Giant Osmotic Energy Conversion through Vertical-Aligned Ion-Permselective Nanochannels in Covalent Organic Framework Membranes

Nanofluidic membranes have been demonstrated as promising candidates for osmotic energy harvesting. However, it remains a long-standing challenge to fabricate high-efficiency ion-permselective membranes with well-defined channel architectures. Here, we demonstrate high-performance osmotic energy con...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 144; no. 27; pp. 12400 - 12409
Main Authors Cao, Li, Chen, I-Chun, Chen, Cailing, Shinde, Digambar B., Liu, Xiaowei, Li, Zhen, Zhou, Zongyao, Zhang, Yuting, Han, Yu, Lai, Zhiping
Format Journal Article
LanguageEnglish
Published American Chemical Society 13.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanofluidic membranes have been demonstrated as promising candidates for osmotic energy harvesting. However, it remains a long-standing challenge to fabricate high-efficiency ion-permselective membranes with well-defined channel architectures. Here, we demonstrate high-performance osmotic energy conversion membranes based on oriented two-dimensional covalent organic frameworks (COFs) with ultrashort vertically aligned nanofluidic channels that enabled efficient and selective ion transport. Experiments combined with molecular dynamics simulations revealed that exquisite control over channel orientation, charge polarity, and charge density contributed to high ion selectivity and permeability. When applied to osmotic energy conversion, a pair of 100 nm thick oppositely charged COF membranes achieved an ultrahigh output power density of 43.2 W m–2 at a 50-fold salinity gradient and up to 228.9 W m–2 for the Dead Sea and river water system. The achieved power density outperforms the state-of-the-art nanofluidic membranes, suggesting the great potential of oriented COF membranes in the fields of advanced membrane technology and energy conversion.
AbstractList Nanofluidic membranes have been demonstrated as promising candidates for osmotic energy harvesting. However, it remains a long-standing challenge to fabricate high-efficiency ion-permselective membranes with well-defined channel architectures. Here, we demonstrate high-performance osmotic energy conversion membranes based on oriented two-dimensional covalent organic frameworks (COFs) with ultrashort vertically aligned nanofluidic channels that enabled efficient and selective ion transport. Experiments combined with molecular dynamics simulations revealed that exquisite control over channel orientation, charge polarity, and charge density contributed to high ion selectivity and permeability. When applied to osmotic energy conversion, a pair of 100 nm thick oppositely charged COF membranes achieved an ultrahigh output power density of 43.2 W m-2 at a 50-fold salinity gradient and up to 228.9 W m-2 for the Dead Sea and river water system. The achieved power density outperforms the state-of-the-art nanofluidic membranes, suggesting the great potential of oriented COF membranes in the fields of advanced membrane technology and energy conversion.Nanofluidic membranes have been demonstrated as promising candidates for osmotic energy harvesting. However, it remains a long-standing challenge to fabricate high-efficiency ion-permselective membranes with well-defined channel architectures. Here, we demonstrate high-performance osmotic energy conversion membranes based on oriented two-dimensional covalent organic frameworks (COFs) with ultrashort vertically aligned nanofluidic channels that enabled efficient and selective ion transport. Experiments combined with molecular dynamics simulations revealed that exquisite control over channel orientation, charge polarity, and charge density contributed to high ion selectivity and permeability. When applied to osmotic energy conversion, a pair of 100 nm thick oppositely charged COF membranes achieved an ultrahigh output power density of 43.2 W m-2 at a 50-fold salinity gradient and up to 228.9 W m-2 for the Dead Sea and river water system. The achieved power density outperforms the state-of-the-art nanofluidic membranes, suggesting the great potential of oriented COF membranes in the fields of advanced membrane technology and energy conversion.
Nanofluidic membranes have been demonstrated as promising candidates for osmotic energy harvesting. However, it remains a long-standing challenge to fabricate high-efficiency ion-permselective membranes with well-defined channel architectures. Here, we demonstrate high-performance osmotic energy conversion membranes based on oriented two-dimensional covalent organic frameworks (COFs) with ultrashort vertically aligned nanofluidic channels that enabled efficient and selective ion transport. Experiments combined with molecular dynamics simulations revealed that exquisite control over channel orientation, charge polarity, and charge density contributed to high ion selectivity and permeability. When applied to osmotic energy conversion, a pair of 100 nm thick oppositely charged COF membranes achieved an ultrahigh output power density of 43.2 W m–2 at a 50-fold salinity gradient and up to 228.9 W m–2 for the Dead Sea and river water system. The achieved power density outperforms the state-of-the-art nanofluidic membranes, suggesting the great potential of oriented COF membranes in the fields of advanced membrane technology and energy conversion.
Nanofluidic membranes have been demonstrated as promising candidates for osmotic energy harvesting. However, it remains a long-standing challenge to fabricate high-efficiency ion-permselective membranes with well-defined channel architectures. Here, we demonstrate high-performance osmotic energy conversion membranes based on oriented two-dimensional covalent organic frameworks (COFs) with ultrashort vertically aligned nanofluidic channels that enabled efficient and selective ion transport. Experiments combined with molecular dynamics simulations revealed that exquisite control over channel orientation, charge polarity, and charge density contributed to high ion selectivity and permeability. When applied to osmotic energy conversion, a pair of 100 nm thick oppositely charged COF membranes achieved an ultrahigh output power density of 43.2 W m–² at a 50-fold salinity gradient and up to 228.9 W m–² for the Dead Sea and river water system. The achieved power density outperforms the state-of-the-art nanofluidic membranes, suggesting the great potential of oriented COF membranes in the fields of advanced membrane technology and energy conversion.
Author Liu, Xiaowei
Zhang, Yuting
Li, Zhen
Lai, Zhiping
Chen, Cailing
Zhou, Zongyao
Shinde, Digambar B.
Cao, Li
Chen, I-Chun
Han, Yu
AuthorAffiliation Division of Physical Science and Engineering
AuthorAffiliation_xml – name: Division of Physical Science and Engineering
Author_xml – sequence: 1
  givenname: Li
  orcidid: 0000-0002-7087-9431
  surname: Cao
  fullname: Cao, Li
– sequence: 2
  givenname: I-Chun
  surname: Chen
  fullname: Chen, I-Chun
– sequence: 3
  givenname: Cailing
  orcidid: 0000-0003-2598-1354
  surname: Chen
  fullname: Chen, Cailing
– sequence: 4
  givenname: Digambar B.
  surname: Shinde
  fullname: Shinde, Digambar B.
– sequence: 5
  givenname: Xiaowei
  orcidid: 0000-0002-2577-0701
  surname: Liu
  fullname: Liu, Xiaowei
– sequence: 6
  givenname: Zhen
  orcidid: 0000-0002-7048-9011
  surname: Li
  fullname: Li, Zhen
– sequence: 7
  givenname: Zongyao
  orcidid: 0000-0002-4694-2330
  surname: Zhou
  fullname: Zhou, Zongyao
– sequence: 8
  givenname: Yuting
  surname: Zhang
  fullname: Zhang, Yuting
– sequence: 9
  givenname: Yu
  orcidid: 0000-0003-1462-1118
  surname: Han
  fullname: Han, Yu
– sequence: 10
  givenname: Zhiping
  orcidid: 0000-0001-9555-6009
  surname: Lai
  fullname: Lai, Zhiping
  email: zhiping.lai@kaust.edu.sa
BookMark eNqFkbFu2zAQhonCBeok3foAHDNUCUlJFDUGRuIaSJsMTVbhTJ9suhTpkrSDTH31ULCnokGnwx2--3C4_4xMnHdIyBfOrjgT_HoLOl4JzSohyg9kymvBipoLOSFTxpgoGiXLT-Qsxm1uK6H4lPyZG3CJPsTBJ6PprcOwfqUz7w4YovGOpk3w-_WGPmPIANjixpq1wxVdeFc8YhgiWtTJHJD-AOf1BpxDG6lx2XIAi6M9rMFl-12AAV98-EW_47AM4DBekI892IifT_WcPN3d_px9K-4f5ovZzX0BFWOpWDVL3ULdV2WJqtTQrtqmbiQDqbnsS9nonqmWs9Wyqji0vWyl0lIzAVpWGSnPyeXRuwv-9x5j6gYTNVqbj_D72ImGK9HUvGz_j0rFVVa2KqNfj6gOPsaAfbcLZoDw2nHWjZF0YyTdKZKMi79wbRKk_OYUwNj3lk7njMOt3weX__Rv9A0vZaDP
CitedBy_id crossref_primary_10_1002_smtd_202401111
crossref_primary_10_1021_acsami_4c19678
crossref_primary_10_1021_jacs_4c11709
crossref_primary_10_1016_j_xcrp_2022_101065
crossref_primary_10_1016_j_ijbiomac_2024_133975
crossref_primary_10_1002_adma_202208640
crossref_primary_10_1021_acs_accounts_4c00356
crossref_primary_10_1126_sciadv_ado8658
crossref_primary_10_1063_5_0195205
crossref_primary_10_1016_j_jcis_2024_12_075
crossref_primary_10_1002_anie_202212120
crossref_primary_10_1360_TB_2023_0156
crossref_primary_10_1038_s44221_023_00127_z
crossref_primary_10_1038_s41467_024_54755_4
crossref_primary_10_1002_adma_202307849
crossref_primary_10_1002_ange_202315947
crossref_primary_10_1016_j_cej_2023_142304
crossref_primary_10_1002_smll_202310811
crossref_primary_10_1002_apxr_202300016
crossref_primary_10_1039_D5EE00494B
crossref_primary_10_1039_D3CS00259D
crossref_primary_10_1080_19475411_2023_2288954
crossref_primary_10_1021_acsami_3c01936
crossref_primary_10_1038_s41467_024_48613_6
crossref_primary_10_1002_smll_202206382
crossref_primary_10_1038_s41467_023_41555_5
crossref_primary_10_1002_anie_202315947
crossref_primary_10_1002_smll_202404605
crossref_primary_10_1038_s41467_024_51250_8
crossref_primary_10_1021_jacs_4c00716
crossref_primary_10_1021_acs_jpcc_4c03253
crossref_primary_10_1016_j_seppur_2025_132638
crossref_primary_10_1021_acsnano_2c07641
crossref_primary_10_1039_D4EE05239K
crossref_primary_10_1016_j_ensm_2024_103427
crossref_primary_10_1002_ange_202303582
crossref_primary_10_1002_adfm_202414506
crossref_primary_10_1016_j_mattod_2024_12_001
crossref_primary_10_1002_adfm_202211316
crossref_primary_10_1002_adfm_202404410
crossref_primary_10_1021_jacs_4c02629
crossref_primary_10_1002_smll_202406757
crossref_primary_10_1021_jacs_4c00603
crossref_primary_10_1002_adfm_202301178
crossref_primary_10_1002_anie_202422333
crossref_primary_10_1002_sstr_202300190
crossref_primary_10_1038_s41545_024_00315_8
crossref_primary_10_1002_ange_202212120
crossref_primary_10_1021_cbe_3c00119
crossref_primary_10_1016_j_memsci_2023_122120
crossref_primary_10_1016_j_ensm_2022_12_015
crossref_primary_10_1039_D3CP05906E
crossref_primary_10_1002_adfm_202311258
crossref_primary_10_1038_s41893_024_01493_6
crossref_primary_10_1002_adfm_202302427
crossref_primary_10_1021_acsnano_2c07813
crossref_primary_10_1002_smll_202306018
crossref_primary_10_1002_anie_202303582
crossref_primary_10_1007_s12274_023_5914_5
crossref_primary_10_1021_jacs_2c12936
crossref_primary_10_1016_j_apenergy_2025_125574
crossref_primary_10_1016_j_cej_2024_157294
crossref_primary_10_1002_ange_202422333
crossref_primary_10_1002_smll_202301512
crossref_primary_10_1126_sciadv_ads5591
crossref_primary_10_1016_j_memsci_2023_122054
crossref_primary_10_1021_acsami_4c10263
crossref_primary_10_1039_D2EE02742A
crossref_primary_10_1021_jacs_3c07393
crossref_primary_10_1021_jacs_3c03198
crossref_primary_10_1002_adma_202404418
crossref_primary_10_1002_adma_202302511
crossref_primary_10_1002_adfm_202211532
crossref_primary_10_34133_research_0173
crossref_primary_10_1021_jacs_4c12829
crossref_primary_10_1016_j_advmem_2022_100046
crossref_primary_10_1038_s41467_024_52487_z
crossref_primary_10_1039_D4TA07298G
crossref_primary_10_1016_j_desal_2023_116988
crossref_primary_10_1016_j_cej_2024_157329
crossref_primary_10_1038_s41467_022_35594_7
crossref_primary_10_1002_adfm_202316040
crossref_primary_10_1002_smtd_202301558
crossref_primary_10_1016_j_nanoen_2024_109955
crossref_primary_10_1126_science_adg8487
crossref_primary_10_1021_acs_jchemed_3c01019
crossref_primary_10_1021_acs_nanolett_4c05441
crossref_primary_10_1002_smtd_202300278
crossref_primary_10_1002_ange_202408375
crossref_primary_10_1016_j_memsci_2023_121610
crossref_primary_10_1002_smll_202303757
crossref_primary_10_1021_acssuschemeng_3c04167
crossref_primary_10_1038_s41467_024_47040_x
crossref_primary_10_1557_s43581_024_00104_3
crossref_primary_10_1088_1742_6596_2671_1_012007
crossref_primary_10_1002_adfm_202211356
crossref_primary_10_1038_s41467_023_36711_w
crossref_primary_10_1002_smll_202310791
crossref_primary_10_1002_adfm_202308176
crossref_primary_10_1038_s41699_024_00486_5
crossref_primary_10_1021_jacs_3c11542
crossref_primary_10_1002_ange_202316299
crossref_primary_10_1021_acs_nanolett_4c03836
crossref_primary_10_1021_acs_jpcc_3c01689
crossref_primary_10_1039_D4CS00409D
crossref_primary_10_1016_j_measen_2024_101273
crossref_primary_10_1016_j_memsci_2023_121621
crossref_primary_10_1360_SSPMA_2023_0373
crossref_primary_10_1002_anie_202408375
crossref_primary_10_1016_j_seppur_2024_130753
crossref_primary_10_1002_anie_202316299
crossref_primary_10_1016_j_cej_2024_152375
crossref_primary_10_1002_asia_202300876
crossref_primary_10_1002_adma_202401137
crossref_primary_10_1002_adfm_202409356
crossref_primary_10_1021_jacs_3c13159
crossref_primary_10_1002_adfm_202412477
crossref_primary_10_1016_j_nanoen_2022_108007
Cites_doi 10.1007/s10404-010-0641-0
10.1016/j.matt.2021.03.017
10.1016/j.nanoen.2021.106690
10.1038/nature11477
10.1016/j.nanoen.2018.12.075
10.1038/nnano.2009.332
10.1126/science.1202747
10.1126/science.186.4161.350
10.1038/s41467-019-14056-7
10.1016/j.memsci.2016.11.050
10.1021/jacs.0c11251
10.1002/advs.202000286
10.1038/s41467-021-22141-z
10.1021/acsami.1c06285
10.1016/j.nanoen.2020.105509
10.1021/acsnano.0c09513
10.1038/natrevmats.2016.68
10.1126/science.1120411
10.1002/adfm.201908804
10.1002/adfm.202108178
10.1021/acs.chemrev.9b00550
10.1002/adfm.201603623
10.1021/ja308167f
10.1021/acsnano.0c09845
10.1016/j.joule.2019.09.005
10.1038/nature17634
10.1038/s41467-020-14674-6
10.1002/adma.202104404
10.1038/s41565-020-0641-5
10.1021/jacs.6b11100
10.1002/adma.202005565
10.1002/adma.202104946
10.1016/j.memsci.2015.02.039
10.1021/acs.accounts.1c00431
10.1002/adfm.202109210
10.1021/acsnano.9b02579
10.1002/anie.201915993
10.1002/adma.202101726
10.1038/s41467-019-11792-8
10.1126/sciadv.aau4238
10.1002/adma.202108410
10.1073/pnas.2003898117
10.1038/nature18593
10.1016/j.nanoen.2019.02.056
10.1021/jacs.1c07392
10.1126/sciadv.abg2183
10.1126/sciadv.abe9924
10.1002/anie.202113141
10.1021/jacs.1c02090
10.1038/natrevmats.2016.80
10.1038/s41563-021-01052-w
10.1021/jacs.8b05136
10.1021/acsnano.0c01309
10.1039/d1ee00908g
10.1126/science.aat7679
10.1002/anie.202006320
10.1002/anie.202100205
10.1016/j.joule.2019.11.010
10.1039/c1ee01913a
10.1038/s41467-019-10885-8
10.1093/nsr/nwaa057
10.1038/174660a0
10.1126/science.aaf5289
10.1021/acs.nanolett.1c02919
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1021/jacs.2c04223
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 12409
ExternalDocumentID 10_1021_jacs_2c04223
c338824149
GroupedDBID -
02
4.4
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABFRP
ABMVS
ABPPZ
ABPTK
ABUCX
ACGFO
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
AGXLV
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DC
DU5
DZ
EBS
ED
ET
F5P
GGK
GNL
IH2
IH9
JG
K2
LG6
P2P
ROL
RXW
TAE
TAF
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XSW
YQT
YZZ
ZCA
ZHY
---
-DZ
-ET
-~X
.DC
.K2
53G
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
ED~
JG~
~02
7X8
AAYWT
7S9
L.6
ID FETCH-LOGICAL-a400t-d7bc9a5f433e83ca9d975760a6c16f367cf08910db441a9f6968c6c02ac64c163
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Thu Jul 10 23:11:56 EDT 2025
Wed Jul 30 10:19:06 EDT 2025
Tue Jul 01 03:54:12 EDT 2025
Thu Apr 24 22:57:24 EDT 2025
Fri Jul 15 12:36:09 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 27
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a400t-d7bc9a5f433e83ca9d975760a6c16f367cf08910db441a9f6968c6c02ac64c163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7048-9011
0000-0002-4694-2330
0000-0003-1462-1118
0000-0002-7087-9431
0000-0002-2577-0701
0000-0001-9555-6009
0000-0003-2598-1354
PQID 2681816398
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2718275139
proquest_miscellaneous_2681816398
crossref_primary_10_1021_jacs_2c04223
crossref_citationtrail_10_1021_jacs_2c04223
acs_journals_10_1021_jacs_2c04223
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-13
PublicationDateYYYYMMDD 2022-07-13
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-13
  day: 13
PublicationDecade 2020
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
ref64/cit64
ref54/cit54
Ying Y. (ref50/cit50) 2021; 34
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref4/cit4
  doi: 10.1007/s10404-010-0641-0
– ident: ref40/cit40
  doi: 10.1016/j.matt.2021.03.017
– ident: ref55/cit55
  doi: 10.1016/j.nanoen.2021.106690
– ident: ref7/cit7
  doi: 10.1038/nature11477
– ident: ref34/cit34
  doi: 10.1016/j.nanoen.2018.12.075
– ident: ref63/cit63
  doi: 10.1038/nnano.2009.332
– ident: ref38/cit38
  doi: 10.1126/science.1202747
– ident: ref2/cit2
  doi: 10.1126/science.186.4161.350
– ident: ref46/cit46
  doi: 10.1038/s41467-019-14056-7
– ident: ref16/cit16
  doi: 10.1016/j.memsci.2016.11.050
– ident: ref20/cit20
  doi: 10.1021/jacs.0c11251
– ident: ref18/cit18
  doi: 10.1002/advs.202000286
– ident: ref41/cit41
  doi: 10.1038/s41467-021-22141-z
– ident: ref56/cit56
  doi: 10.1021/acsami.1c06285
– ident: ref8/cit8
  doi: 10.1016/j.nanoen.2020.105509
– ident: ref15/cit15
  doi: 10.1021/acsnano.0c09513
– ident: ref35/cit35
  doi: 10.1038/natrevmats.2016.68
– ident: ref37/cit37
  doi: 10.1126/science.1120411
– ident: ref31/cit31
  doi: 10.1002/adfm.201908804
– ident: ref45/cit45
  doi: 10.1002/adfm.202108178
– ident: ref36/cit36
  doi: 10.1021/acs.chemrev.9b00550
– ident: ref17/cit17
  doi: 10.1002/adfm.201603623
– ident: ref61/cit61
  doi: 10.1021/ja308167f
– ident: ref26/cit26
  doi: 10.1021/acsnano.0c09845
– ident: ref13/cit13
  doi: 10.1016/j.joule.2019.09.005
– ident: ref6/cit6
  doi: 10.1038/nature17634
– ident: ref64/cit64
  doi: 10.1038/s41467-020-14674-6
– ident: ref47/cit47
  doi: 10.1002/adma.202104404
– ident: ref32/cit32
  doi: 10.1038/s41565-020-0641-5
– ident: ref60/cit60
  doi: 10.1021/jacs.6b11100
– ident: ref43/cit43
  doi: 10.1002/adma.202005565
– volume: 34
  start-page: 2104946
  year: 2021
  ident: ref50/cit50
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202104946
– ident: ref12/cit12
  doi: 10.1016/j.memsci.2015.02.039
– ident: ref29/cit29
  doi: 10.1021/acs.accounts.1c00431
– ident: ref57/cit57
  doi: 10.1002/adfm.202109210
– ident: ref22/cit22
  doi: 10.1021/acsnano.9b02579
– ident: ref23/cit23
  doi: 10.1002/anie.201915993
– ident: ref53/cit53
  doi: 10.1002/adma.202101726
– ident: ref58/cit58
  doi: 10.1038/s41467-019-11792-8
– ident: ref59/cit59
  doi: 10.1126/sciadv.aau4238
– ident: ref14/cit14
  doi: 10.1002/adma.202108410
– ident: ref27/cit27
  doi: 10.1073/pnas.2003898117
– ident: ref33/cit33
  doi: 10.1038/nature18593
– ident: ref9/cit9
  doi: 10.1016/j.nanoen.2019.02.056
– ident: ref54/cit54
  doi: 10.1021/jacs.1c07392
– ident: ref62/cit62
  doi: 10.1126/sciadv.abg2183
– ident: ref30/cit30
  doi: 10.1126/sciadv.abe9924
– ident: ref49/cit49
  doi: 10.1002/anie.202113141
– ident: ref51/cit51
  doi: 10.1021/jacs.1c02090
– ident: ref5/cit5
  doi: 10.1038/natrevmats.2016.80
– ident: ref42/cit42
  doi: 10.1038/s41563-021-01052-w
– ident: ref48/cit48
  doi: 10.1021/jacs.8b05136
– ident: ref19/cit19
  doi: 10.1021/acsnano.0c01309
– ident: ref24/cit24
  doi: 10.1039/d1ee00908g
– ident: ref39/cit39
  doi: 10.1126/science.aat7679
– ident: ref10/cit10
  doi: 10.1002/anie.202006320
– ident: ref52/cit52
  doi: 10.1002/anie.202100205
– ident: ref25/cit25
  doi: 10.1016/j.joule.2019.11.010
– ident: ref3/cit3
  doi: 10.1039/c1ee01913a
– ident: ref21/cit21
  doi: 10.1038/s41467-019-10885-8
– ident: ref11/cit11
  doi: 10.1093/nsr/nwaa057
– ident: ref1/cit1
  doi: 10.1038/174660a0
– ident: ref28/cit28
  doi: 10.1126/science.aaf5289
– ident: ref44/cit44
  doi: 10.1021/acs.nanolett.1c02919
SSID ssj0004281
Score 2.6592443
Snippet Nanofluidic membranes have been demonstrated as promising candidates for osmotic energy harvesting. However, it remains a long-standing challenge to fabricate...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12400
SubjectTerms energy conversion
molecular dynamics
permeability
river water
salinity
Title Giant Osmotic Energy Conversion through Vertical-Aligned Ion-Permselective Nanochannels in Covalent Organic Framework Membranes
URI http://dx.doi.org/10.1021/jacs.2c04223
https://www.proquest.com/docview/2681816398
https://www.proquest.com/docview/2718275139
Volume 144
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gHODCGzFeChKcUKYuadP0OE1sgDRAgiFuU-O1aGJ0iHUXLvx17KwFDcTjWrlRkzj2l9r-zNgRGGlJV0RgPCv8RCoRpWCEBxS20xYhANU7dy71Wde_uA_uPxNkv0bwJfEDwbgmgbiq1DxbkNqEdMlqNG8-6x-lqZcwNzRaFQnuX98mBwTjWQc0a3-dU2mtsHZZmjPNJXmsTXJbg9fvTI1_fO8qWy5wJW9MFWGNzSXZOltslu3cNthbGxUh51eubw_wU1fzx5uUdO7-mPGiYw-_c5nW8VA0hoMHNML8fJSJazTgY9cyB60jR5M8oorhDB0rH2Q4CuprQqO7yk7grTLli3eSJ7yPoz3dZN3W6W3zTBTdF0SM5zoX_dBCFAepr1RiFMRRPwrxcuLFGuo6VTqE1DMINvoWEVUcpcSyAxo8GYP2UURtsUo2ypJtxlWfhiJuMqj7gQKLoCwIIEU7ayH2TJUd4qL1itMz7rnAuMSLCT0tlrLKTspt60FBX05dNIY_SB9_SD9PaTt-kDssNaCH-0HBElyS0QQFNEIZnEVkfpFBxy7DAEH0zj9msMuWJNVOECun2mOV_GWS7COiye2BU-d31x3xCQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Nb9QwEB215dBe-CyifLoSPSFXWTtxnAOH1dJll3YLEi3qLcSzDqpYsohkheDCL-Gv8NuYcZNWrdSKSyWu0WgU2-O853jmDcBztMpxrMjERk7GXmmZlWhlhHxtZxxRAK53nuyb0WH85ig5WoLfXS0MvURNnupwiX-mLsAyQfRQIUtWdb2qd_2P73RCq1-OX9Fybik13DkYjGTbREAWFJ6NnKYOsyIpY6291Vhk0ywljh0VBnum1CbFMrKEmVNHxKDIShaLQYORKtDEZKLJ7zLcIN6j-GzXH7w_K7tUttex69Qa3ebVX3xbxj2sz-Pe-c9-wLLhLfhzOgshheXz9qJx2_jzgkDkfztNt-Fmy6JF_yTs78CSr-7C6qBrXncPfr2msG_E29ClCMVOqHAUA06xD_8HRdufSHwIeeXFTPZnx58IcsR4Xsl3BFd1aBBEWCAIgOZcH10RjRDHFXmh3enZe6hjRTHsEtzExH9xBP6-XofDaxn_fVip5pV_AEJP2RUrsWEvTjQ6oqBJgiWhisMishuwSYuUt9-KOg9pAIqOYfy0XboNeNFFS46tWDv3DJldYr11av31RKTkErvNLvByWg--GqIpmS_IwBBxo1Fk9gobojEqTejI8PAfRvAMVkcHk718b7y_-wjWFFeNsB6pfgwrzbeFf0JcrnFPw44S8PG6Y_MvUN5S3w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Nb9QwEB2VIgEXvlHLpyvRE3KVtRPHOfSw2nbpUloqQVFvIZ44VcWSrUhWCC79LfwVfhkzblLUSkVcKnHdjEaxPc57Xs-8AXiJVjmOFZnYyMnYKy2zCq2MkK_tjCMKwPXOO7tmaz9-c5AcLMDPvhaGXqIhT024xOddfVxWncIASwXRA4UsW9X3q97237_RKa1Zn2zQkq4qNd78MNqSXSMBWVCItrJMHWZFUsVae6uxyMosJZ4dFQYHptImxSqyhJulI3JQZBULxqDBSBVoYjLR5PcaXOcbQj7fDUfv_5ReKjvoGXZqje5y6y--LWMfNuex7_ynP-DZ-A78OpuJkMbyeW3eujX8cUEk8r-eqrtwu2PTYnga_vdgwdf34eaob2L3AE5eU_i34l3oVoRiM1Q6ihGn2of_CUXXp0h8DPnlxVQOp0eHBD1iMqvlHsFWExoFESYIAqIZ10nXRCfEUU1eaJd69h7qWVGM-0Q3seO_OCIBvnkI-1cy_kewWM9qvwRCl-yKFdlwECcaHVHRJMGK0MVhEdllWKFFyrtvRpOHdABFxzH-tVu6ZXjVR0yOnWg79w6ZXmK9emZ9fCpWcondSh98Oa0HXxHRlMzmZGCIwNEoMvsXG6IzKk3o6PD4H0bwAm7sbYzzt5Pd7SdwS3HxCMuS6qew2H6d-2dE6Vr3PGwqAZ-uOjR_A4P1VWI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Giant+Osmotic+Energy+Conversion+through+Vertical-Aligned+Ion-Permselective+Nanochannels+in+Covalent+Organic+Framework+Membranes&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Cao%2C+Li&rft.au=Chen%2C+I-Chun&rft.au=Chen%2C+Cailing&rft.au=Shinde%2C+Digambar+B&rft.date=2022-07-13&rft.issn=1520-5126&rft.eissn=1520-5126&rft.volume=144&rft.issue=27&rft.spage=12400&rft_id=info:doi/10.1021%2Fjacs.2c04223&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon