Giant Osmotic Energy Conversion through Vertical-Aligned Ion-Permselective Nanochannels in Covalent Organic Framework Membranes
Nanofluidic membranes have been demonstrated as promising candidates for osmotic energy harvesting. However, it remains a long-standing challenge to fabricate high-efficiency ion-permselective membranes with well-defined channel architectures. Here, we demonstrate high-performance osmotic energy con...
Saved in:
Published in | Journal of the American Chemical Society Vol. 144; no. 27; pp. 12400 - 12409 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
13.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nanofluidic membranes have been demonstrated as promising candidates for osmotic energy harvesting. However, it remains a long-standing challenge to fabricate high-efficiency ion-permselective membranes with well-defined channel architectures. Here, we demonstrate high-performance osmotic energy conversion membranes based on oriented two-dimensional covalent organic frameworks (COFs) with ultrashort vertically aligned nanofluidic channels that enabled efficient and selective ion transport. Experiments combined with molecular dynamics simulations revealed that exquisite control over channel orientation, charge polarity, and charge density contributed to high ion selectivity and permeability. When applied to osmotic energy conversion, a pair of 100 nm thick oppositely charged COF membranes achieved an ultrahigh output power density of 43.2 W m–2 at a 50-fold salinity gradient and up to 228.9 W m–2 for the Dead Sea and river water system. The achieved power density outperforms the state-of-the-art nanofluidic membranes, suggesting the great potential of oriented COF membranes in the fields of advanced membrane technology and energy conversion. |
---|---|
AbstractList | Nanofluidic membranes have been demonstrated as promising candidates for osmotic energy harvesting. However, it remains a long-standing challenge to fabricate high-efficiency ion-permselective membranes with well-defined channel architectures. Here, we demonstrate high-performance osmotic energy conversion membranes based on oriented two-dimensional covalent organic frameworks (COFs) with ultrashort vertically aligned nanofluidic channels that enabled efficient and selective ion transport. Experiments combined with molecular dynamics simulations revealed that exquisite control over channel orientation, charge polarity, and charge density contributed to high ion selectivity and permeability. When applied to osmotic energy conversion, a pair of 100 nm thick oppositely charged COF membranes achieved an ultrahigh output power density of 43.2 W m-2 at a 50-fold salinity gradient and up to 228.9 W m-2 for the Dead Sea and river water system. The achieved power density outperforms the state-of-the-art nanofluidic membranes, suggesting the great potential of oriented COF membranes in the fields of advanced membrane technology and energy conversion.Nanofluidic membranes have been demonstrated as promising candidates for osmotic energy harvesting. However, it remains a long-standing challenge to fabricate high-efficiency ion-permselective membranes with well-defined channel architectures. Here, we demonstrate high-performance osmotic energy conversion membranes based on