SR04158 10.1029/2009JF001591 10.1016/j.radmeas.2005.11.001 10.1016/j.geomorph.2016.05.005 10.1002/esp.3520 10.1016/j.ecss.2011.02.004 10.1016/j.margeo.2004.10.034 10.1002/2015JF003479 10.1130/B31115.1 10.1111/ejss.12012 10.1002/esp.4337 10.1029/2009JF001526 10.1016/j.geoderma.2013.10.007 10.1016/j.quageo.2015.12.006 10.1029/2017JF004315 10.1002/esp.1112 10.1111/j.1475-4754.1979.tb00241.x 10.1016/j.radmeas.2012.01.014 10.1029/2017JF004316 10.1038/41056 10.1016/j.earscirev.2009.06.004 10.1016/j.geomorph.2013.08.030 10.1016/j.quageo.2012.04.016 10.1130/0091-7613(2002)030<0111:CS>2.0.CO;2 10.5194/hess-11-1633-2007 10.1016/1350-4487(94)90086-8 10.1130/0091-7613(2000)28<787:SPOARE>2.0.CO;2 10.1038/s41467-018-05743-y 10.1016/j.earscirev.2009.09.005 |
ContentType | Journal Article |
Copyright | 2019 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd. 2019 John Wiley & Sons, Ltd. Wageningen University & Research |
Copyright_xml | – notice: 2019 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd. – notice: 2019 John Wiley & Sons, Ltd. – notice: Wageningen University & Research |
DBID | 24P AAYXX CITATION 7TG 7UA 8FD C1K F1W FR3 H96 KL. KR7 L.G QVL |
DOI | 10.1002/esp.4628 |
DatabaseName | Wiley Online Library Open Access CrossRef Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional NARCIS:Publications |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology |
EISSN | 1096-9837 |
EndPage | 2065 |
ExternalDocumentID | oai_library_wur_nl_wurpubs_552026 10_1002_esp_4628 ESP4628 |
Genre | article |
GroupedDBID | -DZ -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABIJN ABJNI ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CS3 D-E D-F DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M62 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OHT OIG OVD P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TEORI UB1 V2E VH1 W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WUPDE WWD WXSBR WYISQ XG1 XKC XPP XV2 ZY4 ZZTAW ~02 ~IA ~WT AAYXX ADXHL AEYWJ AGHNM AGQPQ AGYGG CITATION 7TG 7UA 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H96 KL. KR7 L.G AAPBV ABHUG ABWRO ACSMX ACXME ADAWD ADDAD AFVGU AGJLS IPNFZ QVL |
ID | FETCH-LOGICAL-a4018-3ebf85c22e6611051ab3b6990d1559949a8ca7bfd075020cdbd9c502778e58013 |
IEDL.DBID | 24P |
ISSN | 0197-9337 |
IngestDate | Thu Oct 13 09:31:52 EDT 2022 Fri Jul 25 12:11:14 EDT 2025 Thu Apr 24 23:00:06 EDT 2025 Tue Jul 01 01:27:41 EDT 2025 Wed Jan 22 16:40:38 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a4018-3ebf85c22e6611051ab3b6990d1559949a8ca7bfd075020cdbd9c502778e58013 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9253-4418 0000-0001-5176-1051 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fesp.4628 |
PQID | 2267728344 |
PQPubID | 866381 |
PageCount | 15 |
ParticipantIDs | wageningen_narcis_oai_library_wur_nl_wurpubs_552026 proquest_journals_2267728344 crossref_primary_10_1002_esp_4628 crossref_citationtrail_10_1002_esp_4628 wiley_primary_10_1002_esp_4628_ESP4628 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2019 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: August 2019 |
PublicationDecade | 2010 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationSubtitle | The Journal of the British Geomorphological Research Group |
PublicationTitle | Earth surface processes and landforms |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 42 2014; 216 2004; 29 2015; 30 2005; 214 2013; 64 2016; 32 1994; 23 2008; 36 2017; 277 2018; 43 2012; 11 1997; 388 2014; 204 2018; 9 2009; 96 2009; 97 2001 2010; 115 1985 2011; 29 1979; 21 1988 2000; 28 2002; 30 2012 2015; 127 2018a; 123 2015; 120 2005; 43 2000; 2000 2007; 11 2003; 31 2015; 25 2006; 41 2015; 234 2011; 92 1988; 7 2019 2016 2008; 43 2001; 38 2014 2014; 39 2013 2012; 47 2009; 109 2018b; 123 2014; 343 2003; 67 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 National Research Council (e_1_2_9_29_1) 2001 e_1_2_9_33_1 IUSS Working Group (e_1_2_9_19_1) 2014 e_1_2_9_14_1 e_1_2_9_16_1 e_1_2_9_37_1 Aitken MJ (e_1_2_9_2_1) 1985 e_1_2_9_18_1 Román‐Sánchez A (e_1_2_9_39_1) 2019 Guérin G (e_1_2_9_12_1) 2011; 29 e_1_2_9_20_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 Michell PB (e_1_2_9_27_1) 1988 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_42_1 Schoeneberger PJ (e_1_2_9_41_1) 2012 Larrea FJ (e_1_2_9_22_1) 2013 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 Román‐Sánchez A (e_1_2_9_40_1) 2016 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_48_1 |
References_xml | – year: 1985 – year: 2019 article-title: Bioturbation and erosion rates along the soil–hillslope conveyor belt, part 2: quantification using an analytical solution of the diffusion–advection equation publication-title: Earth Surface Processes and Landforms – volume: 28 start-page: 787 issue: 9 year: 2000 end-page: 790 article-title: Soil production on a retreating escarpment in southeastern Australia publication-title: Geology – volume: 234 start-page: 122 year: 2015 end-page: 132 article-title: Hillslope soils and vegetation publication-title: Geomorphology – volume: 32 start-page: 53 year: 2016 end-page: 66 article-title: Sediment mixing in aeolian sandsheets identified and quantified using single‐grain optically stimulated luminescence publication-title: Quaternary Geochronology – year: 2016 article-title: Controls on soil carbon storage from topography and vegetation in a rocky, semi‐arid landscapes publication-title: Geoderma – volume: 127 start-page: 862 issue: 5–6 year: 2015 end-page: 878 article-title: Hillslope lowering rates and mobile‐regolith residence times from in situ and meteoric 10Be analysis, Boulder Creek Critical Zone Observatory, Colorado publication-title: GSA Bulletin – volume: 109 start-page: 17 year: 2009 end-page: 26 article-title: Luminescence dating of hillslope deposits — a review publication-title: Geomorphology – year: 2001 – volume: 64 start-page: 145 year: 2013 end-page: 160 article-title: Quantifying processes of pedogenesis using optically stimulated luminescence publication-title: European Journal of Soil Science – volume: 115 year: 2010 article-title: Bedrock erosion by root fracture and tree throw: a coupled biogeomorphic model to explore the humped soil production function and the persistence of hillslope soils publication-title: Journal of Geophysical Research: Earth Surface – volume: 47 start-page: 790 year: 2012 end-page: 796 article-title: Determining the K‐content of single‐grains of feldspar for luminescence dating publication-title: Radiation Measurements – volume: 214 start-page: 251 year: 2005 end-page: 268 article-title: Optically stimulated luminescence dating of young estuarine sediments: a comparison with 210Pb and 137Cs dating publication-title: Marine Geology – year: 2014 – volume: 31 start-page: 249 year: 2003 end-page: 273 article-title: The effects of bioturbation on soil processes and sediment transport publication-title: Annual Review of Earth and Planetary Sciences – volume: 43 start-page: 1575 year: 2018 end-page: 1590 article-title: Climate controls on coupled processes of chemical weathering, bioturbation, and sediment transport across hillslopes publication-title: Earth Surface Processes and Landform – volume: 11 start-page: 1633 year: 2007 end-page: 1644 article-title: Updated world map of the Köppen–Geiger climate classification publication-title: Hydrology and Earth System Science – volume: 343 start-page: 637 year: 2014 end-page: 640 article-title: Rapid soil production and weathering in the southern Alps, New Zealand publication-title: Science – volume: 96 start-page: 92 year: 2009 end-page: 106 article-title: Aphaenogaster ants as bioturbators: impacts on soil and slope processes publication-title: Earth Sciences Review – volume: 25 start-page: 37 year: 2015 end-page: 48 article-title: OSL‐thermochronometry using bedrock quartz: a note of caution publication-title: Quaternary Geochronology – volume: 97 start-page: 257 year: 2009 end-page: 272 article-title: Breaking ground: pedological, geological, and ecological implications of soil bioturbation publication-title: Earth‐Science Reviews – volume: 115 year: 2010 article-title: Reservoir theory for studying the geochemical evolution of soils publication-title: Journal of Geophysical Research – volume: 43 start-page: 1474 year: 2008 end-page: 1486 article-title: Laboratory fading rates of various luminescence signals from feldspar‐rich sediment extracts publication-title: Radiation Measurements – volume: 41 start-page: 369 year: 2006 end-page: 391 article-title: A review of quartz optically stimulated luminescence characteristics and their relevance in single‐aliquot regeneration dating protocols publication-title: Radiation Measurements – volume: 43 start-page: 767 year: 2005 end-page: 779 article-title: Exploring pedogenesis via nuclide‐based soil production rates and OSL‐based bioturbation rates publication-title: Soil Research – volume: 92 start-page: 464 year: 2011 end-page: 471 article-title: A new method for measuring bioturbation rates in sandy tidal flat sediments based on luminescence dating publication-title: Estuarine Coastal Shelf Science – volume: 29 start-page: 1597 year: 2004 end-page: 1612 article-title: Soil creep and convex‐upward velocity profiles: theoretical and experimental investigation of disturbance‐driven sediment transport on hillslopes publication-title: Earth Surface Processes and Landforms – volume: 21 start-page: 61 year: 1979 end-page: 72 article-title: Thermoluminescence dating: beta‐dose attenuation in quartz grains publication-title: Archaeometry – volume: 216 start-page: 48 year: 2014 end-page: 61 article-title: How fast does soil grow? publication-title: Geoderma – volume: 388 start-page: 358 year: 1997 end-page: 361 article-title: The soil production function and landscape equilibrium publication-title: Nature – volume: 30 start-page: 111 year: 2002 end-page: 114 article-title: Creeping soil publication-title: Geology – start-page: 43 year: 1988 end-page: 82 – volume: 39 start-page: 1188 year: 2014 end-page: 1196 article-title: Quantifying the rate and depth dependence of bioturbation based on optically‐stimulated luminescence (OSL) dates and meteoric 10Be publication-title: Earth Surface Processes & Landforms – volume: 30 start-page: 334 year: 2015 end-page: 341 article-title: Quantification of termite bioturbation in a savannah ecosystem: Application of OSL dating publication-title: Quaternary Geochronology – volume: 204 start-page: 510 year: 2014 end-page: 517 article-title: The role of climate-driven chemical weathering on soil production publication-title: Geomorphology – year: 2012 – volume: 277 start-page: 31 year: 2017 end-page: 49 article-title: The problem of predicting the size distribution of sediment supplied by hillslopes to rivers publication-title: Geomorphology – volume: 123 start-page: 1078 year: 2018b end-page: 1093 article-title: Soil particle transport and mixing near a hillslope crest: 2. Cosmogenic nuclide and optically stimulated luminescence tracers publication-title: Journal of Geophysical Research: Earth Surface – volume: 23 start-page: 497 year: 1994 end-page: 500 article-title: Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long‐term time variations publication-title: Radiation Measurements – volume: 11 start-page: 28 year: 2012 end-page: 41 article-title: Single‐grain dating of young feldspars using the pIRIR procedure publication-title: Quaternary Geochronology – volume: 29 start-page: 5 year: 2011 end-page: 8 article-title: Dose‐rate conversion factors: update publication-title: Ancient TL – volume: 7 start-page: 381 year: 1988 end-page: 385 article-title: Optical dating – K‐feldspars optical‐response stimulation spectra publication-title: Quaternary Science Reviews – volume: 9 start-page: 3329 year: 2018 article-title: Predicting soil thickness on soil mantled hillslopes publication-title: Nature Communications – volume: 36 start-page: 35 year: 2008 end-page: 38 article-title: Discrepancy between mineral residence time and soil age: implications for the interpretation of chemical weathering rates publication-title: Geology – volume: 42 start-page: 1 year: 2017 end-page: 14 article-title: Getting a grip on soil reworking – single‐grain feldspar luminescence as a novel tool to quantify soil reworking rates publication-title: Quaternary Geochronology – volume: 120 year: 2015 article-title: Particle trajectories on hillslopes: Implications for particle age and 10Be structure publication-title: Journal of Geophysical Research: Earth Surface – volume: 38 start-page: 1093 year: 2001 end-page: 1106 article-title: Ubiquity of anomalous fading in K‐feldspars and the measurement and correction for it in optical dating publication-title: Canadian Journal of Earth Sciences – volume: 2000 start-page: 25 year: 2000 end-page: 41 article-title: Keystone arthropods as webmasters in desert ecosystems publication-title: Invertebrates as Webmasters in Ecosystems – volume: 123 start-page: 1052 year: 2018a end-page: 1077 article-title: Soil particle transport and mixing near a hillslope crest: 1. Particle ages and residence times publication-title: Journal of Geophysical Research: Earth Surface – volume: 67 start-page: 4411 year: 2003 end-page: 4427 article-title: Long‐term rates of chemical weathering and physical erosion from cosmogenic nuclides and geochemical mass balance publication-title: Geochimica et Cosmochimica Acta – year: 2013 – volume-title: World Reference Base for Soil Resources 2014 year: 2014 ident: e_1_2_9_19_1 – ident: e_1_2_9_6_1 doi: 10.1016/j.geomorph.2008.08.025 – ident: e_1_2_9_13_1 doi: 10.1016/j.quageo.2014.09.001 – ident: e_1_2_9_37_1 doi: 10.1016/S0016-7037(03)00382-X – ident: e_1_2_9_52_1 doi: 10.1130/G24285A.1 – ident: e_1_2_9_3_1 doi: 10.1016/j.geomorph.2014.12.031 – ident: e_1_2_9_17_1 doi: 10.1139/e01-013 – ident: e_1_2_9_18_1 doi: 10.1016/0277-3791(88)90033-9 – volume-title: Mapa Geológico de España, escala 1:50.000, 2ª serie (MAGNA). Hoja n° 882: Cardeña, Cartografía finalizada en 1990, Memoria finalizada y revisada en 2008 year: 2013 ident: e_1_2_9_22_1 – ident: e_1_2_9_23_1 doi: 10.1126/science.1244908 – start-page: 43 volume-title: Biogeomorphology year: 1988 ident: e_1_2_9_27_1 – ident: e_1_2_9_35_1 doi: 10.1016/j.quageo.2017.07.002 – ident: e_1_2_9_48_1 doi: 10.1079/9780851993942.0025 – volume-title: Basic Research Opportunities in Earth Science year: 2001 ident: e_1_2_9_29_1 – ident: e_1_2_9_46_1 doi: 10.1016/j.radmeas.2008.06.002 – ident: e_1_2_9_9_1 doi: 10.1146/annurev.earth.31.100901.141314 – ident: e_1_2_9_21_1 doi: 10.1016/j.quageo.2015.02.026 – ident: e_1_2_9_49_1 doi: 10.1071/SR04158 – ident: e_1_2_9_28_1 doi: 10.1029/2009JF001591 – ident: e_1_2_9_51_1 doi: 10.1016/j.radmeas.2005.11.001 – ident: e_1_2_9_42_1 doi: 10.1016/j.geomorph.2016.05.005 – ident: e_1_2_9_20_1 doi: 10.1002/esp.3520 – ident: e_1_2_9_25_1 doi: 10.1016/j.ecss.2011.02.004 – ident: e_1_2_9_24_1 doi: 10.1016/j.margeo.2004.10.034 – ident: e_1_2_9_4_1 doi: 10.1002/2015JF003479 – ident: e_1_2_9_5_1 doi: 10.1130/B31115.1 – ident: e_1_2_9_44_1 doi: 10.1111/ejss.12012 – ident: e_1_2_9_47_1 doi: 10.1002/esp.4337 – ident: e_1_2_9_10_1 doi: 10.1029/2009JF001526 – ident: e_1_2_9_45_1 doi: 10.1016/j.geoderma.2013.10.007 – ident: e_1_2_9_11_1 doi: 10.1016/j.quageo.2015.12.006 – ident: e_1_2_9_7_1 doi: 10.1029/2017JF004315 – ident: e_1_2_9_38_1 doi: 10.1002/esp.1112 – ident: e_1_2_9_26_1 doi: 10.1111/j.1475-4754.1979.tb00241.x – ident: e_1_2_9_43_1 doi: 10.1016/j.radmeas.2012.01.014 – ident: e_1_2_9_8_1 doi: 10.1029/2017JF004316 – volume: 29 start-page: 5 year: 2011 ident: e_1_2_9_12_1 article-title: Dose‐rate conversion factors: update publication-title: Ancient TL – ident: e_1_2_9_14_1 doi: 10.1038/41056 – volume-title: Thermoluminescence Dating year: 1985 ident: e_1_2_9_2_1 – ident: e_1_2_9_36_1 doi: 10.1016/j.earscirev.2009.06.004 – ident: e_1_2_9_30_1 doi: 10.1016/j.geomorph.2013.08.030 – ident: e_1_2_9_34_1 doi: 10.1016/j.quageo.2012.04.016 – volume-title: Field Book for Describing and Sampling Soils year: 2012 ident: e_1_2_9_41_1 – ident: e_1_2_9_16_1 doi: 10.1130/0091-7613(2002)030<0111:CS>2.0.CO;2 – ident: e_1_2_9_32_1 doi: 10.5194/hess-11-1633-2007 – year: 2019 ident: e_1_2_9_39_1 article-title: Bioturbation and erosion rates along the soil–hillslope conveyor belt, part 2: quantification using an analytical solution of the diffusion–advection equation publication-title: Earth Surface Processes and Landforms – ident: e_1_2_9_33_1 doi: 10.1016/1350-4487(94)90086-8 – year: 2016 ident: e_1_2_9_40_1 article-title: Controls on soil carbon storage from topography and vegetation in a rocky, semi‐arid landscapes publication-title: Geoderma – ident: e_1_2_9_15_1 doi: 10.1130/0091-7613(2000)28<787:SPOARE>2.0.CO;2 – ident: e_1_2_9_31_1 doi: 10.1038/s41467-018-05743-y – ident: e_1_2_9_50_1 doi: 10.1016/j.earscirev.2009.09.005 |
SSID | ssj0011489 |
Score | 2.4162812 |
Snippet | The interplay of bioturbation, soil production and long‐term erosion–deposition in soil and landscape co‐evolution is poorly understood. Single‐grain... The interplay of bioturbation, soil production and long-term erosion–deposition in soil and landscape co-evolution is poorly understood. Single-grain... |
SourceID | wageningen proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2051 |
SubjectTerms | Age Age composition Bedrock Belt conveyors Bioturbation Critical Zone Deposition Depth Earth Earth surface Erosion Erosion processes Erosion rates Evolution feldspar luminescence Feldspars Geomorphology Grains Information processing Landforms Luminescence Profiles Soil Soil depth Soil erosion soil formation Soil mapping Soil mixing Soil profiles Soil properties Soils Solifluction Transport processes |
Title | Bioturbation and erosion rates along the soil‐hillslope conveyor belt, part 1: Insights from single‐grain feldspar luminescence |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fesp.4628 https://www.proquest.com/docview/2267728344 http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F552026 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fa9swED-2jLK8jC1dWbZsqFDWl3l1ZDuO97Y_6dLCSmlX6JuQZKUrGNlECSFvg32BfcZ9kt3JdkJhhb1YfpAQ6O50v5N0vwM4kAmxyuU8MKEKA0TgCm2Op4GOVKZ0NNKxTwr7djaaXsWn18l186qScmFqfojNgRtZht-vycClckdb0lDjqveUWPkQHlFmLek4j883NwgI87M6VToNMGhPW-LZkB-1I--6oi2-7K7QlK3PbboLWb3POX4KTxqwyD7W0n0GD4ztweOmbvmPdQ92vvrCvOtd-PXptkTvofxCM2lzZnBS-icuCMdkUdobhmiPufK2-PPzN90CuKKsDPMPz9flnClTLN6xCpWJDT-wE-socHeMMlAYHSkUBsfdUE0JNjNFjnvRnOHeRg_nNW0Qz-HqePL98zRoCiwEEsOqcRAZNRsnmnODXhqB1lCqSI3QP-V0WZnFmRxrmapZTriChzpXeaYTuvUdmwRdW7QHHVta8wKYUWmO2oCAYhjFsR7KMItQ-oZTpTxt4j4ctmstdMM-TkUwClHzJnOBUhEklT7sb3pWNePGP_oMWnGJxuacQCCJoQLVDelDtBWhsFSUyQni0W70SqyWc2ELalDpnUgSjqFoH956Wd87q5hcnlP78n87voIu4qusfi84gM5ivjSvEcMs1BuvrPj9csH_AjBa80I |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS-RAEC38YNGLrF846q69sLiXjWY6yWTinnZFHXdVhFXw1qQ7PSqEzjA9wzA3wT_gb_SXWNVJZhAUPHUOHQKpqq5X3V3vAXxPI2KVy7infel7iMAlxhyPPRXIRKqgpULXFHZ-0epch39vopsZ-FX3wpT8EJMNN4oMt15TgNOG9P6UNVTb3h51Vs7CPA4x6Tbw8HJyhIA4Pyl7pWMPq_a4Zp71-X795utcNAWYiyOMZeOam15jVpd0jj_DUoUW2e_SvMswo80KLFTC5XfjFfh04pR5x6vw-Oe-wPQh3Z9mqcmYxo_SM5FBWJbmhbllCPeYLe7z54cnOgawedHTzN08Hxd9JnU--Ml66E2secBOjaXK3TJqQWG0p5BrfO-WRCVYV-cZLkZ9hosb3ZxXtEKswfXx0dVhx6sUFrwU66q2F2jZbUeKc41pGpFWM5WBbGGCyui0MgmTtK3SWHYzAhbcV5nMEhXRsW9bR5jbgnWYM4XRG8C0jDN0B0QUzSAMVTP1kwDNrzlJ5SkdNuBH_a-FqujHSQUjFyVxMhdoFUFWacC3ycxeSbnxxpzt2lyiCjorEElirUDCIQ0IpiYUhlSZrCAi7cqxxGjYFyanAb3eiijiWIs2YNfZ-t2viqP_lzRufnTiDix0rs7PxNnpxb8tWESwlZSXB7dhbtAf6i8IaAbyq3PcF4059cU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fS9xAEB-qpdaX0lrFU1u3UPTFeLlNcrn0rX88tVU5qIJvS_bPWSFswu2J3FuhX8DP6CfpzCZ3h6Dg0-Zhl4WdmZ3fZHZ-A_A5T4hVTvPAhDIMEIFLtDmeBiqSmVRRV8W-KOz0rHt0Ef-8TC6bV5VUC1PzQ8x-uJFl-PuaDLzSw_acNNS4ap8KKxfgJeX6SLt5PJhlEBDmZ3WpdBpg0J5OiWdD3p6ufOiK5vhy-RZN2frapoeQ1fuc_lt404BF9rWW7jt4YewKvG76lv-ZrMCrQ9-Yd_Ie_n27LtF7SH_QLLeaGdyUvokLwrG8KO0VQ7THXHld3P-9oyyAK8rKMP_wfFKOmDTFeI9VqEys84UdW0eBu2NUgcLol0JhcN0V9ZRgQ1NovItGDO82ejiv6IJYhYv-wfn3o6BpsBDkGFb1gsjIYS9RnBv00gi0OrmMZBf9k6ZkZRZneU_lqRxqwhU8VFrqTCWU9e2ZBF1btAaLtrRmHZiRqUZtQEDRieJYdfIwi1D6hlOnPGXiFuxOz1qohn2cmmAUouZN5gKlIkgqLfg0m1nVjBuPzNmaiks0NucEAkkMFahvSAuiuQiFpaZMThCPdqNX4vZmJGxBAyq9E0nCMRRtwY6X9ZO7ioPfAxo3njtxG5YGP_ri5Pjs1yYsI9TK6qeDW7A4Ht2YDwhnxvKj19v_MHL09w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bioturbation+and+erosion+rates+along+the+soil-hillslope+conveyor+belt%2C+part+1%3A+Insights+from+single-grain+feldspar+luminescence&rft.jtitle=Earth+surface+processes+and+landforms&rft.au=Rom%C3%A1n-S%C3%A1nchez%2C+Andrea&rft.au=Reimann%2C+Tony&rft.au=Wallinga%2C+Jakob&rft.au=Vanwalleghem%2C+Tom&rft.date=2019-08-01&rft.issn=0197-9337&rft.eissn=1096-9837&rft_id=info:doi/10.1002%2Fesp.4628&rft.externalDBID=public&rft.externalDocID=oai_library_wur_nl_wurpubs_552026 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0197-9337&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0197-9337&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0197-9337&client=summon |