Silicon isotope fractionation during abiotic silica precipitation at low temperatures: Inferences from flow-through experiments
Silicon isotopes have considerable potential as proxy for (near-) surface processes and environmental conditions. However, unambiguous interpretations of isotope signatures in natural silica deposits are often hampered by a lack of independent quantitative information on isotopic fractionations oper...
Saved in:
Published in | Geochimica et cosmochimica acta Vol. 142; pp. 95 - 114 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
01.10.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Silicon isotopes have considerable potential as proxy for (near-) surface processes and environmental conditions. However, unambiguous interpretations of isotope signatures in natural silica deposits are often hampered by a lack of independent quantitative information on isotopic fractionations operating under the environmental conditions of interest. We performed seeded silica precipitation experiments using flow-through reactors in the 10-60 degree C temperature range to alleviate this problem. The principal objective was to quantify the silicon isotope fractionations during controlled precipitation of amorphous silica from a flowing aqueous solution. The experiments were designed to simulate silica deposition induced by a temperature drop, with particular relevance for (near-) surface hydrothermal systems associated with steep temperature gradients. Monitored differences in silicon isotope ratios ( super(30)Si/ super(28)Si and super(29)Si/ super(28)Si) between input and output solutions demonstrated a systematic sequence in behavior. During an initial time interval, that is, before the reaction system reached steady state, the observed isotope shifts were influenced by dissolution of the seed material, the saturation state of the solution and the specific surface area of the seeds. After reaching steady state, the selective incorporation of silicon isotopes by the solid phase exhibited an explicit temperature dependency: the lighter isotopes were preferentially incorporated, and apparent fractionation magnitudes increased with decreasing temperature. Calculated magnitudes of silicon isotope fractionations between precipitated and dissolved silica ( Delta super(30)Si = delta super(30)Si sub(precipitate (calculated)) - delta super(30)Si sub(input solution)) were -2.1ppt at 10 degree C, -1.2ppt at 20 degree C, -1.0ppt at 30 degree C, -0.5ppt at 40 degree C, 0.1ppt at 50 degree C, and 0.2ppt at 60 degree C (s.d. [el] 0.6ppt, based on replicate experiments). Hence, fractionation was nearly insignificant at temperatures >=50 degree C. Apart from this relationship with temperature, our results indicate that the effective Si isotope fractionation during precipitation from a solution is subject to changes in the saturation state, reactive surface area and flow regime. We therefore infer that, to a significant extent, solid-fluid fractionation in natural (near-) surface environments is system dependent. |
---|---|
AbstractList | Silicon isotopes have considerable potential as proxy for (near-) surface processes and environmental conditions. However, unambiguous interpretations of isotope signatures in natural silica deposits are often hampered by a lack of independent quantitative information on isotopic fractionations operating under the environmental conditions of interest. We performed seeded silica precipitation experiments using flow-through reactors in the 10-60 degree C temperature range to alleviate this problem. The principal objective was to quantify the silicon isotope fractionations during controlled precipitation of amorphous silica from a flowing aqueous solution. The experiments were designed to simulate silica deposition induced by a temperature drop, with particular relevance for (near-) surface hydrothermal systems associated with steep temperature gradients. Monitored differences in silicon isotope ratios ( super(30)Si/ super(28)Si and super(29)Si/ super(28)Si) between input and output solutions demonstrated a systematic sequence in behavior. During an initial time interval, that is, before the reaction system reached steady state, the observed isotope shifts were influenced by dissolution of the seed material, the saturation state of the solution and the specific surface area of the seeds. After reaching steady state, the selective incorporation of silicon isotopes by the solid phase exhibited an explicit temperature dependency: the lighter isotopes were preferentially incorporated, and apparent fractionation magnitudes increased with decreasing temperature. Calculated magnitudes of silicon isotope fractionations between precipitated and dissolved silica ( Delta super(30)Si = delta super(30)Si sub(precipitate (calculated)) - delta super(30)Si sub(input solution)) were -2.1ppt at 10 degree C, -1.2ppt at 20 degree C, -1.0ppt at 30 degree C, -0.5ppt at 40 degree C, 0.1ppt at 50 degree C, and 0.2ppt at 60 degree C (s.d. [el] 0.6ppt, based on replicate experiments). Hence, fractionation was nearly insignificant at temperatures >=50 degree C. Apart from this relationship with temperature, our results indicate that the effective Si isotope fractionation during precipitation from a solution is subject to changes in the saturation state, reactive surface area and flow regime. We therefore infer that, to a significant extent, solid-fluid fractionation in natural (near-) surface environments is system dependent. |
Author | Roerdink, Desiree L. van Bergen, Manfred J. Vroon, Pieter Z. Geilert, Sonja Van Cappellen, Philippe |
Author_xml | – sequence: 1 givenname: Sonja surname: Geilert fullname: Geilert, Sonja – sequence: 2 givenname: Pieter Z. surname: Vroon fullname: Vroon, Pieter Z. – sequence: 3 givenname: Desiree L. surname: Roerdink fullname: Roerdink, Desiree L. – sequence: 4 givenname: Philippe surname: Van Cappellen fullname: Van Cappellen, Philippe – sequence: 5 givenname: Manfred J. surname: van Bergen fullname: van Bergen, Manfred J. |
BookMark | eNqNkTtPAzEQhF0EiSTwA-hc0tyxvod9oUMRj0iRKIDacpy9xNHFPmyfgIq_jqOkokA0u8V-M9LsTMjIOouEXDHIGTB-s8s3WuUFsCoHkQOUIzKGdMgElOKcTELYAYCoaxiT7xfTGe0sNcFF1yNtvdLROKsOg64Hb-yGqpVx0WgaDrCivUdtehOPjIq0cx804r5Hr-LgMdzShW3Ro9UYkqPb0zYhWdx6N2y2FD8TafZoY7ggZ63qAl6e9pS8Pdy_zp-y5fPjYn63zFQFEDNEDkJXIFSJIgVDLtY1Q62aoq2Lqm3UCteCQ6HrhmGtVpxrMWt4JbCpCijKKbk--vbevQ8YotyboLHrlEU3BMl4zaqSNaz5B1oVvKj5jCeUHVHtXQgeW9mnXMp_SQby0IXcydSFPHQhQcjURdKIXxp9-mT0ynR_KH8ArEOWpQ |
CitedBy_id | crossref_primary_10_1016_j_apgeochem_2024_106052 crossref_primary_10_1515_geochr_2015_0107 crossref_primary_10_1016_j_apgeochem_2018_09_013 crossref_primary_10_1038_s41598_019_44249_5 crossref_primary_10_1016_j_jas_2015_09_002 crossref_primary_10_3389_feart_2017_00112 crossref_primary_10_1016_j_palaeo_2020_109961 crossref_primary_10_2139_ssrn_4126824 crossref_primary_10_1002_2016JG003443 crossref_primary_10_4012_dmj_2018_264 crossref_primary_10_1016_j_chemgeo_2016_04_008 crossref_primary_10_1016_j_chemgeo_2020_119787 crossref_primary_10_1016_j_epsl_2021_117193 crossref_primary_10_1016_j_gca_2020_08_018 crossref_primary_10_1016_j_chemgeo_2015_02_038 crossref_primary_10_1016_j_epsl_2024_119098 crossref_primary_10_1029_2022GL099365 crossref_primary_10_1016_j_palaeo_2016_03_031 crossref_primary_10_1016_j_epsl_2015_07_018 crossref_primary_10_1016_j_gca_2020_06_004 crossref_primary_10_1016_j_chemgeo_2016_07_015 crossref_primary_10_1016_j_gca_2018_12_033 crossref_primary_10_1016_j_gca_2014_12_019 crossref_primary_10_1016_j_scitotenv_2022_158239 crossref_primary_10_1016_j_gca_2017_08_033 crossref_primary_10_1029_2021JG006660 crossref_primary_10_1016_j_gca_2017_01_008 crossref_primary_10_1029_2019GB006486 crossref_primary_10_1016_j_gca_2019_03_031 crossref_primary_10_1016_j_gca_2022_04_010 crossref_primary_10_5194_bg_17_1745_2020 crossref_primary_10_1007_s11631_015_0068_0 crossref_primary_10_1016_j_chemgeo_2016_01_020 crossref_primary_10_1016_j_gca_2019_03_035 crossref_primary_10_1016_j_chemgeo_2015_11_011 crossref_primary_10_5194_bg_17_6475_2020 crossref_primary_10_1016_j_ijggc_2022_103739 crossref_primary_10_1016_j_gca_2016_07_022 crossref_primary_10_1016_j_chemgeo_2015_11_007 crossref_primary_10_1098_rspa_2019_0098 crossref_primary_10_1016_j_chemgeo_2014_07_027 crossref_primary_10_2138_rmg_2021_86_10 crossref_primary_10_1016_j_chemgeo_2021_120300 crossref_primary_10_1016_j_chemgeo_2016_03_005 crossref_primary_10_1016_j_chemgeo_2014_12_027 crossref_primary_10_1016_j_chemgeo_2023_121598 crossref_primary_10_1038_srep44000 crossref_primary_10_1007_s11631_015_0079_x crossref_primary_10_1111_gbi_12449 crossref_primary_10_1016_j_epsl_2023_118069 crossref_primary_10_1111_gbi_12128 crossref_primary_10_5194_hess_25_3837_2021 crossref_primary_10_1029_2024JG008160 crossref_primary_10_1016_j_chemgeo_2020_119483 crossref_primary_10_1016_j_palaeo_2020_109740 crossref_primary_10_1016_j_chemgeo_2024_122370 crossref_primary_10_1016_j_gca_2017_01_030 crossref_primary_10_1130_G48906_1 crossref_primary_10_1016_j_gca_2022_11_021 crossref_primary_10_1016_j_gca_2018_02_046 crossref_primary_10_1016_j_gca_2021_01_007 crossref_primary_10_1016_j_sedgeo_2019_02_008 crossref_primary_10_2343_geochemj_2_0578 crossref_primary_10_1016_j_lithos_2019_105228 crossref_primary_10_1016_j_gca_2020_06_025 crossref_primary_10_1038_s41598_021_88881_6 crossref_primary_10_1016_j_gca_2021_05_022 crossref_primary_10_1021_es504683e crossref_primary_10_1016_j_chemgeo_2016_01_008 crossref_primary_10_1029_2020GL087877 crossref_primary_10_1016_j_epsl_2021_116959 crossref_primary_10_1038_s41467_020_18804_y crossref_primary_10_1002_jqs_3684 crossref_primary_10_1016_j_chemgeo_2024_122120 crossref_primary_10_1016_j_chemgeo_2015_09_017 crossref_primary_10_3390_min11111269 crossref_primary_10_1007_s00410_019_1645_8 crossref_primary_10_1007_s11104_021_05264_6 crossref_primary_10_1016_j_gca_2015_07_026 crossref_primary_10_1016_j_quascirev_2024_108966 crossref_primary_10_1016_j_gca_2015_05_043 crossref_primary_10_1016_j_precamres_2024_107298 crossref_primary_10_1016_j_gca_2014_11_014 crossref_primary_10_1016_j_gca_2019_07_029 crossref_primary_10_1016_j_precamres_2020_105946 crossref_primary_10_1016_j_gca_2016_05_012 crossref_primary_10_2475_001c_84469 crossref_primary_10_3389_fpls_2020_00657 |
Cites_doi | 10.1016/0021-9797(81)90230-7 10.1016/j.epsl.2011.02.043 10.2475/ajs.294.5.529 10.1029/2004GB002364 10.1038/320609a0 10.1039/jr9470000562 10.1016/S0967-0645(96)00112-9 10.1029/2008GB003267 10.1029/2002GB001894 10.1016/S0016-7037(97)00001-X 10.2307/3515212 10.1016/j.marchem.2006.12.011 10.1016/0021-9673(79)80010-2 10.1016/j.gca.2009.09.009 10.1016/j.gca.2005.05.008 10.1016/S0016-7037(03)00264-3 10.1016/j.gexplo.2005.08.044 10.1016/j.sedgeo.2008.07.006 10.1016/j.gca.2010.01.028 10.1016/j.gca.2008.01.008 10.1016/j.gca.2009.09.025 10.1046/j.1365-3091.1998.00194.x 10.1016/j.epsl.2010.11.002 10.1306/2DC40964-0E47-11D7-8643000102C1865D 10.1016/j.epsl.2012.05.035 10.1016/j.epsl.2007.07.004 10.1016/j.gca.2011.12.010 10.1016/j.gca.2012.05.025 10.1016/j.gca.2011.10.019 10.1021/j150516a002 10.1016/j.precamres.2014.03.016 10.1016/0016-7037(92)90303-Z 10.1016/j.gca.2011.07.040 10.1130/G21707.1 10.1016/S0012-821X(02)00675-1 10.1046/j.1365-3091.2001.00372.x 10.1016/j.epsl.2013.03.025 10.1111/j.1472-4669.2008.00179.x 10.1130/G24096A.1 10.1016/j.gca.2009.09.003 10.1016/S0016-7037(99)00426-3 10.1038/nature05239 10.1016/j.epsl.2012.07.035 10.1016/j.gca.2009.06.002 10.1007/BF02842044 10.4319/lo.2008.53.4.1614 10.1016/j.epsl.2006.02.002 10.1016/j.gexplo.2005.08.050 10.1126/science.268.5209.375 10.1016/0016-7037(80)90282-3 10.1039/b600933f 10.1130/0091-7613(2003)031<0423:SIFBMS>2.0.CO;2 10.1016/j.marchem.2006.04.006 10.1016/S0016-7037(97)00300-1 10.1180/claymin.1994.029.3.05 10.1016/j.gca.2009.06.019 10.1016/S0016-7037(01)00710-4 10.1016/j.epsl.2006.02.046 10.1111/j.1365-3091.2007.00866.x 10.1016/j.gca.2012.05.040 10.2138/am.2005.1871 10.1063/1.1746492 10.1016/j.gca.2004.06.038 10.2138/gsrmg.55.1.65 10.1016/j.gca.2012.05.045 10.1016/j.gca.2010.11.020 10.1016/j.chemgeo.2005.01.018 10.1016/j.gca.2009.05.037 10.1016/0021-9797(86)90351-6 10.1016/j.gca.2011.06.028 10.1016/j.gca.2013.07.040 10.1016/j.marchem.2010.08.005 10.1016/j.epsl.2012.04.010 10.1029/2003GB002140 10.1016/j.gca.2007.04.012 10.1016/S0043-1354(99)00055-X 10.1016/0016-7037(80)90220-3 10.1016/j.gca.2011.07.023 10.1016/j.gca.2012.10.057 10.1016/S0016-7037(00)00373-2 10.1016/j.gca.2008.11.014 10.1016/0016-7037(82)90278-2 10.1016/j.gca.2009.02.005 10.1016/S0967-0645(96)00113-0 10.1021/j150557a019 10.1016/j.gca.2010.05.006 10.1016/j.earscirev.2003.10.001 10.1016/0016-7037(94)90281-X 10.1111/j.1751-908X.2010.00067.x 10.2475/03.2007.03 10.1130/B25555.1 10.1016/S0009-2541(96)00047-2 10.1016/j.gca.2004.05.029 10.1016/j.margeo.2004.11.016 10.1021/j150541a046 10.1016/j.jvolgeores.2012.07.008 10.1029/2002GB002022 10.1130/0016-7606(2003)115<0566:HACTIF>2.0.CO;2 10.1016/j.chemgeo.2012.07.032 10.1038/27174 10.1007/s10533-008-9278-4 10.1016/j.gca.2012.05.024 10.1139/e03-078 10.1016/j.epsl.2006.07.006 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7TG KL. 7U5 8FD H8D L7M |
DOI | 10.1016/j.gca.2014.07.003 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Meteorological & Geoastrophysical Abstracts - Academic Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EndPage | 114 |
ExternalDocumentID | 10_1016_j_gca_2014_07_003 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 8WZ 9JN A6W AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO AAYXX ABEFU ABFNM ABJNI ABMAC ABPPZ ABQEM ABQYD ABWVN ABXDB ACDAQ ACGFS ACLVX ACRLP ACRPL ACSBN ACVFH ADBBV ADCNI ADEZE ADIYS ADMUD ADNMO ADXHL AEBSH AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHHHB AI. AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CITATION CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ IHE IMUCA J1W KOM LY3 M41 MO0 MVM N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SEP SES SEW SPC SSE SSH SSZ T5K TN5 TWZ UQL VH1 VOH WUQ XJT XOL XSW ZKB ZMT ~02 ~G- 7TG EFKBS KL. 7U5 8FD H8D L7M |
ID | FETCH-LOGICAL-a400t-ee607c407a3e7014e67d51eca82f524f8abed7602c581e5ab66c798647e842023 |
ISSN | 0016-7037 |
IngestDate | Thu Jul 10 22:10:39 EDT 2025 Tue Aug 05 10:52:15 EDT 2025 Tue Jul 01 01:33:42 EDT 2025 Thu Apr 24 23:00:12 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a400t-ee607c407a3e7014e67d51eca82f524f8abed7602c581e5ab66c798647e842023 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1642625696 |
PQPubID | 23462 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_1651431818 proquest_miscellaneous_1642625696 crossref_primary_10_1016_j_gca_2014_07_003 crossref_citationtrail_10_1016_j_gca_2014_07_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-10-01 |
PublicationDateYYYYMMDD | 2014-10-01 |
PublicationDate_xml | – month: 10 year: 2014 text: 2014-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Geochimica et cosmochimica acta |
PublicationYear | 2014 |
References | Van Cappellen (10.1016/j.gca.2014.07.003_b0505) 1996; 132 De La Rocha (10.1016/j.gca.2014.07.003_b0080) 2000; 64 Méheut (10.1016/j.gca.2014.07.003_b0335) 2007; 71 Varela (10.1016/j.gca.2014.07.003_b0540) 2004; 18 Hendry (10.1016/j.gca.2014.07.003_b0205) 2012; 81 Rimstidt (10.1016/j.gca.2014.07.003_b0420) 1980; 44 Renaut (10.1016/j.gca.2014.07.003_b0405) 1996; 11 Urey (10.1016/j.gca.2014.07.003_b0500) 1947 Steinhoefel (10.1016/j.gca.2014.07.003_b0465) 2009; 73 Lynne (10.1016/j.gca.2014.07.003_b0295) 2007; 307 Marin-Carbonne (10.1016/j.gca.2014.07.003_b0310) 2011; 286 O’Neil (10.1016/j.gca.2014.07.003_b0350) 1986 Ziegler (10.1016/j.gca.2014.07.003_b0560) 2005; 69 Ding (10.1016/j.gca.2014.07.003_b0125) 2005; 218 Georg (10.1016/j.gca.2014.07.003_b0170) 2007; 261 Tobler (10.1016/j.gca.2014.07.003_b0485) 2008; 6 Hughes (10.1016/j.gca.2014.07.003_b0210) 2013; 121 Pogge von Strandmann (10.1016/j.gca.2014.07.003_b0400) 2012; 339–340 Perry (10.1016/j.gca.2014.07.003_b0395) 2003; vol. 7 Van den Boorn (10.1016/j.gca.2014.07.003_b0535) 2010; 74 Ziegler (10.1016/j.gca.2014.07.003_b0565) 2005; 33 Basile-Doelsch (10.1016/j.gca.2014.07.003_b0025) 2006; 88 Knauth (10.1016/j.gca.2014.07.003_b0255) 2003; 115 Ding (10.1016/j.gca.2014.07.003_b0120) 2004; 68 Oelkers (10.1016/j.gca.2014.07.003_b0340) 1994; 58 Heck (10.1016/j.gca.2014.07.003_b0200) 2011; 75 Opfergelt (10.1016/j.gca.2014.07.003_b0355) 2008; 91 Tréguer (10.1016/j.gca.2014.07.003_b0495) 1995; 268 Van Cappellen (10.1016/j.gca.2014.07.003_b0510) 1997; 44 Bigeleisen (10.1016/j.gca.2014.07.003_b0030) 1947; 15 Kitahara (10.1016/j.gca.2014.07.003_b0245) 1960; 30 Konhauser (10.1016/j.gca.2014.07.003_b0265) 2001; 48 Li (10.1016/j.gca.2014.07.003_b0280) 1995; 14 Pallud (10.1016/j.gca.2014.07.003_b0385) 2007; 106 Georg (10.1016/j.gca.2014.07.003_b0165) 2006; 249 Weres (10.1016/j.gca.2014.07.003_b0545) 1981; 84 Rodgers (10.1016/j.gca.2014.07.003_b0430) 2004; 66 Fripiat (10.1016/j.gca.2014.07.003_b0155) 2011; 123 Reynolds (10.1016/j.gca.2014.07.003_b0415) 2006; 244 De La Rocha (10.1016/j.gca.2014.07.003_b0090) 2011; 75 Van Cappellen (10.1016/j.gca.2014.07.003_b0520) 2002; 2 Chakrabarti (10.1016/j.gca.2014.07.003_b0055) 2012; 91 Klein (10.1016/j.gca.2014.07.003_b0250) 2005; 90 Saulnier (10.1016/j.gca.2014.07.003_b0440) 2012; 91 Pearce (10.1016/j.gca.2014.07.003_b0390) 2012; 92 Opfergelt (10.1016/j.gca.2014.07.003_b0375) 2012; 326–327 Opfergelt (10.1016/j.gca.2014.07.003_b0365) 2010; 74 Galy (10.1016/j.gca.2014.07.003_b0160) 2002; 201 Opfergelt (10.1016/j.gca.2014.07.003_b0570) 2006; 88 Abraham (10.1016/j.gca.2014.07.003_b0005) 2011; 301 10.1016/j.gca.2014.07.003_b0435 Schauble (10.1016/j.gca.2014.07.003_b0445) 2004; 3 Alexandre (10.1016/j.gca.2014.07.003_b0015) 1997; 61 De La Rocha (10.1016/j.gca.2014.07.003_b0085) 2005; 217 Boudreau (10.1016/j.gca.2014.07.003_b0035) 2012; 247–248 Ding (10.1016/j.gca.2014.07.003_b0135) 2011; 75 Hansen (10.1016/j.gca.2014.07.003_b0195) 1994; 29 Alexander (10.1016/j.gca.2014.07.003_b0010) 1954; 58 Opfergelt (10.1016/j.gca.2014.07.003_b0370) 2011; 305 Van den Boorn (10.1016/j.gca.2014.07.003_b0525) 2006; 21 Loucaides (10.1016/j.gca.2014.07.003_b0290) 2008; 53 Jones (10.1016/j.gca.2014.07.003_b0235) 2007; 54 Immenhauser (10.1016/j.gca.2014.07.003_b0225) 2010; 74 Maliva (10.1016/j.gca.2014.07.003_b0305) 2005; 117 Icopini (10.1016/j.gca.2014.07.003_b0215) 2005; 69 Douthitt (10.1016/j.gca.2014.07.003_b0140) 1982; 46 Opfergelt (10.1016/j.gca.2014.07.003_b0360) 2009; 73 Van den Boorn (10.1016/j.gca.2014.07.003_b0530) 2007; 35 Oelkers (10.1016/j.gca.2014.07.003_b0345) 2001; 65 Gunnarsson (10.1016/j.gca.2014.07.003_b0190) 2000; 64 Robert (10.1016/j.gca.2014.07.003_b0425) 2006; 443 Cardinal (10.1016/j.gca.2014.07.003_b0045) 2005; 19 Conley (10.1016/j.gca.2014.07.003_b0060) 2002; 16 Shimada (10.1016/j.gca.2014.07.003_b0450) 1979; 168 Lynne (10.1016/j.gca.2014.07.003_b0300) 2008; 210 André (10.1016/j.gca.2014.07.003_b0020) 2006; 245 Demarest (10.1016/j.gca.2014.07.003_b0105) 2009; 73 Kisakürek (10.1016/j.gca.2014.07.003_b0240) 2009; 73 Ding (10.1016/j.gca.2014.07.003_b0130) 2008; 72 Laruelle (10.1016/j.gca.2014.07.003_b0270) 2009; 23 Cardinal (10.1016/j.gca.2014.07.003_b0050) 2007; 106 Ferris (10.1016/j.gca.2014.07.003_b0145) 1986; 320 Jones (10.1016/j.gca.2014.07.003_b0230) 2003; 40 Steinhoefel (10.1016/j.gca.2014.07.003_b0470) 2010; 74 Campbell (10.1016/j.gca.2014.07.003_b0040) 2001; 71 Li (10.1016/j.gca.2014.07.003_b0285) 2012; 333–334 Delstanche (10.1016/j.gca.2014.07.003_b0095) 2009; 73 Delvigne (10.1016/j.gca.2014.07.003_b0100) 2012; 355–356 Marin-Carbonne (10.1016/j.gca.2014.07.003_b0315) 2012; 92 DePaolo (10.1016/j.gca.2014.07.003_b0110) 2011; 75 Marshall (10.1016/j.gca.2014.07.003_b0325) 1980; 44 Siever (10.1016/j.gca.2014.07.003_b0455) 1992; 56 Fleming (10.1016/j.gca.2014.07.003_b0150) 1986; 110 Ding (10.1016/j.gca.2014.07.003_b0115) 1996 Marin-Carbonne (10.1016/j.gca.2014.07.003_b0320) 2014; 247 Konhauser (10.1016/j.gca.2014.07.003_b0260) 1999 Renaut (10.1016/j.gca.2014.07.003_b0410) 1998; 45 Wischmeyer (10.1016/j.gca.2014.07.003_b0550) 2003; 17 Steefel (10.1016/j.gca.2014.07.003_b0460) 1994; 294 De La Rocha (10.1016/j.gca.2014.07.003_b0070) 1997; 61 Goto (10.1016/j.gca.2014.07.003_b0180) 1956; 60 Greenberg (10.1016/j.gca.2014.07.003_b0185) 1957; 61 Opfergelt (10.1016/j.gca.2014.07.003_b0380) 2013; 369–370 Zambardi (10.1016/j.gca.2014.07.003_b0555) 2011; 35 De La Rocha (10.1016/j.gca.2014.07.003_b0075) 1998; 395 Georg (10.1016/j.gca.2014.07.003_b0175) 2009; 73 Tobler (10.1016/j.gca.2014.07.003_b0490) 2009; 73 Swedlund (10.1016/j.gca.2014.07.003_b0480) 1999; 33 Mavromatis (10.1016/j.gca.2014.07.003_b0330) 2012; 76 Van Cappellen (10.1016/j.gca.2014.07.003_b0515) 1997; 44 Iler (10.1016/j.gca.2014.07.003_b0220) 1979 De La Rocha (10.1016/j.gca.2014.07.003_b0065) 2003; 31 Sutton (10.1016/j.gca.2014.07.003_b0475) 2013; 104 Lemarchand (10.1016/j.gca.2014.07.003_b0275) 2004; 68 |
References_xml | – volume: 84 start-page: 379 year: 1981 ident: 10.1016/j.gca.2014.07.003_b0545 article-title: Kinetics of silica polymerization publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(81)90230-7 – volume: 305 start-page: 73 year: 2011 ident: 10.1016/j.gca.2014.07.003_b0370 article-title: Quantifying the impact of freshwater diatom productivity on silicon isotopes and silicon fluxes: Lake Myvatn, Iceland publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2011.02.043 – volume: 294 start-page: 529 year: 1994 ident: 10.1016/j.gca.2014.07.003_b0460 article-title: A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems publication-title: Am. J. Sci. doi: 10.2475/ajs.294.5.529 – volume: 19 year: 2005 ident: 10.1016/j.gca.2014.07.003_b0045 article-title: Relevance of silicon isotopes to Si-nutrient utilization and Si-source assessment in Antarctic waters publication-title: Global Biogeochem. Cycles doi: 10.1029/2004GB002364 – volume: 320 start-page: 609 year: 1986 ident: 10.1016/j.gca.2014.07.003_b0145 article-title: Iron-silica crystallite nucleation by bacteria in a geothermal sediment publication-title: Nature doi: 10.1038/320609a0 – start-page: 562 year: 1947 ident: 10.1016/j.gca.2014.07.003_b0500 article-title: The thermodynamic properties of isotopic substances publication-title: J. Chem. Soc. doi: 10.1039/jr9470000562 – volume: 44 start-page: 1129 year: 1997 ident: 10.1016/j.gca.2014.07.003_b0515 article-title: Biogenic silica dissolution in sediments of the Southern Ocean. II. Kinetics publication-title: Deep Sea Res. II doi: 10.1016/S0967-0645(96)00112-9 – volume: 23 start-page: GB4031 year: 2009 ident: 10.1016/j.gca.2014.07.003_b0270 article-title: The global biogeochemical cycle of silicon: role of the land-ocean transition and sensitivity to anthropogenic perturbations publication-title: Global Biogeochem. Cycles doi: 10.1029/2008GB003267 – volume: 16 start-page: 1 year: 2002 ident: 10.1016/j.gca.2014.07.003_b0060 article-title: Terrestrial ecosystems and the global biogeochemical silica cycle publication-title: Global Biogeochem. Cycles doi: 10.1029/2002GB001894 – volume: 61 start-page: 677 year: 1997 ident: 10.1016/j.gca.2014.07.003_b0015 article-title: Plant impact on the biogeochemical cycle of silicon and related weathering processes publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(97)00001-X – volume: 11 start-page: 446 year: 1996 ident: 10.1016/j.gca.2014.07.003_b0405 article-title: Primary silica oncoids from Orakeikorako hot springs, North Island, New Zealand publication-title: Palaios doi: 10.2307/3515212 – volume: 106 start-page: 256 year: 2007 ident: 10.1016/j.gca.2014.07.003_b0385 article-title: The use of flow-through sediment reactors in biogeochemical kinetics: methodology and examples of applications publication-title: Mar. Chem. doi: 10.1016/j.marchem.2006.12.011 – volume: 168 start-page: 401 year: 1979 ident: 10.1016/j.gca.2014.07.003_b0450 article-title: Gel chromatographic study of the polymerization of silicic acid publication-title: J. Chromatogr. A doi: 10.1016/0021-9673(79)80010-2 – volume: 74 start-page: 1077 year: 2010 ident: 10.1016/j.gca.2014.07.003_b0535 article-title: Silicon isotope and trace element constraints on the origin of ∼3.5Ga cherts: implications for Early Archaean marine environments publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2009.09.009 – volume: 69 start-page: 4597 year: 2005 ident: 10.1016/j.gca.2014.07.003_b0560 article-title: Natural variations of δ30Si ratios during progressive basalt weathering, Hawaiian Islands publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2005.05.008 – volume: 68 start-page: 205 year: 2004 ident: 10.1016/j.gca.2014.07.003_b0120 article-title: Silicon isotope compositions of dissolved silicon and suspended matter in the Yangtze River, China publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(03)00264-3 – volume: 88 start-page: 224 year: 2006 ident: 10.1016/j.gca.2014.07.003_b0570 article-title: Silicon isotope fractionation between plant parts in banana: in situ vs. in vitro publication-title: J Geochem Explor doi: 10.1016/j.gexplo.2005.08.044 – volume: 210 start-page: 111 year: 2008 ident: 10.1016/j.gca.2014.07.003_b0300 article-title: Origin and evolution of the Steamboat Springs siliceous sinter deposit, Nevada, U.S.A publication-title: Sed. Geol. doi: 10.1016/j.sedgeo.2008.07.006 – volume: 74 start-page: 2677 year: 2010 ident: 10.1016/j.gca.2014.07.003_b0470 article-title: Deciphering formation processes of banded iron formations from the Transvaal and the Hamersley successions by combined Si and Fe isotope analysis using UV femtosecond laser ablation publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2010.01.028 – volume: 72 start-page: 1381 year: 2008 ident: 10.1016/j.gca.2014.07.003_b0130 article-title: Silicon isotope fractionation in bamboo and its significance to the biogeochemical cycle of silicon publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2008.01.008 – volume: 74 start-page: 225 year: 2010 ident: 10.1016/j.gca.2014.07.003_b0365 article-title: Variations of d30Si and Ge/Si with weathering and biogenic input in tropical basaltic ash soils under monoculture publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2009.09.025 – volume: 45 start-page: 1083 year: 1998 ident: 10.1016/j.gca.2014.07.003_b0410 article-title: Rapid in situ silicification of microbes at Loburu hot springs, Lake Bogoria, Kenya Rift Valley publication-title: Sedimentology doi: 10.1046/j.1365-3091.1998.00194.x – volume: 301 start-page: 222 year: 2011 ident: 10.1016/j.gca.2014.07.003_b0005 article-title: Coupled silicon–oxygen isotope fractionation traces Archaean silicification publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2010.11.002 – volume: 71 start-page: 727 year: 2001 ident: 10.1016/j.gca.2014.07.003_b0040 article-title: Sedimentary facies and mineralogy of the Late Pleistocene Umukuri silica sinter, Taupo Volcanic Zone, New Zealand publication-title: J. Sediment. Res. doi: 10.1306/2DC40964-0E47-11D7-8643000102C1865D – volume: 339–340 start-page: 11 year: 2012 ident: 10.1016/j.gca.2014.07.003_b0400 article-title: Lithium, magnesium and silicon isotope behaviour accompanying weathering in a basaltic soil and pore water profile in Iceland publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2012.05.035 – volume: 261 start-page: 476 year: 2007 ident: 10.1016/j.gca.2014.07.003_b0170 article-title: Silicon isotope variations accompanying basalt weathering in Iceland publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2007.07.004 – volume: 81 start-page: 1 year: 2012 ident: 10.1016/j.gca.2014.07.003_b0205 article-title: The relationship between silicon isotope fractionation in sponges and silicic acid concentration: modern and core-top studies of biogenic opal publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2011.12.010 – volume: 91 start-page: 187 year: 2012 ident: 10.1016/j.gca.2014.07.003_b0055 article-title: Si isotope variability in Proterozoic cherts publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2012.05.025 – volume: 76 start-page: 161 year: 2012 ident: 10.1016/j.gca.2014.07.003_b0330 article-title: Magnesium isotope fractionation during hydrous magnesium carbonate precipitation with and without cyanobacteria publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2011.10.019 – volume: 58 start-page: 453 year: 1954 ident: 10.1016/j.gca.2014.07.003_b0010 article-title: The solubility of amorphous silica in water publication-title: J. Phys. Chem. doi: 10.1021/j150516a002 – volume: 247 start-page: 223 year: 2014 ident: 10.1016/j.gca.2014.07.003_b0320 article-title: The silicon and oxygen isotope compositions of Precambrian cherts: a record of oceanic paleo-temperatures? publication-title: Precambrian Res. doi: 10.1016/j.precamres.2014.03.016 – volume: 56 start-page: 3265 year: 1992 ident: 10.1016/j.gca.2014.07.003_b0455 article-title: The silica cycle in the Precambrian publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(92)90303-Z – volume: 75 start-page: 6672 year: 2011 ident: 10.1016/j.gca.2014.07.003_b0135 article-title: Silicon isotopic composition of dissolved silicon and suspended particulate matter in the Yellow River, China, with implications for the global silicon cycle publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2011.07.040 – volume: 33 start-page: 817 year: 2005 ident: 10.1016/j.gca.2014.07.003_b0565 article-title: Δ30Si systematics in a granitic saprolite, Puerto Rico publication-title: Geology doi: 10.1130/G21707.1 – volume: 201 start-page: 105 year: 2002 ident: 10.1016/j.gca.2014.07.003_b0160 article-title: Mg isotopic composition of carbonate: insight from speleothem formation publication-title: Earth Planet. Sci. Lett. doi: 10.1016/S0012-821X(02)00675-1 – volume: 48 start-page: 415 year: 2001 ident: 10.1016/j.gca.2014.07.003_b0265 article-title: Microbial–silica interactions in Icelandic hot spring sinter: possible analogues for some Precambrian siliceous stromatolites publication-title: Sedimentology doi: 10.1046/j.1365-3091.2001.00372.x – volume: 369–370 start-page: 211 year: 2013 ident: 10.1016/j.gca.2014.07.003_b0380 article-title: Riverine silicon isotope variations in glaciated basaltic terrains: implications for the Si delivery to the ocean over glacial–interglacial intervals publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2013.03.025 – volume: 6 start-page: 481 year: 2008 ident: 10.1016/j.gca.2014.07.003_b0485 article-title: In situ grown silica sinters in Icelandic geothermal areas publication-title: Geobiology doi: 10.1111/j.1472-4669.2008.00179.x – volume: 35 start-page: 939 year: 2007 ident: 10.1016/j.gca.2014.07.003_b0530 article-title: Dual role of seawater and hydrothermal fluids in Early Archaean chert formation: evidence from silicon isotopes publication-title: Geology doi: 10.1130/G24096A.1 – volume: 73 start-page: 7226 year: 2009 ident: 10.1016/j.gca.2014.07.003_b0360 article-title: Impact of soil weathering degree on silicon isotopic fractionation during adsorption onto iron oxides in basaltic ash soils, Cameroon publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2009.09.003 – volume: 64 start-page: 2295 year: 2000 ident: 10.1016/j.gca.2014.07.003_b0190 article-title: Amorphous silica solubility and the thermodynamic properties of H4SiO4 in the range of 0 to 350°C at Psat publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(99)00426-3 – volume: 443 start-page: 969 year: 2006 ident: 10.1016/j.gca.2014.07.003_b0425 article-title: A paleotemperature curve for the Precambrian oceans based on silicon isotopes in cherts publication-title: Nature doi: 10.1038/nature05239 – volume: 355–356 start-page: 109 year: 2012 ident: 10.1016/j.gca.2014.07.003_b0100 article-title: Stratigraphic changes of Ge/Si, REE+Y and silicon isotopes as insights into the deposition of a Mesoarchaean banded iron formation publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2012.07.035 – volume: 73 start-page: 5377 year: 2009 ident: 10.1016/j.gca.2014.07.003_b0490 article-title: Quantification of initial steps of nucleation and growth of silica nanoparticles: an in-situ SAXS and DLS study publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2009.06.002 – volume: 14 start-page: 212 year: 1995 ident: 10.1016/j.gca.2014.07.003_b0280 article-title: Experimental study of silicon isotope dynamic fractionation and its application in geology publication-title: Chin. J. Geochem. doi: 10.1007/BF02842044 – volume: 53 start-page: 1614 year: 2008 ident: 10.1016/j.gca.2014.07.003_b0290 article-title: Dissolution of biogenic silica from land to ocean: the role of salinity and pH publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2008.53.4.1614 – volume: 244 start-page: 431 year: 2006 ident: 10.1016/j.gca.2014.07.003_b0415 article-title: Silicon isotope fractionation during nutrient utilization in the North Pacific publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2006.02.002 – year: 1996 ident: 10.1016/j.gca.2014.07.003_b0115 – volume: 73 start-page: 663 year: 2009 ident: 10.1016/j.gca.2014.07.003_b0240 article-title: Magnesium isotope fractionation in inorganic and biogenic calcite publication-title: Geochim. Cosmochim. Acta – volume: 88 start-page: 252 year: 2006 ident: 10.1016/j.gca.2014.07.003_b0025 article-title: Si stable isotopes in the Earth’s surface: a review publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2005.08.050 – volume: 268 start-page: 375 year: 1995 ident: 10.1016/j.gca.2014.07.003_b0495 article-title: The silica balance in the world ocean: a reestimate publication-title: Science doi: 10.1126/science.268.5209.375 – year: 1979 ident: 10.1016/j.gca.2014.07.003_b0220 – volume: 44 start-page: 925 year: 1980 ident: 10.1016/j.gca.2014.07.003_b0325 article-title: Amorphous silica solubilities III. Activity coefficient relations and predictions of solubility behavior in salt solutions, 0–350°C publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(80)90282-3 – volume: 21 start-page: 734 year: 2006 ident: 10.1016/j.gca.2014.07.003_b0525 article-title: Determination of silicon isotope ratios in silicate materials by high-resolution MC-ICP-MS using a sodium hydroxide sample digestion method publication-title: J. Anal. At. Spectrom. doi: 10.1039/b600933f – volume: 31 start-page: 423 year: 2003 ident: 10.1016/j.gca.2014.07.003_b0065 article-title: Silicon isotope fractionation by marine sponges and the reconstruction of the silicon isotope composition of ancient deep water publication-title: Geology doi: 10.1130/0091-7613(2003)031<0423:SIFBMS>2.0.CO;2 – volume: 106 start-page: 46 year: 2007 ident: 10.1016/j.gca.2014.07.003_b0050 article-title: Silicon isotopes in spring Southern Ocean diatoms: large zonal changes despite homogeneity among size fractions publication-title: Mar. Chem. doi: 10.1016/j.marchem.2006.04.006 – volume: 61 start-page: 5051 year: 1997 ident: 10.1016/j.gca.2014.07.003_b0070 article-title: Fractionation of silicon isotopes by marine diatoms during biogenic silica formation publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(97)00300-1 – volume: 29 start-page: 341 year: 1994 ident: 10.1016/j.gca.2014.07.003_b0195 article-title: Stability constants for silicate adsorbed to ferrihydrite publication-title: Clay Miner. doi: 10.1180/claymin.1994.029.3.05 – ident: 10.1016/j.gca.2014.07.003_b0435 – volume: 73 start-page: 5572 year: 2009 ident: 10.1016/j.gca.2014.07.003_b0105 article-title: Fractionation of silicon isotopes during biogenic silica dissolution publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2009.06.019 – volume: 65 start-page: 3703 year: 2001 ident: 10.1016/j.gca.2014.07.003_b0345 article-title: General kinetic description of multioxide silicate mineral and glass dissolution publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(01)00710-4 – volume: 245 start-page: 162 year: 2006 ident: 10.1016/j.gca.2014.07.003_b0020 article-title: Silicon isotopes in ∼3.8Ga West Greenland rocks as clues to the Eoarchaean supracrustal Si cycle publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2006.02.046 – volume: 54 start-page: 921 year: 2007 ident: 10.1016/j.gca.2014.07.003_b0235 article-title: Microstructural changes accompanying the opal-A to opal-CT transition: new evidence from the siliceous sinters of Geysir, Haukadalur, Iceland publication-title: Sedimentology doi: 10.1111/j.1365-3091.2007.00866.x – volume: 30 start-page: 131 year: 1960 ident: 10.1016/j.gca.2014.07.003_b0245 article-title: The polymerization of silicic acid obtained by the hydrothermal treatment of quartz and the solubility of amorphous silica publication-title: Rev. Phys. Chem. Jpn – volume: 92 start-page: 129 year: 2012 ident: 10.1016/j.gca.2014.07.003_b0315 article-title: Micrometer-scale chemical and isotopic criteria (O and Si) on the origin and history of Precambrian cherts: implications for paleo-temperature reconstructions publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2012.05.040 – volume: 90 start-page: 1473 year: 2005 ident: 10.1016/j.gca.2014.07.003_b0250 article-title: Some Precambrian banded iron-formations (BIFs) from around the world: their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin publication-title: Am. Mineral. doi: 10.2138/am.2005.1871 – volume: 15 start-page: 261 year: 1947 ident: 10.1016/j.gca.2014.07.003_b0030 article-title: Calculation of equilibrium constants for isotopic exchange reactions publication-title: J. Chem. Phys. doi: 10.1063/1.1746492 – volume: 69 start-page: 293 year: 2005 ident: 10.1016/j.gca.2014.07.003_b0215 article-title: Kinetics of silica oligomerization and nanocolloid formation as a function of pH and ionic strength at 25°C publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2004.06.038 – volume: 3 start-page: 65 issue: 55 year: 2004 ident: 10.1016/j.gca.2014.07.003_b0445 article-title: Applying stable isotope fractionation theory to new systems publication-title: Rev. Mineral. Geochem. doi: 10.2138/gsrmg.55.1.65 – volume: 92 start-page: 170 year: 2012 ident: 10.1016/j.gca.2014.07.003_b0390 article-title: Isotopic fractionation during congruent dissolution, precipitation and at equilibrium: evidence from Mg isotopes publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2012.05.045 – volume: 75 start-page: 1039 year: 2011 ident: 10.1016/j.gca.2014.07.003_b0110 article-title: Surface kinetic model for isotopic and trace element fractionation during precipitation of calcite from aqueous solutions publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2010.11.020 – volume: 218 start-page: 41 year: 2005 ident: 10.1016/j.gca.2014.07.003_b0125 article-title: Silicon isotope study on rice plants from the Zhejiang province, China publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2005.01.018 – volume: 73 start-page: 5343 year: 2009 ident: 10.1016/j.gca.2014.07.003_b0465 article-title: Micro-scale tracing of Fe and Si isotope signatures in banded iron formation using femtosecond laser ablation publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2009.05.037 – volume: 110 start-page: 40 year: 1986 ident: 10.1016/j.gca.2014.07.003_b0150 article-title: Kinetics of reaction between silicic acid and amorphous silica surfaces in NaCl solutions publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(86)90351-6 – volume: 75 start-page: 5283 year: 2011 ident: 10.1016/j.gca.2014.07.003_b0090 article-title: The silicon isotopic composition of surface waters in the Atlantic and Indian sectors of the Southern Ocean publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2011.06.028 – volume: 121 start-page: 637 year: 2013 ident: 10.1016/j.gca.2014.07.003_b0210 article-title: The riverine silicon isotope composition of the Amazon Basin publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2013.07.040 – volume: 123 start-page: 11 year: 2011 ident: 10.1016/j.gca.2014.07.003_b0155 article-title: Isotopic constraints on the Si-biogeochemical cycle of the Antarctic Zone in the Kerguelen area (KEOPS) publication-title: Mar. Chem. doi: 10.1016/j.marchem.2010.08.005 – volume: 333–334 start-page: 304 year: 2012 ident: 10.1016/j.gca.2014.07.003_b0285 article-title: Magnesium isotope fractionation during precipitation of inorganic calcite under laboratory conditions publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2012.04.010 – volume: 18 year: 2004 ident: 10.1016/j.gca.2014.07.003_b0540 article-title: Biological fractionation of silicon isotopes in Southern Ocean surface waters publication-title: Global Biogeochem. Cycles doi: 10.1029/2003GB002140 – volume: 71 start-page: 3170 year: 2007 ident: 10.1016/j.gca.2014.07.003_b0335 article-title: Equilibrium isotopic fractionation in the kaolinite, quartz, water system: prediction from first-principles density-functional theory publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2007.04.012 – volume: 33 start-page: 3413 year: 1999 ident: 10.1016/j.gca.2014.07.003_b0480 article-title: Adsorption and polymerisation of silicic acid on ferrihydrite, and its effect on arsenic adsorption publication-title: Water Res. doi: 10.1016/S0043-1354(99)00055-X – volume: 44 start-page: 1683 year: 1980 ident: 10.1016/j.gca.2014.07.003_b0420 article-title: The kinetics of silica-water reactions publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(80)90220-3 – volume: 75 start-page: 5879 year: 2011 ident: 10.1016/j.gca.2014.07.003_b0200 article-title: SIMS analyses of silicon and oxygen isotope ratios for quartz from Archean and Paleoproterozoic banded iron formations publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2011.07.023 – volume: 104 start-page: 300 year: 2013 ident: 10.1016/j.gca.2014.07.003_b0475 article-title: Species-dependent silicon isotope fractionation by marine diatoms publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2012.10.057 – volume: 64 start-page: 2467 year: 2000 ident: 10.1016/j.gca.2014.07.003_b0080 article-title: A first look at the distribution of the stable isotopes of silicon in natural waters publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(00)00373-2 – volume: 286 start-page: 59 year: 2011 ident: 10.1016/j.gca.2014.07.003_b0310 article-title: A combined in situ oxygen, silicon isotopic and fluid inclusion study of a chert sample from Onverwacht Group (3.35Ga, South Africa): new constraints on fluid circulation publication-title: Chem. Geol. – start-page: 263 year: 1999 ident: 10.1016/j.gca.2014.07.003_b0260 article-title: Microbial–silica interactions in modern hot spring sinter – volume: 73 start-page: 923 year: 2009 ident: 10.1016/j.gca.2014.07.003_b0095 article-title: Silicon isotopic fractionation during adsorption of aqueous monosilicic acid onto iron oxide publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2008.11.014 – volume: 46 start-page: 1449 year: 1982 ident: 10.1016/j.gca.2014.07.003_b0140 article-title: The geochemistry of the stable isotopes of silicon publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(82)90278-2 – volume: 73 start-page: 2229 year: 2009 ident: 10.1016/j.gca.2014.07.003_b0175 article-title: Stable silicon isotopes of groundwater, feldspars, and clay coatings in the Navajo Sandstone aquifer, Black Mesa, Arizona, USA publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2009.02.005 – volume: vol. 7 start-page: 99 year: 2003 ident: 10.1016/j.gca.2014.07.003_b0395 article-title: Formation and geochemistry of Precambrian cherts – volume: 44 start-page: 1109 year: 1997 ident: 10.1016/j.gca.2014.07.003_b0510 article-title: Biogenic silica dissolution in sediments of the Southern Ocean. I. Solubility publication-title: Deep Sea Res. II doi: 10.1016/S0967-0645(96)00113-0 – volume: 61 start-page: 1539 year: 1957 ident: 10.1016/j.gca.2014.07.003_b0185 article-title: The solubility of silica in solutions of electrolytes publication-title: J. Phys. Chem. doi: 10.1021/j150557a019 – volume: 74 start-page: 4346 year: 2010 ident: 10.1016/j.gca.2014.07.003_b0225 article-title: Magnesium-isotope fractionation during low-Mg calcite precipitation in a limestone cave—field study and experiments publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2010.05.006 – volume: 66 start-page: 1 year: 2004 ident: 10.1016/j.gca.2014.07.003_b0430 article-title: Silica phases in sinters and residues from geothermal fields of New Zealand publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2003.10.001 – volume: 58 start-page: 2011 year: 1994 ident: 10.1016/j.gca.2014.07.003_b0340 article-title: The effect of aluminum, pH, and chemical affinity on the rates of aluminosilicate dissolution reactions publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(94)90281-X – volume: 35 start-page: 89 year: 2011 ident: 10.1016/j.gca.2014.07.003_b0555 article-title: Precise determination of silicon isotopes in silicate rock reference materials by MC-ICP-MS publication-title: Geostand. Geoanal. Res. doi: 10.1111/j.1751-908X.2010.00067.x – volume: 307 start-page: 612 year: 2007 ident: 10.1016/j.gca.2014.07.003_b0295 article-title: Tracking crystallinity in siliceous hot-spring deposits publication-title: Am. J. Sci. doi: 10.2475/03.2007.03 – volume: 117 start-page: 835 year: 2005 ident: 10.1016/j.gca.2014.07.003_b0305 article-title: Secular change in the Precambrian silica cycle: insights from chert petrology publication-title: GSA Bull. doi: 10.1130/B25555.1 – volume: 132 start-page: 125 year: 1996 ident: 10.1016/j.gca.2014.07.003_b0505 article-title: Reactive surface area control of the dissolution kinetics of biogenic silica in deep-sea sediments publication-title: Chem. Geol. doi: 10.1016/S0009-2541(96)00047-2 – volume: 68 start-page: 4665 year: 2004 ident: 10.1016/j.gca.2014.07.003_b0275 article-title: Rate-controlled calcium isotope fractionation in synthetic calcite publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2004.05.029 – volume: 217 start-page: 267 year: 2005 ident: 10.1016/j.gca.2014.07.003_b0085 article-title: Sensitivity of silicon isotopes to whole-ocean changes in the silica cycle publication-title: Mar. Geol. doi: 10.1016/j.margeo.2004.11.016 – volume: 2 start-page: 417 year: 2002 ident: 10.1016/j.gca.2014.07.003_b0520 article-title: Biogenic silica dissolution and the marine Si cycle: kinetics, surface chemistry and preservation publication-title: Oceanis – volume: 60 start-page: 1007 year: 1956 ident: 10.1016/j.gca.2014.07.003_b0180 article-title: Effect of pH on polymerization of silicic acid publication-title: J. Phys. Chem. doi: 10.1021/j150541a046 – volume: 247–248 start-page: 1 year: 2012 ident: 10.1016/j.gca.2014.07.003_b0035 article-title: The growth of siliceous sinter deposits around high-temperature eruptive hot springs publication-title: J. Volcanol. Geoth. Res. doi: 10.1016/j.jvolgeores.2012.07.008 – volume: 17 start-page: 1083 year: 2003 ident: 10.1016/j.gca.2014.07.003_b0550 article-title: Control mechanisms for the oceanic distribution of silicon isotopes publication-title: Global Biogeochem. Cycles doi: 10.1029/2002GB002022 – volume: 115 start-page: 566 year: 2003 ident: 10.1016/j.gca.2014.07.003_b0255 article-title: High Archean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5Ga Swaziland Supergroup, South Africa publication-title: GSA Bull. doi: 10.1130/0016-7606(2003)115<0566:HACTIF>2.0.CO;2 – volume: 326–327 start-page: 113 year: 2012 ident: 10.1016/j.gca.2014.07.003_b0375 article-title: Silicon isotopes and the tracing of desilication in volcanic soil weathering sequences, Guadeloupe publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2012.07.032 – volume: 395 start-page: 680 year: 1998 ident: 10.1016/j.gca.2014.07.003_b0075 article-title: Silicon-isotope composition of diatoms as an indicator of past oceanic change publication-title: Nature doi: 10.1038/27174 – volume: 91 start-page: 163 year: 2008 ident: 10.1016/j.gca.2014.07.003_b0355 article-title: Plant silicon isotopic signature might reflect soil weathering degree publication-title: Biogeochemistry doi: 10.1007/s10533-008-9278-4 – volume: 91 start-page: 75 year: 2012 ident: 10.1016/j.gca.2014.07.003_b0440 article-title: Mg isotope fractionation during calcite precipitation: an experimental study publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2012.05.024 – volume: 40 start-page: 1549 year: 2003 ident: 10.1016/j.gca.2014.07.003_b0230 article-title: Hot spring and geyser sinters: the integrated product of precipitation, replacement, and deposition publication-title: Can. J. Earth Sci. doi: 10.1139/e03-078 – year: 1986 ident: 10.1016/j.gca.2014.07.003_b0350 article-title: Theoretical and experimental aspects of isotopic fractionation – volume: 249 start-page: 290 year: 2006 ident: 10.1016/j.gca.2014.07.003_b0165 article-title: Mechanisms controlling the silicon isotopic compositions of river waters publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2006.07.006 |
SSID | ssj0007550 |
Score | 2.4468532 |
Snippet | Silicon isotopes have considerable potential as proxy for (near-) surface processes and environmental conditions. However, unambiguous interpretations of... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 95 |
SubjectTerms | Deposition Dissolution Fractionation Isotopes Mathematical analysis Precipitation Silicon dioxide Silicon isotopes |
Title | Silicon isotope fractionation during abiotic silica precipitation at low temperatures: Inferences from flow-through experiments |
URI | https://www.proquest.com/docview/1642625696 https://www.proquest.com/docview/1651431818 |
Volume | 142 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKEBIXxKcYA2QkTkSpEid2Um5o2jrQGIi1U2-R7TojpUuqJT3AAU783zzHzhegaXCJWstNE7-ffu89-30g9DIVoPZAbbnAj1w7KNydCEJdMgFfTFAh47oP2fsTdjQP3y3oYjT62Yta2lZiLL_9Na_kf6QKYyBXnSX7D5JtbwoD8BnkC1eQMFyvJePTbA2CzJ2sLKpio5z00qQpGKE2GYgiK3RV1lJP5roogMw2tjK3TmVc66ZyCqxnU125DpF726QBlib_JIVJbtPSp2sKUPZN26kq5OdMVx9wVOXIorxov8NTtew_VcBDJk_otMhX7fgZmPA1A37MdIROd2LyqVAA4vyLYccSKFo57Y71Pt_o4yPDnWZzCNbhzELe7mb4YRsX1zK0z1xgoWjA0KYAl-VY05TTamvfpKD-oQjMnsRqfC51cSk_rCu0ekGn9ZqT_pMPyeH8-DiZHSxmN9BNAt6Gpsvx9y5SKKLUZDLZR2sOx-swwd_-YGjeDLV7bbLM7qI71tfAbwxw7qGRyu-jW9O6l_PXB-iHhQ-28MED-GADH2zhgw188AA-mFcYkIH78HmNO_BgDR7cBw_ugechmh8ezPaPXNuPw-XA9JWrFPMiGXoRD1QEr6xYtKS-kjwmKSVhGnOhlhHziKSxrygXjMlIl_-PVBwSMA4foZ28yNVjhKXgMZCECIT0Q84CsaQ0ZilRUhAiYn8Xec0yJtK-k-6Zsk6aqMRVAiuf6JVPPB1CEeyiV-1PNqZSy1WTXzSySYBP9SEZz1WxLROf6R4NlE3YVXO0mwG2cfzkGvfZQ7c7pD9FO9XlVj0DS7YSz2uc_QJa1Kbl |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Silicon+isotope+fractionation+during+abiotic+silica+precipitation+at+low+temperatures%3A+Inferences+from+flow-through+experiments&rft.jtitle=Geochimica+et+cosmochimica+acta&rft.au=Geilert%2C+Sonja&rft.au=Vroon%2C+Pieter+Z&rft.au=Roerdink%2C+Desiree+L&rft.au=Cappellen%2C+Philippe+Van&rft.date=2014-10-01&rft.issn=0016-7037&rft.volume=142&rft.spage=95&rft.epage=114&rft_id=info:doi/10.1016%2Fj.gca.2014.07.003&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7037&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7037&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7037&client=summon |