oriented two-dimensional covalent organic frameworks (COFs) with ultrashort vertically aligned nanofluidic channels that enabled efficient and selective ion transport. Experiments combined with molecular dynamics simulations revealed that exquisite control over channel orientation, charge polarity, and charge density contributed to high ion selectivity and permeability. When applied to osmotic energy conversion, a pair of 100 nm thick oppositely charged COF membranes achieved an ultrahigh output power density of 43.2 W m-2 at a 50-fold salinity gradient and up to 228.9 W m-2 for the Dead Sea and river water system. The achieved power density outperforms the state-of-the-art nanofluidic membranes, suggesting the great potential of oriented COF membranes in the fields of advanced membrane technology and energy conversion. Nanofluidic membranes have been demonstrated as promising candidates for osmotic energy harvesting. However, it remains a long-standing challenge to fabricate high-efficiency ion-permselective membranes with well-defined channel architectures. Here, we demonstrate high-performance osmotic energy conversion membranes based on oriented two-dimensional covalent organic frameworks (COFs) with ultrashort vertically aligned nanofluidic channels that enabled efficient and selective ion transport. Experiments combined with molecular dynamics simulations revealed that exquisite control over channel orientation, charge polarity, and charge density contributed to high ion selectivity and permeability. When applied to osmotic energy conversion, a pair of 100 nm thick oppositely charged COF membranes achieved an ultrahigh output power density of 43.2 W m–2 at a 50-fold salinity gradient and up to 228.9 W m–2 for the Dead Sea and river water system. The achieved power density outperforms the state-of-the-art nanofluidic membranes, suggesting the great potential of oriented COF membranes in the fields of advanced membrane technology and energy conversion. Nanofluidic membranes have been demonstrated as promising candidates for osmotic energy harvesting. However, it remains a long-standing challenge to fabricate high-efficiency ion-permselective membranes with well-defined channel architectures. Here, we demonstrate high-performance osmotic energy conversion membranes based on oriented two-dimensional covalent organic frameworks (COFs) with ultrashort vertically aligned nanofluidic channels that enabled efficient and selective ion transport. Experiments combined with molecular dynamics simulations revealed that exquisite control over channel orientation, charge polarity, and charge density contributed to high ion selectivity and permeability. When applied to osmotic energy conversion, a pair of 100 nm thick oppositely charged COF membranes achieved an ultrahigh output power density of 43.2 W m–² at a 50-fold salinity gradient and up to 228.9 W m–² for the Dead Sea and river water system. The achieved power density outperforms the state-of-the-art nanofluidic membranes, suggesting the great potential of oriented COF membranes in the fields of advanced membrane technology and energy conversion. |
Author | Liu, Xiaowei Zhang, Yuting Li, Zhen Lai, Zhiping Chen, Cailing Zhou, Zongyao Shinde, Digambar B. Cao, Li Chen, I-Chun Han, Yu |
AuthorAffiliation | Division of Physical Science and Engineering |
AuthorAffiliation_xml | – name: Division of Physical Science and Engineering |
Author_xml | – sequence: 1 givenname: Li orcidid: 0000-0002-7087-9431 surname: Cao fullname: Cao, Li – sequence: 2 givenname: I-Chun surname: Chen fullname: Chen, I-Chun – sequence: 3 givenname: Cailing orcidid: 0000-0003-2598-1354 surname: Chen fullname: Chen, Cailing – sequence: 4 givenname: Digambar B. surname: Shinde fullname: Shinde, Digambar B. – sequence: 5 givenname: Xiaowei orcidid: 0000-0002-2577-0701 surname: Liu fullname: Liu, Xiaowei – sequence: 6 givenname: Zhen orcidid: 0000-0002-7048-9011 surname: Li fullname: Li, Zhen – sequence: 7 givenname: Zongyao orcidid: 0000-0002-4694-2330 surname: Zhou fullname: Zhou, Zongyao – sequence: 8 givenname: Yuting surname: Zhang fullname: Zhang, Yuting – sequence: 9 givenname: Yu orcidid: 0000-0003-1462-1118 surname: Han fullname: Han, Yu – sequence: 10 givenname: Zhiping orcidid: 0000-0001-9555-6009 surname: Lai fullname: Lai, Zhiping email: zhiping.lai@kaust.edu.sa |
BookMark | eNqFkbFu2zAQhonCBeok3foAHDNUCUlJFDUGRuIaSJsMTVbhTJ9suhTpkrSDTH31ULCnokGnwx2--3C4_4xMnHdIyBfOrjgT_HoLOl4JzSohyg9kymvBipoLOSFTxpgoGiXLT-Qsxm1uK6H4lPyZG3CJPsTBJ6PprcOwfqUz7w4YovGOpk3w-_WGPmPIANjixpq1wxVdeFc8YhgiWtTJHJD-AOf1BpxDG6lx2XIAi6M9rMFl-12AAV98-EW_47AM4DBekI892IifT_WcPN3d_px9K-4f5ovZzX0BFWOpWDVL3ULdV2WJqtTQrtqmbiQDqbnsS9nonqmWs9Wyqji0vWyl0lIzAVpWGSnPyeXRuwv-9x5j6gYTNVqbj_D72ImGK9HUvGz_j0rFVVa2KqNfj6gOPsaAfbcLZoDw2nHWjZF0YyTdKZKMi79wbRKk_OYUwNj3lk7njMOt3weX__Rv9A0vZaDP |
CitedBy_id | crossref_primary_10_1002_smtd_202401111 crossref_primary_10_1021_acsami_4c19678 crossref_primary_10_1021_jacs_4c11709 crossref_primary_10_1016_j_xcrp_2022_101065 crossref_primary_10_1016_j_ijbiomac_2024_133975 crossref_primary_10_1002_adma_202208640 crossref_primary_10_1021_acs_accounts_4c00356 crossref_primary_10_1126_sciadv_ado8658 crossref_primary_10_1063_5_0195205 crossref_primary_10_1016_j_jcis_2024_12_075 crossref_primary_10_1002_anie_202212120 crossref_primary_10_1360_TB_2023_0156 crossref_primary_10_1038_s44221_023_00127_z crossref_primary_10_1038_s41467_024_54755_4 crossref_primary_10_1002_adma_202307849 crossref_primary_10_1002_ange_202315947 crossref_primary_10_1016_j_cej_2023_142304 crossref_primary_10_1002_smll_202310811 crossref_primary_10_1002_apxr_202300016 crossref_primary_10_1039_D5EE00494B crossref_primary_10_1039_D3CS00259D crossref_primary_10_1080_19475411_2023_2288954 crossref_primary_10_1021_acsami_3c01936 crossref_primary_10_1038_s41467_024_48613_6 crossref_primary_10_1002_smll_202206382 crossref_primary_10_1038_s41467_023_41555_5 crossref_primary_10_1002_anie_202315947 crossref_primary_10_1002_smll_202404605 crossref_primary_10_1038_s41467_024_51250_8 crossref_primary_10_1021_jacs_4c00716 crossref_primary_10_1021_acs_jpcc_4c03253 crossref_primary_10_1016_j_seppur_2025_132638 crossref_primary_10_1021_acsnano_2c07641 crossref_primary_10_1039_D4EE05239K crossref_primary_10_1016_j_ensm_2024_103427 crossref_primary_10_1002_ange_202303582 crossref_primary_10_1002_adfm_202414506 crossref_primary_10_1016_j_mattod_2024_12_001 crossref_primary_10_1002_adfm_202211316 crossref_primary_10_1002_adfm_202404410 crossref_primary_10_1021_jacs_4c02629 crossref_primary_10_1002_smll_202406757 crossref_primary_10_1021_jacs_4c00603 crossref_primary_10_1002_adfm_202301178 crossref_primary_10_1002_anie_202422333 crossref_primary_10_1002_sstr_202300190 crossref_primary_10_1038_s41545_024_00315_8 crossref_primary_10_1002_ange_202212120 crossref_primary_10_1021_cbe_3c00119 crossref_primary_10_1016_j_memsci_2023_122120 crossref_primary_10_1016_j_ensm_2022_12_015 crossref_primary_10_1039_D3CP05906E crossref_primary_10_1002_adfm_202311258 crossref_primary_10_1038_s41893_024_01493_6 crossref_primary_10_1002_adfm_202302427 crossref_primary_10_1021_acsnano_2c07813 crossref_primary_10_1002_smll_202306018 crossref_primary_10_1002_anie_202303582 crossref_primary_10_1007_s12274_023_5914_5 crossref_primary_10_1021_jacs_2c12936 crossref_primary_10_1016_j_apenergy_2025_125574 crossref_primary_10_1016_j_cej_2024_157294 crossref_primary_10_1002_ange_202422333 crossref_primary_10_1002_smll_202301512 crossref_primary_10_1126_sciadv_ads5591 crossref_primary_10_1016_j_memsci_2023_122054 crossref_primary_10_1021_acsami_4c10263 crossref_primary_10_1039_D2EE02742A crossref_primary_10_1021_jacs_3c07393 crossref_primary_10_1021_jacs_3c03198 crossref_primary_10_1002_adma_202404418 crossref_primary_10_1002_adma_202302511 crossref_primary_10_1002_adfm_202211532 crossref_primary_10_34133_research_0173 crossref_primary_10_1021_jacs_4c12829 crossref_primary_10_1016_j_advmem_2022_100046 crossref_primary_10_1038_s41467_024_52487_z crossref_primary_10_1039_D4TA07298G crossref_primary_10_1016_j_desal_2023_116988 crossref_primary_10_1016_j_cej_2024_157329 crossref_primary_10_1038_s41467_022_35594_7 crossref_primary_10_1002_adfm_202316040 crossref_primary_10_1002_smtd_202301558 crossref_primary_10_1016_j_nanoen_2024_109955 crossref_primary_10_1126_science_adg8487 crossref_primary_10_1021_acs_jchemed_3c01019 crossref_primary_10_1021_acs_nanolett_4c05441 crossref_primary_10_1002_smtd_202300278 crossref_primary_10_1002_ange_202408375 crossref_primary_10_1016_j_memsci_2023_121610 crossref_primary_10_1002_smll_202303757 crossref_primary_10_1021_acssuschemeng_3c04167 crossref_primary_10_1038_s41467_024_47040_x crossref_primary_10_1557_s43581_024_00104_3 crossref_primary_10_1088_1742_6596_2671_1_012007 crossref_primary_10_1002_adfm_202211356 crossref_primary_10_1038_s41467_023_36711_w crossref_primary_10_1002_smll_202310791 crossref_primary_10_1002_adfm_202308176 crossref_primary_10_1038_s41699_024_00486_5 crossref_primary_10_1021_jacs_3c11542 crossref_primary_10_1002_ange_202316299 crossref_primary_10_1021_acs_nanolett_4c03836 crossref_primary_10_1021_acs_jpcc_3c01689 crossref_primary_10_1039_D4CS00409D crossref_primary_10_1016_j_measen_2024_101273 crossref_primary_10_1016_j_memsci_2023_121621 crossref_primary_10_1360_SSPMA_2023_0373 crossref_primary_10_1002_anie_202408375 crossref_primary_10_1016_j_seppur_2024_130753 crossref_primary_10_1002_anie_202316299 crossref_primary_10_1016_j_cej_2024_152375 crossref_primary_10_1002_asia_202300876 crossref_primary_10_1002_adma_202401137 crossref_primary_10_1002_adfm_202409356 crossref_primary_10_1021_jacs_3c13159 crossref_primary_10_1002_adfm_202412477 crossref_primary_10_1016_j_nanoen_2022_108007 |
Cites_doi | 10.1007/s10404-010-0641-0 10.1016/j.matt.2021.03.017 10.1016/j.nanoen.2021.106690 10.1038/nature11477 10.1016/j.nanoen.2018.12.075 10.1038/nnano.2009.332 10.1126/science.1202747 10.1126/science.186.4161.350 10.1038/s41467-019-14056-7 10.1016/j.memsci.2016.11.050 10.1021/jacs.0c11251 10.1002/advs.202000286 10.1038/s41467-021-22141-z 10.1021/acsami.1c06285 10.1016/j.nanoen.2020.105509 10.1021/acsnano.0c09513 10.1038/natrevmats.2016.68 10.1126/science.1120411 10.1002/adfm.201908804 10.1002/adfm.202108178 10.1021/acs.chemrev.9b00550 10.1002/adfm.201603623 10.1021/ja308167f 10.1021/acsnano.0c09845 10.1016/j.joule.2019.09.005 10.1038/nature17634 10.1038/s41467-020-14674-6 10.1002/adma.202104404 10.1038/s41565-020-0641-5 10.1021/jacs.6b11100 10.1002/adma.202005565 10.1002/adma.202104946 10.1016/j.memsci.2015.02.039 10.1021/acs.accounts.1c00431 10.1002/adfm.202109210 10.1021/acsnano.9b02579 10.1002/anie.201915993 10.1002/adma.202101726 10.1038/s41467-019-11792-8 10.1126/sciadv.aau4238 10.1002/adma.202108410 10.1073/pnas.2003898117 10.1038/nature18593 10.1016/j.nanoen.2019.02.056 10.1021/jacs.1c07392 10.1126/sciadv.abg2183 10.1126/sciadv.abe9924 10.1002/anie.202113141 10.1021/jacs.1c02090 10.1038/natrevmats.2016.80 10.1038/s41563-021-01052-w 10.1021/jacs.8b05136 10.1021/acsnano.0c01309 10.1039/d1ee00908g 10.1126/science.aat7679 10.1002/anie.202006320 10.1002/anie.202100205 10.1016/j.joule.2019.11.010 10.1039/c1ee01913a 10.1038/s41467-019-10885-8 10.1093/nsr/nwaa057 10.1038/174660a0 10.1126/science.aaf5289 10.1021/acs.nanolett.1c02919 |
ContentType | Journal Article |
Copyright | 2022 American Chemical Society |
Copyright_xml | – notice: 2022 American Chemical Society |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1021/jacs.2c04223 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 12409 |
ExternalDocumentID | 10_1021_jacs_2c04223 c338824149 |
GroupedDBID | - 02 4.4 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABFRP ABMVS ABPPZ ABPTK ABUCX ACGFO ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF AGXLV ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DC DU5 DZ EBS ED ET F5P GGK GNL IH2 IH9 JG K2 LG6 P2P ROL RXW TAE TAF TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XSW YQT YZZ ZCA ZHY --- -DZ -ET -~X .DC .K2 53G AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ ED~ JG~ ~02 7X8 AAYWT 7S9 L.6 |
ID | FETCH-LOGICAL-a400t-d7bc9a5f433e83ca9d975760a6c16f367cf08910db441a9f6968c6c02ac64c163 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Thu Jul 10 23:11:56 EDT 2025 Wed Jul 30 10:19:06 EDT 2025 Tue Jul 01 03:54:12 EDT 2025 Thu Apr 24 22:57:24 EDT 2025 Fri Jul 15 12:36:09 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a400t-d7bc9a5f433e83ca9d975760a6c16f367cf08910db441a9f6968c6c02ac64c163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7048-9011 0000-0002-4694-2330 0000-0003-1462-1118 0000-0002-7087-9431 0000-0002-2577-0701 0000-0001-9555-6009 0000-0003-2598-1354 |
PQID | 2681816398 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2718275139 proquest_miscellaneous_2681816398 crossref_primary_10_1021_jacs_2c04223 crossref_citationtrail_10_1021_jacs_2c04223 acs_journals_10_1021_jacs_2c04223 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-13 |
PublicationDateYYYYMMDD | 2022-07-13 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-13 day: 13 |
PublicationDecade | 2020 |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref24/cit24 ref38/cit38 ref64/cit64 ref54/cit54 Ying Y. (ref50/cit50) 2021; 34 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref4/cit4 doi: 10.1007/s10404-010-0641-0 – ident: ref40/cit40 doi: 10.1016/j.matt.2021.03.017 – ident: ref55/cit55 doi: 10.1016/j.nanoen.2021.106690 – ident: ref7/cit7 doi: 10.1038/nature11477 – ident: ref34/cit34 doi: 10.1016/j.nanoen.2018.12.075 – ident: ref63/cit63 doi: 10.1038/nnano.2009.332 – ident: ref38/cit38 doi: 10.1126/science.1202747 – ident: ref2/cit2 doi: 10.1126/science.186.4161.350 – ident: ref46/cit46 doi: 10.1038/s41467-019-14056-7 – ident: ref16/cit16 doi: 10.1016/j.memsci.2016.11.050 – ident: ref20/cit20 doi: 10.1021/jacs.0c11251 – ident: ref18/cit18 doi: 10.1002/advs.202000286 – ident: ref41/cit41 doi: 10.1038/s41467-021-22141-z – ident: ref56/cit56 doi: 10.1021/acsami.1c06285 – ident: ref8/cit8 doi: 10.1016/j.nanoen.2020.105509 – ident: ref15/cit15 doi: 10.1021/acsnano.0c09513 – ident: ref35/cit35 doi: 10.1038/natrevmats.2016.68 – ident: ref37/cit37 doi: 10.1126/science.1120411 – ident: ref31/cit31 doi: 10.1002/adfm.201908804 – ident: ref45/cit45 doi: 10.1002/adfm.202108178 – ident: ref36/cit36 doi: 10.1021/acs.chemrev.9b00550 – ident: ref17/cit17 doi: 10.1002/adfm.201603623 – ident: ref61/cit61 doi: 10.1021/ja308167f – ident: ref26/cit26 doi: 10.1021/acsnano.0c09845 – ident: ref13/cit13 doi: 10.1016/j.joule.2019.09.005 – ident: ref6/cit6 doi: 10.1038/nature17634 – ident: ref64/cit64 doi: 10.1038/s41467-020-14674-6 – ident: ref47/cit47 doi: 10.1002/adma.202104404 – ident: ref32/cit32 doi: 10.1038/s41565-020-0641-5 – ident: ref60/cit60 doi: 10.1021/jacs.6b11100 – ident: ref43/cit43 doi: 10.1002/adma.202005565 – volume: 34 start-page: 2104946 year: 2021 ident: ref50/cit50 publication-title: Adv. Mater. doi: 10.1002/adma.202104946 – ident: ref12/cit12 doi: 10.1016/j.memsci.2015.02.039 – ident: ref29/cit29 doi: 10.1021/acs.accounts.1c00431 – ident: ref57/cit57 doi: 10.1002/adfm.202109210 – ident: ref22/cit22 doi: 10.1021/acsnano.9b02579 – ident: ref23/cit23 doi: 10.1002/anie.201915993 – ident: ref53/cit53 doi: 10.1002/adma.202101726 – ident: ref58/cit58 doi: 10.1038/s41467-019-11792-8 – ident: ref59/cit59 doi: 10.1126/sciadv.aau4238 – ident: ref14/cit14 doi: 10.1002/adma.202108410 – ident: ref27/cit27 doi: 10.1073/pnas.2003898117 – ident: ref33/cit33 doi: 10.1038/nature18593 – ident: ref9/cit9 doi: 10.1016/j.nanoen.2019.02.056 – ident: ref54/cit54 doi: 10.1021/jacs.1c07392 – ident: ref62/cit62 doi: 10.1126/sciadv.abg2183 – ident: ref30/cit30 doi: 10.1126/sciadv.abe9924 – ident: ref49/cit49 doi: 10.1002/anie.202113141 – ident: ref51/cit51 doi: 10.1021/jacs.1c02090 – ident: ref5/cit5 doi: 10.1038/natrevmats.2016.80 – ident: ref42/cit42 doi: 10.1038/s41563-021-01052-w – ident: ref48/cit48 doi: 10.1021/jacs.8b05136 – ident: ref19/cit19 doi: 10.1021/acsnano.0c01309 – ident: ref24/cit24 doi: 10.1039/d1ee00908g – ident: ref39/cit39 doi: 10.1126/science.aat7679 – ident: ref10/cit10 doi: 10.1002/anie.202006320 – ident: ref52/cit52 doi: 10.1002/anie.202100205 – ident: ref25/cit25 doi: 10.1016/j.joule.2019.11.010 – ident: ref3/cit3 doi: 10.1039/c1ee01913a – ident: ref21/cit21 doi: 10.1038/s41467-019-10885-8 – ident: ref11/cit11 doi: 10.1093/nsr/nwaa057 – ident: ref1/cit1 doi: 10.1038/174660a0 – ident: ref28/cit28 doi: 10.1126/science.aaf5289 – ident: ref44/cit44 doi: 10.1021/acs.nanolett.1c02919 |
SSID | ssj0004281 |
Score | 2.6592443 |
Snippet | Nanofluidic membranes have been demonstrated as promising candidates for osmotic energy harvesting. However, it remains a long-standing challenge to fabricate... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 12400 |
SubjectTerms | energy conversion molecular dynamics permeability river water salinity |
Title | Giant Osmotic Energy Conversion through Vertical-Aligned Ion-Permselective Nanochannels in Covalent Organic Framework Membranes |
URI | http://dx.doi.org/10.1021/jacs.2c04223 https://www.proquest.com/docview/2681816398 https://www.proquest.com/docview/2718275139 |
Volume | 144 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gHODCGzFeChKcUKYuadP0OE1sgDRAgiFuU-O1aGJ0iHUXLvx17KwFDcTjWrlRkzj2l9r-zNgRGGlJV0RgPCv8RCoRpWCEBxS20xYhANU7dy71Wde_uA_uPxNkv0bwJfEDwbgmgbiq1DxbkNqEdMlqNG8-6x-lqZcwNzRaFQnuX98mBwTjWQc0a3-dU2mtsHZZmjPNJXmsTXJbg9fvTI1_fO8qWy5wJW9MFWGNzSXZOltslu3cNthbGxUh51eubw_wU1fzx5uUdO7-mPGiYw-_c5nW8VA0hoMHNML8fJSJazTgY9cyB60jR5M8oorhDB0rH2Q4CuprQqO7yk7grTLli3eSJ7yPoz3dZN3W6W3zTBTdF0SM5zoX_dBCFAepr1RiFMRRPwrxcuLFGuo6VTqE1DMINvoWEVUcpcSyAxo8GYP2UURtsUo2ypJtxlWfhiJuMqj7gQKLoCwIIEU7ayH2TJUd4qL1itMz7rnAuMSLCT0tlrLKTspt60FBX05dNIY_SB9_SD9PaTt-kDssNaCH-0HBElyS0QQFNEIZnEVkfpFBxy7DAEH0zj9msMuWJNVOECun2mOV_GWS7COiye2BU-d31x3xCQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Nb9QwEB215dBe-CyifLoSPSFXWTtxnAOH1dJll3YLEi3qLcSzDqpYsohkheDCL-Gv8NuYcZNWrdSKSyWu0WgU2-O853jmDcBztMpxrMjERk7GXmmZlWhlhHxtZxxRAK53nuyb0WH85ig5WoLfXS0MvURNnupwiX-mLsAyQfRQIUtWdb2qd_2P73RCq1-OX9Fybik13DkYjGTbREAWFJ6NnKYOsyIpY6291Vhk0ywljh0VBnum1CbFMrKEmVNHxKDIShaLQYORKtDEZKLJ7zLcIN6j-GzXH7w_K7tUttex69Qa3ebVX3xbxj2sz-Pe-c9-wLLhLfhzOgshheXz9qJx2_jzgkDkfztNt-Fmy6JF_yTs78CSr-7C6qBrXncPfr2msG_E29ClCMVOqHAUA06xD_8HRdufSHwIeeXFTPZnx58IcsR4Xsl3BFd1aBBEWCAIgOZcH10RjRDHFXmh3enZe6hjRTHsEtzExH9xBP6-XofDaxn_fVip5pV_AEJP2RUrsWEvTjQ6oqBJgiWhisMishuwSYuUt9-KOg9pAIqOYfy0XboNeNFFS46tWDv3DJldYr11av31RKTkErvNLvByWg--GqIpmS_IwBBxo1Fk9gobojEqTejI8PAfRvAMVkcHk718b7y_-wjWFFeNsB6pfgwrzbeFf0JcrnFPw44S8PG6Y_MvUN5S3w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Nb9QwEB2VIgEXvlHLpyvRE3KVtRPHOfSw2nbpUloqQVFvIZ44VcWSrUhWCC79LfwVfhkzblLUSkVcKnHdjEaxPc57Xs-8AXiJVjmOFZnYyMnYKy2zCq2MkK_tjCMKwPXOO7tmaz9-c5AcLMDPvhaGXqIhT024xOddfVxWncIASwXRA4UsW9X3q97237_RKa1Zn2zQkq4qNd78MNqSXSMBWVCItrJMHWZFUsVae6uxyMosJZ4dFQYHptImxSqyhJulI3JQZBULxqDBSBVoYjLR5PcaXOcbQj7fDUfv_5ReKjvoGXZqje5y6y--LWMfNuex7_ynP-DZ-A78OpuJkMbyeW3eujX8cUEk8r-eqrtwu2PTYnga_vdgwdf34eaob2L3AE5eU_i34l3oVoRiM1Q6ihGn2of_CUXXp0h8DPnlxVQOp0eHBD1iMqvlHsFWExoFESYIAqIZ10nXRCfEUU1eaJd69h7qWVGM-0Q3seO_OCIBvnkI-1cy_kewWM9qvwRCl-yKFdlwECcaHVHRJMGK0MVhEdllWKFFyrtvRpOHdABFxzH-tVu6ZXjVR0yOnWg79w6ZXmK9emZ9fCpWcondSh98Oa0HXxHRlMzmZGCIwNEoMvsXG6IzKk3o6PD4H0bwAm7sbYzzt5Pd7SdwS3HxCMuS6qew2H6d-2dE6Vr3PGwqAZ-uOjR_A4P1VWI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Giant+Osmotic+Energy+Conversion+through+Vertical-Aligned+Ion-Permselective+Nanochannels+in+Covalent+Organic+Framework+Membranes&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Cao%2C+Li&rft.au=Chen%2C+I-Chun&rft.au=Chen%2C+Cailing&rft.au=Shinde%2C+Digambar+B&rft.date=2022-07-13&rft.issn=1520-5126&rft.eissn=1520-5126&rft.volume=144&rft.issue=27&rft.spage=12400&rft_id=info:doi/10.1021%2Fjacs.2c04223&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |