Engineered Slippery Surface to Mitigate Gypsum Scaling in Membrane Distillation for Treatment of Hypersaline Industrial Wastewaters

Membrane distillation (MD) is an emerging thermal desalination process, which can potentially treat high salinity industrial wastewaters, such as shale gas produced water and power plant blowdown. The performance of MD systems is hampered by inorganic scaling, particularly when treating hypersaline...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 52; no. 24; pp. 14362 - 14370
Main Authors Karanikola, Vasiliki, Boo, Chanhee, Rolf, Julianne, Elimelech, Menachem
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 18.12.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Membrane distillation (MD) is an emerging thermal desalination process, which can potentially treat high salinity industrial wastewaters, such as shale gas produced water and power plant blowdown. The performance of MD systems is hampered by inorganic scaling, particularly when treating hypersaline industrial wastewaters with high-scaling potential. In this study, we developed a scaling-resistant MD membrane with an engineered “slippery” surface for desalination of high-salinity industrial wastewaters at high water recovery. A polyvinylidene fluoride (PVDF) membrane was grafted with silica nanoparticles, followed by coating with fluoroalkylsilane to lower the membrane surface energy. Contact angle measurements revealed the “slippery” nature of the modified PVDF membrane. We evaluated the desalination performance of the surface-engineered PVDF membrane in direct contact membrane distillation using a synthetic wastewater with high gypsum scaling potential as well as a brine from a power plant blowdown. Results show that gypsum scaling is substantially delayed on the developed slippery surface. Compared to the pristine PVDF membrane, the modified PVDF membranes exhibited a stable MD performance with reduced scaling potential, demonstrating its potential to achieve high water recovery in treatment of high-salinity industrial wastewaters. We conclude with a discussion of the mechanism for gypsum scaling inhibition by the engineered slippery surface.
AbstractList Membrane distillation (MD) is an emerging thermal desalination process, which can potentially treat high salinity industrial wastewaters, such as shale gas produced water and power plant blowdown. The performance of MD systems is hampered by inorganic scaling, particularly when treating hypersaline industrial wastewaters with high-scaling potential. In this study, we developed a scaling-resistant MD membrane with an engineered “slippery” surface for desalination of high-salinity industrial wastewaters at high water recovery. A polyvinylidene fluoride (PVDF) membrane was grafted with silica nanoparticles, followed by coating with fluoroalkylsilane to lower the membrane surface energy. Contact angle measurements revealed the “slippery” nature of the modified PVDF membrane. We evaluated the desalination performance of the surface-engineered PVDF membrane in direct contact membrane distillation using a synthetic wastewater with high gypsum scaling potential as well as a brine from a power plant blowdown. Results show that gypsum scaling is substantially delayed on the developed slippery surface. Compared to the pristine PVDF membrane, the modified PVDF membranes exhibited a stable MD performance with reduced scaling potential, demonstrating its potential to achieve high water recovery in treatment of high-salinity industrial wastewaters. We conclude with a discussion of the mechanism for gypsum scaling inhibition by the engineered slippery surface.
Author Karanikola, Vasiliki
Elimelech, Menachem
Boo, Chanhee
Rolf, Julianne
AuthorAffiliation Department of Chemical and Environmental Engineering
AuthorAffiliation_xml – name: Department of Chemical and Environmental Engineering
Author_xml – sequence: 1
  givenname: Vasiliki
  orcidid: 0000-0003-3249-6517
  surname: Karanikola
  fullname: Karanikola, Vasiliki
– sequence: 2
  givenname: Chanhee
  orcidid: 0000-0003-4595-9963
  surname: Boo
  fullname: Boo, Chanhee
– sequence: 3
  givenname: Julianne
  orcidid: 0000-0001-6655-2690
  surname: Rolf
  fullname: Rolf, Julianne
– sequence: 4
  givenname: Menachem
  orcidid: 0000-0003-4186-1563
  surname: Elimelech
  fullname: Elimelech, Menachem
  email: menachem.elimelech@yale.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30426741$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtLxDAURoMoOj7W7iTgRpCOefS5lPEJiotRdFdu29sh0iY1SZFZ-8fNMKMLQbLI5nwn9-bbJ9vaaCTkmLMpZ4JfQO2m6Pw0r1icy3SLTHgiWJTkCd8mE8a4jAqZvu2RfefeGWNCsnyX7EkWizSL-YR8XeuF0ogWGzrv1DCgXdL5aFuokXpDH5VXC_BIb5eDG3s6r6FTekGVpo_YVxY00ivlvOo68Mpo2hpLny2C71F7alp6twxOt0ohvdfN6LxV0NFXcB4_g9m6Q7LTQufwaHMfkJeb6-fZXfTwdHs_u3yIIGbMRyB5nqYIObSZqPKCN6IJe7aCywyKGDi2SRVOk6SxSJqUA0jB66pG5A2vanlAztbewZqPMXxb2StXY5hcoxldGUQylnlWsICe_kHfzWh1mC5QaZyIQsgsUBdrqrbGOYttOVjVg12WnJWrfsrQT7lKb_oJiZONd6x6bH75n0ICcL4GVsnfN__TfQOKb59R
CitedBy_id crossref_primary_10_1016_j_desal_2023_117252
crossref_primary_10_1016_j_seppur_2020_118186
crossref_primary_10_1016_j_desal_2023_116682
crossref_primary_10_1016_j_watres_2022_118246
crossref_primary_10_1016_j_desal_2022_116161
crossref_primary_10_1021_acs_estlett_9b00354
crossref_primary_10_1039_C9EW00626E
crossref_primary_10_1002_adsu_202300461
crossref_primary_10_1016_j_memsci_2023_121958
crossref_primary_10_1016_j_memsci_2023_121432
crossref_primary_10_1016_j_bej_2019_01_019
crossref_primary_10_1016_j_memsci_2024_122410
crossref_primary_10_1016_j_cis_2021_102547
crossref_primary_10_1016_j_memsci_2024_122494
crossref_primary_10_1016_j_desal_2021_115185
crossref_primary_10_1016_j_desal_2023_117127
crossref_primary_10_1021_acsapm_2c01014
crossref_primary_10_1016_j_resconrec_2022_106368
crossref_primary_10_1016_j_memsci_2021_119763
crossref_primary_10_1016_j_memsci_2022_120858
crossref_primary_10_2139_ssrn_3989695
crossref_primary_10_1016_j_jhazmat_2021_125772
crossref_primary_10_1016_j_jclepro_2022_131180
crossref_primary_10_1016_j_memsci_2020_118035
crossref_primary_10_1021_acsami_1c12775
crossref_primary_10_1016_j_apsusc_2023_158223
crossref_primary_10_1016_j_memsci_2019_117294
crossref_primary_10_1021_acs_est_2c01858
crossref_primary_10_1002_wer_1385
crossref_primary_10_1016_j_memsci_2021_120077
crossref_primary_10_1016_j_memsci_2022_120297
crossref_primary_10_1021_acsnano_0c07543
crossref_primary_10_1016_j_memsci_2022_120697
crossref_primary_10_1021_acsestengg_0c00025
crossref_primary_10_1016_j_memsci_2019_117572
crossref_primary_10_1016_j_desal_2024_117539
crossref_primary_10_1016_j_desal_2023_116785
crossref_primary_10_1016_j_desal_2020_114820
crossref_primary_10_1021_acs_est_2c03348
crossref_primary_10_1021_acs_iecr_9b03907
crossref_primary_10_1016_j_watres_2023_120265
crossref_primary_10_1016_j_watres_2024_122006
crossref_primary_10_1021_acsestwater_2c00339
crossref_primary_10_1038_s44221_023_00095_4
crossref_primary_10_1021_acs_cgd_2c00794
crossref_primary_10_1038_s44221_023_00174_6
crossref_primary_10_1021_acs_jpcc_0c10016
crossref_primary_10_1021_acs_est_9b00902
crossref_primary_10_1021_acs_est_0c02555
crossref_primary_10_1021_acsestwater_1c00087
crossref_primary_10_1016_j_desal_2019_05_006
crossref_primary_10_1016_j_memsci_2021_120124
crossref_primary_10_1016_j_ceja_2021_100114
crossref_primary_10_1021_acssuschemeng_9b05805
crossref_primary_10_1016_j_desal_2022_115969
crossref_primary_10_1016_j_seppur_2023_126145
crossref_primary_10_1016_j_desal_2022_116013
crossref_primary_10_1002_adfm_201903125
crossref_primary_10_1016_j_watres_2024_121671
crossref_primary_10_1016_j_desal_2022_116133
crossref_primary_10_1016_j_desal_2020_114832
crossref_primary_10_1021_acs_est_1c04433
crossref_primary_10_1007_s42765_022_00193_0
crossref_primary_10_1039_D1EW00128K
crossref_primary_10_3390_w13243480
crossref_primary_10_1021_acsapm_9b01133
crossref_primary_10_1021_acsestengg_2c00216
crossref_primary_10_1016_j_memsci_2019_117271
crossref_primary_10_1021_acs_est_1c07144
crossref_primary_10_2139_ssrn_4122759
crossref_primary_10_1016_j_memsci_2022_121130
crossref_primary_10_1021_acs_est_2c06560
crossref_primary_10_1038_s41598_019_51167_z
crossref_primary_10_1016_j_cej_2021_134425
crossref_primary_10_1021_acs_est_0c02547
crossref_primary_10_1016_j_desal_2023_116443
crossref_primary_10_1016_j_desal_2023_116960
crossref_primary_10_1016_j_memsci_2021_119673
crossref_primary_10_1021_acsestwater_2c00475
crossref_primary_10_2139_ssrn_4200278
crossref_primary_10_1021_acsami_0c03577
crossref_primary_10_1016_j_desal_2024_117555
crossref_primary_10_1021_acs_est_1c01850
crossref_primary_10_1080_10643389_2021_1877032
crossref_primary_10_1016_j_memsci_2022_120423
crossref_primary_10_1016_j_ceja_2021_100138
crossref_primary_10_1021_acs_est_0c03826
crossref_primary_10_1021_acs_est_2c07880
crossref_primary_10_1021_acs_est_0c07190
crossref_primary_10_1016_j_memsci_2023_122295
crossref_primary_10_1039_D0TA09193F
crossref_primary_10_1016_j_desal_2022_116237
crossref_primary_10_1016_j_desal_2023_116998
crossref_primary_10_1016_j_desal_2020_114335
crossref_primary_10_1021_acsestengg_1c00160
crossref_primary_10_1016_j_resconrec_2023_107365
crossref_primary_10_1021_acs_est_3c01528
crossref_primary_10_1016_j_jiec_2021_01_038
crossref_primary_10_1016_j_memsci_2020_118991
crossref_primary_10_2139_ssrn_4105376
crossref_primary_10_1016_j_memsci_2023_122338
crossref_primary_10_1016_j_memsci_2022_120499
crossref_primary_10_1016_j_memsci_2020_117819
crossref_primary_10_1016_j_watres_2023_120807
crossref_primary_10_1016_j_seppur_2023_123465
crossref_primary_10_1002_advs_202300598
crossref_primary_10_1016_j_desal_2020_114864
crossref_primary_10_1016_j_desal_2021_115498
crossref_primary_10_1016_j_memsci_2020_118503
crossref_primary_10_1021_acsapm_0c00353
crossref_primary_10_1016_j_memsci_2020_118883
crossref_primary_10_1016_j_memsci_2022_121338
crossref_primary_10_1016_j_watres_2023_120348
crossref_primary_10_1021_acs_est_1c07294
crossref_primary_10_1016_j_cej_2021_133021
crossref_primary_10_1016_j_desal_2023_116936
crossref_primary_10_1016_j_desal_2022_115649
crossref_primary_10_1016_j_memsci_2020_118918
crossref_primary_10_1007_s10230_020_00730_6
crossref_primary_10_1016_j_desal_2023_116895
crossref_primary_10_1016_j_watres_2023_120060
crossref_primary_10_1039_D1TA07695G
crossref_primary_10_3390_membranes12121287
crossref_primary_10_1016_j_watres_2022_118945
crossref_primary_10_1021_acs_est_1c02687
crossref_primary_10_1016_j_memsci_2020_118877
crossref_primary_10_1016_j_memsci_2020_117962
crossref_primary_10_1021_acs_est_3c00414
crossref_primary_10_1016_j_desal_2023_117066
crossref_primary_10_1016_j_memsci_2020_118499
crossref_primary_10_1016_j_desal_2019_114210
crossref_primary_10_1016_j_watres_2023_120510
crossref_primary_10_1016_j_memsci_2022_120751
crossref_primary_10_1016_j_hazadv_2022_100182
crossref_primary_10_1021_acsapm_4c00704
crossref_primary_10_1016_j_jece_2022_109054
crossref_primary_10_1016_j_scitotenv_2021_148657
crossref_primary_10_1016_j_memsci_2024_123027
crossref_primary_10_1016_j_cep_2021_108517
crossref_primary_10_1021_acs_est_3c04450
crossref_primary_10_1016_j_memsci_2021_119596
crossref_primary_10_1016_j_desal_2020_114889
crossref_primary_10_1016_j_desal_2021_115199
crossref_primary_10_1016_j_memsci_2020_118924
crossref_primary_10_1016_j_memsci_2021_119873
crossref_primary_10_1021_acs_est_9b04362
crossref_primary_10_1021_acs_est_9b06023
crossref_primary_10_1016_j_memsci_2020_118768
crossref_primary_10_1021_acs_estlett_9b00182
crossref_primary_10_1016_j_ceja_2023_100486
Cites_doi 10.1016/j.desal.2017.11.025
10.1039/C8EE00291F
10.1006/jcis.1997.5087
10.1016/j.memsci.2013.03.014
10.1002/adma.200700820
10.1038/nature10447
10.1016/S0032-3861(99)00343-2
10.1021/ie010553y
10.1016/j.memsci.2015.05.033
10.1038/nnano.2017.114
10.1073/pnas.0915169107
10.1016/j.desal.2008.07.004
10.1016/j.memsci.2016.04.014
10.1039/c3tb20916d
10.1016/j.memsci.2016.11.003
10.1021/jp061531y
10.1016/j.cocis.2006.06.002
10.1021/acs.est.6b06411
10.1126/sciadv.1500323
10.1002/andp.19354160806
10.1021/acs.est.5b04351
10.1016/j.wri.2016.03.002
10.1016/B978-0-444-53126-1.10012-0
10.1016/j.desal.2014.06.031
10.1021/ie100418z
10.1016/S0011-9164(99)00004-1
10.1016/j.seppur.2017.06.077
10.1021/acs.est.6b03882
10.1088/0957-4484/25/1/014019
10.1016/j.watres.2015.11.045
10.1016/j.memsci.2008.08.001
10.1021/nl071023f
10.1016/j.desal.2013.01.029
10.1016/j.watres.2017.11.017
10.3133/cir1405
10.1002/adfm.201401289
10.1016/S0376-7388(96)00236-0
10.1021/am301532g
10.1016/S0043-1354(00)00142-1
10.2478/s11696-008-0095-y
10.1021/ez500267p
10.1016/j.memsci.2017.02.025
10.1016/S0376-7388(02)00013-3
10.1016/j.memsci.2017.08.011
10.1016/j.desal.2016.07.045
10.1515/zpch-1926-11927
10.1016/j.pmatsci.2012.11.001
10.1021/acs.estlett.8b00274
10.1016/j.memsci.2014.09.042
ContentType Journal Article
Copyright Copyright American Chemical Society Dec 18, 2018
Copyright_xml – notice: Copyright American Chemical Society Dec 18, 2018
DBID NPM
AAYXX
CITATION
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
DOI 10.1021/acs.est.8b04836
DatabaseName PubMed
CrossRef
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Biotechnology Research Abstracts

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1520-5851
EndPage 14370
ExternalDocumentID 10_1021_acs_est_8b04836
30426741
a227440928
Genre Journal Article
GroupedDBID -
.K2
1AW
3R3
4R4
53G
55A
5GY
5VS
63O
7~N
85S
AABXI
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
MS
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
XZL
YZZ
---
-DZ
-~X
..I
.DC
4.4
6TJ
AAHBH
ABJNI
ABQRX
ADHLV
ADUKH
AGXLV
AHGAQ
CUPRZ
GGK
MS~
MW2
NPM
XSW
ZCA
AAYXX
CITATION
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
ID FETCH-LOGICAL-a400t-a31866ea8af72b891d2d851f2137a94a1ef5b5b5d56425d61aa321cbcee1d1bc3
IEDL.DBID ACS
ISSN 0013-936X
IngestDate Sat Aug 17 01:04:19 EDT 2024
Thu Oct 10 23:06:59 EDT 2024
Fri Aug 23 00:38:10 EDT 2024
Wed Oct 16 00:51:36 EDT 2024
Thu Aug 27 13:42:51 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a400t-a31866ea8af72b891d2d851f2137a94a1ef5b5b5d56425d61aa321cbcee1d1bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4595-9963
0000-0003-4186-1563
0000-0003-3249-6517
0000-0001-6655-2690
PMID 30426741
PQID 2164529237
PQPubID 45412
PageCount 9
ParticipantIDs proquest_miscellaneous_2133438790
proquest_journals_2164529237
crossref_primary_10_1021_acs_est_8b04836
pubmed_primary_30426741
acs_journals_10_1021_acs_est_8b04836
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2018-12-18
PublicationDateYYYYMMDD 2018-12-18
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-18
  day: 18
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
Volmer M. (ref46/cit46) 1926; 119
ref3/cit3
ref27/cit27
ref16/cit16
Averyt K. (ref1/cit1) 2011
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
Khayet M. (ref7/cit7) 2011
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
Clouet E. (ref47/cit47) 2010
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref44/cit44
References_xml – ident: ref45/cit45
  doi: 10.1016/j.desal.2017.11.025
– ident: ref4/cit4
– ident: ref10/cit10
  doi: 10.1039/C8EE00291F
– ident: ref49/cit49
  doi: 10.1006/jcis.1997.5087
– ident: ref18/cit18
  doi: 10.1016/j.memsci.2013.03.014
– ident: ref30/cit30
  doi: 10.1002/adma.200700820
– ident: ref32/cit32
  doi: 10.1038/nature10447
– ident: ref37/cit37
  doi: 10.1016/S0032-3861(99)00343-2
– ident: ref24/cit24
  doi: 10.1021/ie010553y
– ident: ref23/cit23
  doi: 10.1016/j.memsci.2015.05.033
– ident: ref9/cit9
  doi: 10.1038/nnano.2017.114
– ident: ref35/cit35
  doi: 10.1073/pnas.0915169107
– ident: ref44/cit44
  doi: 10.1016/j.desal.2008.07.004
– year: 2010
  ident: ref47/cit47
  publication-title: arXiv preprint arXiv:1001.4131
  contributor:
    fullname: Clouet E.
– ident: ref25/cit25
  doi: 10.1016/j.memsci.2016.04.014
– ident: ref42/cit42
  doi: 10.1039/c3tb20916d
– ident: ref15/cit15
  doi: 10.1016/j.memsci.2016.11.003
– ident: ref50/cit50
  doi: 10.1021/jp061531y
– ident: ref22/cit22
  doi: 10.1016/j.cocis.2006.06.002
– ident: ref17/cit17
  doi: 10.1021/acs.est.6b06411
– ident: ref3/cit3
  doi: 10.1126/sciadv.1500323
– ident: ref48/cit48
  doi: 10.1002/andp.19354160806
– ident: ref21/cit21
  doi: 10.1021/acs.est.5b04351
– ident: ref5/cit5
  doi: 10.1016/j.wri.2016.03.002
– volume-title: Membrane Distillation: Principles and Applications
  year: 2011
  ident: ref7/cit7
  doi: 10.1016/B978-0-444-53126-1.10012-0
  contributor:
    fullname: Khayet M.
– ident: ref39/cit39
  doi: 10.1016/j.desal.2014.06.031
– ident: ref51/cit51
  doi: 10.1021/ie100418z
– ident: ref29/cit29
  doi: 10.1016/S0011-9164(99)00004-1
– ident: ref26/cit26
  doi: 10.1016/j.seppur.2017.06.077
– ident: ref20/cit20
  doi: 10.1021/acs.est.6b03882
– ident: ref34/cit34
  doi: 10.1088/0957-4484/25/1/014019
– ident: ref11/cit11
  doi: 10.1016/j.watres.2015.11.045
– ident: ref19/cit19
  doi: 10.1016/j.memsci.2008.08.001
– ident: ref31/cit31
  doi: 10.1021/nl071023f
– ident: ref6/cit6
  doi: 10.1016/j.desal.2013.01.029
– ident: ref14/cit14
  doi: 10.1016/j.watres.2017.11.017
– ident: ref2/cit2
  doi: 10.3133/cir1405
– ident: ref36/cit36
  doi: 10.1002/adfm.201401289
– ident: ref8/cit8
  doi: 10.1016/S0376-7388(96)00236-0
– ident: ref41/cit41
  doi: 10.1021/am301532g
– ident: ref43/cit43
  doi: 10.1016/S0043-1354(00)00142-1
– ident: ref52/cit52
  doi: 10.2478/s11696-008-0095-y
– ident: ref33/cit33
  doi: 10.1021/ez500267p
– ident: ref38/cit38
  doi: 10.1016/j.memsci.2017.02.025
– ident: ref40/cit40
  doi: 10.1016/S0376-7388(02)00013-3
– ident: ref27/cit27
  doi: 10.1016/j.memsci.2017.08.011
– ident: ref12/cit12
  doi: 10.1016/j.desal.2016.07.045
– volume: 119
  start-page: 277
  issue: 1
  year: 1926
  ident: ref46/cit46
  publication-title: Z. Phys. Chem.
  doi: 10.1515/zpch-1926-11927
  contributor:
    fullname: Volmer M.
– start-page: 1
  volume-title: Electricity’s Thirst for a Precious Resource
  year: 2011
  ident: ref1/cit1
  contributor:
    fullname: Averyt K.
– ident: ref28/cit28
  doi: 10.1016/j.pmatsci.2012.11.001
– ident: ref13/cit13
  doi: 10.1021/acs.estlett.8b00274
– ident: ref16/cit16
  doi: 10.1016/j.memsci.2014.09.042
SSID ssj0002308
Score 2.6589828
Snippet Membrane distillation (MD) is an emerging thermal desalination process, which can potentially treat high salinity industrial wastewaters, such as shale gas...
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 14362
SubjectTerms Blowdown
Comparative analysis
Contact angle
Desalination
Distillation
Electric power generation
Fluorides
Gypsum
Industrial wastes
Membranes
Nanoparticles
Polyvinylidene fluorides
Power plants
Recovery
Saline water
Salinity
Salinity effects
Scaling
Shale
Shale gas
Silica
Silicon dioxide
Surface energy
Surface properties
Wastewater
Wastewater treatment
Water treatment
Title Engineered Slippery Surface to Mitigate Gypsum Scaling in Membrane Distillation for Treatment of Hypersaline Industrial Wastewaters
URI http://dx.doi.org/10.1021/acs.est.8b04836
https://www.ncbi.nlm.nih.gov/pubmed/30426741
https://www.proquest.com/docview/2164529237
https://search.proquest.com/docview/2133438790
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB61cGkP5VUglFauxIHLprG9D_tYUWiEFC4BNbeVn1IEbKLs5kCv_HHG-0haEGq1t93xrjU7Y3_jGX8GODEaYbyWPooTa6OYDQy6lGSR0kYbY42TNZH26Cod3sSXk2SyJot-nsFn9JsyZR8HyL7Qgf08fQubLEPXCCjobLwadBFJi-6wAsnTyYrF58ULwjRkyr-noVewZT3HXGw11VllTU0YSktu-8tK983vl8SN_-7-NnxokSb53pjGDrxxxS68_4N_cBf2z9fb3FC09fNyDx47MWfJ-G46n7vFAxkvF14ZR6oZGU1rag5Hfj5glH2PLVXY1k6mBRm5ewzAC0d-hNHjrim1IwiNyXVX005mngwx_l2UoZUj6-NDyC9VhtW8QPn5EW4uzq_PhlF7XEOkcCCoIsUDeZ5TQvmMaSGpZRbxnGeUZ0rGijqfaLxsgjFPYlOqFGcUTcI5aqk2fB82ilnhDoEkgvqBVTKV0sSpyJTmllOPgk5wP6A9OEG95q27lXmdSWc0DzdR2Xmr7B6cdj85nzfkHa-LHndGsH4toyHtixA468HX1WP0v5BUQU3OlkGG85iLTA56cNAYz-pbYakoRch29H_d_QTvEI6JUCxDxTFsVIul-4yQp9JfamN_AuYZ_wc
link.rule.ids 315,783,787,2772,27088,27936,27937,57066,57116
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFH8a2wE4wBhsFDYw0g5c0sVxPuwjGtsKrJNQO9Fb5E-p2pZWTXoYV_5xntMkhU2TQLklz47z8t7zz_bzzwCHWiGMV8IFcWJMEEehRpcSUSCVVlobbUVNpD28SAeX8ddJMtmAsN0Lg40osaayXsRfswvQI38P42SfK0-Cnj6CrSTD7tKDoeNRF3sRUPP2zALB0klH5nOvAt8b6fLv3ugBiFl3NafP4XvXyDrD5Kq_rFRf_7zD3_g_X7ENzxrcST6tDOUFbNhiB57-wUa4A7sn601vKNp4ffkSfrVi1pDR9XQ-t4tbMlounNSWVDMynNZEHZac3eKY-wZLSr_JnUwLMrQ3OBwvLPnsY8n1KvGOIFAm4zbDncwcGeBoeFH6UpasDxMhP2Tp5_Y8AegruDw9GR8PgubwhkBiWKgCyTyVnpVcuixSXFATGUR3LqIskyKW1LpE4WUSHAElJqVSsoiigVhLDVWa7cJmMSvsayAJpy40UqRC6DjlmVTMMOpQ0HLmQtqDQ9Rr3jhfmdfr6hHN_U1Udt4ouwcf23-dz1dUHg-L7re2sK42on4RGAFx1oMP3WP0Rr_EgpqcLb0MYzHjmQh7sLeyoe5dfuIoRQD35t-a-x4eD8bD8_z8y8W3t_AEgRr3aTSU78NmtVjaAwRDlXpX2_9vpvUHew
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFH9iQ0LjMGBjUBhgpB24pKvjfNjHalspH52Qumq9Rf6UKra0atJDd-Uf5zlNUj40CZRb8uw4L3727_n5_QxwohXCeCVcEMXGBFHY02hSIgyk0kpro62oiLRHl8lwEn2extM6KcznwmAjCqypqIL43qoXxtUMA_TU38exssuVJ0JPduBhnNIqONs_G7fjL4Jq3pxbIFgybQl9_qrAz0i6-H1GugdmVtPN4AlM2oZWu0y-d1el6uq7Pzgc__dLnsJ-jT9Jf9NhnsEDmx_A419YCQ_g6GKb_IaitfUXh_CjEbOGjG9mi4Vdrsl4tXRSW1LOyWhWEXZY8nGNvvctlpQ-2Z3McjKyt-iW55ac-zHlZrMBjyBgJlfNTncyd2SIXvGy8KUs2R4qQq5l4df4PBHoc5gMLq7OhkF9iEMgcXgoA8k8pZ6VXLo0VFxQExpEeS6kLJUiktS6WOFlYvSEYpNQKVlIsaNYSw1Vmh3Bbj7P7UsgMaeuZ6RIhNBRwlOpmGHUoaDlzPVoB05Qr1lthEVWxddDmvmbqOysVnYHPjT_O1tsKD3uFz1u-sO22pD6YDAC47QD79vHaJU-1IKanK-8DGMR46nodeDFph-17_ILSAkCuVf_1tx38Ojb-SD7-unyy2vYQ7zG_W4ayo9ht1yu7BvERKV6W5nAT_s5CfU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineered+Slippery+Surface+to+Mitigate+Gypsum+Scaling+in+Membrane+Distillation+for+Treatment+of+Hypersaline+Industrial+Wastewaters&rft.jtitle=Environmental+science+%26+technology&rft.au=Karanikola%2C+Vasiliki&rft.au=Boo%2C+Chanhee&rft.au=Rolf%2C+Julianne&rft.au=Elimelech%2C+Menachem&rft.date=2018-12-18&rft.eissn=1520-5851&rft.volume=52&rft.issue=24&rft.spage=14362&rft_id=info:doi/10.1021%2Facs.est.8b04836&rft_id=info%3Apmid%2F30426741&rft.externalDocID=30426741
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon